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Lecture 8A
Observability and Observers
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Observability

A system is “observable” if, by watching
y(0),y(1),y(2),... we can determine the full state

Two stage approach:
1) Determine initial state x(0) from y(0),y(1), ....
2) #(t) = A'%(0) + Bu(t)
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y(1) CA
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Outputs

Z(t + 1) = AZ(t) + Bu(t)
Can’t always measure state directly or all states...

Define output:

y(t) = CL(t)

p x n matrix for p
outputs
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Observability

Q: What conditions on O,, to
determine x(0) uniquely?

Y=

A: O, must have n independent rows

strictly O,,.; has full rank
null-space is {0}

Observability <
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CA
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y(0) C
y(1) CA
y(t) CA!
2
has rank =n
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Example
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State Feedback Control
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A Common Observer Algorithm
Start with initial guess 7:(0)
Update estimate each time using: y p
B(t+1) = Ai(t) + Bu(t) + L(Ca(t) — y(t))
Copy of s;;tem model correction
observer
= = Z(t+ 1) = Az(t) + Bu(t
w7 S+ D) = 420 + Bu®) [T (t+ j—L(C:iEt))t y(tg))
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Z(t+ 1) = AZ(t) + Bu(t) y(t) = CZ(t)

F(t+1) = AZ(t) + Bu(t)

z(t) W/0 observer
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Choosing L for Observer
Z(t+1) = AZ(t) + Bu(t)
Z(t+1) = Az(t) + Bu(t) + L(Cz(t) —

&(t) £ &(t) — Z(t)

et+1)=(A+ LC)et)
é(t) — 0 If (A + LC) has eigenvalues inside unit circle
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Apo=+0.9i

A2 = £0.987i

A2 = £0.9i

- R ]
A1 = £0.987i ]
Control Recap
- Controllability: Rl
#(n) — A"#(0) = |A"'B A"?B ... AB B :
u(n —1)

If Rn is full rank then
we can move to any
target value

Same rank test for
continuous time
* Open loop control:

Can use the above equation to design an input sequence — and apply it
blindly. Accuracy of result will depend on accuracy of model.

Kalman Filter

* We have not assumed noise and errors in our system
model and inputs

T(t+1) = A2(¢) + Bu(t) + L(C2(t) — y(t))

-
correction

Copy of system model

A more elaborate form of the observer where the matrix L is also updated at
each time, is known as the Kalman Filter and is the industry standard in
navigation. The Kalman Filter takes into account the statistical properties of the
noise that corrupts measurements and minimizes the mean square error
between x(t) and x"(t)
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Control Recap — State Feedback
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u(t) = KZ(t)

Closed-loop system: = Z(t+ 1) = (A + BK)Z(t)
Must choose K s.t. A+BK has

eigenvalues inside the unit circle
(or left half-plane for coninuous time)

If controllable, can assign eigenvalues for A+BK arbitrarily

If not, some eigenvalues of A can not be changed!
(could be OK, if stable, bad news if not)
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Control Recap - Observers

Not all state variable are measured, but we get “outputs”
y(t) = CL(t)
To estimate the state we estimate an initial guess and
update: 7 (t+ 1) = AZ(t) + Bu(t) + L(Ca(t) — y(t))

Copy of ngtem model corréf:tion
Design L, such that A+LC has eigenvalues inside unit
circle &t +1) = (A+ LO)a(t)

Can assign arbitrary eigenvalues if system is observable

Control Recap y(0) C

Observability: : :
y(n—1) CAr—1!
O,.; must have n independent rows (full
rank) to determine x(0) uniquely from
output
Duality:  Observability of (C,A) is the same as
controllability of (AT,CT)

Guidance, Navigation & Control (GNC) is aerospace engineering

Open loop Observers feedback
or “kalman”
filters
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