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Lecture Outline

How does the human nervous system 
generate a movement of the hand?

• Basic Control Theory
Engineering for Neuroscientists

– Feedforward and Feedback 
Control

• Elements of the human motor system
Neurophysiology for Engineers

– Actuators, Sensors, Circuits
• Models of Human Motor Control

– Theories, History, Experimental 
Evidence

• Consequences for Neuro-Robotics
– Brain-machine interfaces

Source: J. McIntyre
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P Dizio and J Lackner J. Neurophysiol. 1994.

• Subjects seated at the center of circular room.
• The entire room spins continuously at 60°/s.
• The vestibular system is sensitive to changes 
in angular velocity. 
•After a few seconds, the subject has no 
perception that the room is turning.

A Key Experiment

• Subjects perform a reaching movement toward a 
target located straight ahead.

• The interaction of the hand linear velocity and the 
rotation of the room results in a Coriolis force.

• The Coriolis force is perpendicular to the hand 
velocity and proportional in amplitude.

no velocity = no Coriolis Force



Results

P Dizio and J Lackner J. Neurophysiol. 1994.



Question: Is this evidence for 
feedforward or feedback control of 

movement?

• Feedback
– Correction of hand 

trajectory toward the 
target.

Answer: YES!

• Feedforward
– Learning
– After-effect
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Hypothesis: 
Feedback 
tunes 
Inverse Model

Kawato, M., Furawaka, K. & Suzuki, R. 
A. Biol. Cybern. 56, 1–17 (1987).

Kawato, M. & Gomi, H. Trends 
Neurosci. 15, 445–453 (1992).

see: Wolpert, D and Ghahramani, Z. Nat. 
Neurosci. Suppl. 3, 1212–1217 (2000). 

Where do Inverse Models come from?



Exploiting the physics (revisited)



• Exploiting the physics (revisited)
– Example: Passive walkers

• Strong coupling between body architecture and control
• http://www.sciencemag.org/feature/misc/hp_jumps/robots/cornell.html

Collins et al. Science 307, 1082 (2005) 



Impedance control

• The mechanical impedance of the 
neuromuscular system determines the 
reaction forces on the hand in response 
to perturbations from the manipulated 
object

• Q. Does the CNS modulate impedance?
– Fact: CNS is capable of varying the total stiffness 

and viscosity about a joint…



Impedance control
• Coactivation of antagonist muscles is 

frequently observed under normal 
physiological conditions

• Simultaneous activation of antagonists 
does not contribute to the useful work 
output of muscles (work = energy 
transferred by a force)

• Yet it costs input metabolic energy!
– Question: What is the purpose?



N. Hogan, IEEE Trans Automatic Control, 1984

• Hogan’s postulate: CNS 
adaptively tunes the 
parameters of controlled 
system by antagonist 
coactivation

• Z control strategies
– Feedback

• + computationally cheap
• - limited bandwidth and 

delay problems

– Feedforward
• + no bandwidth and delay 

limits
• - metabolically expensive



external
perturbation

external
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external
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increase
impedance

compute 
FF correction

after learning remove perturbation

Which mechanism for disturbance 
compensation?



E Burdet et al. Nature 2001.

How do we succeed in performing 
mechanically unstable tasks?

H. Impedance can be voluntarily modified independently of the 
force applied by the hand



Lab version: Divergent Force Field

E Burdet et al. Nature 2001.



Adaptation of Hand 
Impedance

E Burdet et al. Nature 2001.



Brain Machine Interfaces



Key facts in BMI history
• Studies from Fetz and colleagues in the 70s 

demonstrated the concept of biofeedback.



Volitional control of neural activity

Eb Fetz (U. Washington)

Fetz and Baker, 1973



Key facts in BMI history



Volitional control of neural activity

E. Fetz, J Physiology, 2007



Evidence of volitional activation 
associated with behavior

• During control of movement
– Movement preparation (Wise et al. 1983; 

Kurata & Wise, 1988; Alexander & Crutcher, 
1990; Riehle & Requin, 1995; Crutcher et al. 
2004).

– Execution of voluntary movements (Evarts, 
Mountcastle, Georgopoulos and many others)

– Imagined movements (Jeannerod, 1995; Roth 
et al. 1996; Jeannerod & Frak,1999; Niyazov
et al. 2005)



Key facts in BMI history
• Studies from Fetz and colleagues in the 70s 

demonstrated the concept of biofeedback.

• More recently, Iriki and others showed how 
body schema extends along a reaching 
tool after long term usage.



Key facts in BMI history
• Studies from Fetz and colleagues in the 70s 

demonstrated the concept of biofeedback.

• More recently, Iriki and others showed how 
body schema extends along a reaching 
tool after long term usage.

• Recent fMRI studies indicate that cortical 
areas involved in motor planning and 
execution remain active in paralyzed 
patients years after spinal cord injuries.



BMI classification

• Based on the approach used
– Non-invasive 

• EEG, e.g. cursor and wheelchair control
• PET/MRI/MEG are not portable and very expensive

– Invasive 
• Chronic microelectrode arrays

• Based on the flow of information
– Encoding (sensory prosthesis)

• e.g. cochlear implant, artificial retina…

– Decoding (motor prosthesis)
• e.g. cursor control, robot reaching and grasping…



Recorded neural activity:
spatial domains

Schwartz et al. Neuron, 2006

+

In
fo

rm
at

io
n,

 re
so

lu
tio

n

In
va

si
ve

ne
ss

+ -

+

Sa
fe

ty

Awake, behaving 
neurophysiology barrier!

- -



Source: Shenoy’s lab



Cognitive prosthesis
Musallam et al., 2004

• Example of discrete control BMI

• Simultaneous decoding of goal of 
movement + expected value signals
(e.g. juice reward) 

• Subjects became proficient through  
training (BMI induced cortical plasticity) 



Motor prostheses

• Previous BMI work has relied 
on predictions of the end 
effector (hand) position and 
velocity.

• Is this because M1 encodes 
high-level parameters of 
hand movement ?
– Big debate in neuroscience! 



One motor cortex,
two different views

1. Georgopoulos
– Neuronal population vector
– M1 correlates with high-level parameters

of hand movement 



E. Todorov, Nature Neurosc. 2000

Causal flow from the MI output through 
spinal processing, muscle force production 
and multijoint mechanics to endpoint force. 

Predictions about MI activity are
obtained by ‘inverting’ that causal flow.

One motor cortex,
two different views

2. Todorov



Motor prosthesis
Taylor et al., 2002

• Example of continuous control BMI with peri-
event movement (to be discussed later in the  
course)

• 3D reaching movements

• Evidence of cell tuning changes in brain   
control movements and improvement with  
training (BMI induced cortical plasticity) 



CHRONIC, MULTISITE, 
MULTIELECTRODE RECORDINGS

PNAS 100(19), 2003.

• Materials: Tungsten, polymide insulation,
gold plated tip. 

• Separation: 250-800μm
• Diameter: 35-50μm
• Impedance: 0.2-1 MegOhm @ 1kHz, 5nA

1 cm

PP

SMA

PMdS1 M1

• SMA: supplementary motor area 
• PMd: dorsal premotor cortex
• M1: primary motor cortex
• S1: primary somatosensory cortex
• PP: posterior parietal cortex (MIP)

140uV



BMI MODELING:
DECODING MOTOR OUTPUT FROM SPIKE TRAINS 
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where b are the Y-intercepts, a is a set of 
weights required for the fitting as function of 
time lag u, and ε(t) are the residual errors. 
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PREDICTIONS OF POSITION, VELOCITY, 
& GRIPPING FORCE

Predicted

Observed

PLoS Biology 1(2), 2003.



PMd M1 S1 SMA
M1ips

CONTRIBUTION OF INDIVIDUAL NEURONS TO 
MODEL PREDICTIONS

- Information distributed across fronto-parietal cortical areas
- Single neurons contribute to multiple motor parameters



CONTRIBUTION OF DIFFERENT CORTICAL AREAS

PLoS Biology 1(2), 2003.



EXPERIMENTAL SETUP & BEHAVIORAL TASKS

Task 1 Task 2

Task 3

PLoS Biology 1(2), 2003.

training

training

training

0 10

60sec.

online testing

time (min) 25 30

brain control

online testing

Freeze model



PERFORMANCE IMPROVEMENT WITHIN SESSION
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Biofeedback works!



Robot introduced

CHANGES IN PERFORMANCE WITH LEARNING

TASK 11

TASK 22 TASK 33

Brain Control

Pole Control

Chance level

Rapid adaptation

PLoS Biology 1(2), 2003.



Q. What can be learned from the monkeys’ behavior? 



Reduced frequency of low velocities may reflect BMI 
difficulty for posture control



CHANGES IN DIRECTIONAL TUNING
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Trends in Neurosc. (Lebedev & Nicolelis, 2006)

DISCUSSION

ULTIMATE GOAL

So what do we need to get here? 



Discussion
• Why do we need dynamics in BMIs?

– Isn’t kinematics enough? 
• i.e. taking advantage of motors, power, etc to resist 

perturbations (e.g. by increasing Z)



Discussion
• Why do we need dynamics in BMIs?

– Isn’t kinematics enough? 
• i.e. taking advantage of motors, power, etc to resist 

perturbations (e.g. by increasing Z)

• Problem! unstable tasks, tasks that will 
require low impedance…
– How does the robot know how the user wants 

to interact with the object/environment? 
We need impedance control!



Neural
control

Robot
control

“Prosthetic house”

Shared control: What’s 
the optimal compromise?

DISCUSSION

Trends in Neurosc. (Lebedev & Nicolelis, 2006)

ULTIMATE GOAL

Planning + Execution
P, V, Force, Impedance, Posture…
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