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@ Training: Provide labeled samples for K classes.
@ Test: Present a new sample

o Compute its distances with all training samples.
o Assign its label as the same label of the nearest neighbor.
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Nearest Subspace

Estimation of single subspace models
@ Suppose R = [wy,--- ,wy] is a basis for a d-dim subspace in RP.

o For x; € RP, its coordinate in the new coordinate system: w’x; = y; € R.
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Nearest Subspace

Estimation of single subspace models
@ Suppose R = [wy,--- ,wy] is a basis for a d-dim subspace in RP.
o For x; € RP, its coordinate in the new coordinate system: w’x; = y; € R.

o Principal component analysis

n
w™ = arg max Z(y;)2 = argmaxw’' Tw
w
i=1
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Nearest Subspace

Estimation of single subspace models
@ Suppose R = [wy,--- ,wy] is a basis for a d-dim subspace in RP.
o For x; € RP, its coordinate in the new coordinate system: w’x; = y; € R.

o Principal component analysis

n
w™ = arg max Z(y;)2 = argmaxw’' Tw
w
i=1

@ Numerical solution: Singular value decomposition (SVD)
svd(A) = USVT, where U € RP*P 5 ¢ RPX" v ¢ R™%",

Denote U = [U; € RP*9; U, € RPX(P=d)]. Then R = U] .
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Nearest Subspace

Estimation of single subspace models
@ Suppose R = [wy,--- ,wy] is a basis for a d-dim subspace in RP.
o For x; € RP, its coordinate in the new coordinate system: w’x; = y; € R.

o Principal component analysis

n
w* = arg mm::\xz:(y,')2 = argmaxw’' Tw
i=1
@ Numerical solution: Singular value decomposition (SVD)
svd(A) = USVT, where U € RP*P 5 ¢ RPX" v ¢ R™%",

Denote U = [U; € RP*9; U, € RPX(P=d)]. Then R = U] .

o Eigenfaces If x; are vectors of face images, the principal vectors w; are then called
Eigenfaces.
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Nearest Subspace Algorithm

@ Training: For each of K classes, estimate its d-dim subspace model R; = [wy, -+ ,wy].
@ Test: Present a new sample y, compute its distances to K subspaces.

© Assignment: label of y as the closest subspace.
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Nearest Subspace Algorithm

@ Training: For each of K classes, estimate its d-dim subspace model R; = [wy, -+ ,wy].
@ Test: Present a new sample y, compute its distances to K subspaces.

© Assignment: label of y as the closest subspace.

o Equation for computing distance from y to R;?
o Why NS likely outperforms NN?
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£+ -Minimization
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Noiseless ¢*-Minimization is a Linear Program

Recall last lecture: Compute sparsest solution x that satisfies

§=Ax e R

Allen Y. Yang  <yangQeecs.berk: Compressed Sensing Meets Machine Learning


<yang@eecs.berkeley.edu>

£+ -Minimization
[ 1o

Noiseless ¢*-Minimization is a Linear Program

Recall last lecture: Compute sparsest solution x that satisfies
§=Ax e R
Formulate as linear programming;:

@ Problem statement:

(P1): x* =argmin|x||; subject to § = Ax € RY
X
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Noiseless ¢*-Minimization is a Linear Program

Recall last lecture: Compute sparsest solution x that satisfies
§=Ax e R

Formulate as linear programming;:

@ Problem statement:

(P1): x* =argmin|x||; subject to § = Ax € RY
X

@ Denote ® = (A, —A) ¢ R9%2" ¢ = (1,1,---,1)T € R?". We have the following linear
program

w = arg miny c’w
subject to § = dw
w>0
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1-Minimization Routines

o Matching pursuit [Mallat 1993]
@ Find most correlated vector v; in A with y: i = arg max (y, v;).
Q A A X — (Y, Vi), y <y — xv;.
© Repeat until ||y|| < e.
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1-Minimization Routines

o Matching pursuit [Mallat 1993]
@ Find most correlated vector v; in A with y: i = arg max (y, v;).
o A— ;\i’ Xi < (Y,Vi), ¥ — ¥ — XiV;.
© Repeat until ||y|| < e.
o Basis pursuit [Chen 1998]
@ Assume xg is m-sparse. .
@ Select m linearly independent vectors B, in A as a basis

Xm = B;y.

© Repeat swapping one basis vector in By, with another vector in A if improve [ly = BmXml|.
Q If |ly — Bnxmll2 < €, stop.
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1-Minimization Routines

o Matching pursuit [Mallat 1993]
@ Find most correlated vector v; in A with y: i = arg max (y, v;).
o A— ;\i’ Xi < (Y,Vi), ¥ — ¥ — XiV;.
© Repeat until ||y|| < e.
o Basis pursuit [Chen 1998]
@ Assume xg is m-sparse. .
@ Select m linearly independent vectors B, in A as a basis

Xm = B;y.

© Repeat swapping one basis vector in By, with another vector in A if improve [ly = BmXml|.
Q If |ly — Bnxmll2 < €, stop.

Matlab Toolboxes

o SparseLab by Donoho at Stanford.
o cvx by Boyd at Stanford.
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o

¢ -Minimization with Bounded #?-Noise is Quadratic Programming

£1-Minimization with Bounded ¢2-Noise:

§=Axo +z € R?, where ||z]]2 < ¢
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@ Problem statement:

(P}): x* =argmin||x||; subject to ||§ — Ax|l2 < e
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£+ -Minimization
o

¢ -Minimization with Bounded #?-Noise is Quadratic Programming

£1-Minimization with Bounded ¢2-Noise:

§=Axo +z € R?, where ||z]]2 < ¢

@ Problem statement:

(P}): x* =argmin||x||; subject to ||§ — Ax|l2 < e
X

o Quadratic program:

x* = argmin[ixlls + Ally - Ax|l2}
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£+ -Minimization
o

¢ -Minimization with Bounded #?-Noise is Quadratic Programming

£1-Minimization with Bounded ¢2-Noise:

§=Axo +z € R?, where ||z]]2 < ¢

@ Problem statement:

(P}): x* =argmin||x||; subject to ||§ — Ax|l2 < e
X

o Quadratic program:
x* = argmin{||x|l1 + Ally — Ax|]2}
@ Matlab toolboxes:

#1-Magic by Candes at Caltech.
cvx by Boyd at Stanford.
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Equivalence

Recall last lecture...

@ (°-Minimization .
xo = argmin |x|lo s.t. § = Ax.
X

|| - |lo simply counts the number of nonzero terms.
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Recall last lecture...

@ (°-Minimization .
xo = argmin |x|lo s.t. § = Ax.
X

|| - |lo simply counts the number of nonzero terms.

Q@ /O-Ball

o %-ball is not convex.

o (°-minimization is NP-hard.

y = Ax

. -0 ball
X2 /’
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¢* /0 Equivalence

@ Compressed sensing: If xq is sparse enough, £°-minimization is equivalent to
(P1) min||x||; s.t. § = Ax.

lIxlle = Pal+ |xef + - - =+ [xnl.
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¢* /0 Equivalence

@ Compressed sensing: If xq is sparse enough, £°-minimization is equivalent to
(P1) min||x||; s.t. § = Ax.

Ixlle = Pl + [xo| + -+ + |xal.
Q /-Ball

y=Ax
o £ -Minimization is convex.

o Solution equal to £°-minimization. ‘h 1-0 ball
i' A b
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¢* /0 Equivalence

@ Compressed sensing: If xq is sparse enough, £°-minimization is equivalent to
(P1) min||x||; s.t. § = Ax.

lIxlle = Pal+ |xef + - - =+ [xnl.

Q (-Ball
y = Ax
o £ -Minimization is convex.
o Solution equal to £°-minimization. ‘h 1-0 ball

" A b

(5] ZI/ZO Equivalence: [Donoho 2002, 2004; Candes et al. 2004; Baraniuk 2006]
Given § = Axg, there exists equivalence breakdown point (EBP) p(A), if ||xo]lo < p:

o ¢'-solution is unique
@ X1 = Xp

Allen Y. Yang  <yangQeecs.be: Compressed Sensing Meets Machine Learning


<yang@eecs.berkeley.edu>

-Equivalence

1 /£° Equivalence in Noisy Case

Reconsider ¢2-bounded linear system
§ = Axo +z € R?, where ||z]]2 < ¢

Is corresponding £ solution stable?
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1 /£° Equivalence in Noisy Case

Reconsider ¢2-bounded linear system
§ = Axo +z € R?, where ||z]]2 < ¢

Is corresponding £ solution stable?

o /-Ball

o No exact solution possible.

- 1-0 ball
o Bounded measurement error causes

bounded estimation error.

o Yes, £! solution is stable!

M b
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1 /£° Equivalence in Noisy Case

Reconsider ¢2-bounded linear system
§ = Axo +z € R?, where ||z]]2 < ¢

Is corresponding £ solution stable?

o /-Ball

o No exact solution possible.

- 1-0 ball

o Bounded measurement error causes
bounded estimation error.

o Yes, £! solution is stable!

M rba

@ (' /€% Equivalence [Donoho 2004]
Suppose § = Axg + z where |[z||2 < e. There exists equivalence breakdown point (EBP)
p(A), if [Ixollo < p:
1 —xoll2 < C-e€
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Compressed Sensing in the View of Convex Polytopes

For the rest of the lecture, investigate the estimation of EBP p.
To simplify notations, assume underdetermined system y = Ax € R, where A = RY*".
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Compressed Sensing in the View of Convex Polytopes

For the rest of the lecture, investigate the estimation of EBP p.
To simplify notations, assume underdetermined system y = Ax € R, where A = RY*".

Definition (Quotient Polytopes)

Consider the convex hull P of the 2n vectors (A, —A). P is called the quotient polytope
associated to A.
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Compressed Sensing in the View of Convex Polytopes

For the rest of the lecture, investigate the estimation of EBP p.
To simplify notations, assume underdetermined system y = Ax € R, where A = RY*".

Definition (Quotient Polytopes)

Consider the convex hull P of the 2n vectors (A, —A). P is called the quotient polytope
associated to A.

Definition (k-Neighborliness)

A quotient polytope P is called k-neighborly if whenever we take k vertices not including an
antipodal pair, the resulting vertices span a face of P.
(Above example is 1-neighborly.)
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¢*-Minimization and Quotient Polytopes

Why ¢1-minimization is related to quotient polytopes?

o Consider x represent an ¢!-ball C in R".
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¢*-Minimization and Quotient Polytopes

Why ¢1-minimization is related to quotient polytopes?

o Consider x represent an ¢!-ball C in R".

o If xg is k-sparse, xo will intersect the £1-ball on one of its (k — 1)-D faces.
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¢*-Minimization and Quotient Polytopes

Why ¢1-minimization is related to quotient polytopes?

o Consider x represent an ¢!-ball C in R".
o If xg is k-sparse, xo will intersect the £1-ball on one of its (k — 1)-D faces.
o Matrix A maps ¢!-ball in R" to the quotient polytope P in RY, d < n.
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¢*-Minimization and Quotient Polytopes

Why ¢1-minimization is related to quotient polytopes?

o Consider x represent an ¢!-ball C in R".

If xo is k-sparse, xo will intersect the £!-ball on one of its (k — 1)-D faces.

Matrix A maps ¢*-ball in R” to the quotient polytope P in RY, d < n.

Such mapping is linear!
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#1-Minimization and Quotient Polytopes

o Consider x represent an ¢!-ball C in R".

o If xg is k-sparse, xo will intersect the £1-ball on one of its (k — 1)-D faces.
o Matrix A maps ¢!-ball in R" to the quotient polytope P in RY, d < n.
o Such mapping is linear!

Theorem (£1/¢° equivalence condition)

If the quotient polytope P associated with A is k-neighborly, for y = Axg with xg to be k-sparse,
then xq is the unique optimal solution of the ¢*-minimization.
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Let's prove the theorem together

- s /bd(
</
Vb«’

a e io
9= Awo

Definitions:
o vertices v € vert(P).
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Let's prove the theorem together

Definitions:
o vertices v € vert(P).

- s /bd(
</
Vb«’

a e io
9= Awo

o k-D faces F € Fy(P). Also define fi(P) = #Fk(P).
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Let's prove the theorem together

R™ R4

o o Ay

Definitions:
o vertices v € vert(P).

o k-D faces F € Fy(P). Also define fi(P) = #Fk(P).

o convex hull operation conv(-).

(1) vert(P) = Fo(P). (2) P = conv(vert(P))
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Let's prove the t

R™ R4

o g Ay

Definitions:
o vertices v € vert(P).

o k-D faces F € Fy(P). Also define fi(P) = #Fk(P).

o convex hull operation conv(-).

(1) vert(P) = Fo(P). (2) P = conv(vert(P)) )

o F € Fi(P) is a simplex if #vert(F) = k + 1.

Properties

vert(AC) C Avert(C); Fi(AC) C AF(C).
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Two Fundamental Lemmas

- /bd(
.
V

Lemma (Alternative Definition of k-neighborliness)

Suppose a centrosymmetric polytope P = AC has 2n vertices. Then P is k-neighborly
iff for any | =0,--- ,k —1 and F € Fi(C), AF € Fi(AC).
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Two Fundamental Lemmas

Lemma (Alternative Definition of k-neighborliness)

Suppose a centrosymmetric polytope P = AC has 2n vertices. Then P is k-neighborly
iff for any | =0,--- ,k —1 and F € Fi(C), AF € Fi(AC).

Lemma (Unique Representation on Simplices)
Consider an I-simplex F € Fi(P). Let x € F. Then
@ x has a unique representation as a linear combination of the vertices of P.

@ This representation places only nonzero weight on vertices of F.
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Proof of the Theorem

Suppose P is k-neighborly, and xg is k-sparse. WLOG, scale and assume ||xo|l1 = 1.
Q x is k-sparse = IF € Fy_1(C), xo € F and y = Axq € AF.

@ P = AC is k-neighborly = AF € Fy_1(AC) is a simplex.
© By (1) and (2), y € AF has a unique representation with at most k nonzero weights on the vertices of AF.

@ Hence, x; given by £!-minimization is unique, and x; = Xo.
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Proof of the Theorem

Suppose P is k-neighborly, and xg is k-sparse. WLOG, scale and assume ||xo|l1 = 1.
Q x is k-sparse = IF € Fy_1(C), xo € F and y = Axq € AF.

@ P = AC is k-neighborly = AF € Fy_1(AC) is a simplex.
© By (1) and (2), y € AF has a unique representation with at most k nonzero weights on the vertices of AF.

@ Hence, x; given by £!-minimization is unique, and x; = Xo.

Corollary [Gribonval & Nielsen 2003]

Assume for all columns of matrix A, ||vi|l2 = 1, and for all i # j, (vj,v;) < 515,
then P = AC is k-neighborly.
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Last question: Why random projection works well in ¢X-minimization?

s = i.c

Revisit the above corollary

Define coherence M = max;; |(vj,v;)|, then EBP(A) > M_21+1.
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Last question: Why random projection works well in ¢X-minimization?

s = i.c

Revisit the above corollary

Define coherence M = max;; |(vj,v;)|, then EBP(A) > M_21+1.

@ in HD space RY, two randomly generated unit vectors have small coherence M.
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Last question: Why random projection works well in ¢X-minimization?

s - i.c

Revisit the above corollary

Define coherence M = max;; |(vj,v;)|, then EBP(A) > M_21+1.

O in HD space R?, two randomly generated unit vectors have small coherence M.
@ Further define coherence of two dictionaries M(A, B) = maxyca,ves |(u,v)]|.
o L <M(AB) <.

Vd
o Let T be the spike basis in time domain, F be the Fourier basis, then M(T, F) = ﬁ. Max
incoherence!

o Random projection R in general is not coherent with most traditional bases.
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Conclusion

Conclusion

@ Classical classifiers: NN & NS.
@ Linear and quadratic ¢! solvers.
© Stability of £0/¢! equivalence with bounded error.

Q Computation of equivalence breakdown point (EBP) via quotient polytopes.
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