EE16B

Designing Information Devices and Systems II

Lecture 6B
Controllability

Administration

- Lecture slides (Miki Lustig):
- Alpha version will be posted a few days before
- Beta version will be posted same day before noon
- Includes 4 slides per page for printing
- version 1.0 will be posted affter student's corrections are integrated.
- Lecture notes (Murat Arcak):
- Class Reader: http://inst.eecs.berkeley.edu/
~ee16b/fa17/note/16Breader.pdf

Today

- Last time:
- Derived stability conditions for disc. and cont. systems
- Easy to analyze using eigenvalues
- Eigenvalues can predict system behaviour
- Envelope (decay) and Oscillation (frequency)
- Today:
- Controllability of systems

HOW NOT TO LAND AN ORBITAL ROCKET BOOSTER

Controllability

Discrete-time: $\quad \vec{x}(t+1)=A \vec{x}(t)+B u(t)$
From last time:

$$
\begin{aligned}
& \qquad \vec{x}(t)=A^{t} \vec{x}(0)+\sum_{k=0}^{t-1} A^{t-1-k} B u(t)_{\mathrm{k}} \\
& \quad=A^{t} \vec{x}(0)+A^{t-1} B u(0)+A^{t-2} B u(1)+\cdots+B u(t-1) \\
& \vec{x}(t)-A^{t} \vec{x}(0)=\left[\begin{array}{c}
u(0) \\
u \\
\vdots \\
u(t-1)
\end{array}\right]
\end{aligned}
$$

Controllability

$$
\begin{aligned}
\vec{x}(t)-A^{t} \vec{x}(0) & =A^{t-1} B u(0)+A^{t-2} B u(1)+\cdots+B u(t-1) \\
\vec{x}(t)-A^{t} \vec{x}(0) & =[\underbrace{\left.\begin{array}{lllll}
A^{t-1} B & A^{t-2} B & \cdots & A B & B
\end{array}\right]\left[\begin{array}{c}
u(0) \\
u(1) \\
\vdots \\
u(t-1)
\end{array}\right]}_{R_{t}}
\end{aligned}
$$

Q) Given any $x(0)$, can we find $u(t)$ s.t. $x(t)=x_{\text {target }}$ for some t ?
A) Depends if it is in the span of R_{t}

Controllability

$$
R_{t}=\left[\begin{array}{lllll}
A^{t-1} B & A^{t-2} B & \cdots & A B & B
\end{array}\right]
$$

Q) For $\mathrm{t}<\mathrm{n}$? A) No
Q) At $t=n$, If columns are independent? A) Absolutely!
Q) If not independent, does increasing t helps? A) No!

Cayley-Hamilton Theorem: If A is $n x n$, then A^{n} can be written as a linear combination of $A^{n-1}, \ldots A, 1$

$$
A^{n}=\alpha_{n-1} A^{n-1}+\cdots+\alpha_{1} A+\alpha_{0} 1
$$

So does: $\quad A^{n} B=\alpha_{n-1} A^{n-1} B+\cdots+\alpha_{1} A B+\alpha_{0} B$

Controllability

$$
R_{n}=\left[\begin{array}{lllll}
A^{n-1} B & A^{n-2} B & \cdots & A B & B
\end{array}\right]
$$

What about R_{n+1} ?

$$
\begin{aligned}
R_{n+1}= & {\left[\begin{array}{llllll}
A^{n} B & A^{n-1} B & A^{n-2} B & \cdots & A B & B
\end{array}\right] } \\
& A^{n} B=\alpha_{n-1} A^{n-1} B+\cdots+\alpha_{1} A B+\alpha_{0} B
\end{aligned}
$$

Controllability Test

If R_{t} doesn't have n independent columns at $t=n$, it never will for $\mathrm{t}>\mathrm{n}$ either!

Therefore, we need only to examine R_{n} for controllability:

$$
R_{n}=\left[\begin{array}{lllll}
A^{n-1} B & A^{n-2} B & \cdots & A B & B
\end{array}\right.
$$

Conclusion: $\quad \vec{x}(t+1)=A \vec{x}(t)+B u(t)$
is controllable if and only if

$$
\operatorname{rank}\left\{R_{n}\right\}=n
$$

Example 1:

$$
\begin{gathered}
\vec{x}(t+1)=\left[\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]} \\
\vec{x}(t)+\underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{B} u(t) \\
R_{2}=\left[\begin{array}{ll}
A B & B
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \quad R_{3}=\left[\begin{array}{lll}
A^{2} B & A B & B
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \\
\text { Rank }\{\mathbf{R} 2\}=1,<\mathrm{n}=2 \Rightarrow \text { Not controllable! } \\
\text { State equations: } \quad x_{1}(t+1)=x_{1}(t)+x_{2}(t)+u(t) \\
x_{2}(t+1)=2 x_{2}(t)(\text { not stable })
\end{array}\right.
\end{gathered}
$$

Can not control x_{2}, not with u and not with x_{1}

Example 2:

$m \frac{d^{2} p(t)}{d t^{2}}=u(t) \quad \frac{d}{d t}\left[\begin{array}{c}p(t) \\ v(t)\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{c}p(t) \\ v(t)\end{array}\right]+\left[\begin{array}{c}0 \\ 1 / m\end{array}\right] u(t)$

$$
\begin{aligned}
& p(t) \\
& \dot{p}(t)=v(t)
\end{aligned}
$$

This a continuous time model!
Let's use it as a stepping stone and convert it to discrete time.

Example 2:

Let's convert it to discrete time:

$$
\begin{aligned}
& \frac{d}{d t} p(t)=v(t) \sim \frac{d}{d t}\left[\begin{array}{c}
p(t) \\
v(t)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
p(t) \\
v(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)
\end{aligned}
$$

$$
\begin{aligned}
& v(t+T)-v(t)=\int_{t}^{t+T} u(\tau) d \tau=T u(t) \\
& p(t+T)-p(t)=T v(t)+\frac{1}{2} T^{2} u(t) \text { See homework! }
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& p(t+T)=p(t)+T v(t)+\frac{1}{2} T^{2} u(t) \\
& v(t+T)=v(t)+T u(t) \\
& \quad\left[\begin{array}{l}
p(t+T) \\
v(t+T)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
1 & T \\
0 & 1
\end{array}\right]}_{A}\left[\begin{array}{c}
p(t) \\
v(t)
\end{array}\right]+\underbrace{\left[\begin{array}{c}
\frac{1}{2} T^{2} \\
T
\end{array}\right]}_{B} u(t) \\
& R_{2}=\left[\begin{array}{ll}
A B & B
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{2} T^{2} & \frac{1}{2} T^{2} \\
T & T
\end{array}\right]
\end{aligned}
$$

Rank $=2 \Rightarrow$ Controllable!

Example 2

- Showed how to convert simple continuous time to discrete time - not always as simple!
- In Homework you will show that the continuous system is controllable

Continuous Time (no derivation here)

-The continuous-time system

$$
\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)+B u(t)
$$

is controllable if and only if

$$
R_{n}=\left[\begin{array}{lllll}
A^{n-1} B & A^{n-2} B & \cdots & A B & B
\end{array}\right]
$$

has rank = n

Example 3 + Quiz

- Write the state model:

For:

Quiz

- Write the state model:

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{R}{L_{1}} & -\frac{R}{L_{1}} \\
-\frac{L_{2}}{L_{2}} & -\frac{L_{2}}{L_{2}}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
\frac{R}{L_{1}} \\
\frac{R}{L_{2}}
\end{array}\right] u(t)
$$

For:

$$
U(t) \underbrace{\substack{\downarrow x_{1} \\ L_{1} \\ L_{1} \\ \downarrow L_{2} \\ L_{2}}}_{V_{r}=R\left(u-x_{1}-x_{2}\right)=L_{1} \dot{x}_{1}=L_{2} \dot{x}_{2}}
$$

Example 3

- Controllability:

$$
\left.\begin{array}{rl}
B=\left[\begin{array}{c}
\frac{R}{L_{1}} \\
\frac{R}{L_{2}}
\end{array}\right] & A B=\left[\begin{array}{r}
-\frac{R}{L_{1}} \\
-\frac{R}{L_{2}}
\end{array}\left(\frac{R}{L_{1}}+\frac{R}{L_{2}}\right)\right. \\
L_{1} & \left.\frac{R}{L_{2}}\right)
\end{array}\right],\left[\begin{array}{ll}
A B \quad B
\end{array}\right] \quad \begin{aligned}
A B=\left(\frac{R}{L_{1}}+\frac{R}{L_{2}}\right) & B \\
& \text { Rank }=1! \\
& \text { Not controllable }
\end{aligned}
$$

Physical explanation

-Why can't I drive the currents $x 1$ and $x 2$ freely using $U(t)$?

$$
\begin{gathered}
L_{1} \frac{d x_{1}}{d t}=L_{2} \frac{d x_{2}}{d t}=R \cdot i_{\mathrm{R}}=V_{\mathrm{R}} \quad \Rightarrow L_{1} \frac{d x_{1}}{d t}-L_{2} \frac{d x_{2}}{d t}=0 \\
\frac{d}{d t}\left(L_{1} x_{1}-L_{2} x_{2}\right)=0 \quad \Rightarrow\left(L_{1} x_{1}-L_{2} x_{2}\right)=\text { Const }
\end{gathered}
$$

Given an initial condition, I can only move along the line by changing U
Q) What if $\mathrm{A}=0$? Can the system be controllable?

$$
\begin{aligned}
& \frac{d}{d t} \vec{x}(t)=B u(t) \\
& R=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & \cdots & B
\end{array}\right]
\end{aligned}
$$

A) Only if $u(t)$ is a vector with the same number of elements as the number of states

Summary

- Described and derived conditions for controllability of linear state models.
- Rank of R_{n} for both discrete and continuouse
- Showed how to discretize continuous systems
- Showed examples of controllable and noncontrollable systems
- Next time:
- Open loop and state feedback control
- Controllers to make systems do what we want!

