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Nearest Neighbor Algorithm

1 Training: Provide labeled samples for K classes.
2 Test: Present a new sample

Compute its distances with all training samples.
Assign its label as the same label of the nearest neighbor.
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Nearest Subspace

Estimation of single subspace models

Suppose R = [w1, · · · ,wd ] is a basis for a d-dim subspace in RD .

For xi ∈ RD , its coordinate in the new coordinate system: wT xi = yi ∈ R.

Principal component analysis

w∗ = arg max
w

n∑
i=1

(yi )
2 = arg max wT Σw

Numerical solution: Singular value decomposition (SVD)

svd(A) = USV T , where U ∈ RD×D , S ∈ RD×n,V ∈ Rn×n.

Denote U = [U1 ∈ RD×d ; U2 ∈ RD×(D−d)]. Then R = UT
1 .

Eigenfaces If xi are vectors of face images, the principal vectors wi are then called
Eigenfaces.
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Nearest Subspace Algorithm

1 Training: For each of K classes, estimate its d-dim subspace model Ri = [w1, · · · ,wd ].

2 Test: Present a new sample y, compute its distances to K subspaces.

3 Assignment: label of y as the closest subspace.

Question

Equation for computing distance from y to Ri ?

Why NS likely outperforms NN?
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Noiseless `1-Minimization is a Linear Program

Recall last lecture: Compute sparsest solution x that satisfies

ỹ = Ãx ∈ Rd

Formulate as linear programming:

1 Problem statement:

(P1) : x∗ = arg min
x
‖x‖1 subject to ỹ = Ãx ∈ Rd

2 Denote Φ = (Ã,−Ã) ∈ Rd×2n, c = (1, 1, · · · , 1)T ∈ R2n. We have the following linear
program

w∗ = arg minw cT w
subject to ỹ = Φw

w ≥ 0
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`1-Minimization Routines

Matching pursuit [Mallat 1993]

1 Find most correlated vector vi in Ã with y: i = arg max 〈y, vj〉.
2 Ã← Ãî , xi ← 〈y, vi 〉, y← y − xi vi .
3 Repeat until ‖y‖ < ε.

Basis pursuit [Chen 1998]
1 Assume x0 is m-sparse.
2 Select m linearly independent vectors Bm in Ã as a basis

xm = B†my.

3 Repeat swapping one basis vector in Bm with another vector in Ã if improve ‖y − Bmxm‖.
4 If ‖y − Bmxm‖2 < ε, stop.

Matlab Toolboxes

SparseLab by Donoho at Stanford.

cvx by Boyd at Stanford.
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`1-Minimization with Bounded `2-Noise is Quadratic Programming

`1-Minimization with Bounded `2-Noise:

ỹ = Ãx0 + z ∈ Rd , where ‖z‖2 < ε

Problem statement:

(P′1) : x∗ = arg min
x
‖x‖1 subject to ‖ỹ − Ãx‖2 < ε

Quadratic program:

x∗ = arg min{‖x‖1 + λ‖y − Ãx‖2}

Matlab toolboxes:
`1-Magic by Candès at Caltech.
cvx by Boyd at Stanford.
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ỹ = Ãx0 + z ∈ Rd , where ‖z‖2 < ε

Problem statement:

(P′1) : x∗ = arg min
x
‖x‖1 subject to ‖ỹ − Ãx‖2 < ε
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Recall last lecture...

1 `0-Minimization
x0 = arg min

x
‖x‖0 s.t. ỹ = Ãx.

‖ · ‖0 simply counts the number of nonzero terms.

2 `0-Ball

`0-ball is not convex.

`0-minimization is NP-hard.
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`1/`0 Equivalence

1 Compressed sensing: If x0 is sparse enough, `0-minimization is equivalent to

(P1) min ‖x‖1 s.t. ỹ = Ãx.

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|.

2 `1-Ball

`1-Minimization is convex.

Solution equal to `0-minimization.

3 `1/`0 Equivalence: [Donoho 2002, 2004; Candes et al. 2004; Baraniuk 2006]

Given ỹ = Ãx0, there exists equivalence breakdown point (EBP) ρ(Ã), if ‖x0‖0 < ρ:

`1-solution is unique
x1 = x0
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`1/`0 Equivalence in Noisy Case

Reconsider `2-bounded linear system

ỹ = Ãx0 + z ∈ Rd , where ‖z‖2 < ε

Is corresponding `1 solution stable?

1 `1-Ball

No exact solution possible.

Bounded measurement error causes
bounded estimation error.

Yes, `1 solution is stable!

2 `1/`0 Equivalence [Donoho 2004]
Suppose ỹ = Ãx0 + z where ‖z‖2 < ε. There exists equivalence breakdown point (EBP)
ρ(Ã), if ‖x0‖0 < ρ:

‖x1 − x0‖2 ≤ C · ε
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Compressed Sensing in the View of Convex Polytopes

For the rest of the lecture, investigate the estimation of EBP ρ.
To simplify notations, assume underdetermined system y = Ax ∈ Rd , where A = Rd×n.

Definition (Quotient Polytopes)

Consider the convex hull P of the 2n vectors (A,−A). P is called the quotient polytope
associated to A.

Definition (k-Neighborliness)

A quotient polytope P is called k-neighborly if whenever we take k vertices not including an
antipodal pair, the resulting vertices span a face of P.
(Above example is 1-neighborly.)
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`1-Minimization and Quotient Polytopes

Why `1-minimization is related to quotient polytopes?

Consider x represent an `1-ball C in Rn.

If x0 is k-sparse, x0 will intersect the `1-ball on one of its (k − 1)-D faces.

Matrix A maps `1-ball in Rn to the quotient polytope P in Rd , d � n.

Such mapping is linear!

Theorem (`1/`0 equivalence condition)

If the quotient polytope P associated with A is k-neighborly, for y = Ax0 with x0 to be k-sparse,
then x0 is the unique optimal solution of the `1-minimization.
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Let’s prove the theorem together

Definitions:
vertices v ∈ vert(P).

k-D faces F ∈ Fk (P). Also define fk (P) = #Fk (P).

convex hull operation conv(·).

(1) vert(P) = F0(P). (2) P = conv(vert(P))

F ∈ Fk (P) is a simplex if #vert(F ) = k + 1.

Properties

vert(AC) ⊂ Avert(C); Fl (AC) ⊂ AFl (C).
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k-D faces F ∈ Fk (P). Also define fk (P) = #Fk (P).

convex hull operation conv(·).

(1) vert(P) = F0(P). (2) P = conv(vert(P))

F ∈ Fk (P) is a simplex if #vert(F ) = k + 1.

Properties

vert(AC) ⊂ Avert(C); Fl (AC) ⊂ AFl (C).
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Two Fundamental Lemmas

Lemma (Alternative Definition of k-neighborliness)

Suppose a centrosymmetric polytope P = AC has 2n vertices. Then P is k-neighborly
iff for any l = 0, · · · , k − 1 and F ∈ Fl (C), AF ∈ Fl (AC).

Lemma (Unique Representation on Simplices)

Consider an l-simplex F ∈ Fl (P). Let x ∈ F . Then

1 x has a unique representation as a linear combination of the vertices of P.

2 This representation places only nonzero weight on vertices of F .
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Proof of the Theorem

Suppose P is k-neighborly, and x0 is k-sparse. WLOG, scale and assume ‖x0‖1 = 1.
1 x0 is k-sparse ⇒ ∃F ∈ Fk−1(C), x0 ∈ F and y

.
= Ax0 ∈ AF .

2 P = AC is k-neighborly ⇒ AF ∈ Fk−1(AC) is a simplex.

3 By (1) and (2), y ∈ AF has a unique representation with at most k nonzero weights on the vertices of AF .

4 Hence, x1 given by `1-minimization is unique, and x1 = x0.

Corollary [Gribonval & Nielsen 2003]

Assume for all columns of matrix A, ‖vi‖2 = 1, and for all i 6= j , 〈vi , vj〉 ≤ 1
2k−1 ,

then P = AC is k-neighborly.
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Last question: Why random projection works well in `1-minimization?

Revisit the above corollary

Define coherence M
.

= maxi 6=j |〈vi , vj 〉|, then EBP(A) > M−1+1
2

.

1 in HD space Rd , two randomly generated unit vectors have small coherence M.
2 Further define coherence of two dictionaries M(A,B) = maxu∈A,v∈B |〈u, v〉|.

1√
d
≤ M(A,B) ≤ 1.

Let T be the spike basis in time domain, F be the Fourier basis, then M(T , F ) = 1√
d

. Max

incoherence!
Random projection R in general is not coherent with most traditional bases.

Allen Y. Yang <yang@eecs.berkeley.edu> Compressed Sensing Meets Machine Learning

<yang@eecs.berkeley.edu>


Introduction `1-Minimization `0/`1-Equivalence Conclusion

Last question: Why random projection works well in `1-minimization?

Revisit the above corollary

Define coherence M
.

= maxi 6=j |〈vi , vj 〉|, then EBP(A) > M−1+1
2

.

1 in HD space Rd , two randomly generated unit vectors have small coherence M.

2 Further define coherence of two dictionaries M(A,B) = maxu∈A,v∈B |〈u, v〉|.
1√
d
≤ M(A,B) ≤ 1.

Let T be the spike basis in time domain, F be the Fourier basis, then M(T , F ) = 1√
d

. Max

incoherence!
Random projection R in general is not coherent with most traditional bases.

Allen Y. Yang <yang@eecs.berkeley.edu> Compressed Sensing Meets Machine Learning

<yang@eecs.berkeley.edu>


Introduction `1-Minimization `0/`1-Equivalence Conclusion

Last question: Why random projection works well in `1-minimization?

Revisit the above corollary

Define coherence M
.

= maxi 6=j |〈vi , vj 〉|, then EBP(A) > M−1+1
2

.

1 in HD space Rd , two randomly generated unit vectors have small coherence M.
2 Further define coherence of two dictionaries M(A,B) = maxu∈A,v∈B |〈u, v〉|.

1√
d
≤ M(A,B) ≤ 1.

Let T be the spike basis in time domain, F be the Fourier basis, then M(T , F ) = 1√
d

. Max

incoherence!
Random projection R in general is not coherent with most traditional bases.

Allen Y. Yang <yang@eecs.berkeley.edu> Compressed Sensing Meets Machine Learning

<yang@eecs.berkeley.edu>


Introduction `1-Minimization `0/`1-Equivalence Conclusion

Conclusion

1 Classical classifiers: NN & NS.

2 Linear and quadratic `1 solvers.

3 Stability of `0/`1 equivalence with bounded error.

4 Computation of equivalence breakdown point (EBP) via quotient polytopes.
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