4.11. We wish to design a 2-D FIR filter from a 1-D FIR filter by the transformation method.

4.12.

4.13.
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Suppose the transformation sequence t(n,, n,) is zero except for the five points shown
in the following figure.

L]
A
t(ny, ny}
(b) Y 1+ .(C)
| (a) | .
-1 1 !
@® -1 ®(e)
Figure P4.11

(a) What are the minimum constraints on the coefficients a, b, ¢, d, and e for the
resulting 2-D filter to be zero phase [i.e., for the filter frequency response
H(w,, »,) to be real]? Assume the 1-D filter used in the transformation method
is zero phase.

(b) Supposea = b = e = 0Oandc = d = 1/2. Suppose also that the 1-D zero-phase
filter used is a lowpass filter with a passband region given by — 7/2 = w < w/2.
Sketch the complete passband region (or regions) of the resulting 2-D filter. Label
the axes in your sketch.

Suppose we design a 2-D FIR filter H(v,, w,) from a 1-D FIR filter H(w) by

H(wla wz) = H(w)|cow=T(m1.m2)=mS(ml-wZ)'

(a) Determine t(n,, n,), the transformation sequence.

(b) If H(w) is the frequency response of a highpass filter, what type of filter is H(w,,
®,)?

In FIR filter design by the frequency transformation method, the 2-D filter frequency

response H(w,, w,) is obtained from the 1-D filter frequency response H(w) by

H(w,, w,) = H((‘u)lcosu=T(ul.u2)'

The filter designed by using the above transformation is typically not circularly sym-
metric. One clever student suggested the following approach:

H(w, ;) = H(‘”)Lﬁm-

Is this a good approach? If so, explain why. If not, discuss the problems of this
approach.
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4.14. Consider a 3 x 3-point transformation sequence #(n,, n,). We design a 2-D zero-
phase filter H(w,, w,) from a 1-D zero-phase filter H(w) by

H((L)], 0')2) = H(‘”),casm:ﬂm.m:)

where T(w,, w,) is the Fourier transform of ¢(n,, n,).
(a) If we impose the zero-phase constraint of t(n,, n,) such that t(n,, n,) =
t(—n,;, —n,), show that T(w,, ,) can be expressed in the form

T(w,, w,) = A + Bcosw, + Ccosw, + D cos w, cos w, + E sin w, sin w,.

(b) We wish to design a filter whose ideal-frequency response H,(w,, w,) is shown in
the following figure.

1, in the shaded region
0, in the unshaded region Figure P4.14

H,,(w,, wz) = {

Determine one set of A, B, C, D, and E that could be used in the design of a
2-D filter.

(¢) With the choice of parameters in (b), what type of 1-D filter H(w) do we need
to design the filter in (b)?

4.15. Suppose we design a 2-D zero-phase lowpass filter H(w,, w,) from a 1-D zero-phase
filter H(w) by

H(w, ©;) = H(®)lcosw= 172+ (cosnyz « (coswryz + (coswicosany2 -
The 2-D filter H(w,, w,) has to satisfy the following specification:

0.95 = H(w,, w,) = 1.05, (®,, w,) € passband region (see figure)

-0.02 = H(w,, w,) =0.02, (w,, w,) € stopband region (see figure)

Determine the filter specification that the 1-D filter H(w) has to satisfy so that the
resulting 2-D filter H(w,, w,) will be guaranteed to meet the above filter specification.
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4.16. Consider a 1-D zero-phase FIR filter k(n) with length 2N + 1. The frequency
response H(w) can be expressed as

H) = 3 hme ®
= é a(n) cos wn 2)

n=0

where a(0) = h(0) and a(n) = 2h(n) forn = 1 In this problem, we show that H(w)
" can also be expressed in the form of

H(w) = 20 b(n) (cos w)" (3)

where b(r) can be simply related to a(n) or h(n). Note that

cos {A + B) = cos A cos B — sin A sin B
and sin (A + B) = sin A cos B + cos A sin B.

(a) Show that cos 2w = 2 cos w cos w — 1.
(b) Show that cos 3w = 2 cos w COs 2w — €OS w.
(c) More generally, show that for n = 2,

cos wn = 2 cos w cos w(n — 1) — cos w(n — 2).
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4.17.

(d) Let cos wn be denoted by P,[cos w]. From the results in (a), (b), and (c), show
that

Pylcos w] =1
P,[cos w] = cos w

P,[cos w] = 2 cos wPy[cos w] — Py[cos w}] 4)

P,[cos o] = 2 cos wP,_,[cos o] — P,_,[cos w].

The polynomial P,[-] is known as the Chebyshev polynomial.
(e) From the result of (d), show that cos wn can be expressed as a linear combination

of 1, cos w, (cos w)?, . . ., (cos ®)". In other words, show that
cos wn = 2, q(k) (cos w)* for some g(k). (5)
k=0

(f) Using (4), determine g(k) in (5) for cos 3.
(g) From (2) and (5), show that H(w) can be expressed in the form of (3).
(h) Suppose h(n) is given by

hin)

4

et e

Figure P4.16

Determine a(n) in (2) and b(n) in (3).
We wish to design a 2-D zero-phase lowpass filter with design specification parameters
8, (passband tolerance), 3, (stopband tolerance), R, (passband region), and R, (stop-
band region). We assume that the impulse response of the filter designed has a region
of support of (2N + 1) x (2N + 1) points. Suppose we have developed an algorithm
that solves the following problem:

Given R,, R, k = 8,/5,, and N, determine h(n,, n,) so that 3, is minimized.

We’ll refer to the algorithm as Algorithm A.
(a) Using Algorithm A, develop a method that solves the following problem:

Given R,, R,, 3,, and §,, determine h(n,, n,) so that N is minimized.
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4.18.

4.19.

4.20.
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(b) Suppose R, is given by
Ve T =,
and R, is given by
Vol + 0 = o,
Using Algorithm A, develop a method that solves the following problem:
Given w,, 3,, 3,, and N, determine h(n,, n,) so that w, is minimized.

Consider an FIR filter with a region of support of 2N + 1) X (2N + 1) points. If
we implement the filter by direct convolution, the number of multiplications required
per output point will be (2N + 1)2. If h(n,, n,) has some symmetry, this symmetry
can be exploited to reduce the number of multiplications. Suppose h(n,, n,) has a
fourfold symmetry given by

h(nlv nZ) = h(_nl’ "2) = h(”l) _nZ)'

Discuss how this can be used to reduce the number of multiplications. Approximately
how many multiplications can be reduced in this case? Is it possible to reduce the
number of additions required by exploiting the symmetry?

Suppose we define an (N + 1) X 1-column vector V() = V(w,, »,) at a particular
frequency w by

V((.I)) = [¢0(“°)! ¢1(m)) ¢2((0), ct ot d)N(w)]T

If V(w,;) for 0 = i = N are independent vectors for any choice of distinctly different
; € K where K is some known region, then the functions ¢,(w) are said to form a Che-
byshev set or satisfy the Haar condition. Show that é(w) = cos (w,n] + w,n}) for
integers n} and nj do not satisfy the Haar condition for K givenby 0 = 0, = n,0 =
W, = .

In some geophysical applications, it is useful to design a fan filter whose idea fre-
quency response H{w,, ,) is shown in the following figure.

@y

- /?//// PR
Haleor, o) = {:) :: I:: Z:Z:::::g:g:on Figure P4.20
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4.21.

One approach suggested is to design a 2-D zero-phase fan filter H(w,, w,) from a
1-D zero-phase filter H(w) by

H(ml ] u’z) = H((“))lcos@: T(w}.w2) = (cosw))/2 — (cosw2)/2 *

(a) What type of 1-D filter do we need?

(b) Suppose the boundaries of the passband and stopband regions in the fan filter
specification coincide with the contours given by cos w = T(w,, w,). Also suppose
that the 1-D filter is designed by using the Parks-McClellan algorithm. Is the
2-D filter H(w,, w,) designed optimal in the Chebyshev sense?

Suppose an FIR filter that meets its design specification has been obtained. The

region of support of the digital filter h(n,, n,) is 25 X 25 points in size. We consider

realizing this filter using the overlap-add method to exploit the computational effi-
ciency of an FFT algorithm. The size of the DFT used is N x N, where N can be
expressed as a power of 2. What is the approximate number of multiplications per

output point in terms of N? Assume that the region of support of the input x(n,, n,)

is very large and that the row-column decomposition method with a decimation-in-

time FFT algorithm for the 1-D DFT computation is used.

4.22. The frequency response H(w,, w,) of an FIR filter designed by the trapsformation

method can be expressed as

N
H(ml’ ("')2) = Z a(n) Cos wn|cosw=T(ml.u:2) (1)
N
or H((Dl, wz) = ZO b(ﬂ) (COS m)nlcosm-T(wl.mz)‘ (2)

In Section 4.6.2, we developed an implementation method based directly on (2). An
alternate implementation method can be developed by using (1) and expressing cos wn
in terms of cos w(n — 1) and cos w(n — 2). Specifically, let cos wn be denoted by
P,[cos w]. From (1),
N
H(w,, ;) = Y a(n)P,[T(w,, w,)]. (3)

n=0

From Problem 4.16, P,[¢] is the nth-order Chebyshev polynomial and is given by

Polx] =1
Px] = x
Pylx] = 2xP\[x] — P[x] 4)

P[x] = 2xP,_,[x] — P,_,[x].

(a) Show that P,[T(w,, w,)] for n = 2 can be obtained from P,_,[T(w,, w,)] and
Pn—Z[T(wh ‘92)] by
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