OPERATIONAL AMPLIFIERS: REVIEW

- We use differential amplifiers with feedback (output and input connected) to perform mathematical operations
- We also use amplifiers to provide predictable voltage and additional current to output "loads"
- We can analyze amplifier circuits using the circuit model

- Or, we can analyze using the simpler "ideal" assumptions
- We can design an amplifier to perform a certain operation by choosing the right form and then choosing resistor values

$$
V_{0}(t)=-\frac{1}{R C} \int_{0}^{t} V_{I N}(T) d T+V_{C}(0)
$$

ANALOG VS. DIGITAL

D/A CONVERSION

Example: Digital sound (CD) to analog (speaker)
Let's have each " 1 " on the CD translate to 0.5 V at the speaker.

Another way is to sum charges instead of current with capacitor networks

Binary number	Analog output (volts)
0000	0
0001	0.5
0010	1
0011	1.5
0100	2
0101	2.5
0110	3
0111	3.5
1000	4
1001	4.5
1010	5
1011	5.5
1100	6
1101	6.5
1110	7
1111	7.5
$\uparrow \uparrow$	
MSB LSB	

Using differential amplifier without feedback:

If $V_{+}>V_{-}$the output $V o$ will be at the upper rail. If $\mathrm{V}_{+}<\mathrm{V}_{-}$, the output Vo will be at the lower rail.

UNLESS...
V_{+}is very close to V_{-}, such that $A\left(V_{+}-V_{-}\right)$is between the rails.

COMPARATORS

Symbol

ONE-BIT A/D CONVERSION

 IN DIGITAL SYSTEMS
pulses in

transmission line
 pulses

Set comparator threshold at a suitable value (border between logic 0 and logic 1)
Comparator output goes to +rail (logic 1) if
$\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {THRESHOLD }}$ and to -rail (logic 0) if
$\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {Threshold }}$.

