UC Berkeley EECS

The BASiCS Group

Berkeley Audio-visual Signal Processing and Communication Systems

Perspectives in distributed source coding

Kannan Ramchandran

UC Berkeley

- •High compression efficiency
- •High resilience to transmission errors
- •Flexible encoder/decoder complexity distribution
- Low latency

How to meet these requirements *simultaneously?*

Today's video codec systems

Driven by downlink model:

- High compression efficiency
- Rigid complexity distribution
 - Complex transmitter, light receiver
- Prone to transmission error
 - Decoding relies deterministically on one predictor

Rethink video codec architecture?

Alternatives to rigid complexity partition, deterministic prediction-based framework?

Interesting tool: distributed source coding

Roadmap

- Introduction and motivation
- Distributed source coding: foundations & intuition
- Application landscape
- Distributed source coding for video applications:
 - Encryption & Compression
 - Video transmission: foundations and architecture
 - Low-encoder-complexity
 - High-compression efficiency + Robustness
 - Multi-camera scenario

Motivation: sensor networks

- Consider correlated nodes X, Y
- Communication between X and Y expensive.
- Can we exploit correlation without communicating?
- Assume Y is compressed independently. How to compress X close to H(X|Y)?
- Key idea: discount I(X;Y).
 H(X|Y) = H(X) I(X;Y)

Distributed source coding: Slepian-Wolf '73

Distributed source coding

Source coding with side information: (Slepian-Wolf, '73, Wyner-Ziv, '76)

- Lossless coding (S-W): no loss of performance over when Y is available at both ends if the statistical correlation between X and Y is known.
- Lossy coding (W-Z): for Gaussian statistics, no loss of performance over when Y known at both ends.
- Constructive solutions: (Pradhan & Ramchandran (DISCUS) DCC '99, Garcia-Frias & Zhao Comm. Letters '01, Aaron & Girod DCC '02, Liveris, Xiong & Georghiades DCC '03,...)
- Employs statistical instead of deterministic mindset.

Example: geometric illustration

Х

Х

Х

х

х

Х

Х

Х

Assume signal and noise are Gaussian, iid

Assume signal and noise are Gaussian, iid

- Encoder: send the index of the coset (log₂3 bits)
- Decoder: decode X based on Y and signaled coset

Application Landscape

Sensor networks

- M-channel Multiple Description coding
- Media broadcast
- Media security: Data-hiding, watermarking, steganography
 Fundamental duality between source coding and channel coding with side-information
- Compression of encrypted data
- Video transmission

Duality bet. source & channel coding with side-info

Pradhan, Chou and Ramchandran, Trans. on IT, May 2003

Compressing encrypted content without the cryptographic key

Secure multimedia for home networks

- Uncompressed encrypted video (HDCP protocol)
 - Can increase wireless range with lower data rate
 - But how to compress encrypted video without access to crytpographic key?

Application: Compressing Encrypted Data

Conventional method:

Unconventional method:

Final Reconstructed Image

Application: compressing encrypted data 10,000 bits 5,000 bits? Source Image **Encrypted Image Decoded Image** стерскоезила сперуан, марк токуле пересока, от COLOR BURGE < ar. 1.1 × 201

Johnson, Ishwar, Prabhakaran & Ramchandran (Trans. on SP, Oct. 2004)

Practical Code Constructions

- Use a linear transformation (hash/bin)
- Design cosets to have maximal spacing
 - □ State of the art linear codes (LDPC codes)
- Fixed length to fixed length compression

Framework: Encryption

Encryption:

- Stream cipher
 - $y_i = x_i \oplus k_i$
- Graphical model captures exact encryption relationship

2-D Markov Model

X_n

Encrypted image compression results

- 100 x 100 pixel image (10,000 bits)
- No compression possible with IID model

1-D Markov Source Model

Source Image Encrypted Image Compressed Bits Decoded Image

2-D Markov Source Model

Compression of encrypted video •Video offers both temporal and spatial prediction •Decoder has access to unencrypted prior frames

	Blind approach (encoder has no access to key)	
Foreman	Saves 33.00%	
Garden	Saves 17.64%	
Football	Saves 7.17%	

Schonberg, Yeo, Draper & Ramchandran, DCC '07

Encrypted video compression results

- Show rate savings percentage
 - Rate used (output bits/source bit) is shown for reference
- Compare to operation on unencrypted video
 - JPEG-LS lossless intra encoding of frames
 - Leading lossless video codec exploits temporal redundancy

	JPEG-LS (unencrypted video)	Leading lossless video codec (unencrypted video)	Proposed approach (encrypted video, encoder has no access to key)
Foreman	50.96%	58.87%	33.00%
	R=0.4904	R=0.4113	R=0.6700
Garden	26.80%	40.92%	17.64%
	R=0.7320	R=0.5908	R=0.8236
Football	33.00%	40.44%	7.17%
	R=0.6700	R=0.5956	R=0.9283

Distributed source coding for video transmission: overview

When is DSC useful in video transmission?

- Uncertainty in the side information
 - Low complexity encoding
 - Transmission packet drops
 - Multicast & scalable video coding
 - Flexible decoding
- Physically distributed sources
 Multi-camera setups

Low complexity encoding

Motivation

(Puri & Ramchandran, Allerton '02, Aaron, Zhang & Girod, Asilomar '02)

Transmission packet loss

corrupted reference frame

- Recover current frame with (corrupted) reference frame that is not available at the encoder
- Distributed source coding: can help if statistical correlation bet. current and corrupted ref. frames known at the encoder

Can be made compatible with standards-based codecs
 Corrupted current frame is side-info at DSC decoder

(Aaron, Rane, Rebollo-Monedero & Girod '04, '05, Sehgal, Jagmohan & Ahuja: '04, Wang, Majumdar & Ramchandran: '04, '05)

Multicast & scalable video coding

Multicast

Accommodate heterogeneous users

- Different channel conditions
- Different video qualities (spatial, temporal, PSNR)

Majumdar & Ramchandran, '04 Tagliasacchi, Majumdar & Ramchandran, '04 Sehgal, Jagmohan & Ahuja, PCS '04 Wang, Cheung & Ortega, EURASIP '06 Xu & Xiong, '06

Flexible decoding

- { Y_1 , Y_2 , ..., Y_N } could be
 - Neighboring frames in time
 - → Forward/backward playback without buffering
 - Neighboring frames in space → Random access to frame in multi-view setup

Cheung, Wang & Ortega, VCIP 2006, PCS 2007 Draper & Martinian, ISIT 2007

Multi-camera setups

- Dense placement of low-end video sensors
- Sophisticated back-end processing
 - 3-D view reconstruction
 - Object tracking
 - Super-resolution
- Multi-view coding and transmission

Important enabler

- Rate-efficient camera calibration
 - Visual correspondence determination

Tosic & Frossard, EUSIPCO 2007 Yeo, Ahammad & Ramchandran, VCIP 2008

DSC for video transmission: PRISM- I –targeting low-complexity encoding

Motion-free encoding?

- The encoder does not have or cannot use Y₁, ..., Y_M and
- The decoder does not know *T*.
- The encoder may work at rate: R(D) + (1/n)log M bits per pixel.
- How to decode and what is the performance?

- Let's cheat & let the decoder have the MV → "classical" W-Z problem
- The encoder works at same rate as predictive coder

Is a No-Motion Encoder Possible?

- Can decoding work without a genie?
 - Yes
- Can we match the performance of predictive coding?
 - Yes (when DFD statistics are Gaussian)

Ishwar, Prabhakaran, and Ramchandran ICIP '03.

Motion search at decoder

- Can be realized through decoder motion search
 - Extendable to when side-information is corrupted
 - robustness to channel loss
 - Correlation between X and Y[']_i difficult to estimate due to low-complexity encoding
 - compression efficiency compromised

Robustness Results: PRISM-I video codec

 Qualcomm's channel simulator for CDMA 2000 1X wireless networks

Stefan
 (SIF, 2.2 Mbps, 5% error)

DSC for video transmission: PRISM II – targeting highcompression efficiency & robustness

Cause of compression inefficiency

Challenge: correlation estimation, i.e. finding H(X|Y) = H(N)

N = Video innovation + Effect of channel + Quantization noise

Hard to model without motion search

- Without accurate estimate of the total noise statistics, need to over-design → compression inefficiency.
- What if complexity were less of a constraint and we allow motion search at the encoder?

Video innovation can be accurately modeled

When there are no channel errors:

N = Video innovation + Quantization noise

DSC vs. H.263+

DSC vs. H.264

Milani, Wang & Ramchandran, VCIP 2007

Modeling effect of channel at encoder

Y' = corrupted Frame n-1

Goal: estimate H (X|Y')

Finding H(X | Y')

Philosophy: have control over uncertainty set at decoder

e.g. orchestrate decoder designs for

Y if Y is available

Z if Y is not available

• Example:

Y' = _

- Encoder has access to **both** Y and Z
- Natural temporal redundancy in video: "diversity" gain
 - an intact predictor in Frame t-2 (Z) is typically a better predictor than a corrupted predictor Y' in Frame t-1

J. Wang, V. Prabhakaran & K. Ramchandran: ICIP'06

If we have some knowledge about the channel:
Y' = $\begin{cases} Y \text{ if } Y \text{ is intact} & \text{with probability (1-p)} \\ Z \text{ if } Y \text{ is corrupted} & \text{with probability p} \end{cases}$

• We obtain H(X|Y', decoder state) = (1-p)*H(X|Y) + p*H(X|Z) Another way to think about it

• H(X|Y', decoder state) = (1-p)*H(X|Y) + p*H(X|Z)

Yet another way to think about it

• H(X|Y', decoder state) = (1-p)*H(X|Y) + p*H(X|Z)

Robustness result

Setup:

- Channel:
 - Simulated Gilbert-Elliot channel with $p_g = 0.03$ and $p_b = 0.3$

Robustness result

Setup:

- Channel:
 - Simulated CDMA 2000 1x channel

Stefan (SIF) sequence

1 GOP = 20 frames

1 mbps baseline, 1.3 mbps total (15 fps)

7.1% average packet drop rate

Football (SIF) sequence 1 GOP = 20 frames 900 kbps baseline, 1.12 mbps total (15 fps) 7.4% average packet drop rate

Videos

Garden

352x240, 1.4 mbps, 15 fps, gop size 15, 4% error (Gilbert Elliot channel with 3% error rate in good state and 30% in bad state)

Football

352x240, 1.12 mbps, 15 fps, gop 15, simulated CDMA channel with 5% error

DSC for multi-camera video transmission:

Distributed multi-view coding

Video decoder operates jointly

Active area of research

- Distributed multi-view image compression
 - Down-sample + Super-resolution [Wagner, Nowak & Baraniuk, ICIP 2003]
 - Geometry estimation + rendering [Zhu, Aaron & Girod, SSP 2003]
 - Direct coding of scene structure [Gehrig & Dragotti, ICIP 2005] [Tosic & Frossard, ICIP 2007]
 - Unsupervised learning of geometry [Varodayan, Lin, Mavlankar, Flierl & Girod, PCS 2007]

• • • •

- Distributed multi-view video compression
 - Geometric constraints on motion vectors in multiple views [Song, Bursalioglu, Roy-Chowdhury & Tuncel, ICASSP 2006] [Yang, Stankovic, Zhao & Xiong, ICIP 2007]
 - Fusion of temporal and inter-view side-information [Ouaret, Dufaux & Ebrahimi, VSSN 2006] [Guo, Lu, Wu, Gao & Li, VCIP 2006]
 - MCTF followed by disparity compensation [Flierl & Girod, ICIP 2006]

• ...

- Robust distributed multi-view video compression
 - Disparity search / View synthesis search [Yeo, Wang & Ramchandran, ICIP 2007]

Robust distributed multi-view video transmission

Side information from other camera views

Y" = neighboring Frame t **Y**' = corrupted Frame t-1

How should we look in other camera views?

- Naïve approach of looking everywhere can be extremely rate-inefficient
- Possible approaches
 - View synthesis search
 - Disparity search

Epipolar geometry

- Given an image point in one view, corresponding point in the second view is on the epipolar line
- Upshot: Disparity search is reduced to a 1-D search

Decoder disparity search

Extension of decoder motion search using epipolar geometry

[Yeo & Ramchandran, VCIP 2007]

PRISM-DS vs MPEG with FEC

- "Ballroom" sequence (from MERL)
 - 320x240, 960 Kbps, 30fps, GOP size 25, 8% average packet loss

Original

MPEG+FEC

PRISM-DS

Drift is reduced in PRISM-DS

[Yeo & Ramchandran, VCIP 2007]

Summary and concluding thoughts

- Overview of distributed source coding
 - Foundations, intuitions and constructions
 - Application landscape
- DSC for video transmission
 - Compression of encrypted content
 - DVC for "single-camera" systems:
 - complexity and robustness attributes
 - DVC for multi-camera systems
 - truly distributed application

Lots of open challenges

- Core problems deeply intertwined
 - Side-information generation
 - Correlation modeling and estimation:
 - fundamental tradeoffs between encoding complexity, compression performance and robustness?
 - Optimal" co-existence with existing standards?

• • • •

- Multi-camera systems
 - Distributed correlation estimation among sources
 - Spatial versus temporal correlations
 - when will the correlation among sources dominate correlation within each source?
 - Interplay with wireless networking protocols?

THANK YOU!