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(A'™C = 140% in the atmosphere). If the production rate changed
to the present-day value some time in the early Holocene, the
decreasing trend between 5000 and 0 BC would reflect the
exponential decay of '“C with a half-life of 5,730 yr. The
maximum of the '*C concentration between 6000 and 4000 BC
and the increase after AD 0 could have been caused by a chang-
ing geomagnetic dipole moment, as indicated by the palaecomag-
netic data®.

The late glacial production rate is therefore essential for the
interpretation of the long-term trend in '*C concentration.
Unfortunately, the '°Be signal at that time is completely masked
by climate effects. There are, however, "*C dates from varves?!
indicating that the atmospheric *C level was higher at the end
of the last glaciation. These results are in agreement with data
indicating that the geomagnetic field was weaker during the
period 50,000-10,000 yr BP°’.

Conclusions

The comparison of the Camp Century '°Be record with 8'%0
and A'C shows that '°Be measurements on polar ice cores give
valuable information. Strong climatic changes such as the transi-

Received 20 July; accepted 7 December 1987,

1. Bucha, V.in Radiocarbon Variations and Absolute Chronology, 501-513 (Almquist & Wiksell,
Stockholm, 1970).

Suess, H. in Radiocarbon Variations and Absolute Chronology, 595-605 (Almquist & Wiksell,
Stockholm, 1970).

. Stuiver, M. & Quay, P. D. Science 207, 11-19 (1980).

. Raisbeck, G. M. er al. Nature 292, 825-826 (1981).

Beer, ). et al. Ann. Glaciol. §, 16-18 (1984).

. Yiou, F., Raisbeck, G. M., Bourles, D., Lorius, C. & Barkov, N. I. Nature 316,616-617 (1985).

Eddy, J. A. Science 192, 1189-1201 (1976).

. Beer, J. et al. in Proc. 18th int. Cosmic Ray Conf. Bangalore vol. 9 (eds Durgaprasad, N.,
Ramadurai, S., Ramana Murthy, P. V., Rao, M. V. S. & Sivaprasad, K.) 317-320 (P. V.
Ramana Murthy, Bombay, 1983).

9. Beer, J. et al. Nucl. Instrum. Meth. B10/11, 415-418 (1985).

10. Beer, J. et al. Nucl Instrum. Meth. BS, 380-384 (1984).

11. Ueda, H. T. & Garfield, D. E. U.S. Army Cold Regions Res. Engng Lab. spec. Rep. 126 (1968).

12. Johnsen, S.J., Dansgaard, W., Clausen, H. B. & Langway, C. C. Nature 238, 429-434 (1972).

13. Beer, J. et al. Radiocarbon 28, 269-278 (1983).

14. Suter, M. et al. Nucl. Instrum. Meth. BS, 117-122 (1984).

15. Raisbeck, G. M. et al. Nature 326, 273-277 (1987).

16. Raisbeck, G. M. & Yiou, F. Ann. Glaciol. 7, 138-140 (1985).

17. Hammer, C. U. et al. J. Glaciol. 20, 3-25 (1978).

~

[ AT N

ARTICLES o

tion from glacial to interglacial times or climatic fluctuations
during glaciation are clearly visible in the '°Be record, but
climatic variations do not seem to have had much influence
during the Holocene. The good correlation between the main
short-term variations of both the '°Be record in ice and the '*C
record in tree-rings over the past 5,000 yr strongly supports the
explanation that these fluctuations are caused by solar modula-
tion of the Galactic cosmic-ray flux. The comparison of '°Be
and "*C also makes possible the refinement of ice-core dating
using the technique of wiggle matching.

Less clear conclusions can be drawn regarding the long-term
isotope variations. The '"Be data do not give support to the
hypothesis that the observed slow '*C decrease was due to a
gradual geomagnetic field change. They suggest, rather, that the
C trend might be the result of a 20% higher production rate
during the last 10,000-15,000 years of the ice age.
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A back-propagation programmed network that
simulates response properties
of a subset of posterior parietal neurons

David Zipser” & Richard A. Andersen’
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Neurons in area 7a of the posterior parietal cortex of monkeys respond to both the retinal location of a visual stimulus
and the position of the eyes and by combining these signals represent the spatial location of external objects. A neural
network model, programmed using back-propagation learning, can decode this spatial information from area 7a neurons

and accounts for their observed response properties.

THIS article addresses the question of how the brain carries out
computations such as coordinate transformations which trans-
late sensory inputs to motor outputs. Visual inputs are collected
in the coordinate frame of the retina on which the visual environ-
ment is imaged, but motor movements such as reaching are
made to locations in external space. Changes in eye position
will alter the retinal locations of targets while their spatial
locations remain constant. As a result, visual inputs must be
transformed from retinal coordinates to coordinates that specify

the location of visual objects with respect to the body to perform
accurately directed movements.

Lesions to the posterior parietal cortex in monkeys and
humans produce profound spatial deficits in both motor
behaviour and perception'~. Humans with lesions to this area
can still see but they appear to be unable to integrate the position
of their bodies with respect to visual inputs. The lesion data
further suggest that it is the inferior parietal lobule, which
comprises the posterior half of the posterior parietal cortex,
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Fig. 1 a, Experimental protocol for determining spatial gain
fields, with the projection screen viewed from behind the monkey’s
head. These experiments were carried out several years before the
start of the modelling described here!®, but some of the data are
being presented for the first time. To determine the effect of eye
position, the monkey with head fixed, fixates on a point, £, at one
of 9 symmetrically placed locations on the projection screen. The
stimulus, S, is always presented at the same retinal location, chosen
as the maximum-response zone of the retinal-receptive field. The
stimulus consists of 1- or 6-degree diameter spots flashed for
500 ms. Each measurement is repeated 8 times. b, Peri-stimulus
histograms of a typical gain field determination. The nine his-
tograms are located in the same relative positions as the fixations
that produced them. The vertical line indicates the time of visual
stimulus onset. ¢, A graphic method for illustrating these data in
which the diameter of the darkened inner circle, representing the
visually evoked gain fields is calculated by subtracting the back-
ground activity recorded 500 ms before the stimulus onset from
the total activity during the stimulus. The outer circle diameter,
representing the total response gain fields, corresponds to the total
activity during the stimulus. The annulus diameter corresponds to
the background activity that is due to an eye-position signal alone,
recorded during the 500 ms before the stimulus presentation.

which is involved in spatial processes.

Anatomical and physiological experiments in macaque mon-
keys indicate that the inferior parietal lobule contains at least
four separate cortical fields. Area 7a contains visual and eye-

position neurons®'%; area 7b contains somatosensory and reach-

related cells®!!; area MST contains visual motion and smooth
pursuit eye movement activity (refs 12-14; R. H H. Wurtz and
W. T. Newsome, personal communication); and area LIP con-
tains visual and saccade-related activity'>'®. It has been pro-
posed'®!”-!® that the area most likely to perform spatial transfor-
mations is area 7a. Most of the cells in this region were found
to receive a convergence of both eye-position and retinal signals.
The interaction between eye-position and visual responses was
non-linear, and in most cases the visual rsponse could be mod-
elled as a gain that was a function of eye position multiplied
by the response profile of the retinal receptive field. Thus the
visual receptive field remained retinotopic, but the magnitude
of the response was modulated by eye position. This modulation
can be shown to produce a tuning for the location of targets in
head-centred coordinates that is eye-position-dependent; the
cells will fire most for a particular location in craniotopic space,
but only when the eyes are at the appropriate positions in the
orbits. No cells were found that coded target location over all
eye positions {eye-position-independent coding), indicating that
this information can only be contained in the pattern of activity
of a population of neurons. Here we describe a neural network
model that shows how eye-position-independent location can
be extracted from a population of area 7a neurons. The model
also reproduces the non-linear interactions of eye position and
retinal position information seen in actual area 7a neurons, and
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demonstrates response properties, such as large receptive fields,
which are strikingly similar to those observed in single-unit
recording studies.

The neural modelling technique we use differs significantly
from most previous approaches, which first found an algorithm
to accomplish the computation, and then specified neural models
to implement the algorithm. Our approach is based on the use
of a neural network training procedure, called ‘back propaga-
tion’, which can programme artificial neural networks to com-
pute arbitrary functions (refs 19-23; S. R. Lehky and T. J.
Sejnowski, personal communication). Unlike computer pro-
gramming, programming by training uses only examples of input
and output. This means that it is not necessary to know in
advance the algorithm that the network will use; the learning
process will discover an appropriate algorithm. Back propaga-
tion networks have internal or hidden units that are free to take
on the response properties to best accomplish the computational
task being learned. It is the properties of these hidden units that
we find resemble those of cortical neurons. The back-propaga-
tion procedure accomplishes learning by adjusting the strengths
of the synapses within the network.

Experimental results from area 7a

The experimental data that must be accounted for by any model
of area 7a were collected previously in an extensive series of
studies with awake, unanaesthetized monkeys'®. Here we
describe new analyses of these data that facilitate a comparison
of area 7a cells with the units generated by training the network
model.

Three of the major classes of area 7a neurons are of interest
here: the eye-position cells responding to eye-position only (15%
of all cells sampled from area 7a), the visual cells responding
to visual stimulation only (21%), and the spatially tuned cells
responding to both eye position and visual stimulation (57%).
Neurons in the first two classes presumably represent the eye
position and retinal locaton information available to area 7a as
input. The interaction of eye position and visual information
found in the third class of cells produces a representation for
the head-centred location of visual targets that is eye-position-
dependent.

The experimental protocol involved recording neuronal
activity extra-cellularly from awake, unanaesthetized monkeys
trained in various visuospatial tasks'® (see Fig. 1). The eye-
position sensitivity was tested by having the animal fixate on a
small point at different eye positions, with the head fixed in
otherwise total darkness. The eye-position cells typically showed
a linear increase in activity for a range of horizontal or vertical
eye positions, although some cells showed more complex eye-
position coding. An ensemble of 30 eye-position unit responses
is shown in Fig. 4c. The receptive fields of the visual cells were
tested by flashing a spot stimulus at different locations in the
visual field while the animal fixated on a target at a single eye
position. Surfaces were fit to these data points using a gaussian
interpolation. These cells typically had large receptive fields
equally distributed across the visual field for the population of
neurons with a single peak of activity. The shape of the receptive
fields approximated a symmetrical gaussian with a 1/e width
of 15 degrees (see legend to Fig. 4).

The spatially tuned neurons were the largest group and
showed a convergence of eye position and retinal position
information. The receptive fields are very large (often over 80
degrees in diameter) and have one or more peaks that form a
smoothly changing, hilly landscape. A set of 12 retinal receptive
fields from spatially tuned cells, arranged according to peak
eccentricity and complexity, is shown in Fig. 2.

As mentioned above, the evoked visual response of spatially
tuned neurons varies as a function of eye position. This effect
was examined by collecting data under the condition in which
the visual stimulus always appears at the peak location in the
retinal receptive field, but with the animal fixating at nine
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Fig. 2 The receptive fields of spatially tuned neurons from area 7a, arranged in rows with the eccentricity of the field maxima increasing to

the right, and in columns with the complexity of the fields increasing downwards. Receptive fields were sampled at 17 radially spaced points,

with one sample taken at the centre of the field, and four samples taken on each of four circles of radius 10, 20, 30 and 40 degrees. All the

fields in row a have single peaks. Those in row b have a single large peak but some complexities in the field. The fields in row ¢ are the most
complex with multiple peaks. The data have been normalized so that the highest peak in each field is the same height.

different eye positions'®. These plots are referred to as spatial
gain fields. Figure 1 demonstrates the experimental protocol for
mapping spatial gain fields.

The majority of the spatial gain fields are roughly planar. This
planar behaviour is evident in Fig. 1¢, where the darkened inner
circles are proportional to the magnitude of the visual evoked
response, the outer circle diameter to the total activity during
the flashed stimulus, and the annulus diameter the background
activity due to the eye position alone. The data for the visually
evoked response in Fig. 1¢ can be fitted by a plane tilted up for
eye positions to the left and also tilted up for downward eye
positions. Analysis using linear regressions in the two
dimensions of eye position indicated that the gain fields for the
visually evoked activity (represented by the dark inner circles)
were planar, or had a large planar component, for 55% of the
neurons. Interestingly, 80% of the total response gain fields
(represented by the outer circles) were planar or largely planar.

A useful way to further characterize the nonlinear combina-
tions of eye and retinal information is to compare the contribu-
tions of each to the total response of the cells. This can be done
simply by comparing the dark inner circles, which represent the
visual contribution to the response, with the white annuli, which
represent the eye position contribution to the response. This
comparison shows three basic types of gain fields. For 28% the
background and evoked activities change in a parallel fashion
(Fig. 3b, e, f). In most of the cells (43%), the evoked activity
changes with eye position while the background activity, if any,
remained constant (Fig. 3a, ¢, d); three-quarters of these cells
had very low or undetectable background activity. The remain-
ing 28% of the neurons showed the interesting property that
the background and evoked activities changed in different direc-
tions, so that the activity of either alone was grossly non-planar,
but the overall activity was planar (Fig. 3g, h, i).

The neural network model

We used a three-layer network (illustrated in Fig. 4) that was
trained to map visual targets to head-centred coordinates, given
any arbitary pair of eye and retinal positions. The first, or input,
layer has two sections, an array of units on which the visual
stimulus is represented, and a set of units representing eye
position. The second layer consists of the hidden units, which
map the input to the output. Each hidden unit receives input
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Fig. 3 The spatial gain fields of 9 neurons (a-i) from area 7a in
the format of Fig. lc.
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Fig. 4 a, Back-propagation network used to model area
7a. The visual input consists of 64 units with gaussian a
receptive fields with 1/ e widths of 15 degrees. The centre
of each receptive field occupies a position in an 8 by 8
array with 10 degree spacings. The shading represents
the level of activity for a single-spot stimulus, with darker
shading representing higher rates of activity. The units
have been arrayed topographically for illustrative pur-
poses only; this pattern is not an aspect of the model
as each hidden unit receives input from every one of
the 64 retinal input units. The eye position input consists
of 4 sets of 8 units each with two sets coding horizontal
position (one for negative slope and one for positive
slope) and two sets coding vertical position. Shading
represents the level of activity. The intercepts have been
ordered for illustrative purposes only and do not rep-
resent information available to the hidden layer. Each
eye position cell projects to every unit in the hidden
layer. Two output representations were used; the
gaussian output format is shown on the right and the
monotonic format on the left. The gaussian format units
have gaussian shaded receptive fields plotted in head-
centred coordinates. They have 1/e widths of 15 degrees
and are centred on an 8 by 8 array in head coordinate
space with 10 degree spacings. The monotonic format
units have firing rates that are a linear function of posi-
tion of the stimulus in head-centred coordinates. There
are four sets of 8 units with two sets of opposite slope
for vertical position and two sets for horizontal position
in head-centred coordinates. Again, shading represents
the degree of activity and the topographic ordering is
for illustrate purposes only. The small boxes containing
W indicate the location of the synapses whose weights
are trained by back propagation. Each hidden unit pro-
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jects to every cell in the output layer. The output activity
of the hidden and output layer units is calculated by the
logistic function: output=1/(1+e™ "), where net=
(weighted sum of inputs) + bias. The arrow for the con-
nections represents the direction of activity propagation;
error was propagated back in the opposite direction.
The back-propagation procedure guarantees that the
synaptic weight changes will always move the network
towards lower error by implementing a gradient descent

FIRING

RATE

EYE-POSITION

in error in the multi-dimensional synaptic weight space.

b, Area 7a visual neuron receptive field with a single peak near the fovea. Receptive fields were plotted using the same method as in Fig. 3.
Visual cells that had no eye-position-related activity or modulation of their responses by eye position were used to model the retinal input to
the network. ¢, A composite of 30 area 7a-eye-position units, whose firing rates are plotted as a function of horizontal or vertical eye deviation.
The slopes and intercepts are experimental values for eye-position neurons.

from every input unit and projects to every unit in the third
output layer. The output of each unit of the hidden and output
layers is computed as an S-shaped (logistic) function of the
synaptic strength weighted sum of its inputs, plus a bias term.
The training paradigm uses back propagation learning, which
consists of choosing an input and desired output, applying the
input to the first layer of the network and propagating the activity
it generates through the network to the output units. The actual
output is then subtracted from the desired output to generate
an error. This error is used to adjust the weights of synapses on
the output layer units and hidden layer units in a manner
prescribed by the back propagation procedure'®. Training begins
with all weights randomized, resulting in large errors, and the
training cycle is repeated until the error is reduced to desired
levels.

The retinal position and eye position inputs to the network
are modelled using characteristics of the cells in the posterior
parietal cortex that respond to visual stimuli only and eye
position only. The visual input consisted of 64 gaussian-shaped
receptive fields, with 1/e widths of 15 degrees and with each
peak separated by 10 degrees in an 8 by 8 array. The eye position
input consisted of four sets of 8 units with single sets for positive
and negative slopes for horizontal and vertical eye position.

We used two representations of location in head-centred
coordinates at the output layer. One (output 2 in Fig. 4a) was

a gaussian format in which each unit had a gaussian receptive
field similar to the representation of the retinal input, but coding
location in head-centred rather than retinal coordinates. The
other (output 1 in Fig. 4a) was a monotonic format, in which
the activity of each neuron is a linear function of the location
of the stimulus in head-centred coordinates. For the gaussian
format, a 64-unit array similar to the retinal input array was
used and for the monotonic format, a 32-unit array similar to
the eye position input array was used. The gaussian and
monotonic formats were chosen because they represent the most
common types of coding formats found for brain cells. Also the
monotonic format has the interesting feature that it has the same
representation as the eye-position code at the input. Thus, if the
animal foveates the visual stimulus, the resulting eye-position
signal could be used as the teacher to indicate the correct location
of the stimulus in head-centred coordinates.

The model network was trained using randomly selected pairs
of input eye positions and retinal positions. The teacher signal
(desired output) used to train the output units was the true
spatial location in head-centred coordinates implied by the
inputs, and was represented in either the monotonic or gaussian
format. The network trained quickly: after ~1,000 trials,
accuracies equivalent to the distance between retinal unit centres
were reached. When training was continued, error continued to
decrease, but at a lower rate.

© 1988 Nature Publishing Group
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Fig. 5 Hidden unit retinal receptive fields generated by the back propagation model. These plots were generated by holding the eye-position
input to the network constant and simulating visual stimulation at the same 17 retinal positions used in the experiments on area 7a. The
hidden unit activities were normalized and plotted in the same way as the experimental data shown in Fig. 3. The data shown here are from
a series of 4 training sessions using networks with 25 hidden units and the monotonic format output. Similar results were obtained for the
gaussian format output. All the fields, except for C-10, C-20 and C-30, are from networks that have received 1,000 learning trials. The remaining
three are from untrained networks, resulting only from the random synaptic weights assigned at the start of a training run. Very complex fields
are only rarely found in trained networks. No hidden unit with a single peak at 10 degrees appeared in this data set and such units are very
rare in trained networks. No spatially tuned neurons with central receptive fields were found in area 7a, and no such fields appeared in the
trained model. But central receptive fields are found among the visual neurons in 7a, and this kind of unit was among those used as input to
the model network.

Agreement of model with experiment

To evaluate the model, we first compare the experimental and
model retinal receptive fields. The model receptive fields were
categorized according to their complexity, and the eccentricity
of their activity maxima (Fig. 5), as had been done previously
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Fig. 6 Hidden unit spatial gain fields generated by the model
network. Fields a-f were generated using the monotonic format
output; the rest used the gaussian format output.

for the experimental receptive fields (Fig. 2). Comparison of
the top lines in Figs 2 and 5 shows that the trained models
generate single-peak receptive fields resembling those observed
experimentally at all eccentricities except 10 degrees. The fully
trained model also produces moderately complex fields like
those found in line 2, but rarely produces receptive fields as
complex as those in the bottom line of Fig. 2. This kind of highly
complex field is not distinguishable from the untrained model
receptive fields shown in the bottom of Fig. 5. The comparison
process contains an element of subjectivity, but it demonstrates
that the trained model generates retinal receptive fields remark-
ably similar to the experimentally observed fields. The gain fields
generated by the model are shown in Fig. 6. All the total-response
gain fields, whether generated by the monotonic or the gaussian
output format, were planar in shape. This result compares with
80% of the experimental fields in this planar class. When the
model gain fields are examined in more detail, taking into
account the non-linearities of the visual response fields, there
are significant differences between the eye position and retinal
output formats. For example, when trained with the monotonic
output format, 67% of the visual response gain fields were
planar, but when trained with the gaussian output format only
13% fall in this class. These figures compare with 55% in this
class for the experimental data. The irregular visual response
gain fields generated by the gaussian output format are more
radically irregular than those generated by the monotonic output
format. Thus it appears that to account for the details of the
visual response gain fields, it may be necessary to use both types
of output representation. It should be pointed out, however,
that whereas the visual receptive fields and the total gain fields
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were virtually unaffected by changing parameters of the model,
the visual response gain fields were very sensitive to parameters
such as threshold value and output representation. The number
of hidden units had little effect, giving similar results for simula-
tions ranging from 9 to 36 hidden units.

The striking similarity between model and experimental data
certainly supports the conjecture that the cortex and the network
generated by back propagation compute in similar ways. As
back propagation generates optimal solutions which produce
the least error, these results also suggest that the brain chooses
optimal solutions with respect to error. The similarity of the
model and test results raises the question of what physiological
mechanisms could subserve this equivalence. Presently the back-
propagation paradigm is structured at a level higher than
implementation, and obviously cannot be applied literally to
the brain, because information does not travel backwards rapidly
through axons. That the back-propagation method appears to
discover the same algorithm that is used by the brain in no way
implies that back propagation is actually used by the brain. One
approach to understanding the physiological significance of
these resuits is to generate models incorporating features found
in the brain, such as Hebbian-like learning at synapses and
reciprocal back-projection pathways for propagating error, and
determine whether these models generate similar results. In this
regard it is interesting to note that all cortico-cortical and
thalamocortical connections have reciprocal feedback path-
ways.

An important consideration in interpreting the results is how
closely does the model response actually resemble the cortical
data? This is a complex issue because there is error in the
experimental data, and additional errors introduced by the inter-
polation process used to produce the full-field views of the
receptive fields. Examination of the magnitudes of these errors
indicates that they could not account for the various receptive
field types, or eye-position gain fields observed experimentally
and in the model. The methods of comparison between model
and experiment that we have used are to some degree subjective.
Perhaps a more objective comparison procedure will eventually
be developed, but it is unlikely that, given the complex
nature of the data to be compared, any such technique will
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substantially alter our conclusions concerning the degree of
similarity between model and experimental data.

From the physiological perspective these experiments raise
the possibility that the posterior parietal cortex learns to associ-
ate body position with visual position to localize accurately the
position of objects with respect to the body. This idea about the
importance of learning is reasonable considering that it would
not be practical for spatial representations to be hard-wired
because the body dimensions change during development. Fur-
thermore, adaptation experiments show that distortion of space
with prisms leads to rapid recalibration, suggesting that these
representations are still plastic in adults. As the model, by
definition, does not have a topographic organization to localize
in space, it shows that the brain does not need a topographic
organization to localize in space. The organization of the
network is not a product of the spatial position of the cell bodies,
but rather is contained in the pattern of the weights of the
synaptic connections.

Finally, there is the question of where the output units of the
model could exist in the brain. One possible location would be
areas that receive projection from area 7a. Although eye position
effects on visual responses have been described at several loca-
tions in the brain (refs 24-26; S. Funahashi, C. J. Bruce, P. S.
Goldman-Rakic; and R. Lal, M. J. Friedlander, personal com-
munication), an eye-position-independent coding has yet to be
unequivocally demonstrated. But it is also possible that the final
spatial output could only exist in the behaviour of the animal.
For example, the muscles innervating the eye or limb are broadly
tuned, and the position of the eye orlimb is coded in a distributed
fashion over the activity of several muscles. Thus the final spatial
output may not exist in any single cell in the brain, but rather
might be found only in the pointing of the eye or finger accurately
to a location in space.
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