EECS 40, Fall 2006
 Prof. Chang-Hasnain
 Midterm \#2

October 25, 2006
Total Time Allotted: 50 minutes
Total Points: 100 / Bonus: 10 pts

1. This is a closed book exam. However, you are allowed to bring one page (8.5 " $\times 11^{\prime \prime}$), single-sided notes PLUS your 1-page notes from midterm 1.
2. No electronic devices, i.e. calculators, cell phones, computers, etc.
3. Slide rules are allowed.
4. SHOW all the steps on the exam. Answers without steps will be given only a small percentage of credits. Partial credits will be given if you have proper steps but no final answers.
5. Remember to put down units. Points will be taken off for answers without units.

Last (Family) Name: Perfect

First Name: _Peter

Student ID: \qquad Discussion Session: 2718

Signature: \qquad

Score:	110
Problem 1 (16 pts)	16
Complex Impedances	
Problem 2 (54 pts):	54
Bode Plots	10
Bonus (10 pts):	30
Problem 3 (30 pts):	
Second-order Circuits	110
Total	

1. [16 points] Parallel and Series Complex Impedance

a) [8 pts] What is the complex impedance Z_{1} ?

$$
\begin{aligned}
Z_{1} & =Z_{L} / /\left(Z_{C}+R\right) \\
& =j \omega L / /\left(\frac{1}{j \omega C}+R\right)=j \omega L / /\left(\frac{1+j \omega R C}{j \omega C}\right) \\
& =\left(\frac{1}{j \omega L}+\frac{j \omega C}{1+j \omega R C}\right)^{-1}=\left(\frac{1+j \omega R C+(j \omega L)(j \omega C)}{j \omega L(1+j \omega R C)}\right)^{-1}=\left(\frac{j \omega L(1+j \omega R C)}{1+j \omega R C+j^{2} \omega^{2} L C}\right) \\
& =\frac{-\omega^{2} R L C+j \omega L}{1-\omega^{2} L C+j \omega R C}
\end{aligned}
$$

(subscripts omitted for clarity)
b) [8 pts] What is the complex impedance Z_{2} ?

$$
\begin{aligned}
Z_{1} & =Z_{C}+\left(Z_{L} / / R\right) \\
& =\frac{1}{j \omega C}+(j \omega L / / R)=\frac{1}{j \omega C}+\left(\frac{1}{j \omega L}+\frac{1}{R}\right)^{-1} \\
& =\frac{1}{j \omega C}+\left(\frac{j \omega R L}{R+j \omega L}\right)=\left(\frac{R+j \omega L+(j \omega C)(j \omega R L)}{j \omega C(R+j \omega L)}\right)=\left(\frac{\left.R+j \omega L+j^{2} \omega^{2} R L C\right)}{j \omega R C+j^{2} \omega^{2} L C}\right) \\
& =\frac{R-\omega^{2} R L C+j \omega L}{-\omega^{2} L C+j \omega R C}
\end{aligned}
$$

UC BERKELEY

2. [54 points] Bode Plots:

(a) [10 points] For the above circuit, show $H(f)=\frac{1}{1+j \frac{f}{f_{2}}} \times \frac{1}{1-j \frac{f_{1}}{f}}$

Express f_{1} and f_{2} in terms of $\mathrm{R}, \mathrm{L}, \mathrm{C}$. (Hint: Remember $\omega=2 \pi f$)
Voltage divider on left:
Voltage divider on right:
$V_{x}=\frac{R}{R+j \omega L} V_{\text {in }}=\frac{1}{1+j \omega \frac{L}{R}} V_{\text {in }} \quad V_{\text {out }}=\frac{R}{R+\frac{1}{j \omega C}} V_{x}=\frac{1}{1-j \frac{1}{\omega R C}} V_{x}$
Combining, $V_{\text {out }}=\frac{1}{1-j \frac{1}{\omega R C}} \times \frac{1}{1+j \omega \frac{L}{R}} V_{\text {in }}$
Swapping the terms, $H(f)=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{1+j \omega \frac{L}{R}} \times \frac{1}{1-j \frac{1}{\omega R C}}$

$$
=\frac{1}{1+j 2 \pi f \frac{L}{R}} \times \frac{1}{1-j \frac{1}{2 \pi f R C}}
$$

f_{1} occurs with f in the denominator, and f_{2} with f in the numerator:

$$
f_{1}=\frac{1}{2 \pi R C} \quad f_{2}=\frac{R}{2 \pi L}
$$

(b) [6 points] Now Let $R=1 \mathrm{k} \Omega, L=0.16 \mathrm{mH}, \mathrm{C}=0.16 \mathrm{uF}$, what are f_{1} and f_{2} ? Remember to put down units.

$$
\begin{aligned}
& f_{1}=\frac{1}{2 \pi(1 \mathrm{k} \Omega)(0.16 \mu F)}=\frac{6.25}{2 \pi \times 10^{-3} \mathrm{~s}} \approx 1 \mathrm{kHz} \\
& f_{2}=\frac{1 \mathrm{k} \Omega}{2 \pi(0.16 \mathrm{mF})}=\frac{6.25 \times 10^{6}}{2 \pi \mathrm{~s}} \approx 1 \mathrm{MHz}
\end{aligned}
$$

(c) [22 pt] Bode Magnitude Plot. You must put down all the steps leading to your results. Hint: You may consider $f_{1} \ll f_{2}$
[4 points] Write down the expression for $y=10 \log |H(f)|^{2}$

$$
\begin{aligned}
y & =10 \log \left|\frac{1}{1+j \frac{f}{f_{2}}}\right|^{2}+10 \log \left|\frac{1}{1-j \frac{f_{1}}{f}}\right|^{2} \\
& =-10 \log \left(1+\left(\frac{f}{f_{2}}\right)^{2}\right)-10 \log \left(1+\left(\frac{f_{1}}{f}\right)^{2}\right)
\end{aligned}
$$

Units are: $d B$
Note: The other acceptable expression can be found by multiplying the terms in $H(f)$, and finding the magnitude of the resulting product.
[4 points] As frequency goes to a very small value, what is the slope of y as a function of $\log f$?
Constant 1 dominates in left term, f^{-1} dominates in the right term:

$$
\begin{aligned}
y & =-10 \log (1)-10 \log \left(\frac{f_{1}}{f}\right)^{2}=0+20 \log \left(\frac{f}{f_{1}}\right) \\
& =20 \log f-20 \log f_{1}
\end{aligned}
$$

Slope: 20 dB / decade
[4 points] As frequency goes to a very large value, what is the slope of y as a function of $\log f$?
f dominates in left term, constant 1 dominates in the right term:

$$
\begin{aligned}
y & =-10 \log \left(\frac{f}{f_{2}}\right)^{2}-10 \log (1)=-20 \log \left(\frac{f}{f_{2}}\right)-0 \\
& =-20 \log f-\left(-20 \log f_{2}\right)
\end{aligned}
$$

Slope: -20 dB / decade
[4 points] What is y, $f_{1} \ll f \ll f_{2}$?
In both terms, constant 1 dominates:

$$
\begin{aligned}
y & =-10 \log (1)-10 \log (1)=-0-0 \\
& =0 d B
\end{aligned}
$$

[2 points] What is y at f_{1} ?

$$
y=-10 \log \left(1+\left(\frac{f_{1}}{f_{2}}\right)^{2}\right)-10 \log \left(1+\left(\frac{f_{1}}{f_{1}}\right)^{2}\right)
$$

$$
\text { Since } \begin{aligned}
f_{1} \ll f_{2}, \quad y & =-10 \log (1)-10 \log (1+1) \\
& =-10 \log 2=-3 d B
\end{aligned}
$$

[2 points] What is y at f_{2} ?

$$
\begin{aligned}
& \begin{array}{l}
y=-10 \log \left(1+\left(\frac{f_{2}}{f_{2}}\right)^{2}\right)-10 \log \left(1+\left(\frac{f_{1}}{f_{2}}\right)^{2}\right) \\
\text { Again, } f_{1} \ll f_{2} y
\end{array}=-10 \log (1+1)-10 \log (1) \\
& =-10 \log 2=-3 d B
\end{aligned}
$$

[2 points] What filter is this?
Bandpass filter

Bonus [5 points] If the input $\left|V_{\text {in }}\right|=1 \mathrm{~V}$ and the frequency is 1 MHz , what is the output $\left|V_{\text {out }}\right|$?

$$
\begin{array}{ll}
f_{2}=1 \mathrm{MHz} \text {, so } y=-3 d B=10 \log \left(\frac{1}{2}\right) \\
\frac{1}{2}=|H(f)|^{2}=\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|^{2} & \left|V_{\text {out }}\right|=\frac{1}{\sqrt{2}}\left|V_{\text {in }}\right| \approx 0.707 \mathrm{~V}
\end{array}
$$

Bonus [5 points] If the input $\left|V_{\text {in }}\right|=1 \mathrm{~V}$ and the frequency is 10 MHz , what is the output $\left|V_{\text {out }}\right|$?
$10 \mathrm{MHz}=10 f_{2}$: one decade past break frequency
At large f, slope is $-20 \mathrm{~dB} /$ decade. Thus, $y=-20 \mathrm{~dB}$, since f is 1 decade higher than the break frequency, where the Bode approximation is 0 dB .

$$
\begin{array}{ll}
y=-20 d B=10 \log \left(\frac{1}{102}\right) \\
\frac{1}{100}=|H(f)|^{2}=\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|^{2} & \left|V_{\text {out }}\right|=\frac{1}{\sqrt{100}}\left|V_{\text {in }}\right|=0.1 \mathrm{~V}
\end{array}
$$

(d) [16 pt total] Bode Phase Plot. You must put down all the steps leading to your results. Hint: You may consider $f_{1} \ll f_{2}$
[4 points] Write down the expression for $\angle H(f)$

$$
\begin{aligned}
\angle H(f) & =\tan ^{-1} 0-\tan ^{-1}\left(\frac{f}{f_{2}}\right)+\tan ^{-1} 0-\tan ^{-1}\left(-\frac{f_{1}}{f}\right) \\
& =\tan ^{-1}\left(\frac{f_{1}}{f}\right)-\tan ^{-1}\left(\frac{f}{f_{2}}\right)
\end{aligned}
$$

[4 points] What does the value of $\angle H(f)$ approaches to as $f \rightarrow 0$?

$$
\angle H(f)=\tan ^{-1}(\infty)-\tan ^{-1}(0)=\frac{\pi}{2} \text { radians }
$$

[4 points] What does the value of $\angle H(f)$ approaches to as $f \rightarrow \infty$?

$$
\angle H(f)=\tan ^{-1}(0)-\tan ^{-1}(\infty)=-\frac{\pi}{2} \text { radians }
$$

[2 points] What is $\angle H(f)$ at $f=f_{1}$?

$$
\begin{aligned}
\angle H(f) & =\tan ^{-1}\left(\frac{f_{1}}{f_{1}}\right)-\tan ^{-1}\left(\frac{f_{1}}{f_{2}}\right)=\tan ^{-1}(1)-\tan ^{-1}(0) \\
& =\frac{\pi}{4} \text { radians }
\end{aligned}
$$

[2 points] What is $\angle H(f)$ at $f=f_{2}$?

$$
\begin{aligned}
\angle H(f) & =\tan ^{-1}\left(\frac{f_{1}}{f_{2}}\right)-\tan ^{-1}\left(\frac{f_{1}}{f_{2}}\right)=\tan ^{-1}(0)-\tan ^{-1}(1) \\
& =-\frac{\pi}{4} \text { radians }
\end{aligned}
$$

3. [30 points] Second-order Circuits:

Assume the switch has been to the left for a long time before switching to the right at $\mathrm{t}=0$.
(a) Find the following values: [18 points] (Hint: What is $v_{o}(t)$ in terms of $v_{C}(t)$?)

$i_{L}(0+)=\frac{10 \mathrm{~V}}{5 \mathrm{k} \Omega}=2 \mathrm{~mA}$	$i_{L}(\infty)=0 \mathrm{~A}$
Inductor is short circuit right before switch is	
thrown.	All power is dissipated through resistors.
$v_{C}(0+)=0 \mathrm{~V}$	$v_{C}(\infty)=0 \mathrm{~V}$
No stored charge.	Discharges through resistors.
$v_{o}(0+)=0 \mathrm{~V}$	$v_{o}(\infty)=0 \mathrm{~V}$
All current initially flows through capacitor $($ short $)$.	Power dissipated, no current.
$\frac{d}{d t} i_{L}(0+)=0 \mathrm{~A} / \mathrm{s}$	
$v_{L}(0+)=L \frac{d}{d t} i_{L}(0+)=V_{C}(0+)=0 \mathrm{~V}$	
$\frac{d}{d t} v_{C}(0+)=-2 M V / s$	
$i_{C}(0+)=C \frac{d}{d t} v_{C}(0+) \Rightarrow \frac{d}{d t} v_{C}(0+)=\frac{-i_{L}(0+)}{C}=\frac{-2 m A}{1 n F}=-2 \times 10^{6} \mathrm{~V} / \mathrm{s}$	
$\frac{d}{d t} v_{o}(0+)=-1.5 ~ M V / s$	
Voltage divider: $v_{o}=\frac{3 k \Omega}{1 k \Omega+4 k \Omega} v_{C} \Rightarrow \frac{d}{d t} v_{o}(t)=\frac{3}{4} \frac{d}{d t} v_{C}(t)$	

(b) [6 points] Write the differential equation in terms of v_{c}.

KCL @ node above capacitor, (the 2 resistors are combined into R):

$$
\begin{aligned}
0 & =i_{L}(t)+C \frac{d}{d t} v_{C}(t)+\frac{1}{R} v_{C}(t) \\
& =\frac{1}{L} \int v_{C}(t) d t+C \frac{d}{d t} v_{C}(t)+\frac{1}{R} v_{C}(t)
\end{aligned}
$$

Differentiating,

$0=\frac{1}{L} v_{C}(t)+C \frac{d^{2}}{d t} v_{C}(t)+\frac{1}{R} \frac{d}{d t} v_{C}(t)$
$0=\frac{d^{2}}{d t} v_{C}(t)+\frac{1}{R C} \frac{d}{d t} v_{C}(t)+\frac{1}{L C} v_{C}(t)$
(c) [6 points] What are the values of the natural frequency $\left(\omega_{0}\right)$ and the damping ratio (ζ) ? Damped harmonic oscillation:
$0=\frac{d^{2}}{d t} v_{C}(t)+2 \alpha \frac{d}{d t} v_{C}(t)+\omega_{0}^{2} v_{C}(t)$
$\omega_{0}=\sqrt{\frac{1}{L C}}=\sqrt{\frac{1}{(16 m H)(1 n F)}}=\frac{1}{\sqrt{16 \times 10^{-12} s^{2}}}$
$=250 \mathrm{krad} / \mathrm{s}$
$\alpha=\frac{1}{2 R C}=\frac{1}{2(4 k \Omega)(1 n F)}=\frac{1}{8 \times 10^{-6} s}$
$=125 \mathrm{krad} / \mathrm{s}$
$\zeta=\frac{\alpha}{\omega_{0}}=\frac{125 \mathrm{krad} / \mathrm{s}}{250 \mathrm{krad} / \mathrm{s}}=0.5 \quad$ (underdamped behavior)

