TO REVIEW AMPLIFIERS...

- Prove formulas for various amplifier configurations
- Write a linear function and try to create an amplifier to perform the function
- Find the input-output formula for one of the simpler amplifier configurations using the circuit model
- Sketch what would happen to V₀ if you put a largeamplitude sinusoid as the input to an amplifier. Determine when the output would "rail".

Today, we will look at digital logic gates.

EECS 40 Spring 2003 Lecture 11	Copyright Regents of the University of California	S. Ross and W. G. Oldham	EECS 40 Spring 2003 Lecture 11	Copyright Regents of the University of California	S. Ross and W. G. Oldham
	DIGITAL ADVANTAGES				
 Digital C Digital C Digital C Proce Reconnection (need) 	Communication al representation makes encod essing easier onstruct signal to arbitrary accu d bandwidth)	ing and racy			
 Comput Arbit more Can (big r 	ters rary computational accuracy, ju e significant digits (big floating-p store information with arbitrary memory)	ist add point unit) accuracy			

S. Ross and W. G. Oldham

EECS 40 Spring 2003 Lecture 11

EECS 40 Spring 2003 Lecture 11

Copyright Regents of the University of California

S. Ross and W. G. Oldham

A AND C=A·B

Here we have an **abstract** symbol for a logic circuit. A, B, and C are **Boolean variables**. Each can take on the value logic 1 or logic 0.

Remember, logic 1 is represented by a potential of, say, 5 V with respect to ground, and logic 0 is usually represented by a potential of 0 V.

Values close to these nominal levels still work as logic 1 or logic 0, e.g., 4 V may work as logic 1.

We will study the detailed electrical workings of logic gates in weeks to come, today we will be abstract.

EECS 40 Spring 2003 Lecture 11	Copyright Regents of the University of	f California	S. Ross and W. G. Oldham	EECS 40 Spring 2003 Lecture 11	Copyright Regents of the University of California	S. Ross and W. G. Oldham
	LOGICAL FUNC	FIONS				
• "AND"	A • B	alternatively	AB			
• "OR"	A + B					
• "INVERT" o	or "NOT" A					
• "not AND" :	= NAND A • B	alternatively	AB			
• "not OR" =	NOR A + B					
• exclusive O	PR = XOR A ↔ B					
EECS 40 Spring 2003 Lecture 11	Copyright Regents of the University o	f California	S. Ross and W. G. Oldham	EECS 40 Spring 2003 Lecture 11	Copyright Regents of the University of California	S. Ross and W. G. Oldham
	TRUTH TAB	LE				

A truth table gives the logic function output for each possible combination of inputs.

Α	В	Α	AB	A+B	AB	A+B	A+B
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	1	0	1	1	0	0	0

S. Ross and W. G. Oldham

LOGIC GATE CIRCUIT SYMBOLS

Copyright Regents of the University of California

LOGICAL SYNTHESIS

Suppose we are given a truth table for a logic function we would like to create.

Is there a method to implement the logical function using these basic logic gates?

Answer: There are lots of ways, but one simple way is implementation from "sum of products" formulation.

How to do this: 1) Write sum of products expression from truth table and 2) implement using standard gates.

We may not get the most efficient implementation this way, but we can simplify the circuit afterwards.

EECS 40	Spring 2003	Lecture 11

Copyright Regents of the University of California

S. Ross and W. G. Oldham

			. '	EXAM	PLE: ADDER			
Α	В	С	S ₁	S ₀	S ₁ using sum-of-products:			
0	0	0	0	0	1) Find where S is "1"			
0	0	1	0	1				
0	1	0	0	1	2) Write down product of inputs			
0	1	1		0				
1	0	0	0	1	ABC ABC			
1	0	1		0	A B C A B C			
1	1	0	1	0	3) Sum all products			
1	1	1	1	1	$\overline{A}BC + \overline{A}BC + \overline{A}BC + \overline{A}BC$			
	Input		l Ou	Itput	4) Draw circuit			
	-			-	, ,			
ECS 40 Spring	2003 Lecture	PR	OPER	Copyright Reg	ents of the University of California S. Ross and W. G. Oldham OF BOOLEAN LOGIC	EECS 40 Spring 2003 Lecture 11	Copyright Regents of the University of California	S. Ross and W. G. Oldham
A + 0) = A				A • 1 = A			
A + A	A = 1				$\mathbf{A} \cdot \overline{\mathbf{A}} = 0$			
A + A	A = A				$A \bullet A = A$			
A + E	$A + B = B + A$ $A \cdot B = B \cdot A$			A • B = B • A				
$A + (B + C) = (A + B) + C$ $(A \cdot B) \cdot C = A \cdot (B \cdot C)$				+ C				
$A \bullet (B + C) = A \bullet B + A \bullet C \qquad A + B \bullet C = (A + B) \bullet (A + C)$			$(A \bullet D) \bullet C = A \bullet (D \bullet C)$					
A • (E	3 + C) = A	• B +	A•C	$(A \circ B) \circ C = A \circ (B \circ C)$ A + B • C = (A + B) • (A + C)			
A • (E A + A	B + C) 3 + C) A • B =) = A = A	• B +	A•C	$(A \circ B) \circ C = A \circ (B \circ C)$ $A + B \circ C = (A + B) \circ (A + C)$ $A \circ (A + B) = A$			
A • (E A + A	B + C) 3 + C) A • B =) = A = A	• B +	A • C	$(A \circ B) \circ C = A \circ (B \circ C)$ A + B • C = (A + B) • (A + C) A • (A + B) = A			
A • (E A + A	B + C B + C) A • B =) = A = A	• B +	A • C	$(A \circ B) \circ C = A \circ (B \circ C)$ $A + B \circ C = (A + B) \circ (A + C)$ $A \circ (A + B) = A$ $\overline{A \circ B} = \overline{A} + \overline{B}$			
A • (E A + A DeMo	B + C) A • B = organ) = A = A i's La	• B +	A • C	$(A \circ B) \circ C = A \circ (B \circ C)$ $A + B \circ C = (A + B) \circ (A + C)$ $A \circ (A + B) = A$ $\overline{A \circ B} = \overline{A + B}$ $\overline{A \circ B} = \overline{A + B}$			

NAND-NAND IMPLEMENTATIONS

is the same as this

And by definition this

is the same as this

so all sum-of-products expressions can be implemented with one kind of gate: NAND gates. Just replace AND and OR with NAND.

EECS 40 Spring 2003 Lecture 11	Copyright Regents of the University of California	S. Ross and W. G. Oldham	EECS 40 Spring 2003 Lecture 11	Copyright Regents of the University of California	S. Ross and W. G. Oldham
CI	REATING A BETTER CIRCUIT				
What makes a be •Fewer stages •Fewer total num •Fewer types of g •Fewer inputs on	etter digital circuit? Fast and lov ber of individual gates gates each gate (multi-input gates ar	v cost = better. e slower)			
Let's try to simpli make a better cir	fy the sum-of-products expressi cuit.	on for S_0 and			
We can use the p	properties of Boolean logic to do	simplification.			