EECS 40 Spring 2003 Lecture 14

S. Ross

S. Ross

EECS 40 Spring 2003 Lecture 14

REALISTIC DIODE MODEL

- Here, V_T is "thermal voltage": V_T = (kT)/q ≈ 0.026 V @ 300°K (q is electron charge in C, k is Boltzmann's constant, and T is the operating temperature in °K)
- · Equation is valid for all modes of operation considered
- You might need a computer to solve the nonlinear equation this model can create

- closed (short circuit) in forward bias mode
- Guess which situation diode is in, see if answer makes sense

S. Ross

Look at circuits with a nonlinear element like this:

A nonlinear element with its own I-V relationship, attached to a linear circuit with its own I-V relationship.

Equations we get:

1.
$$I_L = f_L(V_L)$$
 (linear circuit I-V relationship)
2. $I_{NL} = f_{NL}(V_{NL})$ (nonlinear element I-V relationship)
3. $I_{NL} = -I_L$
4. $V_{NL} = V_L$

EECS 40 Spring 2003 Lecture 14

SOLVING CIRCUITS WITH NONLINEAR ELEMENTS

Our 4 equations

1.	$I_L = f(V_L)$	(linear circuit I-V relationship)
2.	$I_{NL} = g(V_{NL})$	(nonlinear element I-V relationship)
3.	$I_{NL} = -I_{L}$	
4.	$V_{NL} = V_{L}$	

can easily become just 2 equations in I_{NL} and V_{NL}

1. $I_{NL} = -f_L(V_{NL})$ 2. $I_{NL} = f_{NL}(V_{NL})$

which we can equate and solve for V_{NL} , or...

graph the two equations and solve for the intersection.

S. Ross

EECS 40 Spring 2003 Lecture 14

LOAD LINE ANALYSIS

To find the solution graphically,

S. Ross

S. Ross

