Compressed Sensing Meets Machine Learning

- Classification of Mixture Subspace Models via Sparse Representation

Allen Y. Yang
yang@eecs.berkeley.edu

Mini Lectures in Image Processing (Part II), UC Berkeley

Nearest Neighbor Algorithm

(1) Training: Provide labeled samples for K classes.
(2) Test: Present a new sample

- Compute its distances with all training samples.
- Assign its label as the same label of the nearest neighbor.

Nearest Subspace

Estimation of single subspace models

- Suppose $R=\left[\mathbf{w}_{1}, \cdots, \mathbf{w}_{d}\right]$ is a basis for a d-dim subspace in \mathbb{R}^{D}.
- For $\mathbf{x}_{i} \in \mathbb{R}^{D}$, its coordinate in the new coordinate system: $\mathbf{w}^{T} \mathbf{x}_{i}=y_{i} \in \mathbb{R}$.

Nearest Subspace

Estimation of single subspace models

- Suppose $R=\left[\mathbf{w}_{1}, \cdots, \mathbf{w}_{d}\right]$ is a basis for a d-dim subspace in \mathbb{R}^{D}.
- For $\mathbf{x}_{i} \in \mathbb{R}^{D}$, its coordinate in the new coordinate system: $\mathbf{w}^{T} \mathbf{x}_{i}=y_{i} \in \mathbb{R}$.
- Principal component analysis

$$
\mathbf{w}^{*}=\arg \max _{\mathbf{w}} \sum_{i=1}^{n}\left(y_{i}\right)^{2}=\arg \max \mathbf{w}^{T} \Sigma \mathbf{w}
$$

$\bigcirc \bullet \circ$

Nearest Subspace

Estimation of single subspace models

- Suppose $R=\left[\mathbf{w}_{1}, \cdots, \mathbf{w}_{d}\right]$ is a basis for a d-dim subspace in \mathbb{R}^{D}.
- For $\mathbf{x}_{i} \in \mathbb{R}^{D}$, its coordinate in the new coordinate system: $\mathbf{w}^{T} \mathbf{x}_{i}=y_{i} \in \mathbb{R}$.
- Principal component analysis

$$
\mathbf{w}^{*}=\arg \max _{\mathbf{w}} \sum_{i=1}^{n}\left(y_{i}\right)^{2}=\arg \max \mathbf{w}^{T} \Sigma \mathbf{w}
$$

- Numerical solution: Singular value decomposition (SVD)

$$
\operatorname{svd}(A)=U S V^{T} \text {, where } U \in \mathbb{R}^{D \times D}, S \in \mathbb{R}^{D \times n}, V \in \mathbb{R}^{n \times n}
$$

Denote $U=\left[U_{1} \in \mathbb{R}^{D \times d} ; U_{2} \in \mathbb{R}^{D \times(D-d)}\right]$. Then $R=U_{1}^{T}$.

$0 \bullet 0$

Nearest Subspace

Estimation of single subspace models

- Suppose $R=\left[\mathbf{w}_{1}, \cdots, \mathbf{w}_{d}\right]$ is a basis for a d-dim subspace in \mathbb{R}^{D}.
- For $\mathbf{x}_{i} \in \mathbb{R}^{D}$, its coordinate in the new coordinate system: $\mathbf{w}^{T} \mathbf{x}_{i}=y_{i} \in \mathbb{R}$.
- Principal component analysis

$$
\mathbf{w}^{*}=\arg \max _{\mathbf{w}} \sum_{i=1}^{n}\left(y_{i}\right)^{2}=\arg \max \mathbf{w}^{T} \Sigma \mathbf{w}
$$

- Numerical solution: Singular value decomposition (SVD)

$$
\operatorname{svd}(A)=U S V^{T} \text {, where } U \in \mathbb{R}^{D \times D}, S \in \mathbb{R}^{D \times n}, V \in \mathbb{R}^{n \times n}
$$

Denote $U=\left[U_{1} \in \mathbb{R}^{D \times d} ; U_{2} \in \mathbb{R}^{D \times(D-d)}\right]$. Then $R=U_{1}^{T}$.

- Eigenfaces If \mathbf{x}_{i} are vectors of face images, the principal vectors \mathbf{w}_{i} are then called Eigenfaces.

Nearest Subspace Algorithm

(1) Training: For each of K classes, estimate its d-dim subspace model $R_{i}=\left[\mathbf{w}_{1}, \cdots, \mathbf{w}_{d}\right]$.
(2) Test: Present a new sample \mathbf{y}, compute its distances to K subspaces.
(3) Assignment: label of \mathbf{y} as the closest subspace.

Nearest Subspace Algorithm

（1）Training：For each of K classes，estimate its d－dim subspace model $R_{i}=\left[\mathbf{w}_{1}, \cdots, \mathbf{w}_{d}\right]$ ．
（2）Test：Present a new sample \mathbf{y} ，compute its distances to K subspaces．
（3）Assignment：label of \mathbf{y} as the closest subspace．

Question

－Equation for computing distance from y to R_{i} ？
－Why NS likely outperforms NN？

000

Noiseless ℓ^{1}-Minimization is a Linear Program

Recall last lecture: Compute sparsest solution \mathbf{x} that satisfies

$$
\tilde{\mathbf{y}}=\tilde{A} \mathbf{x} \in \mathbb{R}^{d}
$$

Berkeley

000

Noiseless ℓ^{1}-Minimization is a Linear Program

Recall last lecture: Compute sparsest solution x that satisfies

$$
\tilde{\mathbf{y}}=\tilde{A} \mathbf{x} \in \mathbb{R}^{d}
$$

Formulate as linear programming:
(1) Problem statement:

$$
\left(P_{1}\right): \quad \mathbf{x}^{*}=\arg \min _{\mathbf{x}}\|\mathbf{x}\|_{1} \text { subject to } \tilde{\mathbf{y}}=\tilde{A} \mathbf{x} \in \mathbb{R}^{d}
$$

Noiseless ℓ^{1}-Minimization is a Linear Program

Recall last lecture: Compute sparsest solution \mathbf{x} that satisfies

$$
\tilde{\mathbf{y}}=\tilde{A} \mathbf{x} \in \mathbb{R}^{d}
$$

Formulate as linear programming:
(1) Problem statement:

$$
\left(P_{1}\right): \quad \mathbf{x}^{*}=\arg \min _{\mathbf{x}}\|\mathbf{x}\|_{1} \text { subject to } \tilde{\mathbf{y}}=\tilde{A} \mathbf{x} \in \mathbb{R}^{d}
$$

(2) Denote $\Phi=(\tilde{A},-\tilde{A}) \in \mathbb{R}^{d \times 2 n}, \mathbf{c}=(1,1, \cdots, 1)^{T} \in \mathbb{R}^{2 n}$. We have the following linear program

$$
\begin{array}{ll}
\mathbf{w}^{*} \quad & \begin{array}{l}
= \\
\\
\text { subject to } \min _{w} \mathbf{c}^{T} \mathbf{w} \\
\\
\\
\\
\\
\mathbf{y}=\Phi \mathbf{w} \geq 0
\end{array}
\end{array}
$$

ℓ^{1}-Minimization Routines

- Matching pursuit [Mallat 1993]
(1) Find most correlated vector \mathbf{v}_{i} in \tilde{A} with $\mathbf{y}: i=\arg \max \left\langle\mathbf{y}, \mathbf{v}_{j}\right\rangle$.
(2) $\tilde{A} \leftarrow \tilde{A}^{\hat{i}}, x_{i} \leftarrow\left\langle\mathbf{y}, \mathbf{v}_{i}\right\rangle, \mathbf{y} \leftarrow \mathbf{y}-x_{i} \mathbf{v}_{i}$.
(3) Repeat until $\|\mathbf{y}\|<\epsilon$.
- Matching pursuit [Mallat 1993]
(1) Find most correlated vector \mathbf{v}_{i} in \tilde{A} with $\mathbf{y}: i=\arg \max \left\langle\mathbf{y}, \mathbf{v}_{j}\right\rangle$.
(2) $\tilde{A} \leftarrow \tilde{A}^{\hat{i}}, x_{i} \leftarrow\left\langle\mathbf{y}, \mathbf{v}_{i}\right\rangle, \mathbf{y} \leftarrow \mathbf{y}-x_{i} \mathbf{v}_{i}$.
(3) Repeat until $\|\mathbf{y}\|<\epsilon$.
- Basis pursuit [Chen 1998]
(1) Assume x_{0} is m-sparse.
(2) Select m linearly independent vectors B_{m} in \tilde{A} as a basis

$$
\mathbf{x}_{m}=B_{m}^{\dagger} \mathbf{y}
$$

(3) Repeat swapping one basis vector in B_{m} with another vector in \tilde{A} if improve $\left\|\mathbf{y}-B_{m} \mathbf{x}_{m}\right\|$.
(4) If $\left\|\mathbf{y}-B_{m} \mathbf{x}_{m}\right\|_{2}<\epsilon$, stop.

ℓ^{1}-Minimization Routines

- Matching pursuit [Mallat 1993]
(1) Find most correlated vector \mathbf{v}_{i} in \tilde{A} with $\mathbf{y}: i=\arg \max \left\langle\mathbf{y}, \mathbf{v}_{j}\right\rangle$.
(2) $\tilde{A} \leftarrow \tilde{A}^{\hat{i}}, x_{i} \leftarrow\left\langle\mathbf{y}, \mathbf{v}_{i}\right\rangle, \mathbf{y} \leftarrow \mathbf{y}-x_{i} \mathbf{v}_{i}$.
(3) Repeat until $\|\mathbf{y}\|<\epsilon$.
- Basis pursuit [Chen 1998]
(1) Assume x_{0} is m-sparse.
(2) Select m linearly independent vectors B_{m} in \tilde{A} as a basis

$$
\mathbf{x}_{m}=B_{m}^{\dagger} \mathbf{y}
$$

(3) Repeat swapping one basis vector in B_{m} with another vector in \tilde{A} if improve $\left\|\mathbf{y}-B_{m} \mathbf{x}_{m}\right\|$.
(4) If $\left\|\mathbf{y}-B_{m} \mathbf{x}_{m}\right\|_{2}<\epsilon$, stop.

Matlab Toolboxes

- SparseLab by Donoho at Stanford.
- cvx by Boyd at Stanford.

Berkeley

ℓ^{1}-Minimization with Bounded ℓ^{2}-Noise:

$$
\tilde{\mathbf{y}}=\tilde{A} \mathbf{x}_{0}+\mathbf{z} \in \mathbb{R}^{d}, \text { where }\|\mathbf{z}\|_{2}<\epsilon
$$

Berkeley

ℓ^{1}-Minimization with Bounded ℓ^{2}-Noise is Quadratic Programming
ℓ^{1}-Minimization with Bounded ℓ^{2}-Noise:

$$
\tilde{\mathbf{y}}=\tilde{A} \mathbf{x}_{0}+\mathbf{z} \in \mathbb{R}^{d}, \text { where }\|\mathbf{z}\|_{2}<\epsilon
$$

- Problem statement:

$$
\left(P_{1}^{\prime}\right): \quad \mathbf{x}^{*}=\arg \min _{\mathbf{x}}\|\mathbf{x}\|_{1} \text { subject to }\|\tilde{\mathbf{y}}-\tilde{A} \mathbf{x}\|_{2}<\epsilon
$$

Berkeley

ℓ^{1}-Minimization with Bounded ℓ^{2}-Noise is Quadratic Programming
ℓ^{1}-Minimization with Bounded ℓ^{2}-Noise:

$$
\tilde{\mathbf{y}}=\tilde{A} \mathbf{x}_{0}+\mathbf{z} \in \mathbb{R}^{d}, \text { where }\|\mathbf{z}\|_{2}<\epsilon
$$

- Problem statement:

$$
\left(P_{1}^{\prime}\right): \quad \mathbf{x}^{*}=\arg \min _{\mathbf{x}}\|\mathbf{x}\|_{1} \text { subject to }\|\tilde{\mathbf{y}}-\tilde{A} \mathbf{x}\|_{2}<\epsilon
$$

- Quadratic program:

$$
\mathbf{x}^{*}=\arg \min \left\{\|\mathbf{x}\|_{1}+\lambda\|\mathbf{y}-\tilde{A} \mathbf{x}\|_{2}\right\}
$$

Berkeley

ℓ^{1}-Minimization with Bounded ℓ^{2}-Noise:

$$
\tilde{\mathbf{y}}=\tilde{A} \mathbf{x}_{0}+\mathbf{z} \in \mathbb{R}^{d}, \text { where }\|\mathbf{z}\|_{2}<\epsilon
$$

- Problem statement:

$$
\left(P_{1}^{\prime}\right): \quad \mathbf{x}^{*}=\arg \min _{\mathbf{x}}\|\mathbf{x}\|_{1} \text { subject to }\|\tilde{\mathbf{y}}-\tilde{A} \mathbf{x}\|_{2}<\epsilon
$$

- Quadratic program:

$$
\mathbf{x}^{*}=\arg \min \left\{\|\mathbf{x}\|_{1}+\lambda\|\mathbf{y}-\tilde{A} \mathbf{x}\|_{2}\right\}
$$

- Matlab toolboxes:
ℓ^{1}-Magic by Candès at Caltech. cvx by Boyd at Stanford.

Recall last lecture...

(1) ℓ^{0}-Minimization

$$
\mathbf{x}_{0}=\arg \min _{x}\|\mathbf{x}\|_{0} \text { s.t. } \tilde{\mathbf{y}}=\tilde{A} \mathbf{x} .
$$

$\|\cdot\|_{0}$ simply counts the number of nonzero terms.

Recall last lecture...

(1) ℓ^{0}-Minimization

$$
\mathbf{x}_{0}=\arg \min _{\mathbf{x}}\|\mathbf{x}\|_{0} \text { s.t. } \tilde{\mathbf{y}}=\tilde{A} \mathbf{x} .
$$

$\|\cdot\|_{0}$ simply counts the number of nonzero terms.
(2) ℓ^{0}-Ball

- ℓ^{0}-ball is not convex.
- ℓ^{0}-minimization is NP-hard.

ℓ^{1} / ℓ^{0} Equivalence

(1) Compressed sensing: If \mathbf{x}_{0} is sparse enough, ℓ^{0}-minimization is equivalent to $\left(P_{1}\right) \quad \min \|\mathbf{x}\|_{1}$ s.t. $\tilde{\mathbf{y}}=\tilde{A} \mathbf{x}$.

$$
\|\mathbf{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| .
$$

ℓ^{1} / ℓ^{0} Equivalence

(1) Compressed sensing: If x_{0} is sparse enough, ℓ^{0}-minimization is equivalent to $\left(P_{1}\right) \quad \min \|\mathbf{x}\|_{1}$ s.t. $\tilde{\mathbf{y}}=\tilde{A} \mathbf{x}$.
$\|\mathbf{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|$.
(2) ℓ^{1}-Ball

- ℓ^{1}-Minimization is convex.
- Solution equal to ℓ^{0}-minimization.

000
 ℓ^{1} / ℓ^{0} Equivalence

(1) Compressed sensing: If x_{0} is sparse enough, ℓ^{0}-minimization is equivalent to $\left(P_{1}\right) \quad \min \|\mathbf{x}\|_{1}$ s.t. $\tilde{\mathbf{y}}=\tilde{A} \mathbf{x}$.
$\|\mathbf{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|$.
(2) ℓ^{1}-Ball

- ℓ^{1}-Minimization is convex.
- Solution equal to ℓ^{0}-minimization.

(3) ℓ^{1} / ℓ^{0} Equivalence: [Donoho 2002, 2004; Candes et al. 2004; Baraniuk 2006] Given $\tilde{\mathbf{y}}=\tilde{A} \mathbf{x}_{0}$, there exists equivalence breakdown point (EBP) $\rho(\tilde{A})$, if $\left\|\mathbf{x}_{0}\right\|_{0}<\rho$:
- ℓ^{1}-solution is unique
- $\mathbf{x}_{1}=\mathbf{x}_{0}$

ℓ^{1} / ℓ^{0} Equivalence in Noisy Case

Reconsider ℓ^{2}-bounded linear system

$$
\tilde{\mathbf{y}}=\tilde{A} \mathbf{x}_{0}+\mathbf{z} \in \mathbb{R}^{d}, \text { where }\|\mathbf{z}\|_{2}<\epsilon
$$

Is corresponding ℓ^{1} solution stable?

ℓ^{1} / ℓ^{0} Equivalence in Noisy Case

Reconsider ℓ^{2}-bounded linear system

$$
\tilde{\mathbf{y}}=\tilde{A} \mathbf{x}_{0}+\mathbf{z} \in \mathbb{R}^{d}, \text { where }\|\mathbf{z}\|_{2}<\epsilon
$$

Is corresponding ℓ^{1} solution stable?
(1) ℓ^{1}-Ball

- No exact solution possible.
- Bounded measurement error causes bounded estimation error.
- Yes, ℓ^{1} solution is stable!

ℓ^{1} / ℓ^{0} Equivalence in Noisy Case

Reconsider ℓ^{2}-bounded linear system

$$
\tilde{\mathbf{y}}=\tilde{A} \mathbf{x}_{0}+\mathbf{z} \in \mathbb{R}^{d}, \text { where }\|\mathbf{z}\|_{2}<\epsilon
$$

Is corresponding ℓ^{1} solution stable?
(1) ℓ^{1}-Ball

- No exact solution possible.
- Bounded measurement error causes bounded estimation error.
- Yes, ℓ^{1} solution is stable!

(3) ℓ^{1} / ℓ^{0} Equivalence [Donoho 2004]

Suppose $\tilde{\mathbf{y}}=\tilde{A} \mathbf{x}_{0}+\mathbf{z}$ where $\|\mathbf{z}\|_{2}<\epsilon$. There exists equivalence breakdown point (EBP) $\rho(\tilde{A})$, if $\left\|\mathrm{x}_{0}\right\|_{0}<\rho$:

$$
\left\|\mathbf{x}_{1}-\mathbf{x}_{0}\right\|_{2} \leq C \cdot \epsilon
$$

For the rest of the lecture, investigate the estimation of EBP ρ.
To simplify notations, assume underdetermined system $\mathbf{y}=A \mathbf{x} \in \mathbb{R}^{d}$, where $A=\mathbb{R}^{d \times n}$.

Berkeley

Compressed Sensing in the View of Convex Polytopes

For the rest of the lecture, investigate the estimation of EBP ρ.
To simplify notations, assume underdetermined system $\mathbf{y}=A \mathbf{x} \in \mathbb{R}^{d}$, where $A=\mathbb{R}^{d \times n}$.

Definition (Quotient Polytopes)

Consider the convex hull P of the $2 n$ vectors $(A,-A)$. P is called the quotient polytope associated to A.

Compressed Sensing in the View of Convex Polytopes

For the rest of the lecture, investigate the estimation of EBP ρ.
To simplify notations, assume underdetermined system $\mathbf{y}=A \mathbf{x} \in \mathbb{R}^{d}$, where $A=\mathbb{R}^{d \times n}$.

Definition (Quotient Polytopes)

Consider the convex hull P of the $2 n$ vectors $(A,-A)$. P is called the quotient polytope associated to A.

Definition (k-Neighborliness)

A quotient polytope P is called k-neighborly if whenever we take k vertices not including an antipodal pair, the resulting vertices span a face of P.
(Above example is 1 -neighborly.)

ℓ^{1}-Minimization and Quotient Polytopes

Why ℓ^{1}-minimization is related to quotient polytopes?

- Consider x represent an ℓ^{1}-ball C in \mathbb{R}^{n}.

ℓ^{1}-Minimization and Quotient Polytopes

Why ℓ^{1}-minimization is related to quotient polytopes?

- Consider x represent an ℓ^{1}-ball C in \mathbb{R}^{n}.
- If \mathbf{x}_{0} is k-sparse, \mathbf{x}_{0} will intersect the ℓ^{1}-ball on one of its $(k-1)$-D faces.

ℓ^{1}-Minimization and Quotient Polytopes

Why ℓ^{1}-minimization is related to quotient polytopes?

- Consider x represent an ℓ^{1}-ball C in \mathbb{R}^{n}.
- If \mathbf{x}_{0} is k-sparse, \mathbf{x}_{0} will intersect the ℓ^{1}-ball on one of its $(k-1)$-D faces.
- Matrix A maps ℓ^{1}-ball in \mathbb{R}^{n} to the quotient polytope P in $\mathbb{R}^{d}, d \ll n$.

ℓ^{1}-Minimization and Quotient Polytopes

Why ℓ^{1}-minimization is related to quotient polytopes?

- Consider x represent an ℓ^{1}-ball C in \mathbb{R}^{n}.
- If \mathbf{x}_{0} is k-sparse, \mathbf{x}_{0} will intersect the ℓ^{1}-ball on one of its $(k-1)$-D faces.
- Matrix A maps ℓ^{1}-ball in \mathbb{R}^{n} to the quotient polytope P in $\mathbb{R}^{d}, d \ll n$.
- Such mapping is linear!

ℓ^{1}-Minimization and Quotient Polytopes

Why ℓ^{1}-minimization is related to quotient polytopes?

- Consider x represent an ℓ^{1}-ball C in \mathbb{R}^{n}.
- If \mathbf{x}_{0} is k-sparse, \mathbf{x}_{0} will intersect the ℓ^{1}-ball on one of its $(k-1)$-D faces.
- Matrix A maps ℓ^{1}-ball in \mathbb{R}^{n} to the quotient polytope P in $\mathbb{R}^{d}, d \ll n$.
- Such mapping is linear!

Theorem (ℓ^{1} / ℓ^{0} equivalence condition)

If the quotient polytope P associated with A is k-neighborly, for $\mathbf{y}=A \mathbf{x}_{0}$ with \mathbf{x}_{0} to be k-sparse, then x_{0} is the unique optimal solution of the ℓ^{1}-minimization.

Let's prove the theorem together

Definitions:

- vertices $\mathbf{v} \in \operatorname{vert}(P)$.

Let's prove the theorem together

Definitions:

- vertices $\mathbf{v} \in \operatorname{vert}(P)$.
- k-D faces $F \in \mathcal{F}_{k}(P)$. Also define $f_{k}(P)=\# \mathcal{F}_{k}(P)$.

Let's prove the theorem together

Definitions:

- vertices $\mathbf{v} \in \operatorname{vert}(P)$.
- k-D faces $F \in \mathcal{F}_{k}(P)$. Also define $f_{k}(P)=\# \mathcal{F}_{k}(P)$.
- convex hull operation $\operatorname{conv}(\cdot)$.
(1) $\operatorname{vert}(P)=\mathcal{F}_{0}(P)$. (2) $P=\operatorname{conv}(\operatorname{vert}(P))$

Let's prove the theorem together

Definitions:

- vertices $\mathbf{v} \in \operatorname{vert}(P)$.
- k-D faces $F \in \mathcal{F}_{k}(P)$. Also define $f_{k}(P)=\# \mathcal{F}_{k}(P)$.
- convex hull operation $\operatorname{conv}(\cdot)$.
(1) $\operatorname{vert}(P)=\mathcal{F}_{0}(P)$. (2) $P=\operatorname{conv}(\operatorname{vert}(P))$
- $F \in \mathcal{F}_{k}(P)$ is a simplex if $\# \operatorname{vert}(F)=k+1$.

Properties

$$
\operatorname{vert}(A C) \subset A \operatorname{vert}(C) ; \quad \mathcal{F}_{l}(A C) \subset A \mathcal{F}_{l}(C)
$$

Two Fundamental Lemmas

Lemma (Alternative Definition of k-neighborliness)
Suppose a centrosymmetric polytope $P=A C$ has $2 n$ vertices. Then P is k-neighborly iff for any $I=0, \cdots, k-1$ and $F \in \mathcal{F}_{l}(C)$, $A F \in \mathcal{F}_{l}(A C)$.

Berkeley

Two Fundamental Lemmas

Lemma (Alternative Definition of k-neighborliness)

Suppose a centrosymmetric polytope $P=A C$ has $2 n$ vertices. Then P is k-neighborly iff for any $I=0, \cdots, k-1$ and $F \in \mathcal{F}_{l}(C)$, $A F \in \mathcal{F}_{l}(A C)$.

Lemma (Unique Representation on Simplices)

Consider an I-simplex $F \in \mathcal{F}_{l}(P)$. Let $\mathbf{x} \in F$. Then
(1) x has a unique representation as a linear combination of the vertices of P.
(2) This representation places only nonzero weight on vertices of F.

Berkeley

Proof of the Theorem

Suppose P is k-neighborly, and \mathbf{x}_{0} is k-sparse. WLOG, scale and assume $\left\|\mathbf{x}_{0}\right\|_{1}=1$.
(1) x_{0} is k-sparse $\Rightarrow \exists F \in \mathcal{F}_{k-1}(C), \mathrm{x}_{0} \in F$ and $\mathbf{y} \doteq A \mathrm{x}_{0} \in A F$.
(2) $P=A C$ is k-neighborly $\Rightarrow A F \in \mathcal{F}_{k-1}(A C)$ is a simplex.
(3) By (1) and (2), $y \in A F$ has a unique representation with at most k nonzero weights on the vertices of $A F$.
(9) Hence, \mathbf{x}_{1} given by ℓ^{1}-minimization is unique, and $\mathbf{x}_{1}=\mathbf{x}_{0}$.

Proof of the Theorem

Suppose P is k-neighborly, and x_{0} is k-sparse. WLOG, scale and assume $\left\|\mathrm{x}_{0}\right\|_{1}=1$.
(1) x_{0} is k-sparse $\Rightarrow \exists F \in \mathcal{F}_{k-1}(C), \mathrm{x}_{0} \in F$ and $\mathbf{y} \doteq A \mathrm{x}_{0} \in A F$.
(2) $P=A C$ is k-neighborly $\Rightarrow A F \in \mathcal{F}_{k-1}(A C)$ is a simplex.
(3) By (1) and (2), $y \in A F$ has a unique representation with at most k nonzero weights on the vertices of $A F$.
(4) Hence, \mathbf{x}_{1} given by ℓ^{1}-minimization is unique, and $\mathbf{x}_{1}=\mathbf{x}_{0}$.

Corollary [Gribonval \& Nielsen 2003]

Assume for all columns of matrix $A,\left\|\mathbf{v}_{i}\right\|_{2}=1$, and for all $i \neq j,\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle \leq \frac{1}{2 k-1}$, then $P=A C$ is k-neighborly.

Last question: Why random projection works well in ℓ^{1}-minimization?

Revisit the above corollary

Define coherence $M \doteq \max _{i \neq j}\left|\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle\right|$, then $\operatorname{EBP}(A)>\frac{M^{-1}+1}{2}$.

Berkeley

Revisit the above corollary

Define coherence $M \doteq \max _{i \neq j}\left|\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle\right|$, then $\operatorname{EBP}(A)>\frac{M^{-1}+1}{2}$.
(1) in HD space \mathbb{R}^{d}, two randomly generated unit vectors have small coherence M.

Revisit the above corollary

Define coherence $M \doteq \max _{i \neq j}\left|\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle\right|$, then $\operatorname{EBP}(A)>\frac{M^{-1}+1}{2}$.
(1) in HD space \mathbb{R}^{d}, two randomly generated unit vectors have small coherence M.
(2) Further define coherence of two dictionaries $M(A, B)=\max _{\mathbf{u} \in A, \mathbf{v} \in B}|\langle\mathbf{u}, \mathbf{v}\rangle|$.

- $\frac{1}{\sqrt{d}} \leq M(A, B) \leq 1$.
- Let T be the spike basis in time domain, F be the Fourier basis, then $M(T, F)=\frac{1}{\sqrt{d}}$. Max incoherence!
- Random projection R in general is not coherent with most traditional bases.

Conclusion

(1) Classical classifiers: NN \& NS.
(2) Linear and quadratic ℓ^{1} solvers.
(3) Stability of ℓ^{0} / ℓ^{1} equivalence with bounded error.
(9) Computation of equivalence breakdown point (EBP) via quotient polytopes.

