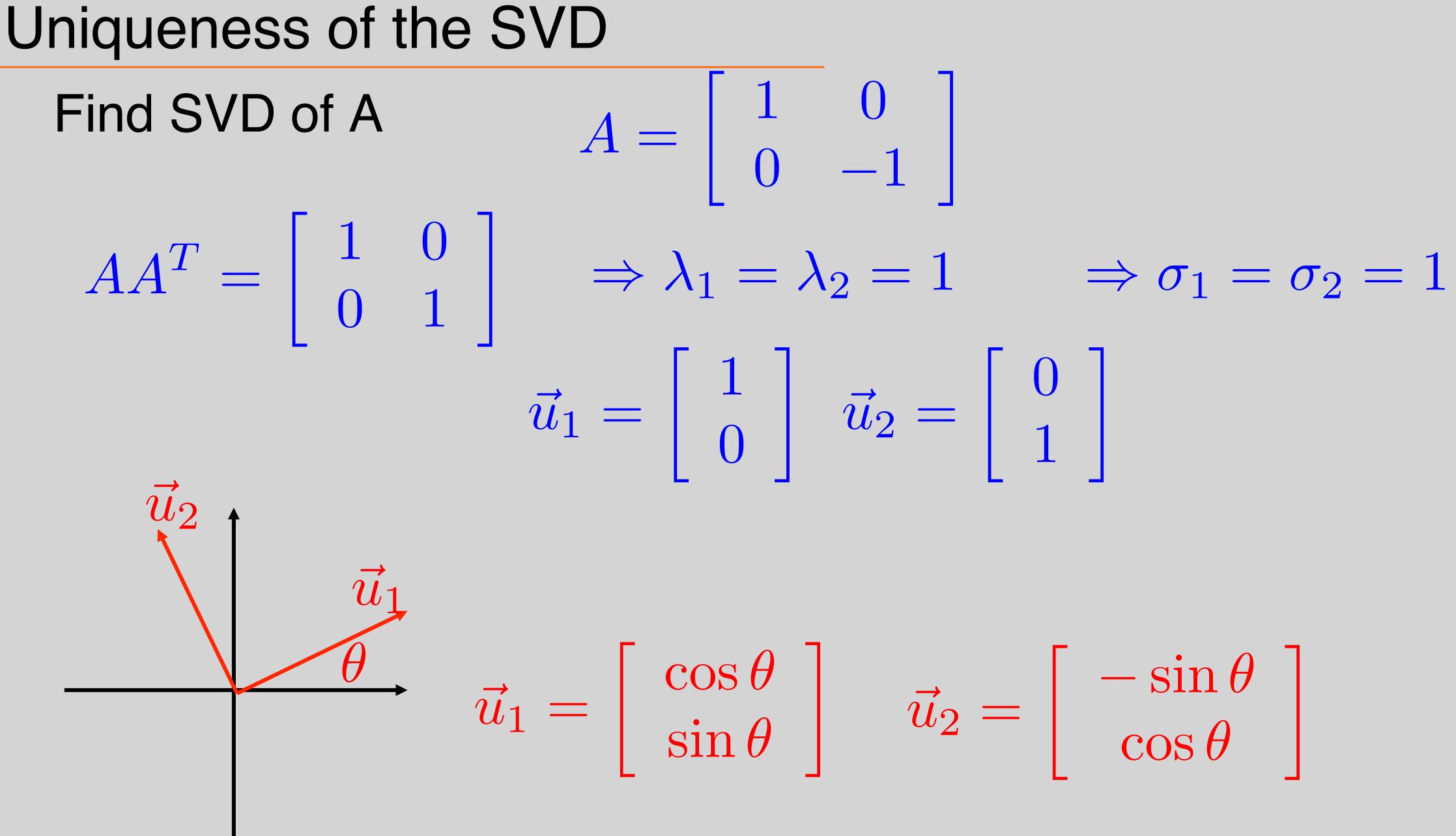
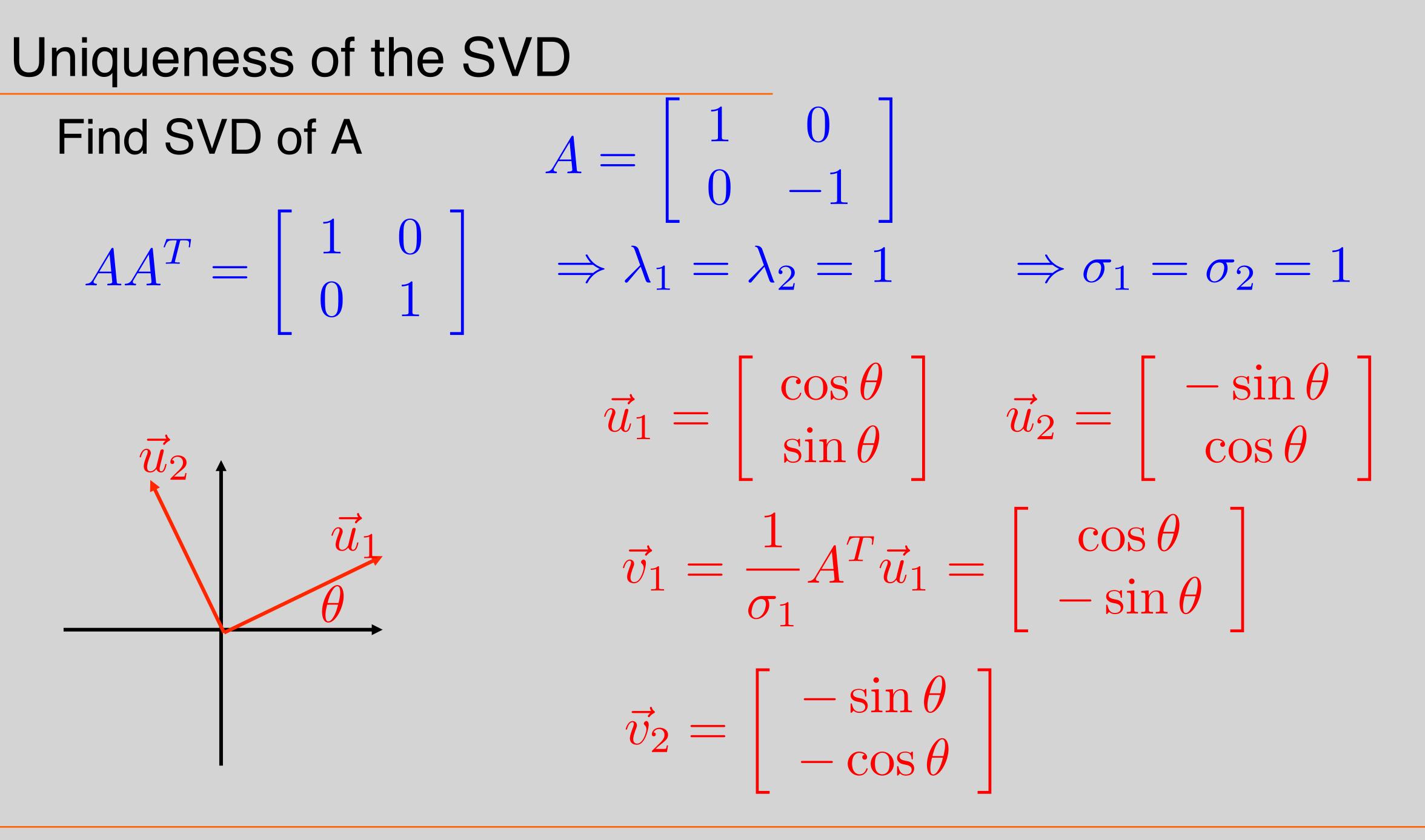
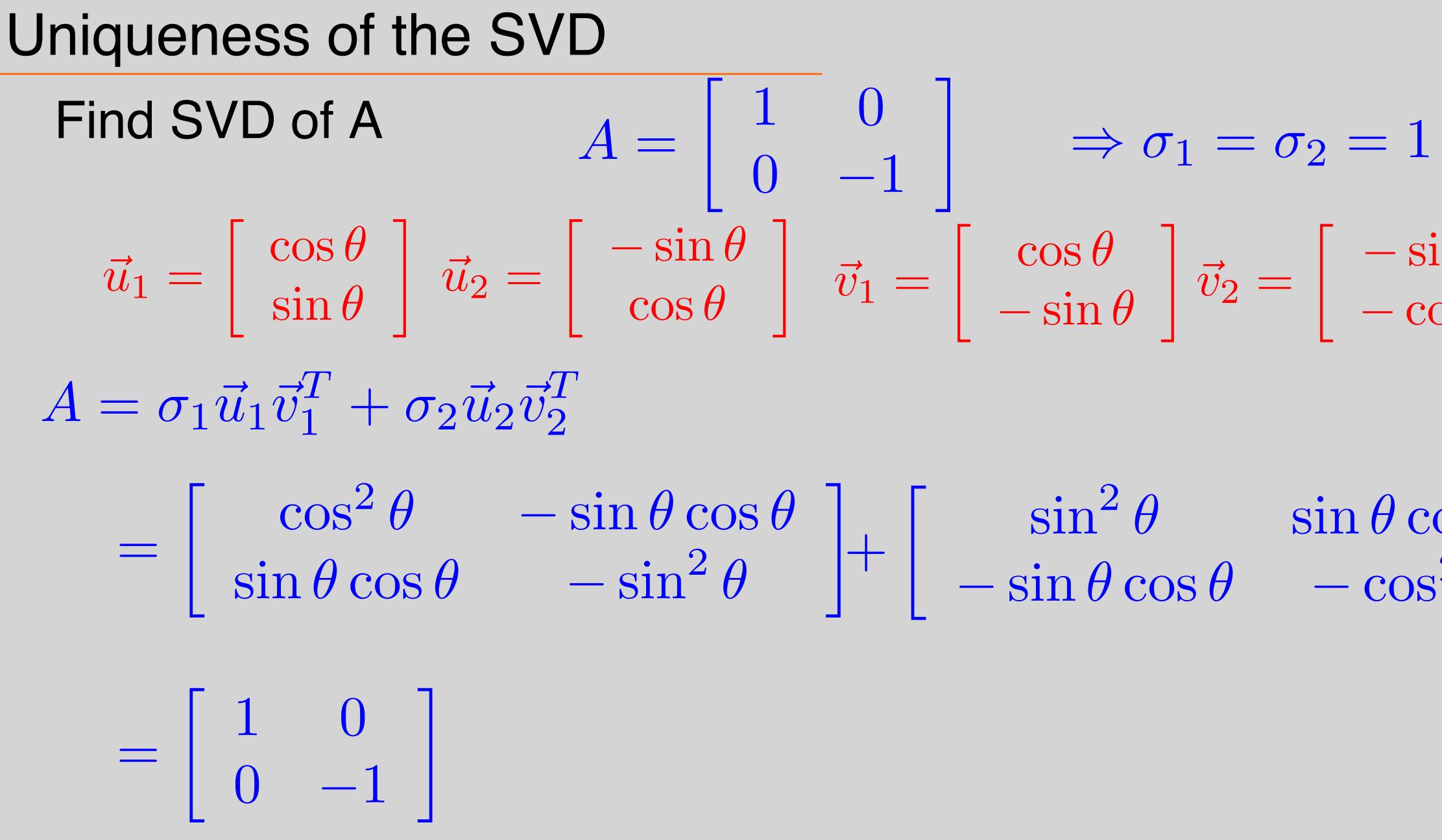
EE16B Designing Information Devices and Systems II

Lecture 9B Geometry of SVD, PCA





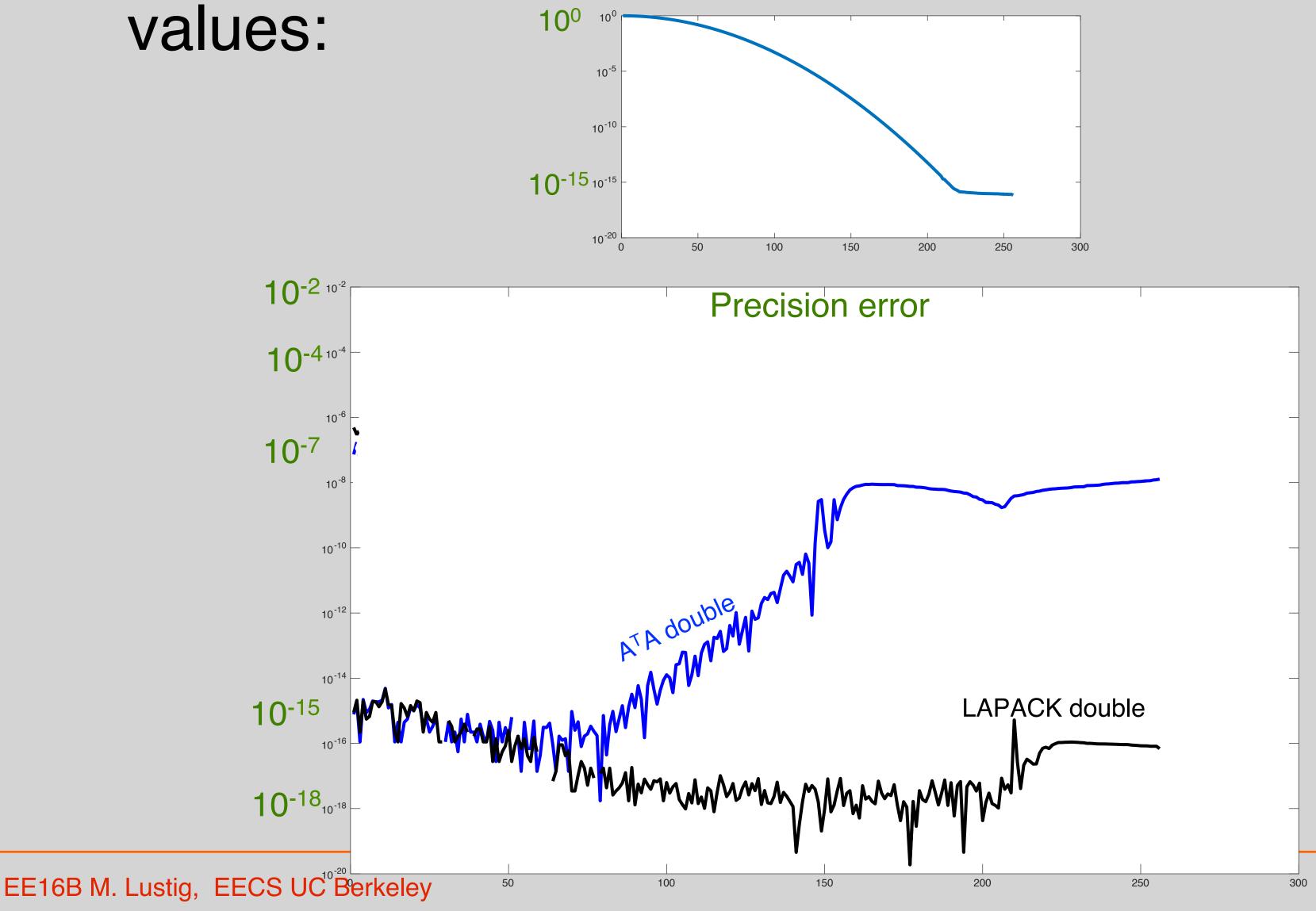


 $\vec{u}_1 = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \vec{u}_2 = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \vec{v}_1 = \begin{bmatrix} \cos \theta \\ -\sin \theta \end{bmatrix} \vec{v}_2 = \begin{bmatrix} -\sin \theta \\ -\cos \theta \end{bmatrix}$

 $= \begin{bmatrix} \cos^2 \theta & -\sin \theta \cos \theta \\ \sin \theta \cos \theta & -\sin^2 \theta \end{bmatrix} + \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ -\sin \theta \cos \theta & -\cos^2 \theta \end{bmatrix}$

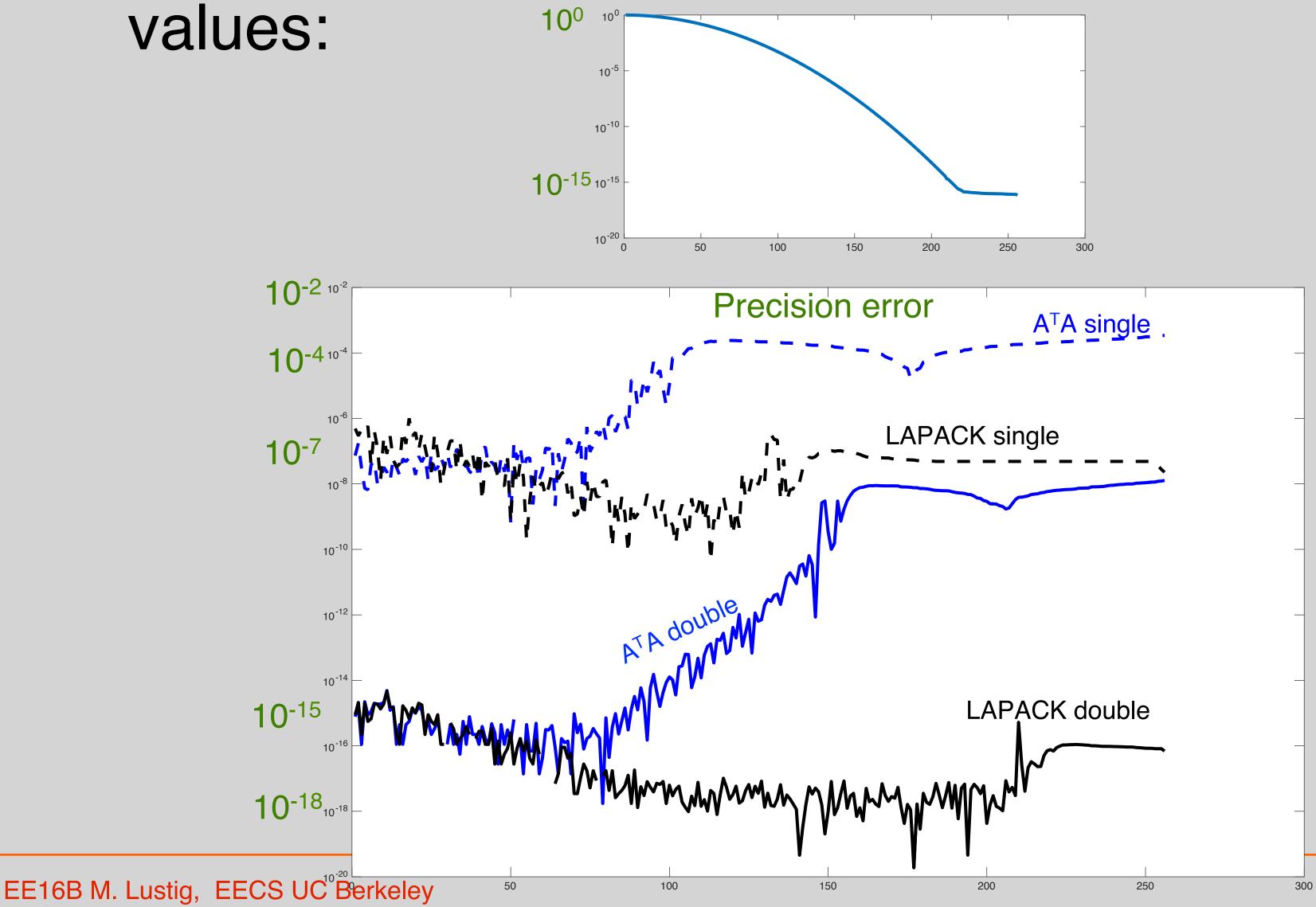
Accuracy with Finite Precision

Consider matrix $A \in \mathbb{R}^{512 \times 256}$ with the following singular

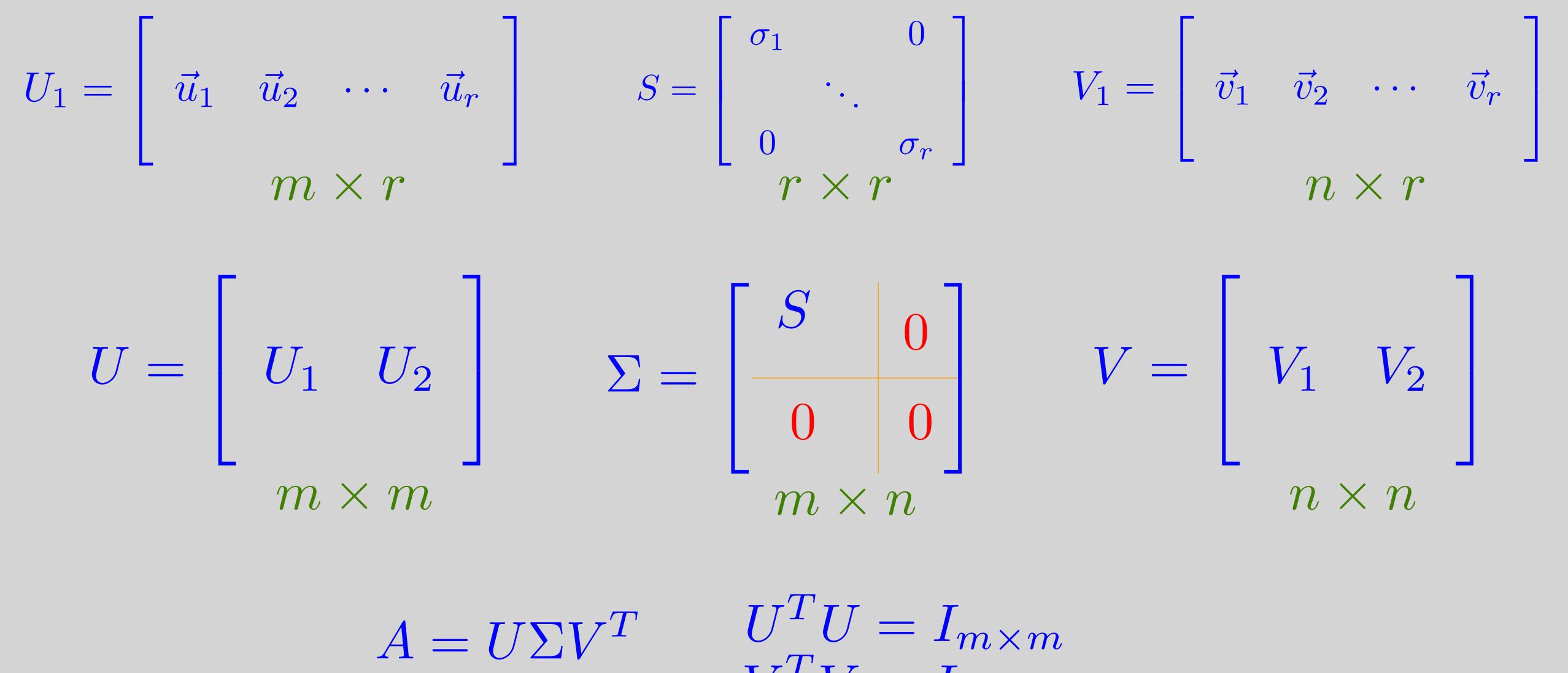


Accuracy with Finite Precision

Consider matrix $A \in \mathbb{R}^{512 \times 256}$ with the following singular



Full Matrix Form of SVD



EE16B M. Lustig, EECS UC Berkeley

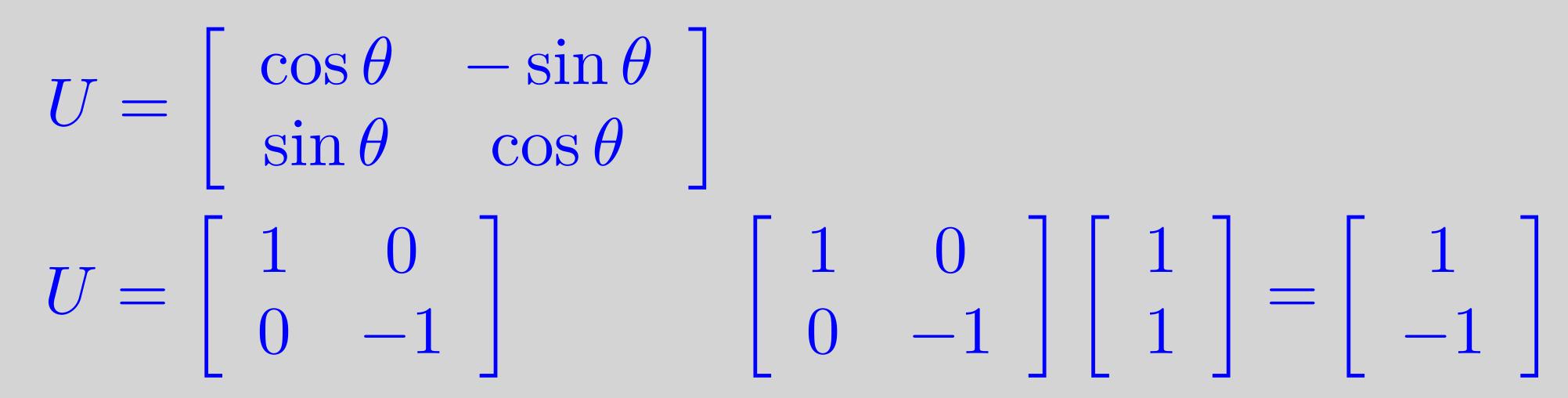
 $V^T V = I_{n \times n}$

Unitary Matrices

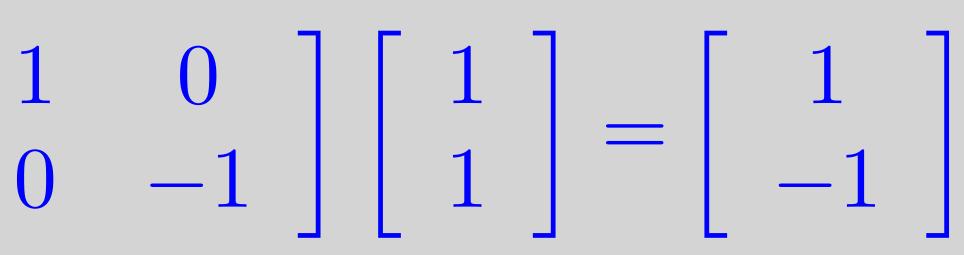
Multiplying with unitary matrices does not change the length

$$||U\vec{x}|| = \sqrt{(U\vec{x})^T(U\vec{x})}$$

Example: Rotation, or reflection matrices



 $=\sqrt{\vec{x}^T U^T U \vec{x}} = \sqrt{\vec{x}^T \vec{x}} = ||\vec{x}||$



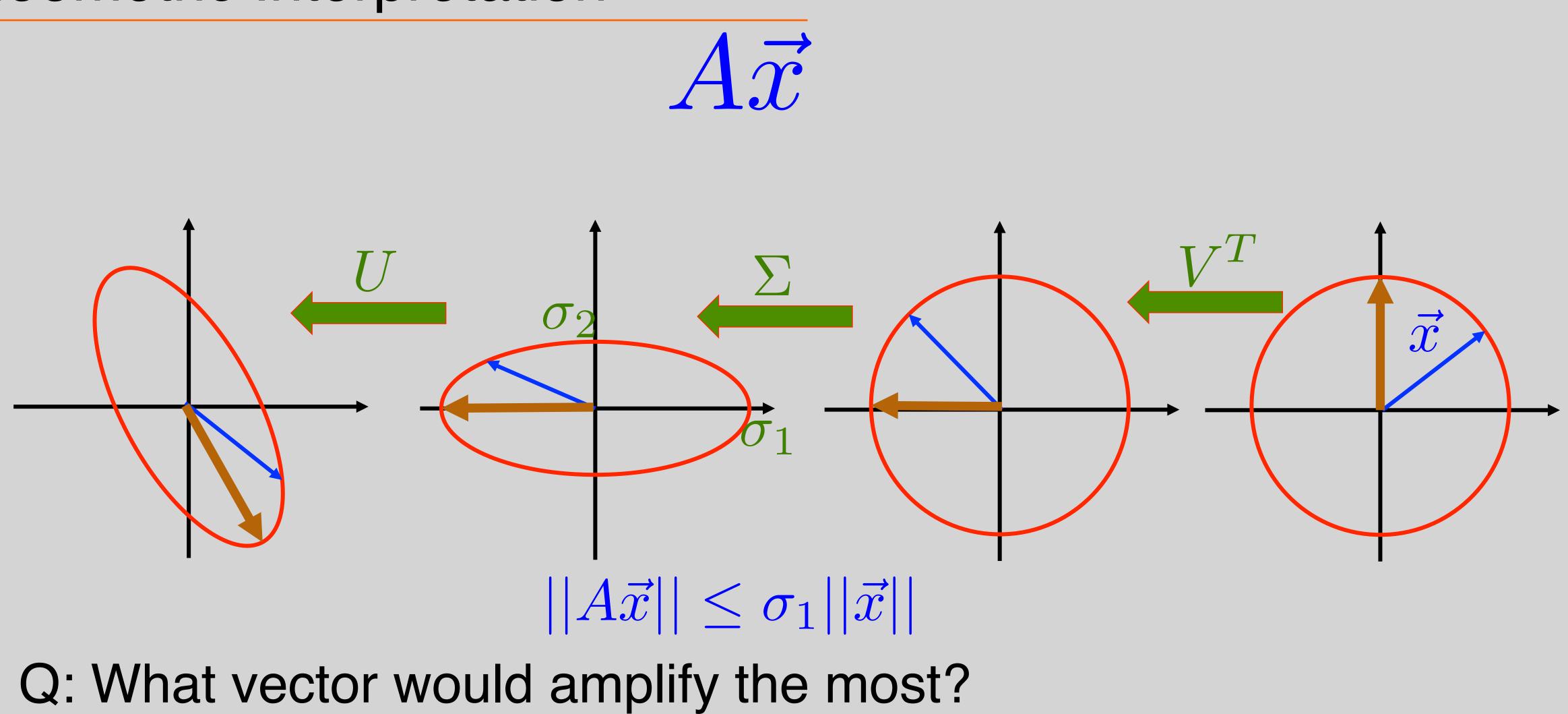
Geometric Interpretation

$A\vec{x} = U\Sigma V^{T}\vec{x}$ 1) $V^T \vec{x}$ re-orients \vec{x} without changing length. 2) $\Sigma(V^T \vec{x})$ Stretches along the axis with singlular values

3) $U(\Sigma V' \vec{x})$ re-orients again without changing length

$\begin{bmatrix} \sigma_1 & 0 & x_1 \\ 0 & \sigma_2 & x_2 \end{bmatrix} = \begin{bmatrix} \sigma_1 x_1 \\ \sigma_2 x_2 \end{bmatrix}$

Geometric Interpretation



Symmetric Matrices

We assumed before that,

 $A^{T}A$ has only real eigenvalues, r of them are positive and the rest are zero $A^{T}A$ has orthonormal eigenvectors (to be proven next time)

For symmetric matrices:

 $(AB)^T = B^T A^T$ $(A^T A)^T = A^T A$ $(AA^T)^T = AA^T$

EE16B M. Lustig, EECS UC Berkeley

 $Q^T = Q$

Properties of Symmetric Matrices

eigenvectors

 $Qx = \lambda x \qquad \lambda = a + ib$ Somehow we need to use the symmetric and real-ness property of Q to show that b==0 $Q\overline{x} = \overline{\lambda}\overline{x}$ $\overline{x}^T Q = \overline{\lambda} \overline{x}^T$ $\overline{x}^T Q x = \overline{\lambda} \overline{x}^T x$

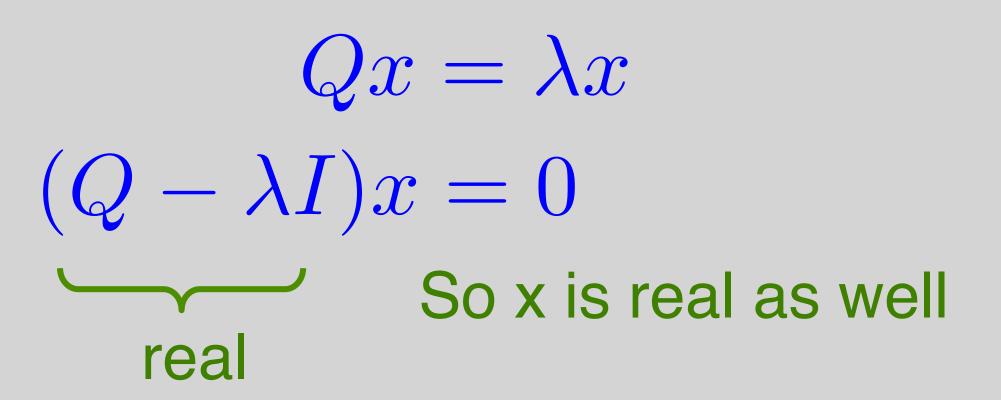
1) A real-valued symmetric matrix has real eigenvalues and

$$\lambda = a - ib$$

$$Qx = \lambda \overline{x}^T x$$

 $\overline{\lambda}\overline{x}^T x = \lambda\overline{x}^T x \quad \Rightarrow \lambda = \overline{\lambda} \Rightarrow \lambda \in \mathbf{R}$

Properties of Symmetric Matrices



Properties of Symmetric Matrices

2) Eigenvectors of a symmetrix matrix can be chosen to be orthonormal

Choose two distinct eigenvalues and vectors $\lambda_1 \neq \lambda_2$

 $Qx_1 = \lambda_1 x_1$ $Qx_2 = \lambda_2 x_2$ $x_2^T Q x_1 = \lambda_1 x_2^T x_1 \qquad x_1^T Q x_2 = \lambda_2 x_1^T x_2$ $(\lambda_1 - \lambda_2)x_2^T x_1 = 0$

Positiveness of Eigenvalues

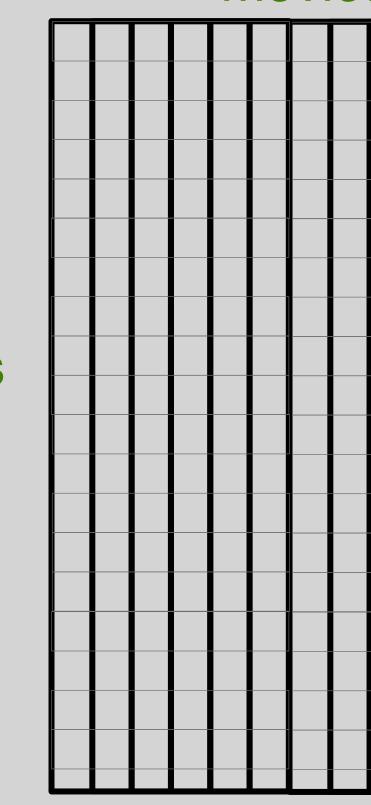
3) If Q can be written as $Q = R^T R$ for real R, then Q is positive semidefinite – eigenvalues greater of equal to zero

 $Qx = \lambda x$ $R^T R x = \lambda x$ $x^T R^T R x = \lambda x^T x$ $(Rx)^T(Rx) = \lambda x^T x$ $||Rx||^2 = \lambda ||x||^2 \implies \lambda \ge 0$

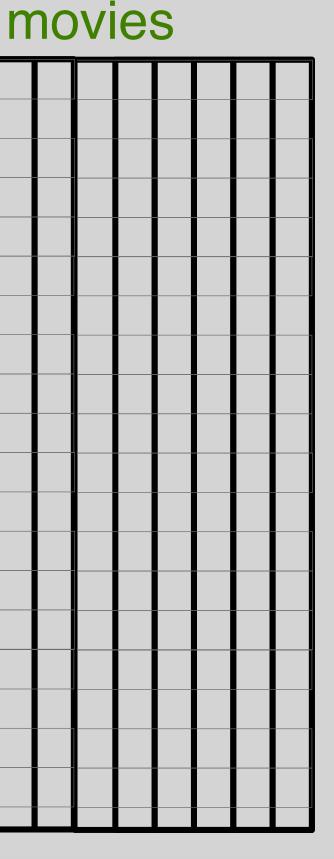
Principal Component Analysis

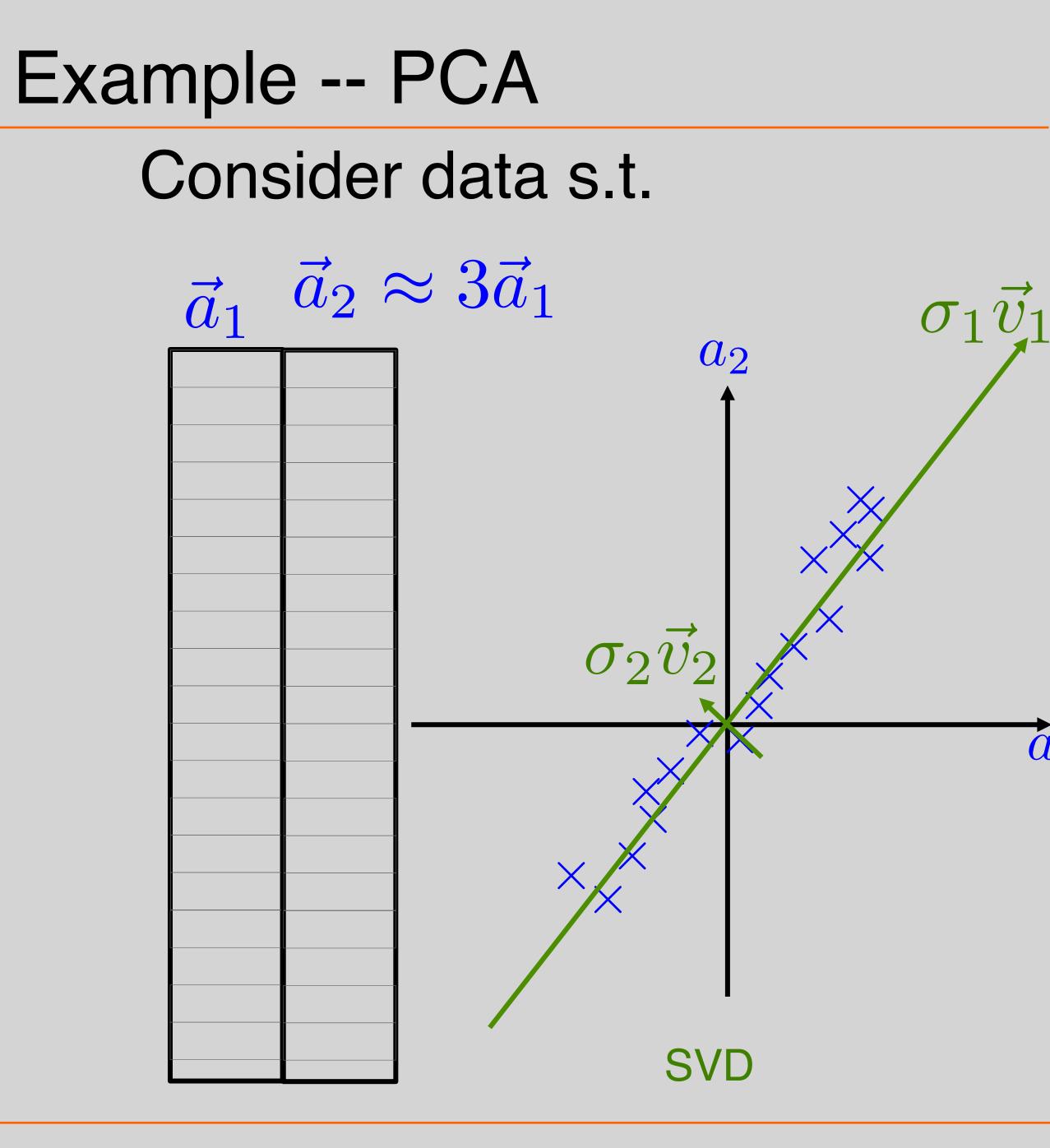
Application of the SVD to datasets to learn features PCA is a tool in statistics and machine learning, which

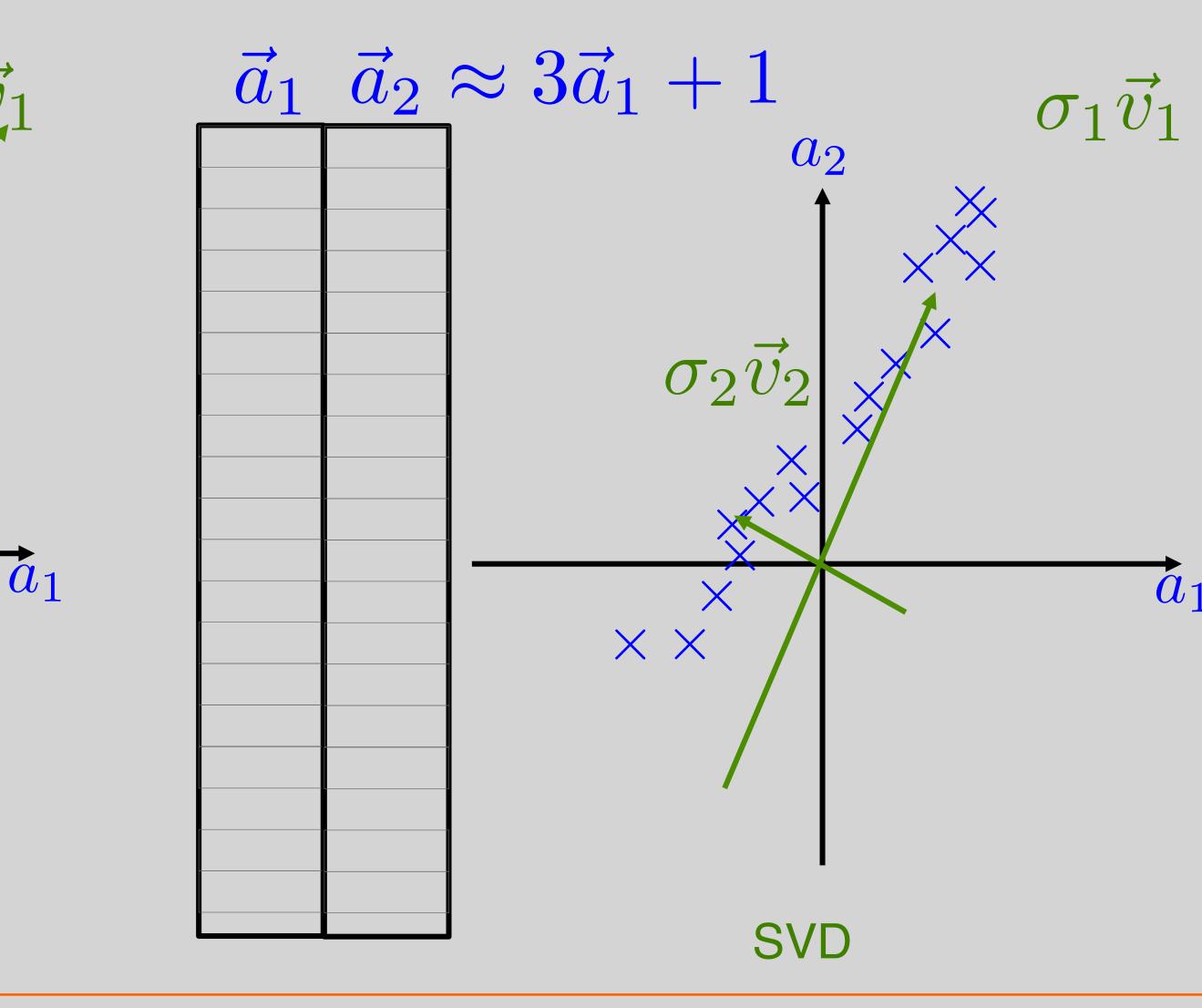
PCA is a tool in statistics and can be computed using SVD

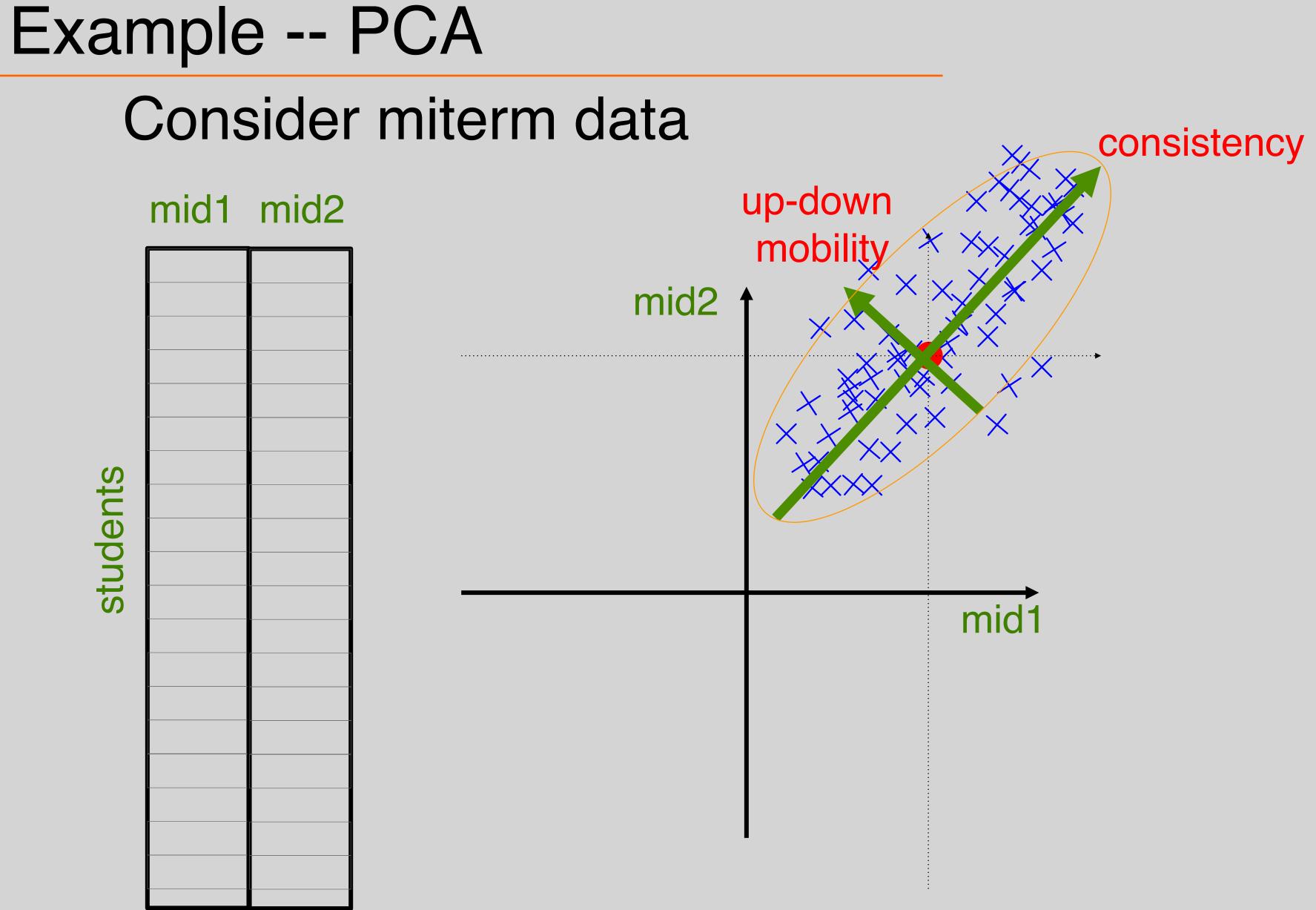


viewers





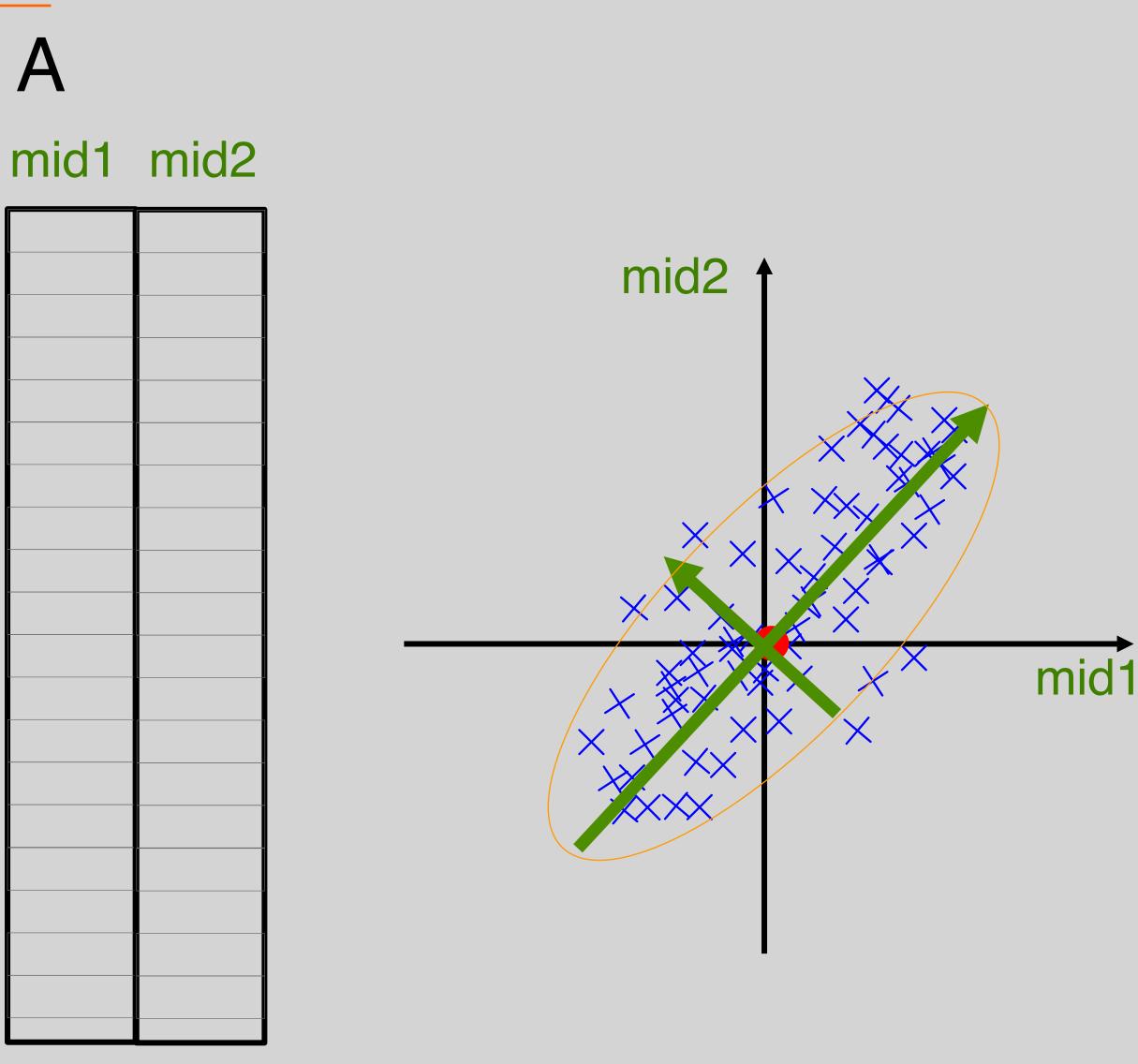




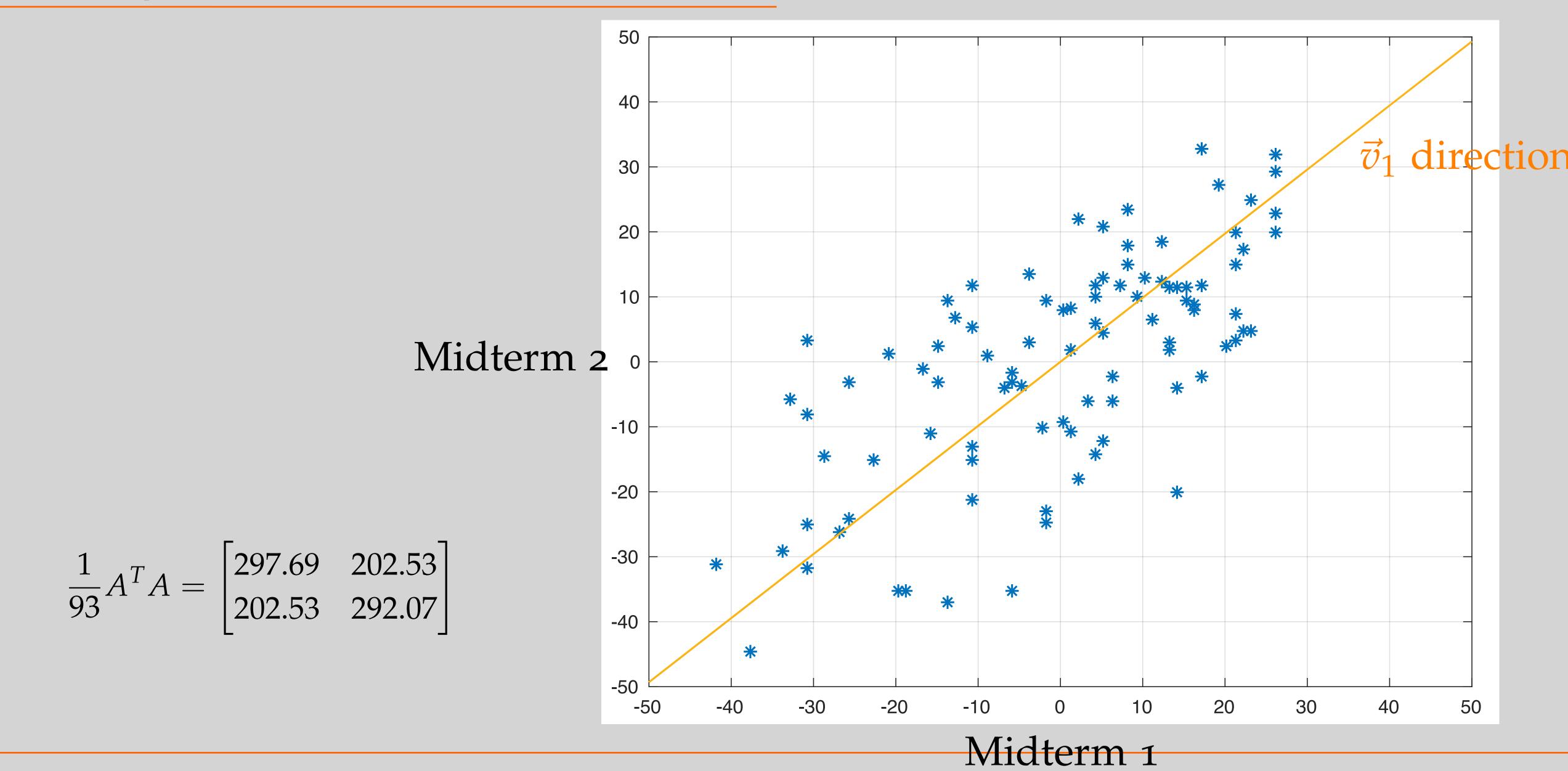
PCA Procedure

Remove averages from column of A From A^TA, find σ_i , $\vec{v_i}$

$\vec{v_i}$ are principal components!



Example midterm



PCA in Genetics Reveals Geography Genes mirror geography within Europe Nature 456, 98-101 (6 November 2008)

Study:

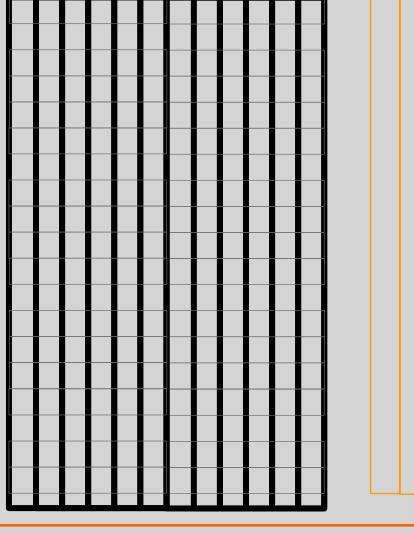
Countries

Computed largest 2 principle components Projected subjects on 2 dimentional data $A\vec{v}_1 \quad A\vec{v}_2$

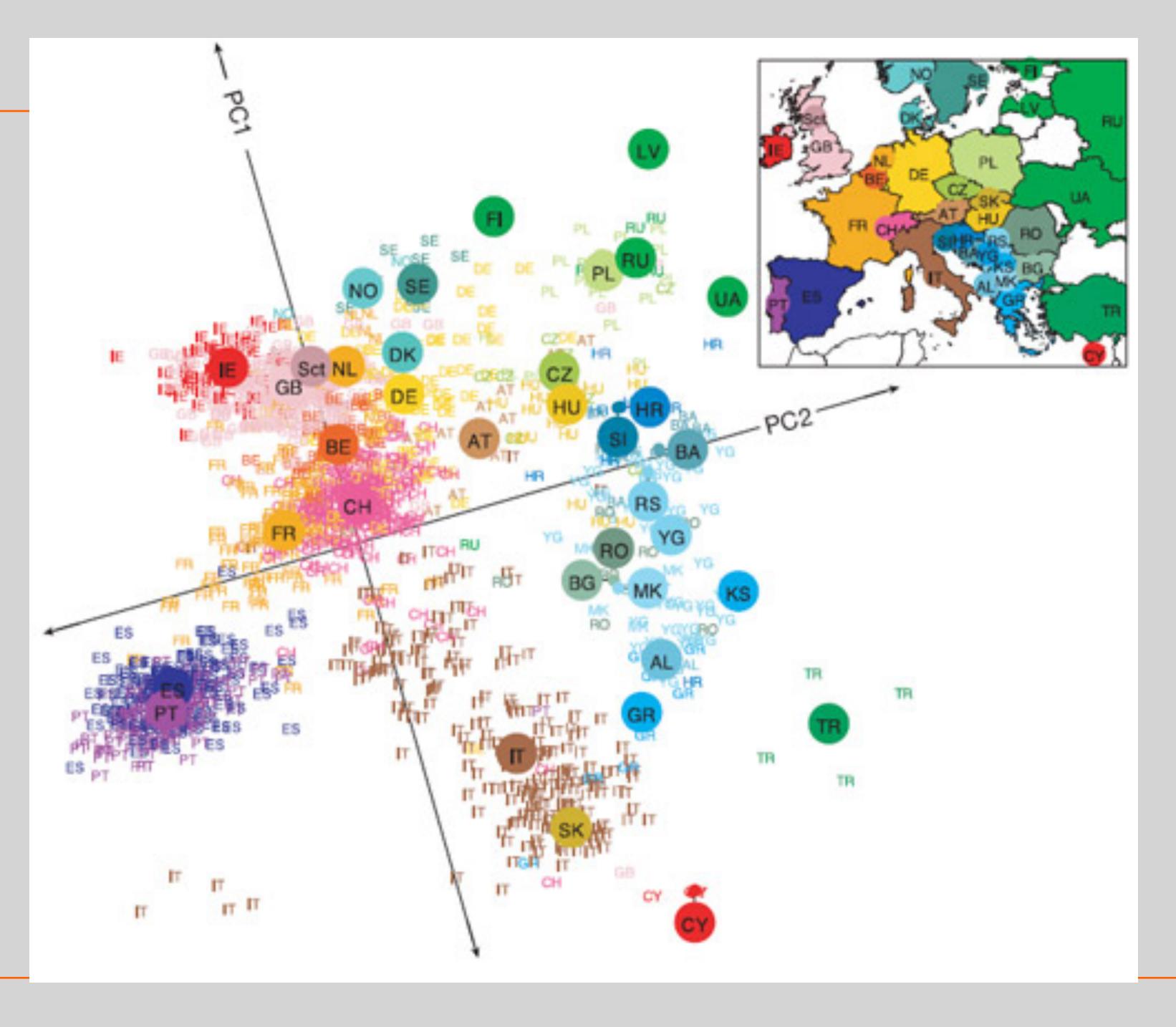
Overlayed the result on the map of Europe

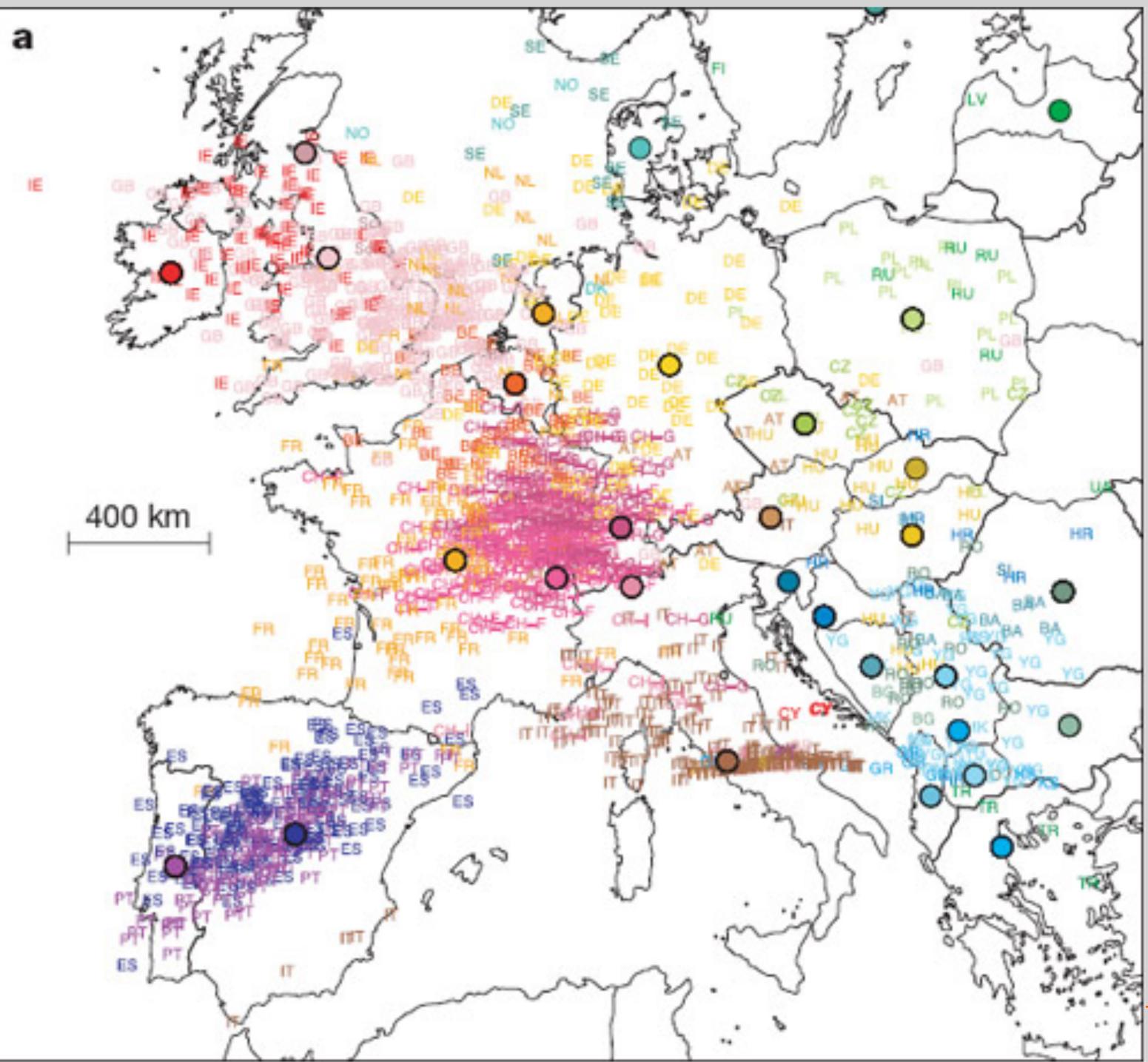
Characterized genetic variatios in 3,000 Europeans from 36

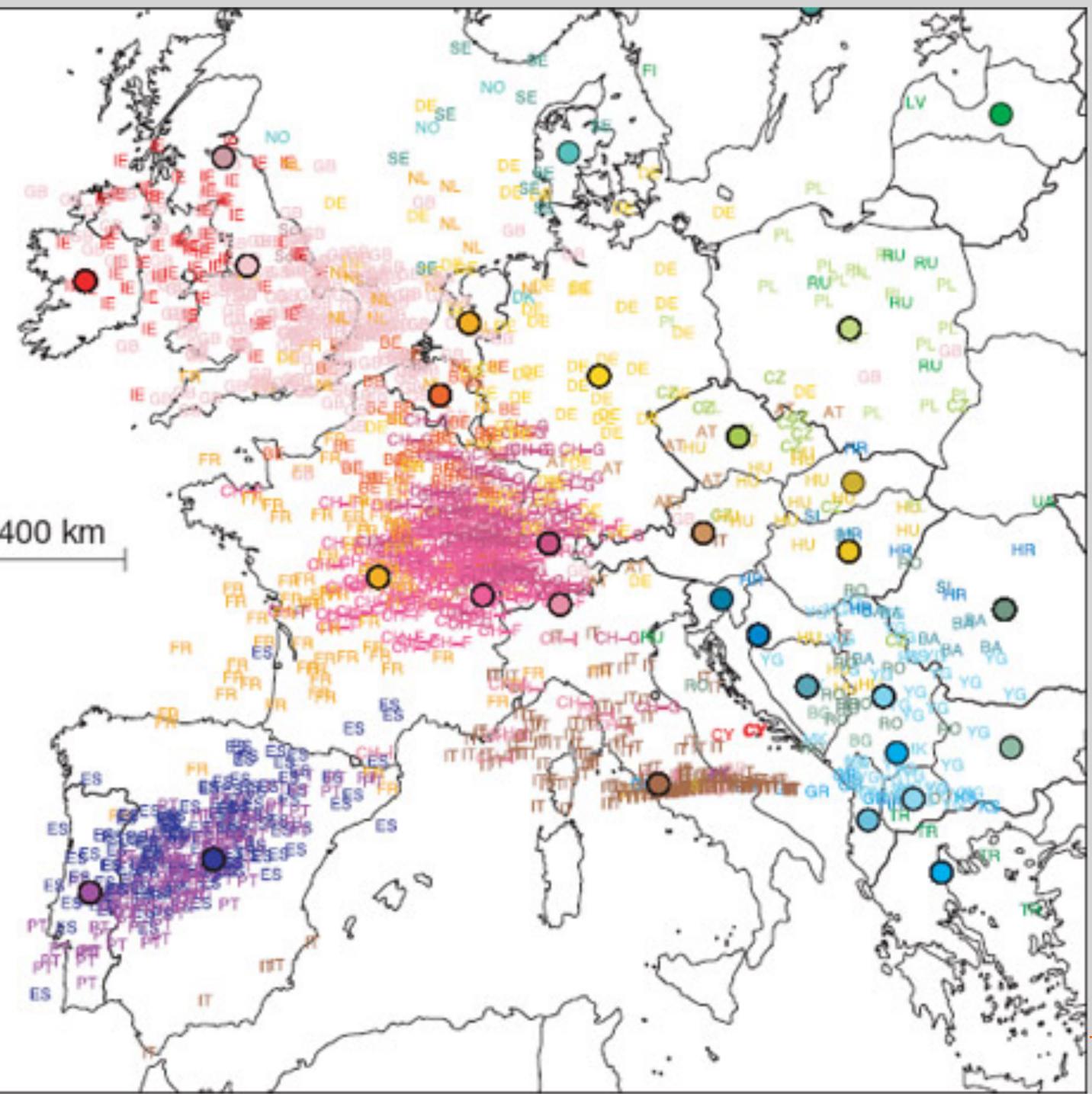
- Built a matrix of 200K SNPs (single nucleotide polymorphisms)

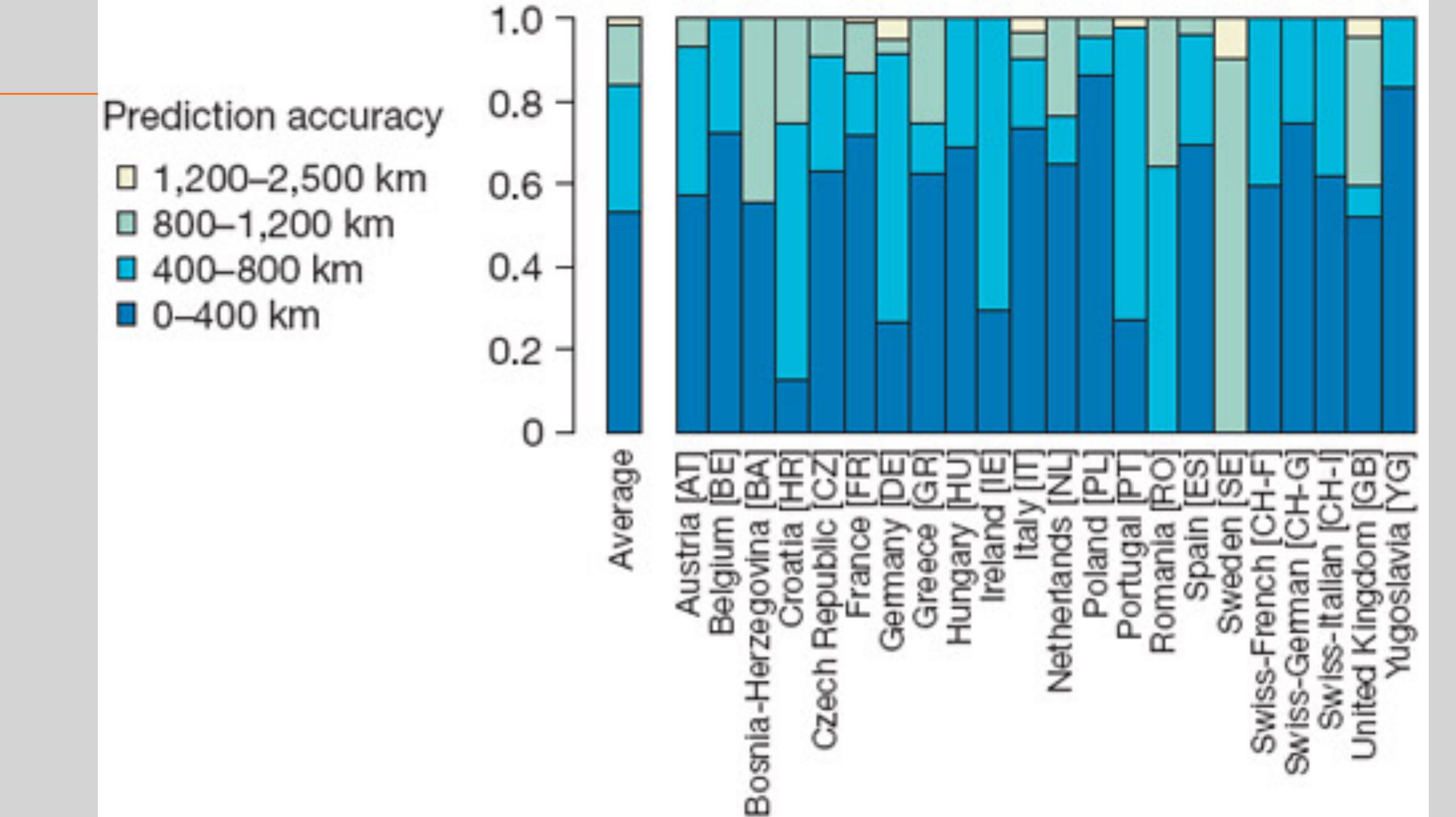


PC1 could be associated with food PC2 associated with west migration









23 and me

	Michael Lustig	100%
	 European 	98.9%
	 Middle Eastern & North 	African 0.9%
	East Asian & Native Am	erican < 0.1%
	Unassigned	0.2%

