

EE16B M. Lustig, EECS UC Berk

Uniqueness of the SVD

 Find SVD of A

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 $AA^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $\Rightarrow \lambda_1 = \lambda_2 = 1$
 $\Rightarrow \sigma_1 = \sigma_2 = 1$
 $\vec{u}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
 $\vec{u}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 $\vec{u}_1 = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$
 $\vec{u}_2 = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$

 EEKEM Lustig. EECS UZ Barket

Uniqueness of the SVD
Find SVD of A $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ $\Rightarrow \sigma_1 = \sigma_2 = 1$
$\vec{u}_1 = \begin{bmatrix} \cos\theta\\ \sin\theta \end{bmatrix} \vec{u}_2 = \begin{bmatrix} -\sin\theta\\ \cos\theta \end{bmatrix} \vec{v}_1 = \begin{bmatrix} \cos\theta\\ -\sin\theta \end{bmatrix} \vec{v}_2 = \begin{bmatrix} -\sin\theta\\ -\cos\theta \end{bmatrix}$
$A = \sigma_1 \vec{u}_1 \vec{v}_1^T + \sigma_2 \vec{u}_2 \vec{v}_2^T$
$= \begin{bmatrix} \cos^2 \theta & -\sin \theta \cos \theta \\ \sin \theta \cos \theta & -\sin^2 \theta \end{bmatrix} + \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ -\sin \theta \cos \theta & -\cos^2 \theta \end{bmatrix}$
$= \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$
EE188 M Lustia EECS LIC Barkelay

EE16B M. Lustig, EECS UC Berke

Accuracy with Finite Precision Consider matrix A R^{512x256} with the following singular values: 10⁴ 10⁴

Accuracy with Finite Precision

EE16B M. Lustig, EECS UC Berkele

Unitary Matrices

Multiplying with unitary matrices does not change the length

$$|U\vec{x}|| = \sqrt{(U\vec{x})^T (U\vec{x})} = \sqrt{\vec{x}^T U^T U\vec{x}} = \sqrt{\vec{x}^T \vec{x}} = ||\vec{x}||$$

Example: Rotation, or reflection matrices

$$U = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$U = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

EE16B M. Lustig, EECS UC Berkele

Symmetric Matrices

We assumed before that,

 $A^{T}A$ has only real eigenvalues, r of them are positive and the rest are zero $A^{T}A$ has orthonormal eigenvectors (to be proven next time)

For symmetric matrices: $Q^T = Q$ $(AB)^T = B^T A^T$ $(A^T A)^T = A^T A$ $(AA^T)^T = AA^T$

Properties of Symmetric Matrices

1) A real-valued symmetric matrix has real eigenvalues and eigenvectors

$$\begin{array}{ll} Qx = \lambda x & \lambda = a + ib & \overline{\lambda} = a - ib \\ \\ \text{mehow we need to use the symmetric and real-ness property of Q to show that b==0} \\ Q\overline{x} = \overline{\lambda}\overline{x} \\ \overline{x}^T Q = \overline{\lambda}\overline{x}^T \\ \overline{x}^T Q = \overline{\lambda}\overline{x}^T \\ \overline{x}^T Q = \overline{\lambda}\overline{x}^T \\ \overline{x}^T Q x = \overline{\lambda}\overline{x}^T x \\ \overline{\lambda}\overline{x}^T x = \overline{\lambda}\overline{x}^T x \quad \overline{x}^T Q x = \lambda \overline{x}^T x \\ \overline{\lambda}\overline{x}^T x = \lambda \overline{x}^T x \quad \Rightarrow \lambda = \overline{\lambda} \Rightarrow \lambda \in \mathbb{R} \end{array}$$

EE16B M. Lustig, EECS UC Berkele

So

 \overline{x}

EE16B M. Lustig, EECS UC Berkeley

Properties of Symmetric Matrices

Properties of Symmetric Matrices

2) Eigenvectors of a symmetrix matrix can be chosen to be orthonormal

Choose two distinct eigenvalues and vectors $\lambda_1 \neq \lambda_2$

 $Qx_1 = \lambda_1 x_1 \qquad Qx_2 = \lambda_2 x_2$ $x_2^T Qx_1 = \lambda_1 x_2^T x_1 \qquad x_1^T Qx_2 = \lambda_2 x_1^T x_2$ $(\lambda_1 - \lambda_2) x_2^T x_1 = 0$

Positiveness of Eigenvalues

3) If Q can be written as $Q = R^T R$ for real R, then Q is positive semidefinite – eigenvalues greater of equal to zero

$$Qx = \lambda x$$

$$R^{T}Rx = \lambda x$$

$$x^{T}R^{T}Rx = \lambda x^{T}x$$

$$(Rx)^{T}(Rx) = \lambda x^{T}x$$

$$||Rx||^{2} = \lambda ||x||^{2} \Rightarrow \lambda \ge 0$$

Principal Component Analysis

Application of the SVD to datasets to learn features PCA is a tool in statistics and machine learning, which can be computed using SVD

EE16B M. Lustig, EECS UC Berkeley

EE16B M. Lustig, EECS UC Berkeley

PCA in Genetics Reveals Geography Genes mirror geography within Europe Nature 456, 98-101 (6 November 2008)

Characterized genetic variatios in 3,000 Europeans from 36 Countries

Built a matrix of 200K SNPs (single nucleotide polymorphisms)

Computed largest 2 principle components Projected subjects on 2 dimentional data $A\vec{v}_1 \quad A\vec{v}_2$

Overlayed the result on the map of Europe

EE16B M. Lustig, EECS UC Berkeley

PC1 could be associated with food PC2 associated with west migration

