ℓ¹-Minimization

 ℓ^0/ℓ^1 -Equivalence

Conclusion

Compressed Sensing Meets Machine Learning - Classification of Mixture Subspace Models via Sparse Representation

Allen Y. Yang <yang@eecs.berkeley.edu>

Mini Lectures in Image Processing (Part II), UC Berkeley

Nearest Neighbor Algorithm

1 Training: Provide labeled samples for K classes.

Ø Test: Present a new sample

- · Compute its distances with all training samples.
- Assign its label as the same label of the nearest neighbor.

Introduction	ℓ^1 -Minimization	ℓ^0/ℓ^1 -Equivalence	Conclusion
000	000	00000000	
Nearest Subspace			

Estimation of single subspace models

- Suppose $R = [\mathbf{w}_1, \cdots, \mathbf{w}_d]$ is a basis for a *d*-dim subspace in \mathbb{R}^D .
- For $\mathbf{x}_i \in \mathbb{R}^D$, its coordinate in the new coordinate system: $\mathbf{w}^T \mathbf{x}_i = y_i \in \mathbb{R}$.

.∃...>

Introduction
000

Conclusion

Nearest Subspace

Estimation of single subspace models

- Suppose $R = [\mathbf{w}_1, \cdots, \mathbf{w}_d]$ is a basis for a *d*-dim subspace in \mathbb{R}^D .
- For $\mathbf{x}_i \in \mathbb{R}^D$, its coordinate in the new coordinate system: $\mathbf{w}^T \mathbf{x}_i = y_i \in \mathbb{R}$.
- Principal component analysis

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \sum_{i=1}^n (y_i)^2 = \arg \max \mathbf{w}^T \Sigma \mathbf{w}$$

Introduction
000

Nearest Subspace

Estimation of single subspace models

- Suppose $R = [\mathbf{w}_1, \cdots, \mathbf{w}_d]$ is a basis for a *d*-dim subspace in \mathbb{R}^D .
- For $\mathbf{x}_i \in \mathbb{R}^D$, its coordinate in the new coordinate system: $\mathbf{w}^T \mathbf{x}_i = y_i \in \mathbb{R}$.
- Principal component analysis

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \sum_{i=1}^n (y_i)^2 = \arg \max \mathbf{w}^T \Sigma \mathbf{w}$$

• Numerical solution: Singular value decomposition (SVD)

$$svd(A) = USV^T$$
, where $U \in \mathbb{R}^{D \times D}$, $S \in \mathbb{R}^{D \times n}$, $V \in \mathbb{R}^{n \times n}$.

Denote $U = [U_1 \in \mathbb{R}^{D \times d}; U_2 \in \mathbb{R}^{D \times (D-d)}]$. Then $R = U_1^T$.

Introduction
000

Nearest Subspace

Estimation of single subspace models

- Suppose $R = [\mathbf{w}_1, \cdots, \mathbf{w}_d]$ is a basis for a *d*-dim subspace in \mathbb{R}^D .
- For $\mathbf{x}_i \in \mathbb{R}^D$, its coordinate in the new coordinate system: $\mathbf{w}^T \mathbf{x}_i = y_i \in \mathbb{R}$.
- Principal component analysis

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \sum_{i=1}^n (y_i)^2 = \arg \max \mathbf{w}^T \Sigma \mathbf{w}$$

• Numerical solution: Singular value decomposition (SVD)

$$\mathsf{svd}(A) = USV^{\mathsf{T}}, \text{ where } U \in \mathbb{R}^{D \times D}, S \in \mathbb{R}^{D \times n}, V \in \mathbb{R}^{n \times n}.$$

Denote $U = [U_1 \in \mathbb{R}^{D \times d}; U_2 \in \mathbb{R}^{D \times (D-d)}]$. Then $R = U_1^T$.

• Eigenfaces If x_i are vectors of face images, the principal vectors w_i are then called Eigenfaces.

Introduction ○○● ℓ^1 -Minimization

 ℓ^{U}/ℓ^{1} -Equivalence

Conclusion

Nearest Subspace Algorithm

- **()** Training: For each of K classes, estimate its d-dim subspace model $R_i = [\mathbf{w}_1, \cdots, \mathbf{w}_d]$.
- **@** Test: Present a new sample **y**, compute its distances to *K* subspaces.
- **O** Assignment: label of y as the closest subspace.

 ℓ^1 -Minimization

Conclusion

DUIKUN

Nearest Subspace Algorithm

- **()** Training: For each of K classes, estimate its d-dim subspace model $R_i = [\mathbf{w}_1, \cdots, \mathbf{w}_d]$.
- **@** Test: Present a new sample **y**, compute its distances to K subspaces.
- **O** Assignment: label of y as the closest subspace.

Question

- Equation for computing distance from **y** to R_i ?
- Why NS likely outperforms NN?

Recall last lecture: Compute sparsest solution x that satisfies

$$ilde{\mathbf{y}} = ilde{A} \mathbf{x} \in \mathbb{R}^d$$

< 🗇 🕨

Recall last lecture: Compute sparsest solution x that satisfies

$$ilde{\mathbf{y}} = ilde{A} \mathbf{x} \in \mathbb{R}^d$$

Formulate as linear programming:

Problem statement:

$$(P_1): \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ subject to } \mathbf{\tilde{y}} = \mathbf{\tilde{A}}\mathbf{x} \in \mathbb{R}^d$$

Recall last lecture: Compute sparsest solution x that satisfies

$$ilde{\mathbf{y}} = ilde{A} \mathbf{x} \in \mathbb{R}^d$$

Formulate as linear programming:

Problem statement:

$$(P_1): \quad \mathbf{x}^* = rg\min_{\mathbf{x}} \|\mathbf{x}\|_1 ext{ subject to } ilde{\mathbf{y}} = ilde{A} \mathbf{x} \in \mathbb{R}^d$$

9 Denote $\Phi = (\tilde{A}, -\tilde{A}) \in \mathbb{R}^{d \times 2n}$, $\mathbf{c} = (1, 1, \dots, 1)^T \in \mathbb{R}^{2n}$. We have the following linear program

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Introd	luction

ℓ¹-Minimization
○●○

 ℓ^0/ℓ^1 -Equivalence

Conclusion

ℓ¹-Minimization Routines

- Matching pursuit [Mallat 1993]
 - **()** Find most correlated vector \mathbf{v}_i in \tilde{A} with \mathbf{y} : $i = \arg \max \langle \mathbf{y}, \mathbf{v}_j \rangle$.
 - $(2) \quad \tilde{A} \leftarrow \tilde{A}^{\hat{i}}, \ x_i \leftarrow \langle \mathbf{y}, \mathbf{v}_i \rangle, \ \mathbf{y} \leftarrow \mathbf{y} x_i \mathbf{v}_i.$
 - $\textbf{0} \quad \text{Repeat until } \|\mathbf{y}\| < \epsilon.$

Intro	٥d	uc	ti	on

 ℓ^0/ℓ^1 -Equivalence

Conclusion

*l*¹-Minimization Routines

- Matching pursuit [Mallat 1993]
 - **()** Find most correlated vector \mathbf{v}_i in \tilde{A} with \mathbf{y} : $i = \arg \max \langle \mathbf{y}, \mathbf{v}_j \rangle$.
 - $\widehat{A} \leftarrow \widetilde{A}^{\widehat{i}}, \, x_i \leftarrow \langle \mathbf{y}, \mathbf{v}_i \rangle, \, \mathbf{y} \leftarrow \mathbf{y} x_i \mathbf{v}_i.$
 - **()** Repeat until $\|\mathbf{y}\| < \epsilon$.
- Basis pursuit [Chen 1998]
 - Assume x₀ is *m*-sparse.
 - **2** Select *m* linearly independent vectors B_m in \tilde{A} as a basis

$$\mathbf{x}_m = B_m^{\dagger} \mathbf{y}.$$

(a) Repeat swapping one basis vector in B_m with another vector in \tilde{A} if improve $\|\mathbf{y} - B_m \mathbf{x}_m\|$. **(a)** If $\|\mathbf{y} - B_m \mathbf{x}_m\|_2 < \epsilon$, stop.

Intro	٥d	uc	ti	on

ℓ¹-Minimization

 ℓ^0/ℓ^1 -Equivalence

Conclusion

*l*¹-Minimization Routines

- Matching pursuit [Mallat 1993]
 - **()** Find most correlated vector \mathbf{v}_i in \tilde{A} with \mathbf{y} : $i = \arg \max \langle \mathbf{y}, \mathbf{v}_j \rangle$.
 - $(2) \quad \tilde{A} \leftarrow \tilde{A}^{\hat{i}}, \, x_i \leftarrow \langle \mathbf{y}, \mathbf{v}_i \rangle, \, \mathbf{y} \leftarrow \mathbf{y} x_i \mathbf{v}_i.$
 - **()** Repeat until $\|\mathbf{y}\| < \epsilon$.
- Basis pursuit [Chen 1998]
 - Assume x₀ is *m*-sparse.
 - 2 Select *m* linearly independent vectors B_m in \tilde{A} as a basis

$$\mathbf{x}_m = B_m^{\dagger} \mathbf{y}.$$

(a) Repeat swapping one basis vector in B_m with another vector in \tilde{A} if improve $\|\mathbf{y} - B_m \mathbf{x}_m\|$. **(a)** If $\|\mathbf{y} - B_m \mathbf{x}_m\|_2 < \epsilon$, stop.

Matlab Toolboxes

- SparseLab by Donoho at Stanford.
- cvx by Boyd at Stanford.

ℓ¹-Minimization

Conclusion

ℓ^1 -Minimization with Bounded ℓ^2 -Noise is Quadratic Programming

 ℓ^1 -Minimization with Bounded ℓ^2 -Noise:

 $ilde{\mathbf{y}} = ilde{A}\mathbf{x}_0 + \mathbf{z} \in \mathbb{R}^d, ext{ where } \|\mathbf{z}\|_2 < \epsilon$

ℓ¹-Minimization

Conclusion

ℓ^1 -Minimization with Bounded ℓ^2 -Noise is Quadratic Programming

 $\ell^1\text{-}\mathsf{Minimization}$ with Bounded $\ell^2\text{-}\mathsf{Noise:}$

$$ilde{\mathbf{y}} = ilde{A} \mathbf{x}_0 + \mathbf{z} \in \mathbb{R}^d, ext{ where } \|\mathbf{z}\|_2 < \epsilon$$

• Problem statement:

$$(P_1'): \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ subject to } \|\mathbf{\tilde{y}} - \mathbf{\tilde{A}x}\|_2 < \epsilon$$

ℓ¹-Minimization

Conclusion

ℓ^1 -Minimization with Bounded ℓ^2 -Noise is Quadratic Programming

 $\ell^1\text{-}\mathsf{Minimization}$ with Bounded $\ell^2\text{-}\mathsf{Noise:}$

$$ilde{\mathbf{y}} = ilde{A}\mathbf{x}_0 + \mathbf{z} \in \mathbb{R}^d, ext{ where } \|\mathbf{z}\|_2 < \epsilon$$

• Problem statement:

$$(P'_1): \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ subject to } \|\mathbf{\tilde{y}} - \mathbf{\tilde{A}x}\|_2 < \epsilon$$

• Quadratic program:

$$\mathbf{x}^* = \arg\min\{\|\mathbf{x}\|_1 + \lambda \|\mathbf{y} - \tilde{A}\mathbf{x}\|_2\}$$

ℓ¹-Minimization

Conclusion

ℓ^1 -Minimization with Bounded ℓ^2 -Noise is Quadratic Programming

 ℓ^1 -Minimization with Bounded ℓ^2 -Noise:

$$ilde{\mathbf{y}} = ilde{A}\mathbf{x}_0 + \mathbf{z} \in \mathbb{R}^d, ext{ where } \|\mathbf{z}\|_2 < \epsilon$$

• Problem statement:

$$(P_1'): \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ subject to } \|\mathbf{\tilde{y}} - \mathbf{\tilde{A}x}\|_2 < \epsilon$$

• Quadratic program:

$$\mathbf{x}^* = \arg\min\{\|\mathbf{x}\|_1 + \lambda \|\mathbf{y} - \tilde{A}\mathbf{x}\|_2\}$$

Matlab toolboxes:
 *l*¹-Magic by Candès at Caltech.
 cvx by Boyd at Stanford.

000	ℓ ⁻ -Minimization 000	ℓ / ℓ Equivalence ●00000000	Conclusion
Recall last lecture			
• ℓ^0 -Minimization	$\mathbf{x}_0 = \arg\min_{\mathbf{x}} \ \mathbf{x}\ _0 \text{ s.t.}$	$\tilde{\mathbf{y}} = \tilde{A}\mathbf{x}.$	
$\ \cdot\ _0$ simply counts th	e number of nonzero terms.		

< 🗇 🕨

Operation Compressed sensing: If \mathbf{x}_0 is sparse enough, ℓ^0 -minimization is equivalent to

(

$$P_1$$
) min $\|\mathbf{x}\|_1$ s.t. $\tilde{\mathbf{y}} = \tilde{A}\mathbf{x}$.

 $\|\mathbf{x}\|_1 = |x_1| + |x_2| + \cdots + |x_n|.$

(

$$P_1$$
) min $\|\mathbf{x}\|_1$ s.t. $\tilde{\mathbf{y}} = \tilde{A}\mathbf{x}$

$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \dots + |x_n|.$$

 ℓ^1 -Ball

- ℓ^1 -Minimization is convex.
- Solution equal to ℓ^0 -minimization.

I-I ball

э

イロト イポト イヨト イヨト

() ℓ^1/ℓ^0 Equivalence: [Donoho 2002, 2004; Candes et al. 2004; Baraniuk 2006] Given $\tilde{\mathbf{y}} = \tilde{A}\mathbf{x}_0$, there exists equivalence breakdown point (EBP) $\rho(\tilde{A})$, if $\|\mathbf{x}_0\|_0 < \rho$:

- ℓ^1 -solution is unique
- $\mathbf{x}_1 = \mathbf{x}_0$

 ℓ^1 -Minimization

 ℓ^0/ℓ^1 -Equivalence

Conclusion

ℓ^1/ℓ^0 Equivalence in Noisy Case

Reconsider $\ell^2\text{-bounded}$ linear system

$$ilde{\mathbf{y}} = ilde{\mathbf{A}} \mathbf{x}_0 + \mathbf{z} \in \mathbb{R}^d, ext{ where } \|\mathbf{z}\|_2 < \epsilon$$

Is corresponding ℓ^1 solution stable?

 ℓ^1 -Minimization

 ℓ^0/ℓ^1 -Equivalence

Conclusion

ℓ^1/ℓ^0 Equivalence in Noisy Case

Reconsider $\ell^2\text{-bounded}$ linear system

$$ilde{\mathbf{y}} = ilde{A}\mathbf{x}_0 + \mathbf{z} \in \mathbb{R}^d, ext{ where } \|\mathbf{z}\|_2 < \epsilon$$

Is corresponding ℓ^1 solution stable?

 $0 \ell^1$ -Ball

- No exact solution possible.
- Bounded measurement error causes bounded estimation error.
- Yes, ℓ^1 solution is stable!

 ℓ^1 -Minimization

 ℓ^0/ℓ^1 -Equivalence

∃ ► < ∃ ►</p>

Conclusion

ℓ^1/ℓ^0 Equivalence in Noisy Case

Reconsider $\ell^2\text{-bounded}$ linear system

$$ilde{\mathbf{y}} = ilde{A}\mathbf{x}_0 + \mathbf{z} \in \mathbb{R}^d, ext{ where } \|\mathbf{z}\|_2 < \epsilon$$

Is corresponding
$$\ell^1$$
 solution stable?

 $0 \ell^1$ -Ball

2 ℓ^1/ℓ^0 Equivalence [Donoho 2004] Suppose $\tilde{\mathbf{y}} = \tilde{A}\mathbf{x}_0 + \mathbf{z}$ where $\|\mathbf{z}\|_2 < \epsilon$. There exists equivalence breakdown point (EBP) $\rho(\tilde{A})$, if $\|\mathbf{x}_0\|_0 < \rho$:

$$\|\mathbf{x}_1 - \mathbf{x}_0\|_2 \le C \cdot \epsilon$$

For the rest of the lecture, investigate the estimation of EBP ρ . To simplify notations, assume underdetermined system $\mathbf{y} = A\mathbf{x} \in \mathbb{R}^d$, where $A = \mathbb{R}^{d \times n}$.

 ℓ^1 -Minimization

Conclusion

Compressed Sensing in the View of Convex Polytopes

For the rest of the lecture, investigate the estimation of EBP ρ . To simplify notations, assume underdetermined system $\mathbf{y} = A\mathbf{x} \in \mathbb{R}^d$, where $A = \mathbb{R}^{d \times n}$.

Definition (Quotient Polytopes)

Consider the convex hull P of the 2n vectors (A, -A). P is called the **quotient polytope** associated to A.

 ℓ^1 -Minimization

Conclusion

Compressed Sensing in the View of Convex Polytopes

For the rest of the lecture, investigate the estimation of EBP ρ . To simplify notations, assume underdetermined system $\mathbf{y} = A\mathbf{x} \in \mathbb{R}^d$, where $A = \mathbb{R}^{d \times n}$.

Definition (Quotient Polytopes)

Consider the convex hull P of the 2n vectors (A, -A). P is called the **quotient polytope** associated to A.

Definition (k-Neighborliness)

A quotient polytope P is called *k*-**neighborly** if whenever we take *k* vertices not including an antipodal pair, the resulting vertices span a face of P. (Above example is 1-neighborly.)

Image: A math and A math and

 ℓ^1 -Minimization

Conclusion

ℓ^1 -Minimization and Quotient Polytopes

Why ℓ^1 -minimization is related to quotient polytopes?

• Consider x represent an ℓ^1 -ball C in \mathbb{R}^n .

 ℓ^1 -Minimization

Conclusion

ℓ^1 -Minimization and Quotient Polytopes

Why ℓ^1 -minimization is related to quotient polytopes?

- Consider **x** represent an ℓ^1 -ball *C* in \mathbb{R}^n .
- If x_0 is k-sparse, x_0 will intersect the ℓ^1 -ball on one of its (k 1)-D faces.

ℓ¹-Minimization

Conclusion

*l*¹-Minimization and Quotient Polytopes

Why ℓ^1 -minimization is related to quotient polytopes?

- Consider **x** represent an ℓ^1 -ball *C* in \mathbb{R}^n .
- If x_0 is k-sparse, x_0 will intersect the ℓ^1 -ball on one of its (k 1)-D faces.
- Matrix A maps ℓ^1 -ball in \mathbb{R}^n to the quotient polytope P in \mathbb{R}^d , $d \ll n$.

 ℓ^1 -Minimization

*l*¹-Minimization and Quotient Polytopes

Why ℓ^1 -minimization is related to quotient polytopes?

- Consider **x** represent an ℓ^1 -ball *C* in \mathbb{R}^n .
- If x_0 is k-sparse, x_0 will intersect the ℓ^1 -ball on one of its (k 1)-D faces.
- Matrix A maps ℓ^1 -ball in \mathbb{R}^n to the quotient polytope P in \mathbb{R}^d , $d \ll n$.
- Such mapping is linear!

3

 ℓ^1 -Minimization

- E - D

*l*¹-Minimization and Quotient Polytopes

Why ℓ^1 -minimization is related to quotient polytopes?

- Consider **x** represent an ℓ^1 -ball *C* in \mathbb{R}^n .
- If x_0 is k-sparse, x_0 will intersect the ℓ^1 -ball on one of its (k 1)-D faces.
- Matrix A maps ℓ^1 -ball in \mathbb{R}^n to the quotient polytope P in \mathbb{R}^d , $d \ll n$.
- Such mapping is linear!

Theorem $(\ell^1/\ell^0$ equivalence condition)

If the quotient polytope P associated with A is k-neighborly, for $\mathbf{y} = A\mathbf{x}_0$ with \mathbf{x}_0 to be k-sparse, then \mathbf{x}_0 is the unique optimal solution of the ℓ^1 -minimization.

 ℓ^1 -Minimization

Conclusion

Let's prove the theorem together

Definitions:

• vertices $\mathbf{v} \in \operatorname{vert}(P)$.

< 🗇 🕨

 ℓ^1 -Minimization

Conclusion

Let's prove the theorem together

Definitions:

- vertices $\mathbf{v} \in \operatorname{vert}(P)$.
- k-D faces $F \in \mathcal{F}_k(P)$. Also define $f_k(P) = \# \mathcal{F}_k(P)$.

 ℓ^1 -Minimization

Conclusion

Let's prove the theorem together

Definitions:

- vertices $\mathbf{v} \in \operatorname{vert}(P)$.
- k-D faces $F \in \mathcal{F}_k(P)$. Also define $f_k(P) = \# \mathcal{F}_k(P)$.
- convex hull operation conv(·).

(1) $\operatorname{vert}(P) = \mathcal{F}_0(P)$. (2) $P = \operatorname{conv}(\operatorname{vert}(P))$

 ℓ^1 -Minimization

Conclusion

Berke

э

(▲ 문) (▲ 문)

< 1 b

Let's prove the theorem together

Definitions:

- vertices $\mathbf{v} \in \operatorname{vert}(P)$.
- k-D faces $F \in \mathcal{F}_k(P)$. Also define $f_k(P) = \# \mathcal{F}_k(P)$.
- convex hull operation conv(·).

(1) $\operatorname{vert}(P) = \mathcal{F}_0(P)$. (2) $P = \operatorname{conv}(\operatorname{vert}(P))$

• $F \in \mathcal{F}_k(P)$ is a simplex if $\# \operatorname{vert}(F) = k + 1$.

Properties

$$\operatorname{vert}(AC) \subset \operatorname{Avert}(C); \quad \mathcal{F}_l(AC) \subset A\mathcal{F}_l(C).$$

Two Fundamental Lemmas

Lemma (Alternative Definition of k-neighborliness)

Suppose a centrosymmetric polytope P = AC has 2n vertices. Then P is k-neighborly iff for any $I = 0, \dots, k - 1$ and $F \in \mathcal{F}_{I}(C)$, $AF \in \mathcal{F}_{I}(AC)$.

 ℓ^1 -Minimization

 ℓ^0/ℓ^1 -Equivalence

Conclusion

Two Fundamental Lemmas

Lemma (Alternative Definition of k-neighborliness)

Suppose a centrosymmetric polytope P = AC has 2n vertices. Then P is k-neighborly iff for any $I = 0, \dots, k-1$ and $F \in \mathcal{F}_{I}(C)$, $AF \in \mathcal{F}_{I}(AC)$.

Lemma (Unique Representation on Simplices)

Consider an I-simplex $F \in \mathcal{F}_{I}(P)$. Let $\mathbf{x} \in F$. Then

- **() x** has a **unique representation** as a linear combination of the vertices of *P*.
- On the presentation places only nonzero weight on vertices of F.

Suppose *P* is *k*-neighborly, and \mathbf{x}_0 is *k*-sparse. WLOG, scale and assume $\|\mathbf{x}_0\|_1 = 1$. **Q** \mathbf{x}_0 is *k*-sparse $\Rightarrow \exists F \in \mathcal{F}_{k-1}(C), \mathbf{x}_0 \in F$ and $\mathbf{y} \doteq A\mathbf{x}_0 \in AF$.

2 P = AC is k-neighborly $\Rightarrow AF \in \mathcal{F}_{k-1}(AC)$ is a simplex.

3 By (1) and (2), $\mathbf{y} \in AF$ has a unique representation with at most k nonzero weights on the vertices of AF.

() Hence, x_1 given by ℓ^1 -minimization is unique, and $x_1 = x_0$.

< ∃ >

Suppose *P* is *k*-neighborly, and \mathbf{x}_0 is *k*-sparse. WLOG, scale and assume $\|\mathbf{x}_0\|_1 = 1$. **Q** \mathbf{x}_0 is *k*-sparse $\Rightarrow \exists F \in \mathcal{F}_{k-1}(C), \mathbf{x}_0 \in F$ and $\mathbf{y} \doteq A\mathbf{x}_0 \in AF$.

- **2** P = AC is k-neighborly $\Rightarrow AF \in \mathcal{F}_{k-1}(AC)$ is a simplex.
- **3** By (1) and (2), $\mathbf{y} \in AF$ has a unique representation with at most k nonzero weights on the vertices of AF.
- **(**) Hence, x_1 given by ℓ^1 -minimization is unique, and $x_1 = x_0$.

Corollary [Gribonval & Nielsen 2003]

Assume for all columns of matrix A, $\|\mathbf{v}_i\|_2 = 1$, and for all $i \neq j$, $\langle \mathbf{v}_i, \mathbf{v}_j \rangle \leq \frac{1}{2k-1}$, then P = AC is k-neighborly.

Revisit the above corollary

Define coherence $M \doteq \max_{i \neq j} |\langle \mathbf{v}_i, \mathbf{v}_j \rangle|$, then $EBP(A) > \frac{M^{-1}+1}{2}$.

Revisit the above corollary

Define coherence $M \doteq \max_{i \neq j} |\langle \mathbf{v}_i, \mathbf{v}_j \rangle|$, then $\mathsf{EBP}(A) > \frac{M^{-1}+1}{2}$.

() in HD space \mathbb{R}^d , two randomly generated unit vectors have small coherence M.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \mbox{Introduction} \\ \mbox{oco} \end{array} & \begin{array}{c} \ell^1 - \mbox{Minimization} \\ \mbox{oco} \end{array} & \begin{array}{c} \ell^0 / \ell^1 - \mbox{Equivalence} \\ \mbox{ocooocooco} \end{array} & \begin{array}{c} \mbox{Conclusion} \end{array} \\ \begin{array}{c} \mbox{Conclusion} \end{array} \\ \begin{array}{c} \mbox{Last question: Why random projection works well in } \ell^1 - \mbox{minimization} \end{array} \end{array}$

Revisit the above corollary

Define coherence
$$M \doteq \max_{i \neq j} |\langle \mathbf{v}_i, \mathbf{v}_j
angle|$$
, then $\mathsf{EBP}(\mathcal{A}) > rac{M^{-1} + 1}{2}$

() in HD space \mathbb{R}^d , two randomly generated unit vectors have small coherence M.

2 Further define **coherence** of two dictionaries $M(A, B) = \max_{\mathbf{u} \in A, \mathbf{v} \in B} |\langle \mathbf{u}, \mathbf{v} \rangle|$.

•
$$\frac{1}{\sqrt{d}} \leq M(A, B) \leq 1.$$

- Let T be the spike basis in time domain, F be the Fourier basis, then $M(T, F) = \frac{1}{\sqrt{d}}$. Max incoherence!
- Random projection R in general is not coherent with most traditional bases.

3.0

Introduction	ℓ^1 -Minimization	ℓ^0/ℓ^1 -Equivalence	Conclusion
000	000	00000000	
Conclusion			

- O Classical classifiers: NN & NS.
- **2** Linear and quadratic ℓ^1 solvers.
- **③** Stability of ℓ^0/ℓ^1 equivalence with bounded error.
- O Computation of equivalence breakdown point (EBP) via quotient polytopes.

