EE16B

Designing Information

 Devices and Systems IILecture 9B
Geometry of SVD, PCA

Uniqueness of the SVD

$$
\begin{gathered}
\begin{array}{c}
\text { Find SVD of A }
\end{array} \begin{array}{c}
A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
A A^{T}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \begin{array}{l}
\Rightarrow \lambda_{1}=\lambda_{2}=1 \quad \Rightarrow \sigma_{1}=\sigma_{2}=1 \\
\vec{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \vec{u}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\vec{\theta}_{1} \\
\vec{u}_{1}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] \quad \vec{u}_{2}=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]
\end{array}
\end{array} . \begin{array}{l}
\vec{u}_{1}
\end{array}
\end{gathered}
$$

EE16B M. Lustig, EECS UC Berkeley

Uniqueness of the SVD

$$
\begin{aligned}
& \text { Find SVD of A } \\
& A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad \Rightarrow \sigma_{1}=\sigma_{2}=1 \\
& \vec{u}_{1}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] \vec{u}_{2}=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right] \vec{v}_{1}=\left[\begin{array}{c}
\cos \theta \\
-\sin \theta
\end{array}\right] \vec{v}_{2}=\left[\begin{array}{c}
-\sin \theta \\
-\cos \theta
\end{array}\right] \\
& A=\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T}+\sigma_{2} \vec{u}_{2} \vec{v}_{2}^{T} \\
& =\left[\begin{array}{cc}
\cos ^{2} \theta & -\sin \theta \cos \theta \\
\sin \theta \cos \theta & -\sin ^{2} \theta
\end{array}\right]+\left[\begin{array}{cc}
\sin ^{2} \theta & \sin \theta \cos \theta \\
-\sin \theta \cos \theta & -\cos ^{2} \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

Accuracy with Finite Precision

Consider matrix $A \in R^{512 \times 256}$ with the following singular values:

[^0]
Full Matrix Form of SVD

$$
\begin{gathered}
U_{1}=\left[\begin{array}{cccc}
\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{r} \\
m \times r
\end{array}\right] \quad S=\left[\begin{array}{ccc}
\sigma_{1} & & 0 \\
& \ddots & \\
0 & & \sigma_{r}
\end{array}\right] \quad V_{1}=\left[\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \cdots \\
{ }_{r} \times r & \vec{v}_{r} \\
n \times r
\end{array}\right] \\
U=\left[\begin{array}{ll}
n \times m \\
U_{1} & U_{2} \\
m \times m
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
S & 0 \\
0 & 0 \\
m \times n
\end{array}\right] \quad V=\left[\begin{array}{ll}
V_{1} & V_{2} \\
n \times n
\end{array}\right] \\
A=U \Sigma V^{T} \quad \begin{array}{l}
U^{T} U=I_{m \times m} \\
V^{T} V=I_{n \times n}
\end{array}
\end{gathered}
$$

[^1]
Accuracy with Finite Precision

Consider matrix $\mathrm{A} \in \mathrm{R}^{512 \times 256}$ with the following singular values:

Unitary Matrices

Multiplying with unitary matrices does not change the length

$$
\|U \vec{x}\|=\sqrt{(U \vec{x})^{T}(U \vec{x})}=\sqrt{\vec{x}^{T} U^{T} U \vec{x}}=\sqrt{\vec{x}^{T} \vec{x}}=\|\vec{x}\|
$$

Example: Rotation, or reflection matrices

$$
\begin{aligned}
U & =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
U & =\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

[^2]
Geometric Interpretation

$$
A=U \Sigma V^{T}
$$

$$
A \vec{x}=U \Sigma V^{T} \vec{x}
$$

1) $\quad V^{T} \vec{x}$ re-orients \vec{x} without changing length.
2) $\Sigma\left(V^{T} \vec{x}\right) \quad$ Stretches along the axis with singlular values

$$
\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\sigma_{1} x_{1} \\
\sigma_{2} x_{2}
\end{array}\right]
$$

3) $U\left(\Sigma V^{T} \vec{x}\right)$ re-orients again without changing length

Symmetric Matrices

We assumed before that,
$A^{\top} A$ has only real eigenvalues, r of them are positive and the rest are zero $\mathrm{A}^{\top} \mathrm{A}$ has orthonormal eigenvectors (to be proven next time)
For symmetric matrices: $\quad Q^{T}=Q$

$$
\begin{aligned}
& (A B)^{T}=B^{T} A^{T} \\
& \left(A^{T} A\right)^{T}=A^{T} A \\
& \left(A A^{T}\right)^{T}=A A^{T}
\end{aligned}
$$

[^3]
Geometric Interpretation

$$
A \vec{x}
$$

Q: What vector would amplify the most?

Properties of Symmetric Matrices

1) A real-valued symmetric matrix has real eigenvalues and eigenvectors

$$
Q x=\lambda x \quad \lambda=a+i b \quad \bar{\lambda}=a-i b
$$

Somehow we need to use the symmetric and real-ness property of Q to show that $b==0$

$$
\begin{aligned}
Q \bar{x} & =\bar{\lambda} \bar{x} \\
\bar{x}^{T} Q & =\bar{\lambda} \bar{x}^{T}
\end{aligned}
$$

$$
\bar{x}^{T} Q x=\bar{\lambda} \bar{x}^{T} x \quad \bar{x}^{T} Q x=\lambda \bar{x}^{T} x
$$

$$
\bar{\lambda} \bar{x}^{T} x=\lambda \bar{x}^{T} x \quad \Rightarrow \lambda=\bar{\lambda} \Rightarrow \lambda \in \mathrm{R}
$$

[^4]
Properties of Symmetric Matrices

```
        \(Q x=\lambda x\)
\((Q-\lambda I) x=0\)
\(\underbrace{Q}_{\text {real }}\) So x is real as well
```


Positiveness of Eigenvalues

3) If Q can be written as $Q=R^{\top} R$ for real R, then Q is positive semidefinite - eigenvalues greater of equal to zero
$Q x=\lambda x$
$R^{T} R x=\lambda x$
$x^{T} R^{T} R x=\lambda x^{T} x$
$(R x)^{T}(R x)=\lambda x^{T} x$
$\|R x\|^{2}=\lambda\|x\|^{2} \Rightarrow \lambda \geq 0$

Properties of Symmetric Matrices

2) Eigenvectors of a symmetrix matrix can be chosen to be orthonormal
Choose two distinct eigenvalues and vectors $\quad \lambda_{1} \neq \lambda_{2}$

$$
\begin{array}{rlrl}
Q x_{1}= & \lambda_{1} x_{1} & Q x_{2}=\lambda_{2} x_{2} \\
x_{2}^{T} Q x_{1}= & \lambda_{1} x_{2}^{T} x_{1} \quad x_{1}^{T} Q x_{2}=\lambda_{2} x_{1}^{T} x_{2} \\
& \left(\lambda_{1}-\lambda_{2}\right) x_{2}^{T} & x_{1}=0
\end{array}
$$

Principal Component Analysis

Application of the SVD to datasets to learn features PCA is a tool in statistics and machine learning, which can be computed using SVD

[^5]
Example -- PCA

Consider data s.t.

EE16B M. Lustig, EECS UC Berkeley

PCA Procedure

Remove averages from column of A

[^6]
Example midterm

PCA in Genetics Reveals Geography

Study:
Genes mirror geography within Europe Nature 456, 98-101 (6 November 2008)
Characterized genetic variatios in 3,000 Europeans from 36 Countries

Built a matrix of 200K SNPs (single nucleotide polymorphisms)
Computed largest 2 principle components
Projected subjects on 2 dimentional data
$A \vec{v}_{1} \quad A \vec{v}_{2}$
Overlayed the result on the map of Europe

EE16B M Lustio FECS UC Berkele

EE16B M. Lustig, EECS UC Berkeley

[^7]23 and me

[^0]: EE16B M. Lustig, EECS UC"Berke

[^1]: EE16B M. Lustig, EECS UC Berkeley

[^2]: EE16B M. Lustig, EECS UC Berkeley

[^3]: EE16B M. Lustig, EECS UC Berkeley

[^4]: EE16B M. Lustig, EECS UC Berkeley

[^5]: EE16B M. Lustig, EECS UC Berkeley

[^6]: EE16B M. Lustig, EECS UC Berkele

[^7]: EE16B M. Lustig, EECS UC Berkele

