Lecture 20

Analog-to-Digital Converters (continued)

- Comparator design (continued)
- Comparator architecture examples
- Techniques to reduce flash ADC complexity
- Interpolating
- Folding
- Interpolating \& folding
- Residue Type ADCs
- Two-Step flash
- Pipelined ADCs
- Architecture basics
- Effect of sub-ADC, sub-DAC, gain stage non-idealities on overall ADC performance

CMOS Comparator Example Flash ADC

- Flash ADC: 8bits, $+-1 / 2 \mathrm{LSB}$ INL @ fs $=15 \mathrm{MHz}$ (Vref=3.8V, LSB~15mV)
- No offset cancellation

Ref: A. Yukawa, "A CMOS 8-bit High-Speed A/D Converter IC," JSSC June 1985, pp. 775-9

Comparator with Auto-Zero

Note:
Reference \& input both differential

Ref: I. Mehr and L. Singer, "A 500-Msample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel Applications," JSSC July 1999, pp. 912-20.

Flash ADC Comparator with Auto-Zero

input \& reference established
Ref: I. Mehr and D. Dalton, "A 500-Msample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel Applications," JSSC July 1999, pp. 912-20.

Flash ADC
Using Comparator with Auto-Zero

Ref: I. Mehr and D. Dalton, "A 500-Msample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel Applications," JSSC July 1999, pp. 912-20.

Auto-Zero Implementation

Ref:I. Mehr and L. Singer, "A 55-mW, 10-bit, 40-Msample/s Nyquist-Rate CMOS ADC," JSSC March 2000, pp. 318-25

Comparator Example

- Variation on Yukawa latch used w/o preamp
- Good for low resolution ADCs (in this case 1.5bit/stage for a pipeline we will see later are tolerant of high offset)
- Note: M1, M2, M11, M12 operate in triode mode
- M11 \& M12 added to vary comparator threshold
- Conductance at node X is sum of $G_{M 1} \& G_{M 11}$

Ref: T. B. Cho and P. R. Gray, "A $10 \mathrm{~b}, 20 \mathrm{Msample} / \mathrm{s}, 35 \mathrm{~mW}$ pipeline A/D converter," IEEE Journal of Solid-State Circuits, vol. 30, pp. 166-172, March 1995

Comparator Example (continued)

- M1, M2, M11, M12 operate in triode mode with all having equal L
- Conductance of input devices:
$G_{I}=\frac{\mu C_{o x}}{L} \times\left[W_{I}\left(V_{I I}-V_{t h}\right)+W_{I I}\left(V_{R-}-V_{t h}\right)\right]$
$G_{2}=\frac{\mu C_{o x}}{L} \times\left[W_{l}\left(V_{I 2}-V_{t h}\right)+W_{l l}\left(V_{R+}-V_{t h}\right)\right]$
$\rightarrow \Delta G=\frac{\mu C_{o x} W_{I}}{L} \times\left[\left(V_{I I}-V_{I 2}\right)-\frac{W_{I I}}{W_{I}}\left(V_{R+}-V_{R-}\right)\right]$
- To 1st order, for $W 1=W 2 \& W 11=W 12$ $V_{\text {th }}^{\text {latch }}=$ W11/WI $\times V_{R}$
where $V_{R}=V_{R+}-V_{R-}$
$\rightarrow V_{R}$ fixed W11, 12 varied from comparator to comparator \rightarrow Eliminates need for resistive divider
Ref: T. B. Cho and P. R. Gray, "A $10 \mathrm{~b}, 20 \mathrm{Msample} / \mathrm{s}, 35 \mathrm{~mW}$ pipeline A/D converter," IEEE Journal of Solid-State Circuits, vol. 30, pp. 166-172, March 1995

Comparator Example

- Used in a pipelined ADC with digital correction
\rightarrow No offset cancellation required
Differential reference \& input
- M7, M8 operate in triode region
- Preamp gain ~10
- Input buffers suppress kick-back
- ϕ_{1} high $\rightarrow \mathrm{C}_{\mathrm{s}}$ charged to VR \& $\phi_{2 \mathrm{~B}}$ is also high \rightarrow current diverted to latch \rightarrow comparator output in hold mode
- ϕ_{2} high $\rightarrow \mathrm{C}_{\mathrm{s}}$ connected to $\mathrm{S} /$ Hout \& comparator input (VR-S/Hout), current sent to preamp \rightarrow comparator in amplify mode

Ref: S. Lewis, et al., "A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter" IEEE JSSC , NO. 6, Dec. 1987

Bipolar Comparator Example

- Used in 8 bit $400 \mathrm{Ms} / \mathrm{s}$ \& 6bit 2Gb/s flash ADC
- Signal amplification during $\phi 1$ high, latch operates when $\phi 1$ low
- Input buffers suppress kick-back \& input current
- Separate ground and supply buses for frontend preamp \rightarrow kickback noise reduction

Ref: Y. Akazawa, et al., "A 400MSPS 8b flash AD conversion LSI," IEEE International Solid-State Circuits Conference, vol. XXX, pp. 98-99, February 1987
Ref: T. Wakimoto, et al, "Si bipolar 2GS/s 6b flash A/D conversion LSI," IEEE International Solid-State Circuits Conference, vol. XXXI, pp. 232-233, February 1988

Reducing Flash ADC Complexity

E.g. 10-bit "straight" flash

- Input range: 0 ... 1V
- LSB = $\Delta: \sim 1 \mathrm{mV}$
- Comparators: 1023 with offset < 1/2 LSB
- Assuming Cin for each comparator is 0.1 pF \& power 3 mW
- Total input capacitance: 1023 * $100 \mathrm{fF}=102 \mathrm{pF}$
- Power: 1023 * $3 m W=3 W$
\rightarrow High power dissipation \& large area \& high input cap.
Techniques to reduce complexity \& power dissipation :
- Interpolation
- Folding
- Folding \& Interpolation
- Two-step, pipelining

Interpolation

- Idea
- Reduce number of preamps \& instead interpolate between preamp outputs
- Reduced number of preamps
- Reduced input capacitance
- Reduced area, power dissipation
- Same number of latches (2 $2^{\mathrm{B}}-1$)
- Important "side-benefit"
- Decreased sensitivity to preamp offset \rightarrow Improved DNL

Simulink Model

Differential Preamp Output

Differential output crossings @ $\mathrm{V}_{\text {in }}=$

$$
\begin{aligned}
& V_{\text {ref1 }}=1 \Delta \\
& V_{\text {ref2 }}=2 \Delta
\end{aligned}
$$

Note: Additional crossing of

$$
\begin{aligned}
& \mathrm{A}_{1} \&-\mathrm{A}_{2}\left(\mathrm{~A}_{2} \&-\mathrm{A}_{1}\right) \\
& \rightarrow \mathrm{A}_{1}-\left(-\mathrm{A}_{2}\right)=\mathrm{A}_{1}+\mathrm{A}_{2} \\
& \rightarrow \text { cross zero at: } \\
& \mathrm{V}_{\text {ref12 }}=0.5^{*}(1+2) \Delta=1.5 \Delta
\end{aligned}
$$

Interpolation in Flash ADC

Compare A2\& -A1
\rightarrow Comparator output is sign of $A 1+A 2$

Half as many reference voltages and preamps
Interpolation factor:x2
Example: For 10bit straight Flash
ADC need $2^{B}=1024$ preamps compared $2^{\mathrm{B}-1}=512$ for x 2 interpolation

Possible to accomplish higher interpolation factor
\rightarrow Interpolation at the output of preamps

Interpolation in Flash ADC

 Preamp Output Interpolation

Interpolate between two consecutive output via impedance Z

Choices of Z:

1. Resistors (Kimura)
2. Capacitors (Kusumoto)
3. Current mode (Roovers)

Ref: H. Kimura et al, "A 10-b 300-MHz Interpolated-Parallel A/D Converter," JSSC, pp. 438-446, April 1993 K. Kusumoto et al, "A 10-b 20-MHz 30-mW pipelined interpolating CMOS ADC," JSSC, pp.1200-1206, December 1993.
R. Roovers et al, "A $175 \mathrm{Ms} / \mathrm{s}, 6 \mathrm{~b}, 160 \mathrm{~mW}, 3.3 \mathrm{~V}$ CMOS A/D converter," JSSC, pp. 938-944, July 1996.

Interpolation in Flash ADC Preamp Output Interpolation

With 2 sets of interpolation resistors at each preamp outputs \rightarrow three extra intermediate points \rightarrow 2extra bits

Higher Order Resistive Interpolation

Preamp Output Interpolation DNL Improvement

(a)

- Preamp offset distributed over M resistively interpolated voltages:
\rightarrow Impact on DNL divided by M
- Latch offset divided by gain of preamp
\rightarrow Use "large" preamp gain
\rightarrow Next: Investigate how large preamp gain can be

Ref: H. Kimura et al, "A $10-\mathrm{b} 300-\mathrm{MHz}$
Interpolated-Parallel A/D Converter,"
JSSC April 1993, pp.
438-446

Preamp Input Range

If linear region of preamp transfer curve do not overlap
\rightarrow Dead-zone in the interpolated transfer curve! Results in error
\rightarrow Linear consecutive preamp input ranges must overlap i.e. input range w/o output saturation> Δ

Sets upper bound on preamp gain: Preamp ${ }_{\text {gain }}<\mathrm{V}_{\mathrm{DD}} / \Delta$

Interpolated-Parallel ADC

 minimizes effect of sparkle code \& metastability
Ref: H. Kimura et al, "A 10-b 300-MHz Interpolated-Parallel A/D Converter," JSSC April 1993, pp. 438-446

Measured Performance

Resolution	10 b (7+3)
Maximum conversion frequency	300 MHz
Integral non-linearity	± 1.0 LSB
Differential non-linearity	± 0.4 LSB
SNR/THD $\quad 10 \mathrm{MHz}$ input	56/-59 dB
50 MHz input	48/-47 dB
Input capacitance	8 pF Nww Low input capacitance
Input range	2 V Nw 1LSB=2mV
Power supply	-5.2V
Power dissipation	4.0W
Chip size	$9.0 \times 4.2 \mathrm{~mm}^{2}$
Element count	36,000
Technology	$1.0 \mu \mathrm{~m}$ bipolar: $\mathrm{ft}=\mathbf{2 5 G H z}$

Ref: H. Kimura et al, "A 10-b 300-MHz Interpolated-Parallel A/D Converter," JSSC April 1993, pp. 438-446

Interpolation Summary

- Consecutive preamp transfer curve linear region need to have overlap \rightarrow Limits gain of preamp to $\sim V_{D D} / \Delta$
- The added impedance at the output of the preamp typically reduces the bandwidth and affects the maximum achievable frequencies
- DNL due to preamp offset reduced by interpolation factor M
- Interpolation reduces \# of preamps and thus reduces input Chowever, the \# of required latches the same as "straight" Flash
\rightarrow Use folding to reduce the \# of latches

Folding Converter

Folding Circuit

- Two ADCs operating in parallel
- MSB ADC
- Folder + LSB ADC
- Significantly fewer comparators compared to flash
- Medium fast
- Typically, nonidealities in folder limit resolution

Example: Folding Factor of 4

- Folding factor:
\rightarrow number of folds ($2^{\text {BMSB }}$)
- Folder maps input to smaller range
- MSB ADC determines which fold input is in
- LSB ADC determines position within fold
- Logic circuit combines LSB and MSB results

Example: Folding Factor of 4

- How are folds generated?

Fold $1 \rightarrow V_{\text {out }}=+V_{\text {in }}$
Fold $2 \rightarrow V_{\text {out }}=-V_{\text {in }}+V_{F S} / 2$
Fold $3 \rightarrow V_{\text {out }}=+V_{\text {in }}-V_{F S} / 2$
Fold $4 \rightarrow V_{\text {out }}=-V_{\text {in }}+V_{F S}$

- Note: Sign change every other fold + reference shift

Vref1 < Vref2 < Vref3 < Vref4
As Vin changes, only one of M1, M3, M5, M7 is on depending on the input level

CMOS Folder Output

CMOS folder transfer curve max. min. portions:
\rightarrow Rounded
\rightarrow Accurate only at zero-crossings

In fact, most folding ADCs do not use the folds, but only the zero-crossings!

Parallel Folders Using Only Zero-Crossings

Parallel Folder Outputs

- 4 folders with 4 folds each
- 16 zero crossings
- $\rightarrow 4$ LSB bits
- Higher resolution
- More folders
\rightarrow Large complexity
- Better solution:

Combine with interpolation

Folding \& Interpolation

Folder / Interpolator Output

Example:4 Folders + 4 Resistive Interpolator per Stage

Folder / Interpolator Output Example:2 Folders + 8 Resistive Interpolator per Stage

A 70-MS/s 110-mW 8-b CMOS Folding and Interpolating A/D Converter

Ref: B. Nauta and G. Venes, JSSC Dec 1985, pp. 1302-8

A 70-MS/s 110-mW 8-b CMOS Folding and Interpolating A/D Converter

Note:
Total of $40(\mathrm{MSB}=8, \mathrm{LSB}=32)$ comparators compared to $2^{8}-1=255$ for straight flash

A 70-MS/s 110-mW 8-b CMOS Folding and Interpolating A/D Converter

parameter		
resolution input capacitance reference ladder resistance active area technology	$0.8 \mu \mathrm{~m}, 1 \mathrm{p}$	$\begin{aligned} & 8 \mathrm{bit} \\ & 4.8 \mathrm{pF} \longleftarrow \\ & 720 \Omega \\ & 0.7 \mathrm{~mm}^{2} \\ & \text { oly }, 2 \text { metal, CMOS } \end{aligned}$
supply voltage	$V_{d d}=5 \mathrm{~V}$	$V_{d d}=3.3 \mathrm{~V}$
analog input	2 Vpp	1.4 Vpp
Integral nonlinearity	$\pm 0.5 L S B$	$\pm 1.0 \mathrm{LSB}$
Differential nonlinearity	$\pm 0.2 L S B$	$\pm 0.3 L S B \longleftarrow$
max. clock frequency	70 MHz	45 MHz
power dissipation	110 mW	45 mW

Ref: B. Nauta and G. Venes, JSSC Dec 1985, pp. 1302-8

ADC Architectures

- Slope type converters
- Successive approximation
- Flash
- Interpolating \& Folding
\Rightarrow • Residue type ADCs
- Two-step Flash
- Pipelined ADCs
- ...
- Time-interleaved / parallel converter
- Oversampled ADCs

Two Stage Example

- Use DAC to compute missing voltage
- Add quantized representation of missing voltage
- Why does this help? How about $\varepsilon_{\mathrm{q} 2}$?
- Since maximum voltage at input of the $2^{\text {nd }} A D C$ is $V_{\text {reft }} / 4$ then for $2^{\text {nd }}$ ADC $\mathrm{V}_{\text {ret } 2}=\mathrm{V}_{\text {ref1 }} / 4$ and thus $\varepsilon_{\mathrm{q} 2}=\varepsilon_{\mathrm{q} 1} / 4=\mathrm{V}_{\text {reft }} / 16 \rightarrow 4$ bit overall resolution

Two Step (2+2) Flash ADC

- Fine ADC is re-used 2^{2} times
- Fine ADC's full scale range needs to span only 1 LSB of coarse quantizer

$$
\varepsilon_{q 2}=\frac{V_{r e f 2}}{2^{2}}=\frac{V_{r e f 1}}{2^{2} \cdot 2^{2}}
$$

Two-Stage (2+2) ADC Transfer Function

- Operation:
- Coarse ADC determines MSBs
- DAC converts the coarse ADC output to analog- Residue is found by subtracting $\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{DAC}}\right)$
- Fine ADC converts the residue and determines the LSBs
- Bits are combined in digital domain
- Issue:

1. Fine ADC has to have precision in the order of overall ADC $1 / 2 \mathrm{LSB}$
2. Speed penalty \rightarrow Need at least 1 clock cycle per extra series stage to resolve one sample

Solution to Issue (1) Reducing Precision Required for Fine ADC

- Accuracy needed for fine ADC relaxed by introducing inter-stage gain
- Example: By adding gain of $x\left(G=2^{B 1}=4\right)$ prior to fine ADC in (2+2)bit case, precision required for fine ADC is reduced to 2 -bit only!
- Additional advantage- coarse and fine ADC can be identical stages

Solution to Issue (2) Increasing ADC Throughput

- Conversion time significantly decreased by employing T/H between stages
- All stages busy at all times \rightarrow operation concurrent
- During one clock cycle coarse \& fine ADCs operate concurrently:
- First stage samples/converts/generates residue of input signal sample \# n
- While $2^{\text {nd }}$ stage samples/converts residue associated with sample \# n-1

Residue Type ADCs

- Two-Step flash
\Rightarrow - Pipelined ADCs
- Basic operation
- Effect of sub-ADC, sub-DAC, gain stage non-idealities on overall ADC performance
- Error correction by adding redundancy
- Digital calibration
- Correction for inter-stage gain nonlinearity
- Implementation
- Practical circuits
- Stage scaling
- Combining the bits
- Stage implementation
- Circuits
- Noise budgeting
- How many bits per stage?

Pipeline ADC

Block Diagram

- Idea: Cascade several low resolution stages to obtain high overall resolution (e.g. 10bit ADC can be built with series of 10 ADCs each 1-bit only!)
- Each stage performs coarse A/D conversion and computes its quantization error, or "residue"
- All stages operate concurrently

- Stages operate on the input signal like a shift register
- New output data every clock cycle, but each stage introduces at least $1 / 2$ clock cycle latency

Pipeline ADC Latency

Note: One conversion per clock cycle \& 8 clock cycle latency [Analog Devices, AD 9226 Data Sheet]

Pipeline ADC Characteristics

- Number of components (stages) grows linearly with resolution
- Pipelining
- Trading latency for overall component count
- Latency may be an issue in e.g. control systems
- Throughput limited by speed of one stage \rightarrow Fast
- Versatile: 8...16bits, 1...400MS/s
- One important feature of pipeline ADC: many analog circuit non-idealities can be corrected digitally

Pipeline ADC
 Digital Data Alignment

- Digital shift register aligns sub-conversion results in time

Cascading More Stages

- LSB of last stage becomes very small
- All stages need to have full precision
- Impractical to generate several $\mathrm{V}_{\text {ref }}$

- Practical pipelines by adding inter-stage gain \rightarrow use single $\mathrm{V}_{\text {ref }}$
- Precision requirements decrease down the pipe
- Advantageous for noise, matching (later), power dissipation

Complete Pipeline Stage

E.g.:
$B=2$

$$
G=2^{2}=4
$$

Note: None of the blocks have ideal performance
 Question: What is the effect of the non-idealities?

Pipeline ADC Errors

- Non-idealities associated with sub-ADCs, sub-DACs and gain stages \rightarrow error in overall pipeline ADC performance
- Need to find means to tolerate/correct errors
- Important sources of error
- Sub-ADC errors- comparator offset
- Gain stage offset
- Gain stage gain error
- Sub-DAC error

Pipeline ADC Single Stage Model

$$
V_{\text {res }}=G x \varepsilon_{q}
$$

Pipeline ADC Multi-Stage Model

Pipeline ADC Model

- If the "Analog" and "Digital" gain/loss is precisely matched:

$$
\begin{aligned}
& D_{o u t}=V_{i n, A D C}+\frac{\varepsilon_{q n}}{\prod_{j=1}^{n-1} G_{j}} \text { where } \varepsilon_{q n}=\frac{V_{r e f}}{2^{B n}} \quad \& B n=\# \text { of bits in final stage } \\
& \text { D.R. }=20 \log \frac{r m s \text { FS Signal }}{\text { rms Quant. Noise }}=20 \log \frac{\frac{V_{r e f}}{2 \sqrt{2}}}{\frac{V_{r e f}}{\sqrt{12 \times 2^{B_{n}}} \prod_{j=1}^{n-1} G_{j}}}=20 \log \left(\sqrt{\frac{3}{2}} \times 2^{B_{n}} \times \prod_{j=1}^{n-1} G_{j}\right) \\
& B_{A D C} \approx \log _{2}\left(2^{B_{n}} \times \prod_{j=1}^{n-1} G_{j}\right) \\
& B_{A D C} \approx B_{n}+\log _{2} \prod_{j=1}^{n-1} G_{j}
\end{aligned}
$$

Pipeline ADC Observations

- The aggregate ADC resolution is independent of sub-ADC resolution!
- Effective stage resolution $\mathrm{B}_{\mathrm{j}}=\log _{2}\left(\mathrm{G}_{\mathrm{j}}\right)$
- Overall conversion error does not (directly) depend on sub-ADC errors!
- Only error term in $\mathrm{D}_{\text {out }}$ contains quantization error associated with the last stage
- So why do we care about sub-ADC errors?
> Go back to two stage example

Pipeline ADC Three Ways to Deal with Sub-ADC Errors

- All involve "sub-ADC redundancy"
- Redundancy in stage that produces errors
- Choose gain for residue to be processed by the $2^{\text {nd }}$ stage $<2^{B 1}$
- Higher resolution sub-ADC \& sub-DAC
- Redundancy in succeeding stage(s)
(1) Inter-Stage Gain Following $1^{\text {st }}$ Stage $<2^{B 1}$

- Choose G_{1} less than $2^{B 1}$
- Effective stage resolution could become non-integer $\mathrm{B}_{1 \text { eff }}=\log _{2} \mathrm{G}_{1}$
- E.g. if $\mathrm{G}_{1}=3.8 \rightarrow$
$B_{1 \text { eff }}=1.8$ bit
-Ref: A. Karanicolas et. al., JSSC 12/1993

Correction Through Redundancy

(2) Higher Resolution Sub-ADC

