TO REVIEW AMPLIFIERS...

- Prove formulas for various amplifier configurations
- Write a linear function and try to create an amplifier to perform the function
- Find the input-output formula for one of the simpler amplifier configurations using the circuit model
- Sketch what would happen to V_{0} if you put a largeamplitude sinusoid as the input to an amplifier. Determine when the output would "rail".

Today, we will look at digital logic gates.

DIGITAL ADVANTAGES

- Digital Communication
- Digital representation makes encoding and processing easier
- Reconstruct signal to arbitrary accuracy (need bandwidth)
- Computers
- Arbitrary computational accuracy, just add more significant digits (big floating-point unit)
- Can store information with arbitrary accuracy (big memory)

ANALOG VS. DIGITAL

- "AND"
- "OR"
$A+B$
- "INVERT" or "NOT" $\overline{\mathbf{A}}$
- "not AND" = NAND A•B alternatively AB
- "not OR" = NOR $\overline{\text { A + B }}$
- exclusive $O R=X O R \quad A \oplus B$

TRUTH TABLE

A truth table gives the logic function output for each possible combination of inputs.

A	B	A	$A B$	$A+B$	$\overline{A B}$	$\overline{A+B}$	$A \oplus B$
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	1	0	1	1	0	0	0

LOGIC GATE CIRCUIT SYMBOLS

NOT
Alternatively: 0

EXCLUSIVE OR

LOGICAL SYNTHESIS

Suppose we are given a truth table for a logic function we would like to create.

Is there a method to implement the logical function using these basic logic gates?

Answer: There are lots of ways, but one simple way is implementation from "sum of products" formulation.

How to do this: 1) Write sum of products expression from truth table and 2) implement using standard gates.

We may not get the most efficient implementation this way, but we can simplify the circuit afterwards.

EXAMPLE: ADDER

A	B	C	S_{1}	$\mathrm{~S}_{0}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
Input				

S_{1} using sum-of-products:

1) Find where S_{1} is " 1 "
2) Write down product of inputs which create each "1"

$\bar{A} B C \quad A \overline{B C}$

ABC $\bar{C} \quad$ ABC
3) Sum all products
$\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C$
4) Draw circuit

PROPERTIES OF BOOLEAN LOGIC

$A+0=A$
$A \cdot 1=A$
$A+A=1$
$A \cdot \bar{A}=0$
$A+A=A$
$A \cdot A=A$
$A+B=B+A$
$A \cdot B=B \cdot A$
$A+(B+C)=(A+B)+C$
$(A \cdot B) \cdot C=A \cdot(B \cdot C)$
$A \cdot(B+C)=A \cdot B+A \cdot C$
$A+B \cdot C=(A+B) \cdot(A+C)$
$A+A \cdot B=A$
$A \cdot(A+B)=A$

DeMorgan's Law:
$\overline{A \cdot B}=\bar{A}+\bar{B}$
$\bar{A} \cdot \bar{B}=\overline{A+B}$

NAND-NAND IMPLEMENTATIONS

DeMorgan's law tells us this

And by definition this

is the same as this

is the same as this

so all sum-of-products expressions can be implemented with one kind of gate: NAND gates. Just replace AND and OR with NAND.

CREATING A BETTER CIRCUIT

What makes a better digital circuit? Fast and low cost = better.
-Fewer stages
-Fewer total number of individual gates
-Fewer types of gates
-Fewer inputs on each gate (multi-input gates are slower)

Let's try to simplify the sum-of-products expression for S_{0} and make a better circuit.

We can use the properties of Boolean logic to do simplification.

