Quiz \#1, EECS 40, Fall 2006
 Total: 100 pts and 20 pts Bonus

Last (Family) Name: \qquad Perfect First Name: \qquad
Student ID: \qquad Discussion Session: \qquad

1. (14 pts) Consider a transfer function, $H(f)=\frac{-j Q\left(\frac{f_{0}}{f}\right)}{1+j Q\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)}$
(a) What is $|H(f)|^{2}$?
$|H(f)|^{2}=\frac{\left(Q \frac{f_{0}}{f}\right)^{2}}{1^{2}+Q^{2}\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)^{2}}$
(b) What is the phase $\angle H(f)$?
$\angle\left(-j Q \frac{f_{0}}{f}\right)=-\frac{\pi}{2}$
$\angle\left(1+j Q\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)\right)=\tan ^{-1}\left(Q\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)\right)$
$\angle H(f)=-\frac{\pi}{2}-\tan ^{-1}\left(Q\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)\right)$
2. (50 pts) Bode Magnitude Plot: Use the same transfer function in 1, $y=10 \log |H(f)|^{2}$
(a) What is the break frequency (or resonance frequency in the text book)?
$f_{B}=f_{0}$
(b) What is y at the break frequency?

$$
\begin{aligned}
y & =10 \log |H(f)|^{2}=10 \log \left(\frac{\left(Q \frac{f_{0}}{f_{0}}\right)^{2}}{1^{2}+Q^{2}\left(\frac{f_{0}}{f_{0}}-\frac{f_{0}}{f_{0}}\right)^{2}}\right) \\
& =10 \log \left(\frac{Q^{2}}{1+Q^{2}(0)}\right)=10 \log \left(Q^{2}\right) \\
& =20 \log Q
\end{aligned}
$$

(c) What is y for very small f?

The f term in the numerator is by itself, cannot be ignored. The f^{-1} term in the denominator dominates at very small f.
$y=10 \log \frac{\left(Q \frac{f_{0}}{f}\right)^{2}}{Q^{2}\left(\frac{f_{0}}{f}\right)^{2}}=10 \log 1=0 d B$
(d) What is y for very large f ? What is the slope of this portion?

Again, we cannot ignore the lone f term in the numerator. At large f, the f^{-1} term in the denominator becomes 0 . The f term dominates.

$$
\begin{aligned}
y & =10 \log \frac{\left(Q \frac{f_{0}}{f}\right)^{2}}{Q^{2}\left(\frac{f}{f_{0}}\right)^{2}}=10 \log \left(\frac{f_{0}}{f}\right)^{4} \\
& =40 \log f_{0}-40 \log f
\end{aligned}
$$

Thus, the slope is $-40 \mathrm{~dB} /$ decade.
(e) Sketch the Bode magnitude plot.

The figure below shows the Bode magnitude plot (blue lines) for different values of Q. The humps at f_{0} have the value $20 \log Q$. The thick dashed line represents the approximate values, emphasizing the linear portions of the Bode plot.

3. (36 pts) Bode Magnitude Plot: Use the same transfer function in 1, let $y=10 \log |H(f)|^{2}$
(a) At the break frequency, $\angle H(f)=$?

$$
\begin{aligned}
\angle H(f) & =-\frac{\pi}{2}-\tan ^{-1}\left(Q\left(\frac{f_{0}}{f_{0}}-\frac{f_{0}}{f_{0}}\right)\right) \\
& =-\frac{\pi}{2}-\tan ^{-1}(0)=-\frac{\pi}{2}
\end{aligned}
$$

(b) In radians, what does $\angle H(f)$ approach as $f \rightarrow \infty$?

$$
\begin{aligned}
\angle H(f) & =-\frac{\pi}{2}-\tan ^{-1}(\infty) \\
& =-\frac{\pi}{2}-\frac{\pi}{2}=-\pi
\end{aligned}
$$

(c) In radians, what does $\angle H(f)$ approach as $f \rightarrow 0$?

$$
\begin{aligned}
\angle H(f) & =-\frac{\pi}{2}-\tan ^{-1}(-\infty) \\
& =-\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=0
\end{aligned}
$$

(d) Sketch the Bode Phase plot.

The curve shows the actual values, the dotted line is the Bode approximation.

3. (20 pts) Bonus: Given the transfer function $H(f)=\frac{j Q\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)}{1+j Q\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)}$

What kind of filter is this? Sketch the Bode Magnitude Plot.
This is a notch filter, with $V_{\text {out }}$ taken across the L and C in a series RLC circuit.
The slope of the response does not take a constant asymptotic slope around the resonant frequency, but does approach $-\infty$ at the resonant frequency. The width of the stop band decreases with higher Q.

