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Abstract

■ Features of virtually all voluntary movements are repre-
sented in the primary motor cortex. The movements can be
ongoing, imminent, delayed, or imagined. Our goal was to in-
vestigate the dynamics of movement representation in the
motor cortex. To do this we trained a fully recurrent neural
network to continually output the direction and magnitude of
movements required to reach randomly changing targets.
Model neurons developed preferred directions and other prop-
erties similar to real motor cortical neurons. The key ªnding is
that when the target for a reaching movement changes loca-

tion, the ensemble representation of the movement changes
nearly monotonically, and the individual neurons comprising
the representation exhibit strong, nonmonotonic transients.
These transients serve as internal recurrent signals that force
the ensemble representation to change more rapidly than if it
were limited by the time constants of individual neurons. These
transients, if they exist, could be observed in experiments
that require only slight modiªcations of the standard paradigm
used to investigate movement representation in the motor
cortex. ■

INTRODUCTION

The primary motor cortex, M1, plays a role in the repre-
sentation of most voluntary movements. This is seen in
movement-speciªc neural activity that occurs before and
during movements, during learned delays preceding
movements, and even during imagined movements (De-
cety et al., 1994; Georgopoulos, Kalaska, Caminiti, &
Massey, 1982; Georgopoulos, Caminiti, & Kalaska, 1984;
Smyrnis, Taira, Ashe, & Georgopoulos, 1992). Individual
neuron responses contribute to the representation of a
movement in a complex way. Many different features of
the movement contribute to a cell’s response in a time-
dependent manner. The movement feature most exten-
sively studied is direction. Many M1 neurons exhibit a
movement direction to which they ªre maximally, their
“preferred direction” (Georgopoulos, Caminiti, Kalaska, &
Massey, 1983a; Georgopoulos et al., 1982). These neuro-
nal responses can be further modulated by movement
magnitude, by movement starting position, by arm
conªguration, and by when the response is observed,
relative to movement onset (Caminiti, Johnson, & Ur-
bano, 1990; Fu, Suarez, & Ebner, 1993; Schwartz & Geor-
gopoulos, 1987; Scott & Kalaska, 1995). An individual M1
neuron cannot uniquely specify all features of a move-
ment. Rather, the representation is distributed over a
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population. Some of this distributed information can be
recovered using information recorded from many single
neurons. For example, the direction of an actual reaching
movement can be found by averaging the activity-
weighted preferred directions of many neurons. This
provides an ensemble representation of movement di-
rection called the population vector (Georgopoulos,
Kettner, & Schwartz, 1988; Georgopoulos et al., 1983a).
It is still not clear just how much information about a
movement, such as the direction, magnitude, trajectory,
force, etc., is represented in M1, nor is it clear what the
representation is (Mussa-Ivaldi, 1988).

Movement representation is a dynamic process with
many interacting components such as target location
and movement direction. The problem of understanding
the dynamics of the motor cortex supporting this repre-
sentation is potentially very complex. Both intrinsic ef-
fects arising from interactions between neurons in M1
and extrinsic effects due to feedback from other areas
must ultimately be considered. Here we address only the
question of the internal dynamics of M1 by considering
tasks for which dynamic feedback from other areas can
be largely ignored. The recurrent network model devel-
oped in this work has interesting dynamic features that
are amenable to experimental veriªcation. Many impor-



tant aspects of movement, such as translating direction
and distance into instructions for moving an arm with
redundant degrees of freedom, are not covered by our
model. Some of these issues are addressed by other
models (Bullock, Grossberg, & Guenther, 1993).

Some dynamic aspects of M1 have been investigated
experimentally. One approach is to rapidly change the
location of a visual target just after movement begins
(Georgopoulos, Kalaska, Caminiti, & Massey, 1983b; Geor-
gopoulos, Kalaska, & Massey, 1981). This leads to a con-
tinuous change in the direction of hand movement from
pointing toward the ªrst target to pointing to the sec-
ond. Another experimental paradigm involves move-
ments along complex visually speciªed trajectories such
as ellipses and sinusoids (Schwartz, 1994a; Schwartz,
1993). The population vector rotates smoothly during
these movements so that it points in the direction of
hand motion. A particularly revealing experiment re-
quires movement in a direction offset by a ªxed angle
from the direction of a visual target (Georgopoulos, Lu-
rito, Petrides, Schwartz, & Massey, 1989). In this case the
actual direction of motion must be computed internally
by a mental rotation. The population vector ªrst points
in the direction of the visual target and then rotates in
the appropriate direction until it reaches the direction
of actual movement.

Possible mechanisms underlying M1 dynamics have
been investigated using recurrent neural network mod-
els. Of particular interest are models trained to simulate
the behavior of the population vector during movements
along a complex path (Lukashin, Wilcox, & Georgopou-
los, 1994; Lukashin & Georgopoulos, 1994; Lukashin,
1990). In these models it is assumed that signiªcant
aspects of the dynamics arise from interactions between
M1 neurons. The neurons are represented by a set of
coupled differential equations:

τ 
∂si

∂t
 = −si + ∑ 

j

wij hj + cos(θ − Pi) (1)

where hj is the output of the ith neuron, hi = tanh(sj),
wij are the synaptic strengths coupling the neurons, θ is
the current direction of movement, Pi is the preferred
direction, and τ is a neuron time constant. The cos(θ -Pi)
term serves to impose direction tuning. In some cases,
information about the path to be followed was supplied
as input, and in others cases, path information was
trained as internal to M1. Networks were trained, using
simulated annealing, to output a population vector that
had the dynamics observed in experiments. The net-
works learned the task and performed with population
vector dynamics similar to those observed experimen-
tally. These modeling efforts conªrm that recurrent con-
nections within M1 can account for the observed

ensemble dynamics as represented by the population
vector. They provide a basis for further analysis of the
dynamics of M1.

THE MODEL

Building on these experimental ªndings and modeling
results, we set out to develop a simple recurrent neural
network model of M1 that could be used to study both
the transient behavior of individual neurons and the
population dynamics of the network as a whole. Our
goal was a dynamic model of how movement is repre-
sented in M1 that could deal with a wide variety of
natural movements while introducing as few arbitrary
initial constraints as possible. To this end we used an
optimization, or “training,” procedure to conªgure a net-
work of fully interconnected units. The training set and
input format were chosen to give a reasonable degree of
realism, as will be described later. The network itself is
described by the set of differential equations,

τ 
∂si

∂t
 = −si + ∑ 

j

wij hj + ∑ 
k

vikzk (2)

where all similar terms are deªned as in Equation 1
except hj = 1/1 + e−sj. The rightmost term is the external
input, where zk are the input values and vik are the
weights that connect each input line to every unit in the
recurrent network. The ensemble movement vector rep-
resented by the network was determined using a
weighted linear combination of all the unit activities, h.
In two dimensions, the movement vector is given by

mx = ∑ 
j

xj hj

6    my = ∑ 
j

yj hj

(3)

where mx and my are the components of the current
movement vector represented by the model, and xj and
yj are constants. The mx and my values are computed by
a set of linear units serving as an output layer to the M1
model network. These linear units are not considered
part of M1 but rather constitute a reporting mechanism
that determines the ensemble representation and also
serves to funnel in error signals during training. The
model network is illustrated in Figure 1.

To achieve a veridical model it would be desirable to
use an input format that approximated the real afferent
signals to M1. Unfortunately, the actual afferent format
used by M1 is unknown. However, it is known that
parameters such as preferred direction, dynamic range,
and baseline ªring rate are affected by the starting po-
sition for movement (Caminiti et al., 1990; Kettner,
Schwartz, & Georgopoulos, 1988; Georgopoulos, Kalaska,
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Crutcher, Caminiti, & Massey, 1984). This and the prop-
erties of the population vector imply that information
about both starting location and target position are avail-
able to M1. It has been shown that as long as afferent
information about the starting location and target posi-
tion are represented in a reasonably smooth coordinate
system, the M1 neurons will be tuned to preferred mo-
tion directions, if they are connected to all the input
lines by arbitrary weights in an appropriate magnitude
range (Sanger, 1994). This means that the choice of affer-
ent representation should have a negligible effect on the
general form of the tuning properties of model neurons
as long as it is not redundant. Therefore, it is not neces-
sary to impose preferred directions on the equations
describing these neurons. We have empirically con-
ªrmed both of these conjectures with simulation experi-
ments using randomly chosen weights and several
different coordinate representations for model input
(Lee, 1996).

The above considerations allow the use of any con-
venient input format to specify movements, so long as it
codes information about current hand position and tar-
get location. In other studies inputs specifying this infor-
mation in Cartesian, polar, and joint angle coordinates
were investigated (Lee, 1996). All three gave very similar
dynamics. We chose joint angle coordinates to represent

input to the M1 model described here because they
interfaced naturally with the arm model used to generate
the input data. Real arms have redundant degrees of
freedom, allowing multiple postures to reach the same
point in space. We used a two-dimensional arm to avoid
this ill-posed problem because we believe it is ortho-
gonal to the questions about the internal dynamics of
M1 that we investigate here. The details of the two-
dimensional arm angle system used are given in Figure 2.

To teach an M1 model to represent arbitrary 2-D
movements, a training set containing movement seg-
ments sampling all directions and all changes in direc-
tion is needed. The task that motivated model input was
picking up small food morsels scattered randomly on a
surface. The hand moves from one morsel to the next,
with the location of each new morsel representing the
target for successive movements. A change in direction
always occurs after a target is reached. To enrich this
movement paradigm and provide for direction changes
before a target is reached, we imagined that there was a
second individual competing for the same morsels. Due
to this competition, a target sometimes disappears be-
fore it is reached, leading to a change in direction to a
new target. Direction changes may occur while the hand
is in motion or while the hand is resting at a target. These
considerations led to the following training regime for

Figure 1. Diagram of the re-
current network model. Each
sigmoid-containing triangle
represents a model unit,
which receives external input
and feedback from other net-
work units but not from itself.
A model unit’s activation is de-
termined by performing a non-
linear operation on the
weighted sum of its inputs.
The solid black diamonds rep-
resent the wij and vik, and
white diamonds represent out-
put unit weights. An output
unit’s activation is determined
by the linear weighted sum of
the hidden unit activity (see
Equation 3). A depth of ªve
network copies were used in
back propagation through
time (BPTT) simulations. The
inputs are explained in the
text and caption to Figure 2.
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generating a continuous stream of target- and hand-
location input pairs.

The target-location input is chosen at random and is
kept constant for a random length of time. The hand
moves toward a target in ªxed-length steps of 7% of the
average movement vector length. If the hand reaches the
target, it pauses at the target for a random interval and
then pursues the next target. Hand stops at targets are
indicated by setting the movement vector, (mx, my) to
zero (0,0). If the target changes location while the hand
is moving (because the competitor took the target mor-
sel), the hand either changes direction and moves to-
ward a new target immediately or stops for a while. The
rate of hand movement, and the probabilities of target
location changes and hand stopping and starting are all
parameters of the program that generates input-output
data for the model during training. Figure 3 shows sam-
ple input training data, as well as a representation of the
hand path generated by the trained model when sup-
plied with the same sequence of input data, without
feedback about actual hand position. There is some re-
sidual error, but the general shape of the two paths is
quite similar.

The network was trained using a version of the Back
Propagation Through Time learning algorithm, modiªed
to approximate continuous time systems of equations,
such as Equation (2) (Kehoe, 1995). Error was evaluated
based on the difference between the mx and my given
by the model and the correct values of mx and my

required to connect the current hand position to the
current target location. This error is minimized by a
network that establishes an ensemble representation of
the correct movement vector as rapidly as possible. It is

the requirement for both speed and accuracy that leads
to the steady-state and transient properties of the model.

LINEAR APPROXIMATION TO THE TRAINED
MODEL

A linearized version of the model was derived to aid in
understanding the way the model works. The fact that
the dynamic ranges of the model unit outputs hi are
conªned to small, approximately linear, regions of the
sigmoid function suggested that it would be possible to
ªnd an accurate linear approximation to the nonlinear
Equation 2. Finding such an approximation was facili-
tated by the observation that the trained nonlinear
model was stable. That is, given a ªxed value of the input,
z = (z1, z2, . . ., zn), ∂si /∂t→ 0 as t → ∞ for all i, and for
all z representing locations in the training region. Lineari-
zation is also simpliªed because the steady-state value of
unit activations, h = (h1, h2, . . ., hm), are uniquely deter-
mined by the associated value of z.

The nonlinear Equation 2 can be written in matrix
form:

τs′ = −s + Wh + Vz (4)

Figure 2. Model input and output. Input consists of two joint angle
pairs, (αs, βs) and (αt, βt), for start and target, respectively. The elbow
angle β ranges from 20° to 180°; the shoulder angle α, from 0° to
160°, with 0 arbitrarily set at the positive x-axis. The model output
consists of the movement vector components mx and my connect-
ing the current hand position (the dot) to the target (the square).

Figure 3. Sample training data. The arrowed line shows training
data. The ªve large solid circles are targets. The input hand position,
represented as arrowheads, moves in ªxed steps toward the current
target. (We also allow for the hand to stop as it moves toward a tar-
get as if the subject were distracted. The probability of such stops
was set at values of 0.0 or 0.2, but these distractive stops had no dis-
cernable effect on the ªnal model, so none are shown in this
ªgure.) Each target appears for between 20 to 70 update cycles.
New targets are produced in three ways: First, the current target ex-
ceeds its maximum target duration (70 update cycles), second, a tar-
get switch occurs as the hand is moving (probability = 0.20 per
update cycle), and third, a target switch occurs as the hand is
stopped (probability = 0.80 per update cycle). The model was run
for 10 million cycles (about 6 hs) on a Silicon Graphics Iris Indigo
workstation.
 Hand path. The line with small circles shows a representation of
hand path without feedback, generated by a trained model from the
same hand and target input data. The hand path started at the same
location as the ªrst training location. Each time the training hand po-
sition changed, the hand path was advanced, for the same ªxed dis-
tance, in the direction indicated by the trained network output mx

and my. See text for more detail.
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Linearizing this system around the stable state, sz, corre-
sponding to input z, gives the formal solution (Perko,
1991):

s = e(t/τ)A [s(0) + A-1(b + Vz)] − A-1(b + Vz) (5)

where

A = WH′(sz) − I     

b = Wh(sz) − WH′(sz)sz

In the solution above, I is the identity matrix, H′(sz) is
a matrix with diagonal ∂h(sz

i
)/∂sz

i
 and all nondiagonal

elements are 0, and s(0) is the initial value of s. These
equations were solved explicitly by the method de-
scribed in the “Appendix” to obtain numerical values
that can be compared to those generated by simulation
of the nonlinear model.

One advantage of having a linear approximation to
our model is that the issue of stability can be understood
analytically. The linear system described by Equation 5 is
stable if the real parts of the eigenvalues of A are nega-
tive. This was found to be the case in our trained model
for all the A generated by any z in the training region.
The negative eigenvalues of A guarantee that the expo-
nential term in Equation 5 eventually goes to 0, giving a
steady state value, sz:

sz = −A-1(b + Vz) (6)

The existence of stability is consistent with the experi-
mental observations (Georgopoulos, Taira, & Lukashin,
1993).

PROPERTIES OF THE M1 MODEL

The properties of the model neurons were determined
by simulating tasks similar to the ones used in experi-
ments with monkeys. However, there is one important
difference between how we test the model and how
experiments are generally performed. During testing of
the model, only the representation of movement
changes; no actual hand movement occurs. This is ac-
complished by ªxing the hand-position input to corre-
spond to a point in the center of the training region and
then measuring responses to targets at various locations.
The reason we investigate only the no-movement case is
that our model is limited to movement representation in
M1 itself. It can provide no accurate information about
the actual kinetics of hand movement. Without this we
cannot simulate the feedback effect of movement on
model kinetics.

Our main interest is in the transient properties of the
model, but we also measured the steady-state responses
of individual neurons and the population. The steady-
state response properties were measured at many uni-
formly distributed locations. At each starting position
eight equally spaced radial target locations were used.
Measurements were made only after many simulation

cycles had elapsed. This allowed steady state to be
reached. Since the hand position is kept constant at the
center, no movement occurs in these tests. The popula-
tion steady-state properties were determined using
either the movement vector output by the network or
by computing a population vector based on the outputs
of individual recurrent neurons. The steady-state errors
for direction and magnitude were small. For example, the
average direction error of the population vector was 14°
with a standard deviation of 10° and a maximum error
of 30°. Direction errors in the movement vector, which
was trained directly, were about half as great as the
population vector error. Amplitude errors for both the
population and movement vectors were around 5% of
movement amplitude.

The steady-state response of individual neurons at any
starting position is described by Krcos(θ − P) + b. Fig-
ure 4 illustrates the steady-state response properties of
a typical model neuron at a single starting position. The
direction response of the model and real M1 neurons
can be ªt fairly well with a cosine, so they are similar.
Monotonic amplitude modulation is seen in virtually all
direction-tuned M1 neurons, so the model neurons are
qualitatively like cortex neurons in this respect. How-
ever, the quantitative form of the real M1 neuron ampli-
tude response is quite varied and only a small portion

Figure 4. Effect of amplitude and direction on unit activity (dots),
shown relative to a cosine function (solid lines). Unit steady-state ac-
tivity is plotted across eight directions in 45° intervals between 0°
and 360°. The activity of one representative nonlinear network unit
is shown for four different amplitudes (0.005, 0.02, 0.05, 0.08). Note
that the larger amplitude produces a higher level of activity and that
the unit exhibits direction as well as amplitude sensitivity. The
model unit’s ªt (F-test) for the largest amplitude is R2 > 0.96; p <
0.01. All other ªts have R2 > 0.99.
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appears to respond in the simple way that model neu-
rons do. The rest of the M1 neurons seem to have a more
complex monotonic amplitude response that requires as
many as six parameters to describe it (Fu et al., 1993;
Schwartz & Georgopoulos, 1987). The relevance of this
to the major ªndings of our model will be discussed
below.

The response properties of M1 neurons vary with the
starting location of a movement and other factors
(Kalaska & Crammond, 1992; Hocherman & Wise, 1991;
Lemon, 1988; Dum & Strick, 1990; Schwartz, 1994b). For
example, preferred directions P were dependent upon
the starting hand position. The median angular difference
between a real neuron’s preferred direction in the left
space compared to the center space, center space com-
pared to the right, and left space compared to right were
28°, 23°, and 43°, respectively. The median angular differ-
ence between a model neuron’s preferred direction to
the same conditions were 39°, 38°, and 60°, respectively.
Baseline b and dynamic range K were also affected.
Figure 5 illustrates the spatial variation of b, P, and K for
eight hidden units. Note that the baseline variation with
the starting hand location qualitatively resembles the

experimentally observed variation (Georgopoulos,
Kalaska, et al., 1984). The overall pattern of the P, K, b

variation is different for each hidden unit; moreover, P,
K, and b seem to vary independently of each other. The
distribution of preferred directions is reasonably uniform
even in this eight-unit model, as it is in the real cortex.
The qualitative characteristics of the P, K, and b variation
in the model are similar to those found experimentally,
but there are not enough experimental data available for
detailed comparison. Ultimately it may be possible to
work backward from detailed experimental data about
the spatial variation of the tuning parameters P, K, and
b to ªnd the coordinate system used to represent the
target and hand position or the inputs to the motor
cortex.

The transient behavior of the model was tested using
a target-position switch paradigm. Targets in the switch
task are on a circle surrounding the hand. The model is
allowed to settle to steady state with the target at an
initial position. Then the target-position input is changed
to indicate a new location on the circle, and the re-
sponses of all model units are followed through time
until a new steady state is reached. The hand-position

Figure 5. Effect of starting po-
sition on tuning parameters.
The plots show the eight
model unit responses at 32
(8 × 4) evenly spaced center
points. A value for each reach-
ing parameter (preferred direc-
tion, dynamic range, baseline)
was calculated for each hid-
den unit for each location. At
each point, the preferred direc-
tion is indicated by line orien-
tation, dynamic range is
indicated by line length, and
baseline activity is indicated
by dot size. The preferred di-
rection line length was normal-
ized so that each plot displays
the same range; the same is
true for baseline dot size.
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input is kept constant, so there is no actual movement
taking place. This procedure is used to obtain informa-
tion about the transient behavior of both the individual
units and the ensemble representation.

The population vector was used as an indicator of
ensemble transient behavior. The population vector of
the trained model rotates smoothly in the correct direc-
tion for all changes in target position. Interestingly, it
completes this rotation sooner than if there were no
recurrent connections. This is illustrated in Figure 6,
which compares the change in direction of the popula-
tion vector following a switch in target location to the
change expected if there were no recurrent connections
(i.e., the rotation dynamic was determined only by neu-
ron time constants). The observed speedup must be due
to recurrent interactions because the input is held con-
stant and there are no other external signal sources. As
we shall see, this interaction involves strong, nonmono-
tonic transient responses in the individual model neu-
rons.

The transient behavior of each individual model neu-
ron was tested in two ways: ªrst, by ªnding a pair of
target positions at which the neuron has the same
steady-state activity and second, by ªnding a pair of
target positions that produce the maximum possible
difference in steady-state activity. Different sets of target
locations were required for each of the eight neurons in

the network. In all of these tests, the targets are arranged
around a circle, so there are no amplitude changes, only
changes in direction. Also, recall that no movement oc-
curs in these tests. The response of an individual neuron
changes from the steady-state value representing its con-
tribution to a movement in one direction to its response
representing movement in another direction. This differs
from the typical monkey experiment, in which move-
ment occurs and a neuron’s response returns to baseline
when the movement is complete.

The ªrst test (i.e., no change in activity condition) is
accomplished by choosing target locations correspond-
ing to equal heights on opposite sides of the direction
tuning curve (see the top panel of Figure 7). The large,
nonmonotonic activity transients observed in this task
are illustrated in the bottom panels of Figure 7. These
transients start immediately after the change in target
location and continue well past the time when the ªrst
90% of change in the ensemble representation has oc-
curred (indicated by the vertical dashed line). Note that
the nonmonotonic transients have the same shape, but
opposite signs, when we reverse the order in which the
targets are presented. This sign reversal is an algebraic
consequence of the target switch paradigm, at least for
linear systems (for details, see the “Appendix”).

The units shown in Figure 8 exhibit monotonic

changes in activity level between the initial and ªnal
target locations, when these two locations are at the
extremes of the dynamic range (i.e., when the change in
target location goes from a unit’s preferred direction to
its opposite). Figure 8 illustrates this case. For all changes
intermediate between those illustrated in Figures 7 and
8, transient behavior is a combination of some nonmono-
tonic response with a net change in overall activity; see
Figure 9.

DISCUSSION

The accelerated change in population vector rotation
can only arise from internal forcing signals generated by
the nonmonotonic transients. However, for these tran-
sients not to disrupt the smooth rotation of the popula-
tion vector, their direct contribution to the population
vector must nearly cancel out. This is required because
the strongest transients are from neurons with preferred
directions orthogonal to the actual direction of move-
ment. Cancellation is apparently accomplished in the
model by having some units with positive transients
balanced by others with negative transients. The optimi-
zation procedure used to train the model has managed
to reap the beneªt obtained from the forcing transients,
while canceling out any adverse effect these transients
might have on the direction of the population vector.
This balancing could also occur statically in large popu-
lations of M1 neurons.

It is an open question whether anything like the dy-
namic effects seen in the model exist in M1. Experimen-

Figure 6. The solid line graphs the direction of the actual model
population vector following a change in target position from 90° to
0°. Note that the initial and ªnal steady-state directions of the popula-
tion vector are not exactly at 90° and 0° because there is some er-
ror in the model ensemble representation. The dashed line graphs
an exponential decay at the rate of the neuron time constant used
in the model. It illustrates the kinetics of population rotation ex-
pected if there were no recurrent interaction in the model network.
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tal tests would be straightforward but have not, to our
knowledge, been published. These experiments would
require a modiªcation of the standard paradigm so that
they mimicked the no-movement task we use. This is
important, because if movement is allowed to occur
immediately following target presentation, there will be
additional dynamic effects that can confuse the situation.
Also the change of hand position with movement gener-
ates a change in background ªring that would distort any
transient activity. The ideal experiment would use a
trained delay prior any movement during which a switch
in target location could occur. In such experiments it
should be possible to look for the existence of transients
of the kind we predict. An experiment in which targets
are switched without movement has been done that has
some similarities to what is needed to test our model
(Wise & Mauritz, 1985). The published data for the re-
sponse of a cell to opposite directions of motion in the
preferred and antipreferred directions give the result
predicted in Figure 8.

Nonmonotonic transients of the kind we predict are
detectable, as demonstrated by a kind of target switch

experiment involving recall (Pellizzer, Sargent, & Geor-
gopoulos, 1995). In this experiment transients of the
time scale and magnitude our model predicts are ob-
served. Although consistent with our predictions, these
observations are not signiªcant for our model because
they take place just preceding and during movement.
Cells with activities intermediate between the stimulus
and movement direction become active during the
“mental rotation task” (Georgopoulos, 1995; Pellizzer et
al., 1995). This is in general agreement with our model;
however, very little complete time course data have
been published, so direct comparison is not possible.
Also this experiment involves the period just before and
during movement. The need for such a stringent no-
movement condition, although achievable, is perhaps a
weakness of our model. However, to deal with actual
movement we would have to be able to model the
dynamics of cell recruitment and of feedback to M1 from
other parts of the brain. There is not at present enough
knowledge to do this with any hope of success.

Our model captures the form of direction tuning
found in M1 quite well. The issue of amplitude repre-

Figure 7. Transient behavior
with equal values for initial
and ªnal steady states. The top
panel shows how the targets,
A and B, selected at equal unit
steady-state activations on the
direction tuning curve. The
four small panels show individ-
ual unit transient behavior dur-
ing a target switch between
equal steady-state values. The
vertical axes are activities nor-
malized, so all model neurons
have the same size dynamic
range on all graphs. The hori-
zontal axis is time in units of
network update cycles and is
the same for all graphs. These
same conventions are also
used in the next two ªgures.
The top half of each panel
shows unit activity as the in-
put switches from A to B; the
bottom half shows the reverse
switch. The arrow on the x-
axis indicates the time of tar-
get switch. The solid trace
shows nonlinear network
model activation from simula-
tion; the dashed trace shows
the activation from linearized
equations. The vertical dashed
line indicates the point at
which the ensemble repre-
sentation has covered 90% of
the distance to the target.
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sentation is more problematic. Many questions about
how M1 neurons respond to the amplitude of a move-
ment are not yet resolved. However, the neurons in our
model represent amplitude in a way that probably cor-
responds to only a small subset of M1 neurons. This is
not likely to affect the validity of the major dynamical
predictions of the model because all the dynamic tests
we report were at constant amplitudes, (i.e., the direc-
tions, but not the amplitudes of targets, were changed to
investigate transient effects).

Appendix

Linearization of M1 Differential Equations

The method used to linearize Equation 2 is given here,

τ 
∂si

∂t
 = −si+∑ 

j

wij hj + ∑ 
k

vikzk 6
      

hj = 
1

1 + e−sj

where w and v are ªxed weights determined by training,
zk values are set to correspond to points A and B in
ªgures 6 and 7, and τ is a time constant.

The steady-state values sz were found by simulation.
Having obtained sz, h is expanded around sz: h(si) − hi +
h′i(si − sz

i ); hi = hi = h(sz
i), h′i = hi(1 − hi) and Equation

2 becomes

τ 
∂si

∂t
 . −si + ∑ 

j

wij h′sj + ∑ 
k

vik  zk + ∑ 
j

wij (hj − hj′sjs)

τ 
∂si

∂t
 . ∑ 

j

Aij  sj + ζi
(7)

where

Aij   = −δij + ∑ 
j

wij hj′

ζi = ∑ 
k

vik  zi + ∑ 
j

wij (hj − hj′sj
z)

Let αi be the eigenvalues of A and δij be the Kronecker
delta function. Deªne the matrix X such that each col-
umn of X is an eigenvector of A, and X-1 as its inverse.

After inserting XX −1, each term of Equation 7 is mul-
tiplied by X −1 and summed over i to produce

Figure 8. Transient behavior of units with maximum change in
steady-state values. The top panel shows the targets, A and B, se-
lected at preferred and antipreferred directions on the direction tun-
ing curve. The two small panels show representative individual unit
transient behavior during a target switch. The top half of each panel
shows unit activity as the input switches from A to B; the bottom
half shows the reverse switch. Labeling conventions as in Figure 7.

Figure 9. Transient behavior with intermediate values. Same conven-
tions as Figure 7.
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τ ∑ 
i

Xki
 −1 

∂si

∂t
 = ∑ 

ijkl

Xki
 −1 Aij  Xjl  Xlm

 −1 sm + ∑ 
i

Xki
 −1 ζi

 = ∑ 
lm

αlδkl Xlm
 −1 sm + ∑ 

i

Xki
 −1ζi

 = ∑ 
m

αkXkm
 −1 sm + ∑ 

i

Xki
 −1ζi

(8)

If uk ad vk are deªned as the terms of Equation 8,
respectively,

uk = ∑ 
i

Xki
 −1 si       vk = ∑ 

i

Xki
 −1ζi (9)

the equations reduce to

τu
.

k = αkuk + vk

with solutions

uk(t) = (uk(0) − uz)e(αnt )⁄ τ + uz (10)

uk(0) = ∑ 
i

Xki
 −1si(0) (11)

The unit activity of si is then

si(t) = ∑ 
k

Xik  uk(t) (12)

In Figures 6 and 7, s(0) is the steady state at the start
point, and sz is the steady state at the end point.

Sign Inversion as a Result of Target-Switch Paradigm

We start with Equation 12 above:

si(t) = ∑ 
k

Xik  uk(t)

Substituting Equation 10 into Equation 12 yields

si(t) = ∑ 
k

[Xik  (uk(0) − uz) e(αnt )⁄ τ + Xik  u2 (13)

Substituting Equations 9 and 11 into Equation 13
yields

si(t) = ∑ 
k

[Xik  e(αnt )⁄ τ Xkj
−1](si(0) − si

z) + Xik  Xkj
−1si

z (14)

Simplifying Equation 14 yields

si(t) = ∑ 
j




∑ 
k

(Xik  e(αnt )⁄ τXkj
−1) (si(0) − si

z)

 + si

z (15)

The (s(0) − sz) term in Equation 15 is the key to the
sign reversal seen in Figures 6 and 7. When the s(0) and

sz are interchanged, the sign of this term changes, which
causes the entire response to change sign as well.
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