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Media transmission today

Mobile device

Back-end server

High-end

video camera

Low-power

video sensor
Aerial surveillance vehicles

•High compression efficiency

•High resilience to transmission errors

•Flexible encoder/decoder complexity distribution 

•Low latency

How to meet these requirements simultaneously?

Challenges



Today’s video codec systems

Driven by downlink model:

 High compression efficiency

 Rigid complexity distribution

 Complex transmitter, 
light receiver

 Prone to transmission error

 Decoding relies 
deterministically on 
one predictor

+

Motion Compensated

Prediction Error



 Alternatives to rigid complexity partition,

deterministic prediction-based 

framework?

 Interesting tool:  distributed source 

coding

Rethink video codec architecture?



Roadmap

 Introduction and motivation

 Distributed source coding: foundations & intuition

 Application landscape

 Distributed source coding for video applications: 

 Encryption & Compression

 Video transmission: foundations and architecture

 Low-encoder-complexity

 High-compression efficiency + Robustness

 Multi-camera scenario



 Consider correlated nodes X, Y

 Communication between X and Y 

expensive.

 Can we exploit correlation without 

communicating?

 Assume Y is compressed 

independently.  How to compress 

X close to H(X|Y)?

 Key idea: discount I(X;Y).

H(X|Y) = H(X) – I(X;Y)

X

Y

Dense, low-power

sensor-networks

Motivation: sensor networks



Distributed source coding: Slepian-Wolf ’73

X

Y

ACHIEVABLE 

RATE-REGION

Rx

Ry

H(Y)

H(Y|X)

H(X|Y) H(X)

A

B

C
Separate encoding

of X and Y



DecoderEncoder
X

Y

X
^

Source coding with side information: (Slepian-Wolf, „73, Wyner-Ziv, „76)

Distributed source coding

 Lossless coding (S-W): no loss of performance over when Y is 
available at both ends if  the statistical correlation between X 
and Y is known.

 Lossy coding (W-Z): for Gaussian statistics, no loss of 
performance over when Y known at both ends.

 Constructive solutions:      (Pradhan & Ramchandran (DISCUS) DCC ‘99 , 

Garcia-Frias & Zhao Comm. Letters ’01,

Aaron & Girod DCC ’02, 

Liveris, Xiong & Georghiades DCC '03,…)

 Employs statistical instead of deterministic mindset.

 X and Y are correlated sources.

 Y is available only to decoder.



Example: geometric illustration
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Source

Signal to decoder

Assume signal and noise are Gaussian, iid



Example: geometric illustration
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Assume signal and noise are Gaussian, iid





 Encoder: send the index of the coset (log23 bits)

 Decoder: decode X based on Y and signaled coset

X

Example: scalar Wyner-Ziv

Y

X Y
3

3
 c

o
s
e
ts

Partition

X
^

X
^

Q

Q

+X Y

N



Application Landscape



 Sensor networks

 M-channel Multiple Description coding

 Media broadcast

 Media security: Data-hiding, watermarking, steganography
 Fundamental duality between source coding and channel coding 

with side-information

 Compression of encrypted data

 Video transmission 



Duality bet. source & channel coding with side-info

Source coding with side information

Channel coding with side information (CCSI)

DecoderX
X̂

Encoder m
m

S
Sensor networks, video-over-wireless, 
multiple description, secure compression

X Y m̂

S

m
Encoder DecoderChannel

Watermarking, audio data hiding,

interference pre-cancellation,

multi-antenna wireless broadcast.

Pradhan, Chou and Ramchandran, Trans. on IT, May 2003



Compressing encrypted content 

without the cryptographic key



Secure multimedia for home networks

 Uncompressed encrypted video (HDCP protocol)

 Can increase wireless range with lower data rate

 But how to compress encrypted video without access to 

crytpographic key?



Compress Encrypt

Conventional method:

Cryptograhic

Key
K

Source

X

H(X) bits

(H(X) bits)

H(X) bits

Application: Compressing Encrypted Data

CompressEncrypt

Unconventional method:

Source

X Y H(X) bits

Cryptograhic

Key
K (H(X) bits) Johnson & Ramchandran (ICIP 2003),

Johnson et. al (Trans. on SP, Oct. 2004)



Compressed 

Encrypted Image

5,000 
bits

Encrypted ImageOriginal Image

10,000 bits

Final Reconstructed ImageDecoding compressed Image

Example 



Application: compressing encrypted data 

Source

Reconstructed 

Source

Encrypter Encoder Decoder Decrypter

Joint Decoder/Decrypter

X

Key
K

K

Y U

Syndrome X̂

Key

Key Insight!

Source Image Encrypted Image Decoded Image

10,000 bits 5,000 bits?



Overview

 Y = X + K where X is indep. of K

 Slepian-Wolf theorem: can send X at 

rate H(Y|K) = H(X)

 Security is not compromised!

S Joint
Decoder

K

ISP

End user

X

Content provider

Encryption

X

K

Y=X+K

Compression

Johnson, Ishwar, Prabhakaran & Ramchandran (Trans. on SP, Oct. 2004)



Practical Code Constructions

 Use a linear transformation (hash/bin)

 Design cosets to have maximal spacing

 State of the art linear codes (LDPC codes)

 Fixed length to fixed length compression

Bin 1 Bin 2 Bin 3

Source 

Codewords



Framework: Encryption

Encryption:

 Stream cipher

 Graphical model 

captures exact 

encryption 

relationship

X1

K1

Source

X2 X3 Xn···

K2

K3

Kn

Compression

Y1 Y2 Y3 Yn···

S1 S2 Sm···

iii kxy 



Source Models

 IID Model

 1-D Markov Model

 2-D Markov Model

X1 X2 X3 Xn

X1 X2 X3 Xn

Xi-1,j-1 Xi-1,j

Xi,j-1 Xi,j



Encrypted image compression results

 100 x 100 pixel image (10,000 bits)
 No compression possible with IID model

2-D Markov Source Model

1-D Markov Source Model

Source Image Encrypted Image Compressed Bits Decoded Image



Compression of encrypted video

Schonberg,Yeo, Draper & 
Ramchandran, DCC ‘07

Blind approach (encoder 

has no access to key)

Foreman Saves 33.00% 

Garden Saves 17.64% 

Football Saves 7.17% 

•Video offers both temporal and spatial prediction

•Decoder has access to unencrypted prior frames



Encrypted video compression results

 Show rate savings percentage
 Rate used (output bits/source bit) is shown for reference

 Compare to operation on unencrypted video
 JPEG-LS – lossless intra encoding of frames

 Leading lossless video codec – exploits temporal redundancy

JPEG-LS 

(unencrypted 

video)

Leading lossless video 

codec (unencrypted video)

Proposed approach 

(encrypted video, encoder has 

no access to key)

Foreman 50.96%

R=0.4904

58.87%

R=0.4113

33.00% 

R=0.6700

Garden 26.80%

R=0.7320

40.92%

R=0.5908

17.64% 

R=0.8236

Football 33.00%

R=0.6700

40.44%

R=0.5956

7.17% 

R=0.9283



Distributed source coding for video 

transmission: overview



When is DSC useful in video transmission?

 Uncertainty in the side information

 Low complexity encoding

 Transmission packet drops

 Multicast & scalable video coding

 Flexible decoding

 Physically distributed sources

 Multi-camera setups



 Motivation

Low-

Complexity 

Encoder 

Low-

Complexity 

Decoder

Trans-coding proxy

High-

Complexity 

Decoder

High-

Complexity 

Encoder

Low complexity encoding

High-complexity

(interpolated or

compensated motion)

DSC

Encoder

current frame

DSC

Decoder

reference frame

current frame

Side-info

Generator

Low-complexity

(no motion search)

(Puri & Ramchandran, Allerton ‘02, Aaron, Zhang & Girod, Asilomar ’02)



Transmission packet loss

 Recover current frame with (corrupted) reference frame that 
is not available at the encoder

 Distributed source coding: can help if statistical correlation
bet. current and corrupted ref. frames known at the encoder

DSC

encoder

DSC

Decoder

corrupted reference frame

current frame current frame



Standards compatibility

 Can be made compatible with standards-based codecs

 Corrupted current  frame  is side-info at DSC decoder

(Aaron,  Rane,  Rebollo-Monedero & Girod ‘04, ’05, Sehgal, Jagmohan & Ahuja: ’04, 

Wang, Majumdar & Ramchandran: ’04, ’05)

MPEG

Encoder

X = Frame n

MPEG

Decoder

X = Frame n

DSC

Decoder

X’ = corrupted Frame n

Y = Frame n-1 Y’ = Corrupted 

Frame n-1

DSC

Encoder



Multicast & scalable video coding

 Multicast

 Accommodate heterogeneous users
 Different channel conditions

 Different video qualities (spatial, temporal, PSNR)

Majumdar & Ramchandran,  ‘04

Tagliasacchi, Majumdar & Ramchandran, ‘04

Sehgal, Jagmohan & Ahuja, PCS ‘04

Wang, Cheung & Ortega, EURASIP ‘06

Xu & Xiong, ‘06

Enhancement layer at Rate R

Base layer at Rate R



Flexible decoding

 {Y1, Y2, …, YN} could be

 Neighboring frames in time 

→ Forward/backward playback without buffering

 Neighboring frames in space

→ Random access to frame in multi-view setup

 …

Cheung, Wang & Ortega, VCIP 2006, PCS 2007

Draper & Martinian, ISIT 2007

Encoder DecoderX

{Y1, Y2, …, YN}

Yi

X
^

User 

Control



 Dense placement of low-end video sensors

 Sophisticated back-end processing
 3-D view reconstruction

 Object tracking

 Super-resolution

 Multi-view coding and transmission

Back-end server

Multi-camera setups



Important enabler

 Rate-efficient camera calibration

 Visual correspondence determination
Tosic & Frossard, EUSIPCO 2007

Yeo, Ahammad & Ramchandran, VCIP 2008

Scene



DSC for video transmission: PRISM- I 

–targeting low-complexity encoding



Previous 

decoded blocks

(inside the

search range)

YT

Y1

YM

. 
. 
.

. 
. 

.

Motion T

Prediction error (DFD)  Z

X
Current blockMotion-compensated 

prediction YT

n

n

XYT

Z

MCPC: a closer look



log M
n

1

MCPC

Decoder

MCPC

Encoder …  Quantized  …

DFD

X

. . .
Y1 YM

. . .
Y1 YM

…   Motion T   … X

R(D)

 The encoder does not have or cannot use Y1, …, YM and

 The decoder does not know T.

 The encoder may work at rate: R(D) + (1/n )log M bits per pixel.

… ? …
+ (1/n)log M

? ?

MSE = ?

 How to decode and what is the performance?  

Motion-free encoding?



Is a No-Motion Encoder Possible?

 Let‟s cheat & let the decoder have the MV  “classical” W-Z problem

 The encoder works at same rate as predictive coder

X
Encoder

. . .
Y1 YM

Decoder
X

. . .
Y1 YM

Candidate Predictor Blocks Candidate Predictor Blocks

… Wyner-Ziv …

coset-index

Wyner Ziv Wyner Ziv

MV

YT

Let‟s Cheat!



Is a No-Motion Encoder Possible?

X
Encoder

. . .
Y1 YM

Decoder
X

. . .
Y1 YM

 Can decoding  work without a genie?
 Yes

 Can we match the performance of predictive coding?
 Yes (when DFD statistics are Gaussian)

Ishwar, Prabhakaran, and Ramchandran ICIP ’03.



X
bin index

 Low-complexity   

motion-free encoder

bin 

index

Y1

Wyner-Ziv

Decoder

X

YT

Wyner-Ziv

Decoder
YM

Wyner-Ziv

Decoder

Decoding failure

Decoding 

failure

 Need mechanism to 
detect decoding failure

 In theory: joint 
typicality (statistical 
consistency)

In practice: use CRC

Complexity “knob” to 

share search complexity 

between enc. & decoder

Need concept of 
“motion compensation 

at decoder”

Wyner-Ziv

Encoder

Motion search at decoder



Y1’ YM’

Practical implementation

 Can be realized through decoder motion search

 Extendable to when side-information is corrupted 

 robustness to channel loss

 Correlation between X and Yi‟ difficult to estimate due 

to low-complexity encoding

 compression efficiency compromised

X
Encoder

. . .
Y1 YM

Decoder
X

. . .
^

Channel



Robustness Results: PRISM-I video codec

 Qualcomm‟s channel simulator for 

CDMA 2000 1X wireless networks

 Stefan 
(SIF, 2.2 Mbps, 5% error)

PRISM
vs.

H.263+ FEC



DSC for video transmission:  

PRISM II – targeting high-

compression efficiency & robustness



 Challenge: correlation estimation, i.e. finding H(X|Y) = H(N)

 N = Video innovation + Effect of channel + Quantization noise

 Without accurate estimate of the total noise statistics, need to 
over-design → compression inefficiency.

 What if complexity were less of a constraint and we allow 
motion search at the encoder?

Cause of compression inefficiency

Hard to model without motion search

+Y X

N
DecoderEncoder

X

Y

X
^

Recall



Video innovation can be accurately modeled

When there are no channel errors:

N = Video innovation + Quantization noise

 DSC vs. H.263+  DSC vs. H.264

Foreman Sequence (QCIF, 15 fps)

Milani, Wang & Ramchandran, VCIP 2007



 Goal: estimate H (X|Y‟) 

Modeling effect of channel at encoder

DSC

Encoder

X = Frame n

DSC

Decoder

X = Frame n

Y’ = corrupted Frame n-1



Finding H(X|Y’)

 Philosophy:  have control over uncertainty set at decoder

 e.g. orchestrate decoder designs for
Y if Y is available

Y‟ = 
Z if Y is not available

 Example:

 Encoder has access to both Y and Z

 Natural temporal redundancy in video: “diversity” gain
 an intact predictor in Frame t-2 (Z) is typically a better 

predictor than a corrupted predictor  Y‟ in Frame t-1

J. Wang, V. Prabhakaran & K. Ramchandran: ICIP’06

mv1

Frame t-1 Frame t

XY
mv2

Frame t-2

Z



 If we have some knowledge about the channel:

Y if Y is intact with probability (1-p)
Y‟ = 

Z if Y is corrupted with probability p

 We obtain 
H(X|Y’, decoder state) = (1-p)*H(X|Y) + p*H(X|Z)

Finding H(X|Y’)

mv1

Frame t-1 Frame t

XY
mv2

Frame t-2

Z



Video innovationEffect of channel

Another way to think about it

mv1

Frame t-1 Frame t

XY
mv2

Frame t-2

Z

 H(X|Y’, decoder state) = (1-p)*H(X|Y) + p*H(X|Z)

= p*[H(X|Z) – H(X|Y)] + H(X|Y)



Yet another way to think about it

mv1

Frame t-1 Frame t

XY
mv2

Frame t-2

Z

Bare minimum syndrome

(bin index) needed when 

channel is clean

Additional

syndrome (sub-bin 

index) for drift 

correction

Can be achieved by 

applying channel 

code to sub-bin 

indices

 H(X|Y’, decoder state) = (1-p)*H(X|Y) + p*H(X|Z)

= p*[H(X|Z) – H(X|Y)] + H(X|Y)



Robustness result
Setup:

 Channel:

 Simulated Gilbert-Elliot channel with pg = 0.03 and pb = 0.3



Robustness result
Setup:

 Channel:

 Simulated CDMA 2000 1x channel

Stefan (SIF) sequence

1 GOP = 20 frames

1 mbps baseline, 1.3 mbps total (15 fps)

7.1% average packet drop rate

Football (SIF) sequence

1 GOP = 20 frames

900 kbps baseline, 1.12 mbps total (15 fps)

7.4% average packet drop rate



Videos

 Garden

352x240, 1.4 mbps, 15 fps, gop size 15, 4% error
(Gilbert Elliot channel with 3% error rate in good state and 30% in bad state)

 Football

352x240, 1.12 mbps, 15 fps, gop 15, simulated CDMA channel with 5% error

DSC
vs.

H.263+ FEC

DSC
vs.

H.263+ FEC



DSC for multi-camera video 

transmission:  



Distributed multi-view coding

X1

Encoder 1

X2

Encoder 2

X3

Encoder 3

…

Joint

Decoder

X1
^

X2

^

X3
^

…

Video encoders 

operate independently

Video decoder 

operates jointly

Channel

…

Channel

Channel

Feedback 

possibly 

present



Active area of research

 Distributed multi-view image compression
 Down-sample + Super-resolution [Wagner, Nowak & Baraniuk, ICIP 2003]

 Geometry estimation + rendering [Zhu, Aaron & Girod, SSP 2003]

 Direct coding of scene structure [Gehrig & Dragotti, ICIP 2005] [Tosic & 
Frossard, ICIP 2007]

 Unsupervised learning of geometry [Varodayan, Lin, Mavlankar, Flierl & 
Girod, PCS 2007]

 …

 Distributed multi-view video compression
 Geometric constraints on motion vectors in multiple views [Song, 

Bursalioglu, Roy-Chowdhury & Tuncel, ICASSP 2006] [Yang, Stankovic, 
Zhao & Xiong, ICIP 2007]

 Fusion of temporal and inter-view side-information [Ouaret, Dufaux & 
Ebrahimi, VSSN 2006] [Guo, Lu, Wu, Gao & Li, VCIP 2006]

 MCTF followed by disparity compensation [Flierl & Girod, ICIP 2006]

 …

 Robust distributed multi-view video compression
 Disparity search / View synthesis search [Yeo, Wang & Ramchandran, ICIP 

2007]



Robust distributed multi-view video transmission

X1

Encoder 1

X2

Encoder 2

X3

Encoder 3

…

Joint

Decoder

X1
^

X2

^

X3
^

…Video encoders 

operate independently

and under complexity 

and latency constraint.

Video decoder 

operates jointly to 

recover video streams

Channel

…

Channel

Channel

Noisy and bandwidth 

constrained channels

Packet Erasure

Packet Erasure

Packet Erasure



Side information from other camera views

Ideal

Encoder

X = Frame t

Ideal

Decoder

f(X)

 How should we look in other camera views?

 Naïve approach of looking everywhere can be extremely rate-inefficient 

 Possible approaches

 View synthesis search

 Disparity search

Y’ = corrupted Frame t-1Y’’ = neighboring Frame t

X = reconstructed Frame t
^



Epipolar geometry

C C’

e e’

x

x1’

X1

X2

X3

x2’

x3’ l’

Camera 1 Camera 2

 Given an image point 

in one view, 

corresponding point 

in the second view is 

on the epipolar line

 Upshot: Disparity 

search is reduced to 

a 1-D search



Decoder disparity search

Camera 1

Camera 2

Frame tFrame t-1

Disparity

Vector

X

YDS
X = YDS + NDS

 Extension of decoder motion search using epipolar geometry

[Yeo & Ramchandran, VCIP 2007]

(1) Search along

epipolar line

Temporal – Poor reference

Spatial – Good reference



PRISM-DS vs MPEG with FEC

Original MPEG+FEC PRISM-DS

 “Ballroom” sequence (from MERL)
 320x240, 960 Kbps, 30fps, GOP size 25, 8% average packet loss

 Drift is reduced in PRISM-DS

[Yeo & Ramchandran, VCIP 2007] 



Summary and concluding thoughts

 Overview of distributed source coding

 Foundations, intuitions and constructions

 Application landscape 

 DSC for video transmission

 Compression of encrypted content 

 DVC for “single-camera” systems:

 complexity and robustness attributes

 DVC for multi-camera systems

 truly distributed application



Lots of open challenges

 Core problems deeply intertwined

 Side-information generation

 Correlation modeling and estimation: 

 fundamental tradeoffs between encoding complexity, 

compression performance and robustness?

 “Optimal” co-existence with existing standards?

 …

 Multi-camera systems

 Distributed correlation estimation among sources

 Spatial versus temporal correlations

 when will the correlation among sources dominate correlation 

within each source?

 Interplay with wireless networking protocols?



THANK YOU!


