Lecture Outline

How does the human nervous system
generate a movement of the hand?

Basic Control Theory
Engineering for Neuroscientists

— Feedforward and Feedback
Control

Elements of the human motor system
Neurophysiology for Engineers
— Actuators, Sensors, Circuits
Models of Human Motor Control

— Theories, History, Experimental
Evidence

Consequences for Neuro-Robotics
— Brain-machine interfaces
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Forward Problems

Source: J. Mclntyre

SWa|qoJdd astanu|

|



Feedforward versus Feedback Control
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Feedforward Control: compute control based on knowledge of physics
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A Key Experiment

WATSMART

S « Subjects seated at the center of circular room.
 The entire room spins continuously at 60°/s.

@ \ “** e The vestibular system is sensitive to changes
remaon st pastomion | @ngular velocity.

40 reaches to 40 reaches to 40 reaches to )
Vet arge *"‘"“5.1::;2‘* e oAfter a few seconds, the subject has no
perception that the room is turning.

P Dizio and ] Lackner . Neurophysiol. 1994.

 Subjects perform a reaching movement toward a A Torimon)
target located straight ahead. T

 The interaction of the hand linear velocity and the
rotation of the room results in a Coriolis force. @,\\7
» The Coriolis force is perpendicular to the hand
velocity and proportional in amplitude.

no velocity = no Coriolis Force
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Question: Is this evidence for
feedforward or feedback control of
movement?

Answer: YES!

 Feedback

— Correction of hand
trajectory toward the
target.

B

— Pre-rotation .
O Per-rotation, Initial  §

¢ Feedfo rwa rd @ Per-rotation, Final

— Learning o
— After-effect

5cm



Feedforward Control: compute control based on knowledge of physics
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Feedback Control: generate commands based on error signals
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Where do Inverse Models come from?

#  Desired state Estimated state ™\
Hypothesis: é i,,
Feedback : =
tunes Og‘:sgs
Inverse Model s «L

Feedback

Feedforward

CDTH?;E:]EI O cc:”r:’?r}’l{;rnd
Kawato, M., Furawaka, K. & Suzuki, R. T
A. Biol. Cybern. 56, 1-17 (1987). ~~ —

Kawato, M. & Gomi, H. Trends
Neurosci. 15, 445-453 (1992).

Sensory
feedback

see: Wolpert, D and Ghahramani, Z. Nat.
Neurosci. Suppl. 3, 1212-1217 (2000).



Exploiting the physics (revisited)



« EXxploiting the physics (revisited)
— Example: Passive walkers

« Strong coupling between body architecture and control
 http://www.sciencemag.org/feature/misc/hp_jumps/robots/cornell.html

Energy Consumed

(per unit weight per unit distance)
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Energetic Cost of Transport

Asimo Cornell Biped Humans
Collins et al. Science 307, 1082 (2005)



Impedance control

 The mechanical impedance of the
neuromuscular system determines the
reaction forces on the hand in response
to perturbations from the manipulated
object

« Q. Does the CNS modulate impedance?

— Fact: CNS is capable of varying the total stiffness
and viscosity about a joint...



Impedance control

« Coactivation of antagonist muscles is
frequently observed under normal
physiological conditions

« Simultaneous activation of antagonists
does not contribute to the useful work
output of muscles (work = energy
transferred by a force)

* Yet it costs input metabolic energy!
— Question: What is the purpose?



SURFACE MYOELECTRIC ACTIVITY
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 Hogan's postulate: CNS

adaptively tunes the
parameters of controlled
system by antagonist
coactivation

Z control strategies

— Feedback

« + computationally cheap

e - limited bandwidth and
delay problems

— Feedforward
* + no bandwidth and delay
limits
« - metabolically expensive

N. Hogan, IEEE Trans Automatic Control, 1984



Which mechanism for disturbance
compensation?
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How do we succeed in performing
mechanically unstable tasks?

r

[ ¥y
d EREANA LT
.'III'III‘II;]".ll"" f F "'J.lr'-
F s B R e, Mg

J I.'.-.J:I,“ ""“I”IE:!"I: o i :

S o) |--.r.-’I

- o I LY [y

H. Impedance can be voluntarily modified independently of the
force applied by the hand

E Burdet et al. Nature 2001.



Lab version: Divergent Force Field
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Adaptation of Hand
Impedance

b 15, Endpoint force
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E Burdet et al. Nature 2001.

-10 0 0.7



Brain Machine Interfaces




Key facts in BMI history

» Studies from Fetz and colleagues in the 70s
demonstrated the concept of biofeedback.




Average firing rate (pulses/second)

Volitional control of neural activity
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Key facts in

!

Annals of Biomedical Engineering, Vol. 8, pp. 339-349, 1980 0090-6964/80/040339-11 $02.00/0
Printed in the USA. 1981 Pergamon Press Ltd.

SINGLE NEURON RECORDING
FROM MOTOR CORTEX
AS A POSSIBLE SOURCE OF SIGNALS
FOR CONTROL OF EXTERNAL DEVICES

Edward M. Schmidt

Laboratory of Neural Control
National Institute of Neurological and Communicative Disorders and Stroke
Natjonal Institutes of Health
Bethesda, Maryland

BMI history
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Volitional control of neural activity

Basic BCI/BMI paradigm

[ Neural Transform Cursor,
Robot arm

Basic biofeedback paradigm

\ g Feedback
- Visual Activity ] algorithm =
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Feedback[lll ¢ niroller 1 l

Correlated
Activity

Reinforced
Volitional ” _'
Controller

1

Correlated
Activity

Reward =9

E. Fetz, J Physiology, 2007



Evidence of volitional activation
associated with behavior

* During control of movement

— Movement preparation (Wise et al. 1983;
Kurata & Wise, 1988; Alexander & Crutcher,
1990; Riehle & Requin, 1995; Crutcher et al.
2004).

— Execution of voluntary movements (Evarts,
Mountcastle, Georgopoulos and many others)

— Imagined movements (Jeannerod, 1995; Roth
et al. 1996; Jeannerod & Frak,1999; Niyazov
et al. 2005)




Key facts in BMI history

« Studies from Fetz and colleagues in the 70s
demonstrated the concept of biofeedback.

* More recently, Iriki and others showed how
body schema extends along a reaching
tool after long term usage.

e
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Key facts in BMI history

« Studies from Fetz and colleagues in the 70s
demonstrated the concept of biofeedback.

* More recently, Iriki and others showed how
body schema extends along a reaching
tool after long term usage.

 Recent fMRI studies indicate that cortical
areas involved in motor planning and
execution remain active in paralyzed

patients years after spinal cord injuries.




BMI classification

« Based on the approach used

— Non-invasive
* EEG, e.qg. cursor and wheelchair control
« PET/MRI/MEG are not portable and very expensive

— Invasive
« Chronic microelectrode arrays

« Based on the flow of information

— Encoding (sensory prosthesis)
* e.g. cochlear implant, artificial retina...

— Decoding (motor prosthesis)
* e.g. cursor control, robot reaching and grasping...




Information, resolution

Recorded neural activity:

Invasiveness

spatial domains
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Spike sort
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Cognitive prosthesis
Musallam et al., 2004

A Reach Trial Brain Control Trial

| » Example of discrete control BMI

Cue =3 o = ~ * Simultaneous decoding of goal of

| |'-\ _ movement + expected value signals
Memory aal (e.g. juice reward)
=20oce « Subjects became proficient through
b training (BMI induced cortical plasticity)

Go Feedback

Reach




Motor prostheses

* Previous BMI work has relied
on predictions of the end —
effector (hand) position and )
velocity.
 |s this because M1 encodes
nigh-level parameters of
nand movement ?
— Big debate in neuroscience!




One motor cortex,
two different views

1. Georgopoulos
— Neuronal population vector

— M1 correlates with high-level parameters
of hand movement




One motor cortex,
two different views

Direct cortical control of muscle
2. Todorov activation in voluntary arm

movements: a model

Emanuel Todorov

Gatsby Computational Newroscience Unit, University College Londorn, 17 Queeen Square London WCIN 3 AR, UK

¥ Correspondence should be directed vo ET. (ermo@garsby. uclacuk)

brain
Causal flow from the MI output through
spinal processing, muscle force production
| causality > and multijoint mechanics to endpoint force.
< =_— | Predictions about MI activity are

obtained by ‘inverting’ that causal flow.

E. Todorov, Nature Neurosc. 2000



Motor prosthesis
Taylor et al., 2002

« Example of continuous control BMI with peri-
event movement (to be discussed later in the
course)

3D reaching movements

 Evidence of cell tuning changes in brain
control movements and improvement with
training (BMI induced cortical plasticity)




CHRONIC, MULTISITE,
MULTIELECTRODE RECORDINGS

8 9 10 11 12 13 14 15 16

* SMA: supplementary motor area

* PMd: dorsal premotor cortex

* M1: primary motor cortex

« S1: primary somatosensory cortex
* PP: posterior parietal cortex (MIP)
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* Materials: Tungsten, polymide insulation, O

gold plated tip. P
» Separation: 250-800um Lo| oo N 100] Wao | Wen| Froo] Wi
* Diameter: 35-50um PNAS 100(19), 2003.

* Impedance: 0.2-1 MegOhm @ 1kHz, 5nA



BMI MODELING:
DECODING MOTOR OUTPUT FROM SPIKE TRAINS

[x]
Kinenpatics
Cursc_)r
Spiked
<« A ]
100 ms Time
10 Lags 3 2 1 motor output
Measurement

Linear regression model

n
y(t)=b+ Za(u)x(t —u) +&(t) where b are the Y-intercepts, a is a set of
u=—m weights required for the fitting as function of

time lag u, and &(t) are the residual errors.
Y=XA, A=inv(XTX)XTY



PREDICTIONS OF POSITION, VELOCITY,
& GRIPPING FORCE

== Observed

== Predicted

0 20 40 60
Time (s)

PLoS Biology 1(2), 2003.



CONTRIBUTION OF INDIVIDUAL NEURONS TO
MODEL PREDICTIONS

0.6 Position
o 0.3F
0
0.6 Velocity

Gripping Force

1 182

PMd M1 S1 SMA
M1ips

- Information distributed across fronto-parietal cortical areas
- Single neurons contribute to multiple motor parameters



CONTRIBUTION OF DIFFERENT CORTICAL AREAS

Gripping Force
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PLoS Biology 1(2), 2003.



EXPERIMENTAL SETUP & BEHAVIORAL TASKS

Data Acquisition Box
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PLoS Biology 1(2), 2003.



PERFORMANCE IMPROVEMENT WITHIN SESSION

Percent of
Correct Trials
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CHANGES IN PERFORMANCE WITH LEARNING

Monkey 1
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Monkey 1

A Pole Control, Hand B BowH, Hand € BowH, Robot D BCwO, Robot

PARAPA

’-i-
Monkey 2

E rolecontrol, Hand F BcwH, Hand G BcwH, Robot H  Bcwo, Robot

el

i

Q. What can be learned from the monkeys’ behavior?



Monkey 1

A Pole Control, Hand B BowH, Hand € BowH, Robot D BCwO, Robot

bdlels

Monkey 2

E rolecontrol, Hand F BcwH, Hand G BcwH, Robot H  Bcwo, Robot

ddde

Reduced frequency of low velocities may reflect BMI
difficulty for posture control



Tuning depth
Pole control
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CHANGES IN DIRECTIONAL TUNING
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PLoS Biology 1(2), 2003.



DISCUSSION

ULTIMATE GOAL

Fully implantable multichannel
recording device

Wireless
link

So what do we need to get here?

Portable
@ controller

Mechanical
actuators with
both power and
accuracy

1

Touch and
position
Sensors

Trends in Neurosc. (Lebedev & Nicolelis, 2006)



Discussion

* Why do we need dynamics in BMIs?

— Isn’t kinematics enough?

* i.e. taking advantage of motors, power, etc to resist
perturbations (e.g. by increasing Z)



Discussion

* Why do we need dynamics in BMIs?

— Isn’t kinematics enough?

* i.e. taking advantage of motors, power, etc to resist
perturbations (e.g. by increasing Z)

 Problem! 2 unstable tasks, tasks that will
require low impedance...

— How does the robot know how the user wants
to interact with the object/environment?

- We need impedance control!



DISCUSSION

ULTIMATE GOAL

Fully implantable multichannel
recording device

Planning + Execution
P, V, Force, Impedance, Posture...

W' [ A
e Neural
control

Portable
controller

Shared control: What's
the optimal compromise?

F Mechanical
actuators with
both power and
accuracy

1

Touch and
position
Sensors

o

Robot
Trends in Neurosc. (Lebedev & Nicolelis, 2006) control

“Prosthetic house”
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