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More Digital Logic

• Gate delay and signal propagation
• Clocked circuit elements (flip-flop)
• Writing a word to memory 
• Simplifying digital circuits:  Karnaugh maps 
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PROPAGATION DELAY
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The propagation delay tp is defined as:
tp = time when output is halfway between initial and final value  -

time when input is halfway between initial and final value.

Low-to-high and high-to-low transitions could have different tp.

tp tp
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PROPAGATION DELAY

To get an approximate idea of the effects of delay, we make the 
transitions look instantaneous (though they are exponential).
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PROPAGATION DELAY

A
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Inputs have different delays, 
but we ascribe a single worst-
case delay tp to every gate

How many gate delays for shortest path?

How many gate delays for longest path?

ANSWER : 2

ANSWER : 3
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TIMING DIAGRAMS

A
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Note that            becomes valid two gate 
delays after B&C switch, because the 
invert function takes one delay and the 
NAND function a second.

Note    becomes valid one gate 
delay after B switches

B

1
0

The final OR gate creates one more delay.

( )CB ⋅

Different delays through different paths can create “false” output:
Circuit computes using partially updated signals.
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SYNCHRONOUS LOGIC

We have now seen that a circuit can produce nonsensical 
output due to differing delay paths in the circuit.

Presumably, the output of a logic circuit might serve as the 
input of a second logic circuit.

How do we prevent the second circuit from using and passing 
on this false information?  

Answer:  Include “gatekeeper” components that pass on data 
only when enough time has passed to guarantee validity

Clocked (Synchronous) components:  flip-flops
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SYNCHRONOUS CIRCUIT
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D Flip Flop
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The D Flip Flop is a synchronous (clocked) sequential (memory) 
circuit.

At the instant the clock signal CK rises from logic 0 to logic 1, 
the output Q is set equal to the input D.

At all other times, the output Q remains the same.

The flip flop prevents Logic Circuit 2 from receiving a new input 
value, until the clock transition allows the data to pass through.
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FLIP FLOP CIRCUIT DIAGRAM

D

CK Q

We may cover digital circuits with feedback later in the course.
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MAKING MEMORIES

• In order to write to memory, the Write input must be 1.
• Note we can only write to all four cells at once!
• To change only 1 bit, e. g., change D2 to 1, set

D3 = Q3 D2 = 1 D1 = Q1 D0 = Q0
• To change 1 bit on CalBot board using software interface, use 

bitwise OR “|” with a mask:  Q = Q | 0100
(where Q is defined as Q3Q2Q1Q0)

D3

CK

Q3

CK CK CK

Write
Clock
Signal

D2 Q2 D1 Q1 D0 Q0
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� How do you set one bit to logic 0 using the CalBot interface?
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CREATING A BETTER CIRCUIT

What makes a better digital circuit?  Fast and low cost = better.
•Fewer stages
•Fewer total number of individual gates
•Fewer types of gates
•Fewer inputs on each gate (multi-input gates are slower)

In general, simplifying a digital circuit to minimize the number
of gates is computationally intractable (uses very large amount 
of time and space, worse than NP-hard)

The method of Karnaugh maps reduces the number of inputs 
per gate.
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� It is interesting to study the computational effort needed to analyze 
and simplify digital circuits.  Some interesting results (for those who 
know about complexity, maybe discussed at end of semester):

� The problem of deciding whether there is a combination of inputs to 
a digital circuit that will generate an output of 1 is in a special class 
of problems called NP-complete.  If you are smart enough to figure 
out a way to solve this problem in polynomial time, then the world 
will be able to solve all sorts of hard problems in polynomial time 
and you will win a Fields Medal.

� The number of gates in a circuit is mathematically related to the time 
complexity of the problem it decides.  If you can find an NP problem 
that cannot be decided with a circuit that has polynomial number of 
gates, then you have proved that some NP problems cannot be 
decided in polynomial time and you win a Fields Medal.
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KARNAUGH MAPS

To find a simpler sum-of-products expression,
1. Write the truth table of your circuit into a special table.

2. For each “1”, circle the biggest 2m by 2n block that 
includes that “1”.

3. Write the product that corresponds to that block.
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� This method simplifies circuits to smaller sum-of-products (ANDs
and ORs).  Could you use these maps to simplify with XOR?
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EXAMPLE:  ADDER
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Simplification for S1:
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� Use the Karnaugh map method to simplify S0.  Is there a simpler 
circuit for S0?


