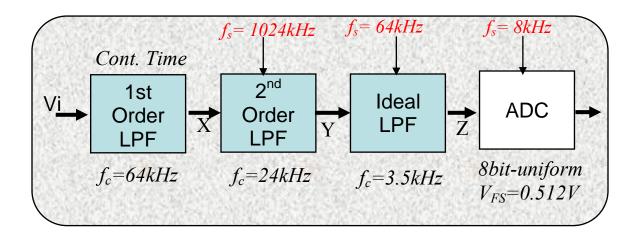
UNIVERSITY OF CALIFORNIA


College of Engineering
Department of Electrical Engineering
and Computer Sciences

H. Khorramabadi

Homework 3 Due Thurs, Oct. 7, 2010 **EECS 247 FALL 2010**

Problem 1: Aliasing

A simplified block diagram for the transmit path of a CODEC chip is shown bellow. The first stage is a 1st order continuous-time filter. The 2nd stage is a 2nd order S.C. filter. The third stage the high order main filter and uses double-sampling. For simplicity assume the main filter has a brick-wall magnitude response with infinite out-of-band rejection.

A composite signal composed of the wanted voice-band component:

 $A1xsin(2\pi f_1 t)$

Plus unwanted signals:

$$A2xsin(2\pi f_2 t) + A3xsin(2\pi f_3 t) + A4xsin(2\pi f_4 t) + A51xsin(2\pi f_5 t)$$

Where: $f_1 = 2kHz$, $f_2 = 129kHz$, $f_3 = 122kHz$, $f_4 = 893kHz$, $f_5 = 1156kHz$

a)

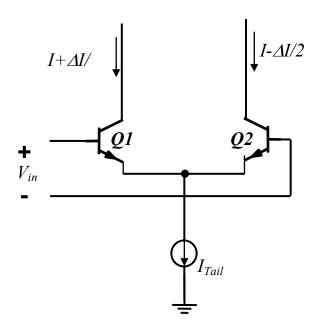
- 1- Which of the above components do you expect to appear at the input of the ADC (node Z) and at what frequency?
- 2- Assuming gain of 1 for all of the building blocks except for the main filter which has an inband gain of 2. Compute A1 for the wanted signal to have peak-to-peak amplitude equal to $\frac{1}{2}$ of the full-scale associated with the ADC (node Z).
- 3- Find the peak amplitude (Ax) of the unwanted signals such that their peakto-peak magnitude for each component is equal to 1/2LSB of the ADC

(thus undetectable). For simplicity of computation, you can assume the attenuation associated with the first two stages is given by:

$$|H(f)| \sim (f_c/f)^n$$
 for $f > f_c$

Where n is the order of the filter. Also, you can ignore the sinx/x droop effect due to the hold function.

- b) Recompute part a) section 3 assuming the 1st stage (continuous-time filter) is removed.
- c) Recompute part b) assuming the 2nd stage (2nd order SC filter) is also removed.
- d) Discuss and compare the results in part a,b, and c.


Problem 2: Gm Cell Design Considerations

A gm-cell is made of a bipolar emitter-couple pair at the input. The differential output current as a function of the input voltage is derived:


$$\Delta I = I_{Tail} \times tanh\left(\frac{V_{in}}{2V_T}\right)$$
 where $V_T = kT/q = 26mV$ @ room temp.

Use taylor expansion: $tanh(x) \approx x - \frac{x^3}{3}$

- a- Find the peak input voltage for which HD3=2%
- b- Find the peak input voltage for which IM3=1%
- c- Can you make any suggestions in order to increase the maximum signal handling capability of the emitter-coupled pair based gm-cell?

Problem 3: Switched-Capacitor Filter Design

The diagram above, shows the integrator implementation of a 3rd order lowpass filter with a corner frequency of 18KHz and sampling frequency of 3.6MHz.

Assuming $\tau 1 = \tau 3 = 16.48$ usec and $\tau 2 = 11.32$ usec Submit

- a- The schematic for the switched-capacitor filter using bottom-plate LDI integrators. You have the option of using single-ended or differential structure.
- b- Choose all integrating CI=5pF, find all the other capacitor sizes.
- c- Proof LDI operation in the form of either a z-domain block diagram using the model from Lecture 10, page 14 or performing Periodic AC analysis and plotting the magnitude response both with coarse y-axis and detail of the passband.
- d- Name one advantage and one disadvantage of using switched-capacitor filter technique.
- e- Find the minimum value for the op-amp slew rate for the final stage such that the third order harmonic distortion at signal frequency 5kHz is at -40dB compared to the signal for an output signal of 1V-peak.