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Accuracy with Finite Precision
Consider matrix A∈R512x256 with the following singular 
values:
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Full Matrix Form of SVD
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Unitary Matrices
Multiplying with unitary matrices does not change the 
length

||U~x|| =
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Example: Rotation, or reflection matrices
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Geometric Interpretation

1)               re-orients      without changing length.
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Geometric Interpretation

Q: What vector would amplify the most?

A~x
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Symmetric Matrices
We assumed before that,

ATA has only real eigenvalues, r of them are positive and the rest are zero  
ATA has orthonormal eigenvectors (to be proven next time)

For symmetric matrices: QT = Q

(ATA)T = ATA

(AB)T = BTAT

(AAT )T = AAT
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Properties of Symmetric Matrices
1) A real-valued symmetric matrix has real eigenvalues and 
eigenvectors

Qx = �x

� = a+ ib � = a� ib

Somehow we need to use the symmetric and real-ness property of Q to show that b==0 
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Properties of Symmetric Matrices
Qx = �x

real
So x is real as well

(Q� �I)x = 0
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Properties of Symmetric Matrices
2) Eigenvectors of a symmetrix matrix can be chosen 
to be orthonormal
Choose two distinct eigenvalues and vectors �1 6= �2

Qx1 = �1x1 Qx2 = �2x2
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Positiveness of Eigenvalues
3) If Q can be written as Q = RTR  for real R, then Q is 
positive semidefinite – eigenvalues greater of equal to 
zero
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Principal Component Analysis
Application of the SVD to datasets to learn features
PCA is a tool in statistics and machine learning, which 
can be computed using SVD

movies

viewers
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Example -- PCA
Consider data s.t. 
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Example -- PCA
Consider miterm data
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PCA Procedure
Remove averages from column of A
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Example midterm

ee16b notes spring’17 41

the test scores. Each data point corresponds to a student and those
in the first quadrant (both midterms � 0) are those students who
scored above average in each midterm. You can see that there were
students who scored below average in the first and above average in
the second, and vice versa.
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For this data set the covariance matrix is:

1
93

AT A =

"
297.69 202.53
202.53 292.07

#

where the diagonal entries correspond to the squares of the standard
deviations 17.25 and 17.09 for Midterms 1 and 2, respectively. The
positive sign of the (1, 2) entry implies a positive correlation between
the two midterm scores as one would expect.

The singular values of A, obtained from the square roots of the eigen-
values of AT A, are s1 = 215.08 , s2 = 92.66, and the corresponding
eigenvectors of AT A are:

~v1 =

"
0.7120
0.7022

#
~v2 =

"
�0.7022
0.7120

#
.

The principal component ~v1 is superimposed on the scatter plot
and we see that the data is indeed clustered around this line. Note
that it makes an angle of tan�1(0.7022/0.7120) ⇡ 44.6� which is
skewed slightly towards the Midterm 1 axis because the standard
deviation in Midterm 1 was slightly higher than in Midterm 2. We
may interpret the points above this line as students who performed
better in Midterm 2 than in Midterm 1, as measured by their scores
relative to the class average that are then compared against the factor
tan(44.6�) to account for the difference in standard deviations.
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PCA in Genetics Reveals Geography
Study:
Characterized genetic variatios in 3,000 Europeans from 36 
Countries

Built a matrix of 200K SNPs (single nucleotide polymorphisms)
Computed largest 2 principle components
Projected subjects on 2 dimentional data

Overlayed the result on the map of Europe

Nature 456, 98-101 (6 November 2008)  
Genes mirror geography within Europe 

A~v1 A~v2
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PC1 could be  
associated with food
PC2 associated with  
west migration
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