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Media transmission today

Mobile device

Back-end server

High-end

video camera

Low-power

video sensor
Aerial surveillance vehicles

•High compression efficiency

•High resilience to transmission errors

•Flexible encoder/decoder complexity distribution 

•Low latency

How to meet these requirements simultaneously?

Challenges



Today’s video codec systems

Driven by downlink model:

 High compression efficiency

 Rigid complexity distribution

 Complex transmitter, 
light receiver

 Prone to transmission error

 Decoding relies 
deterministically on 
one predictor

+

Motion Compensated

Prediction Error



 Alternatives to rigid complexity partition,

deterministic prediction-based 

framework?

 Interesting tool:  distributed source 

coding

Rethink video codec architecture?



Roadmap

 Introduction and motivation

 Distributed source coding: foundations & intuition

 Application landscape

 Distributed source coding for video applications: 

 Encryption & Compression

 Video transmission: foundations and architecture

 Low-encoder-complexity

 High-compression efficiency + Robustness

 Multi-camera scenario



 Consider correlated nodes X, Y

 Communication between X and Y 

expensive.

 Can we exploit correlation without 

communicating?

 Assume Y is compressed 

independently.  How to compress 

X close to H(X|Y)?

 Key idea: discount I(X;Y).

H(X|Y) = H(X) – I(X;Y)

X

Y

Dense, low-power

sensor-networks

Motivation: sensor networks



Distributed source coding: Slepian-Wolf ’73

X

Y

ACHIEVABLE 

RATE-REGION

Rx

Ry

H(Y)

H(Y|X)

H(X|Y) H(X)

A

B

C
Separate encoding

of X and Y



DecoderEncoder
X

Y

X
^

Source coding with side information: (Slepian-Wolf, „73, Wyner-Ziv, „76)

Distributed source coding

 Lossless coding (S-W): no loss of performance over when Y is 
available at both ends if  the statistical correlation between X 
and Y is known.

 Lossy coding (W-Z): for Gaussian statistics, no loss of 
performance over when Y known at both ends.

 Constructive solutions:      (Pradhan & Ramchandran (DISCUS) DCC ‘99 , 

Garcia-Frias & Zhao Comm. Letters ’01,

Aaron & Girod DCC ’02, 

Liveris, Xiong & Georghiades DCC '03,…)

 Employs statistical instead of deterministic mindset.

 X and Y are correlated sources.

 Y is available only to decoder.



Example: geometric illustration
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Source

Signal to decoder

Assume signal and noise are Gaussian, iid



Example: geometric illustration
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Assume signal and noise are Gaussian, iid





 Encoder: send the index of the coset (log23 bits)

 Decoder: decode X based on Y and signaled coset

X

Example: scalar Wyner-Ziv

Y

X Y
3

3
 c

o
s
e
ts

Partition

X
^

X
^

Q

Q

+X Y

N



Application Landscape



 Sensor networks

 M-channel Multiple Description coding

 Media broadcast

 Media security: Data-hiding, watermarking, steganography
 Fundamental duality between source coding and channel coding 

with side-information

 Compression of encrypted data

 Video transmission 



Duality bet. source & channel coding with side-info

Source coding with side information

Channel coding with side information (CCSI)

DecoderX
X̂

Encoder m
m

S
Sensor networks, video-over-wireless, 
multiple description, secure compression

X Y m̂

S

m
Encoder DecoderChannel

Watermarking, audio data hiding,

interference pre-cancellation,

multi-antenna wireless broadcast.

Pradhan, Chou and Ramchandran, Trans. on IT, May 2003



Compressing encrypted content 

without the cryptographic key



Secure multimedia for home networks

 Uncompressed encrypted video (HDCP protocol)

 Can increase wireless range with lower data rate

 But how to compress encrypted video without access to 

crytpographic key?



Compress Encrypt

Conventional method:

Cryptograhic

Key
K

Source

X

H(X) bits

(H(X) bits)

H(X) bits

Application: Compressing Encrypted Data

CompressEncrypt

Unconventional method:

Source

X Y H(X) bits

Cryptograhic

Key
K (H(X) bits) Johnson & Ramchandran (ICIP 2003),

Johnson et. al (Trans. on SP, Oct. 2004)



Compressed 

Encrypted Image

5,000 
bits

Encrypted ImageOriginal Image

10,000 bits

Final Reconstructed ImageDecoding compressed Image

Example 



Application: compressing encrypted data 

Source

Reconstructed 

Source

Encrypter Encoder Decoder Decrypter

Joint Decoder/Decrypter

X

Key
K

K

Y U

Syndrome X̂

Key

Key Insight!

Source Image Encrypted Image Decoded Image

10,000 bits 5,000 bits?



Overview

 Y = X + K where X is indep. of K

 Slepian-Wolf theorem: can send X at 

rate H(Y|K) = H(X)

 Security is not compromised!

S Joint
Decoder

K

ISP

End user

X

Content provider

Encryption

X

K

Y=X+K

Compression

Johnson, Ishwar, Prabhakaran & Ramchandran (Trans. on SP, Oct. 2004)



Practical Code Constructions

 Use a linear transformation (hash/bin)

 Design cosets to have maximal spacing

 State of the art linear codes (LDPC codes)

 Fixed length to fixed length compression

Bin 1 Bin 2 Bin 3

Source 

Codewords



Framework: Encryption

Encryption:

 Stream cipher

 Graphical model 

captures exact 

encryption 

relationship

X1

K1

Source

X2 X3 Xn···

K2

K3

Kn

Compression

Y1 Y2 Y3 Yn···

S1 S2 Sm···

iii kxy 



Source Models

 IID Model

 1-D Markov Model

 2-D Markov Model

X1 X2 X3 Xn

X1 X2 X3 Xn

Xi-1,j-1 Xi-1,j

Xi,j-1 Xi,j



Encrypted image compression results

 100 x 100 pixel image (10,000 bits)
 No compression possible with IID model

2-D Markov Source Model

1-D Markov Source Model

Source Image Encrypted Image Compressed Bits Decoded Image



Compression of encrypted video

Schonberg,Yeo, Draper & 
Ramchandran, DCC ‘07

Blind approach (encoder 

has no access to key)

Foreman Saves 33.00% 

Garden Saves 17.64% 

Football Saves 7.17% 

•Video offers both temporal and spatial prediction

•Decoder has access to unencrypted prior frames



Encrypted video compression results

 Show rate savings percentage
 Rate used (output bits/source bit) is shown for reference

 Compare to operation on unencrypted video
 JPEG-LS – lossless intra encoding of frames

 Leading lossless video codec – exploits temporal redundancy

JPEG-LS 

(unencrypted 

video)

Leading lossless video 

codec (unencrypted video)

Proposed approach 

(encrypted video, encoder has 

no access to key)

Foreman 50.96%

R=0.4904

58.87%

R=0.4113

33.00% 

R=0.6700

Garden 26.80%

R=0.7320

40.92%

R=0.5908

17.64% 

R=0.8236

Football 33.00%

R=0.6700

40.44%

R=0.5956

7.17% 

R=0.9283



Distributed source coding for video 

transmission: overview



When is DSC useful in video transmission?

 Uncertainty in the side information

 Low complexity encoding

 Transmission packet drops

 Multicast & scalable video coding

 Flexible decoding

 Physically distributed sources

 Multi-camera setups



 Motivation

Low-

Complexity 

Encoder 

Low-

Complexity 

Decoder

Trans-coding proxy

High-

Complexity 

Decoder

High-

Complexity 

Encoder

Low complexity encoding

High-complexity

(interpolated or

compensated motion)

DSC

Encoder

current frame

DSC

Decoder

reference frame

current frame

Side-info

Generator

Low-complexity

(no motion search)

(Puri & Ramchandran, Allerton ‘02, Aaron, Zhang & Girod, Asilomar ’02)



Transmission packet loss

 Recover current frame with (corrupted) reference frame that 
is not available at the encoder

 Distributed source coding: can help if statistical correlation
bet. current and corrupted ref. frames known at the encoder

DSC

encoder

DSC

Decoder

corrupted reference frame

current frame current frame



Standards compatibility

 Can be made compatible with standards-based codecs

 Corrupted current  frame  is side-info at DSC decoder

(Aaron,  Rane,  Rebollo-Monedero & Girod ‘04, ’05, Sehgal, Jagmohan & Ahuja: ’04, 

Wang, Majumdar & Ramchandran: ’04, ’05)

MPEG

Encoder

X = Frame n

MPEG

Decoder

X = Frame n

DSC

Decoder

X’ = corrupted Frame n

Y = Frame n-1 Y’ = Corrupted 

Frame n-1

DSC

Encoder



Multicast & scalable video coding

 Multicast

 Accommodate heterogeneous users
 Different channel conditions

 Different video qualities (spatial, temporal, PSNR)

Majumdar & Ramchandran,  ‘04

Tagliasacchi, Majumdar & Ramchandran, ‘04

Sehgal, Jagmohan & Ahuja, PCS ‘04

Wang, Cheung & Ortega, EURASIP ‘06

Xu & Xiong, ‘06

Enhancement layer at Rate R

Base layer at Rate R



Flexible decoding

 {Y1, Y2, …, YN} could be

 Neighboring frames in time 

→ Forward/backward playback without buffering

 Neighboring frames in space

→ Random access to frame in multi-view setup

 …

Cheung, Wang & Ortega, VCIP 2006, PCS 2007

Draper & Martinian, ISIT 2007

Encoder DecoderX

{Y1, Y2, …, YN}

Yi

X
^

User 

Control



 Dense placement of low-end video sensors

 Sophisticated back-end processing
 3-D view reconstruction

 Object tracking

 Super-resolution

 Multi-view coding and transmission

Back-end server

Multi-camera setups



Important enabler

 Rate-efficient camera calibration

 Visual correspondence determination
Tosic & Frossard, EUSIPCO 2007

Yeo, Ahammad & Ramchandran, VCIP 2008

Scene



DSC for video transmission: PRISM- I 

–targeting low-complexity encoding



Previous 

decoded blocks

(inside the

search range)

YT

Y1

YM

. 
. 
.

. 
. 

.

Motion T

Prediction error (DFD)  Z

X
Current blockMotion-compensated 

prediction YT

n

n

XYT

Z

MCPC: a closer look



log M
n

1

MCPC

Decoder

MCPC

Encoder …  Quantized  …

DFD

X

. . .
Y1 YM

. . .
Y1 YM

…   Motion T   … X

R(D)

 The encoder does not have or cannot use Y1, …, YM and

 The decoder does not know T.

 The encoder may work at rate: R(D) + (1/n )log M bits per pixel.

… ? …
+ (1/n)log M

? ?

MSE = ?

 How to decode and what is the performance?  

Motion-free encoding?



Is a No-Motion Encoder Possible?

 Let‟s cheat & let the decoder have the MV  “classical” W-Z problem

 The encoder works at same rate as predictive coder

X
Encoder

. . .
Y1 YM

Decoder
X

. . .
Y1 YM

Candidate Predictor Blocks Candidate Predictor Blocks

… Wyner-Ziv …

coset-index

Wyner Ziv Wyner Ziv

MV

YT

Let‟s Cheat!



Is a No-Motion Encoder Possible?

X
Encoder

. . .
Y1 YM

Decoder
X

. . .
Y1 YM

 Can decoding  work without a genie?
 Yes

 Can we match the performance of predictive coding?
 Yes (when DFD statistics are Gaussian)

Ishwar, Prabhakaran, and Ramchandran ICIP ’03.



X
bin index

 Low-complexity   

motion-free encoder

bin 

index

Y1

Wyner-Ziv

Decoder

X

YT

Wyner-Ziv

Decoder
YM

Wyner-Ziv

Decoder

Decoding failure

Decoding 

failure

 Need mechanism to 
detect decoding failure

 In theory: joint 
typicality (statistical 
consistency)

In practice: use CRC

Complexity “knob” to 

share search complexity 

between enc. & decoder

Need concept of 
“motion compensation 

at decoder”

Wyner-Ziv

Encoder

Motion search at decoder



Y1’ YM’

Practical implementation

 Can be realized through decoder motion search

 Extendable to when side-information is corrupted 

 robustness to channel loss

 Correlation between X and Yi‟ difficult to estimate due 

to low-complexity encoding

 compression efficiency compromised

X
Encoder

. . .
Y1 YM

Decoder
X

. . .
^

Channel



Robustness Results: PRISM-I video codec

 Qualcomm‟s channel simulator for 

CDMA 2000 1X wireless networks

 Stefan 
(SIF, 2.2 Mbps, 5% error)

PRISM
vs.

H.263+ FEC



DSC for video transmission:  

PRISM II – targeting high-

compression efficiency & robustness



 Challenge: correlation estimation, i.e. finding H(X|Y) = H(N)

 N = Video innovation + Effect of channel + Quantization noise

 Without accurate estimate of the total noise statistics, need to 
over-design → compression inefficiency.

 What if complexity were less of a constraint and we allow 
motion search at the encoder?

Cause of compression inefficiency

Hard to model without motion search

+Y X

N
DecoderEncoder

X

Y

X
^

Recall



Video innovation can be accurately modeled

When there are no channel errors:

N = Video innovation + Quantization noise

 DSC vs. H.263+  DSC vs. H.264

Foreman Sequence (QCIF, 15 fps)

Milani, Wang & Ramchandran, VCIP 2007



 Goal: estimate H (X|Y‟) 

Modeling effect of channel at encoder

DSC

Encoder

X = Frame n

DSC

Decoder

X = Frame n

Y’ = corrupted Frame n-1



Finding H(X|Y’)

 Philosophy:  have control over uncertainty set at decoder

 e.g. orchestrate decoder designs for
Y if Y is available

Y‟ = 
Z if Y is not available

 Example:

 Encoder has access to both Y and Z

 Natural temporal redundancy in video: “diversity” gain
 an intact predictor in Frame t-2 (Z) is typically a better 

predictor than a corrupted predictor  Y‟ in Frame t-1

J. Wang, V. Prabhakaran & K. Ramchandran: ICIP’06

mv1

Frame t-1 Frame t

XY
mv2

Frame t-2

Z



 If we have some knowledge about the channel:

Y if Y is intact with probability (1-p)
Y‟ = 

Z if Y is corrupted with probability p

 We obtain 
H(X|Y’, decoder state) = (1-p)*H(X|Y) + p*H(X|Z)

Finding H(X|Y’)

mv1

Frame t-1 Frame t

XY
mv2

Frame t-2

Z



Video innovationEffect of channel

Another way to think about it

mv1

Frame t-1 Frame t

XY
mv2

Frame t-2

Z

 H(X|Y’, decoder state) = (1-p)*H(X|Y) + p*H(X|Z)

= p*[H(X|Z) – H(X|Y)] + H(X|Y)



Yet another way to think about it

mv1

Frame t-1 Frame t

XY
mv2

Frame t-2

Z

Bare minimum syndrome

(bin index) needed when 

channel is clean

Additional

syndrome (sub-bin 

index) for drift 

correction

Can be achieved by 

applying channel 

code to sub-bin 

indices

 H(X|Y’, decoder state) = (1-p)*H(X|Y) + p*H(X|Z)

= p*[H(X|Z) – H(X|Y)] + H(X|Y)



Robustness result
Setup:

 Channel:

 Simulated Gilbert-Elliot channel with pg = 0.03 and pb = 0.3



Robustness result
Setup:

 Channel:

 Simulated CDMA 2000 1x channel

Stefan (SIF) sequence

1 GOP = 20 frames

1 mbps baseline, 1.3 mbps total (15 fps)

7.1% average packet drop rate

Football (SIF) sequence

1 GOP = 20 frames

900 kbps baseline, 1.12 mbps total (15 fps)

7.4% average packet drop rate



Videos

 Garden

352x240, 1.4 mbps, 15 fps, gop size 15, 4% error
(Gilbert Elliot channel with 3% error rate in good state and 30% in bad state)

 Football

352x240, 1.12 mbps, 15 fps, gop 15, simulated CDMA channel with 5% error

DSC
vs.

H.263+ FEC

DSC
vs.

H.263+ FEC



DSC for multi-camera video 

transmission:  



Distributed multi-view coding

X1

Encoder 1

X2

Encoder 2

X3

Encoder 3

…

Joint

Decoder

X1
^

X2

^

X3
^

…

Video encoders 

operate independently

Video decoder 

operates jointly

Channel

…

Channel

Channel

Feedback 

possibly 

present



Active area of research

 Distributed multi-view image compression
 Down-sample + Super-resolution [Wagner, Nowak & Baraniuk, ICIP 2003]

 Geometry estimation + rendering [Zhu, Aaron & Girod, SSP 2003]

 Direct coding of scene structure [Gehrig & Dragotti, ICIP 2005] [Tosic & 
Frossard, ICIP 2007]

 Unsupervised learning of geometry [Varodayan, Lin, Mavlankar, Flierl & 
Girod, PCS 2007]

 …

 Distributed multi-view video compression
 Geometric constraints on motion vectors in multiple views [Song, 

Bursalioglu, Roy-Chowdhury & Tuncel, ICASSP 2006] [Yang, Stankovic, 
Zhao & Xiong, ICIP 2007]

 Fusion of temporal and inter-view side-information [Ouaret, Dufaux & 
Ebrahimi, VSSN 2006] [Guo, Lu, Wu, Gao & Li, VCIP 2006]

 MCTF followed by disparity compensation [Flierl & Girod, ICIP 2006]

 …

 Robust distributed multi-view video compression
 Disparity search / View synthesis search [Yeo, Wang & Ramchandran, ICIP 

2007]



Robust distributed multi-view video transmission

X1

Encoder 1

X2

Encoder 2

X3

Encoder 3

…

Joint

Decoder

X1
^

X2

^

X3
^

…Video encoders 

operate independently

and under complexity 

and latency constraint.

Video decoder 

operates jointly to 

recover video streams

Channel

…

Channel

Channel

Noisy and bandwidth 

constrained channels

Packet Erasure

Packet Erasure

Packet Erasure



Side information from other camera views

Ideal

Encoder

X = Frame t

Ideal

Decoder

f(X)

 How should we look in other camera views?

 Naïve approach of looking everywhere can be extremely rate-inefficient 

 Possible approaches

 View synthesis search

 Disparity search

Y’ = corrupted Frame t-1Y’’ = neighboring Frame t

X = reconstructed Frame t
^



Epipolar geometry

C C’

e e’

x

x1’

X1

X2

X3

x2’

x3’ l’

Camera 1 Camera 2

 Given an image point 

in one view, 

corresponding point 

in the second view is 

on the epipolar line

 Upshot: Disparity 

search is reduced to 

a 1-D search



Decoder disparity search

Camera 1

Camera 2

Frame tFrame t-1

Disparity

Vector

X

YDS
X = YDS + NDS

 Extension of decoder motion search using epipolar geometry

[Yeo & Ramchandran, VCIP 2007]

(1) Search along

epipolar line

Temporal – Poor reference

Spatial – Good reference



PRISM-DS vs MPEG with FEC

Original MPEG+FEC PRISM-DS

 “Ballroom” sequence (from MERL)
 320x240, 960 Kbps, 30fps, GOP size 25, 8% average packet loss

 Drift is reduced in PRISM-DS

[Yeo & Ramchandran, VCIP 2007] 



Summary and concluding thoughts

 Overview of distributed source coding

 Foundations, intuitions and constructions

 Application landscape 

 DSC for video transmission

 Compression of encrypted content 

 DVC for “single-camera” systems:

 complexity and robustness attributes

 DVC for multi-camera systems

 truly distributed application



Lots of open challenges

 Core problems deeply intertwined

 Side-information generation

 Correlation modeling and estimation: 

 fundamental tradeoffs between encoding complexity, 

compression performance and robustness?

 “Optimal” co-existence with existing standards?

 …

 Multi-camera systems

 Distributed correlation estimation among sources

 Spatial versus temporal correlations

 when will the correlation among sources dominate correlation 

within each source?

 Interplay with wireless networking protocols?



THANK YOU!


