Last time...

we introduced the diode

and its (complicated) I-V relationship.

Today we will...

- focus on the relevant area of the diode I-V graph
- develop simpler models for the diode I-V relationship
- learn how to solve circuits with nonlinear elements

DIFFERENT MODELS, DIFFERENT USES

- We will consider 4 different diode I-V models with varying degrees of detail.
- Use most realistic model only for very precise calculations
- Use simpler models to find basic operation, gain intuition
- Sometimes one model may lead to an "impossible" situation: use a different (more realistic) model in this case

REALISTIC DIODE MODEL

- Here, V_{T} is "thermal voltage": $\mathrm{V}_{\mathrm{T}}=(\mathrm{kT}) / \mathrm{q} \approx 0.026 \mathrm{~V} @ 300^{\circ} \mathrm{K}$ (q is electron charge in C, k is Boltzmann's constant, and T is the operating temperature in ${ }^{\circ} \mathrm{K}$)
- Equation is valid for all modes of operation considered
- You might need a computer to solve the nonlinear equation this model can create
- Diode either has negative voltage and zero current, or zero voltage and positive current
- Diode behaves like a switch: open in reverse bias mode, closed (short circuit) in forward bias mode
- Guess which situation diode is in, see if answer makes sense

LARGE-SIGNAL DIODE MODEL

- Diode either has voltage less than V_{F} and zero current, or voltage equal to V_{F} and positive current
- Diode behaves like a voltage source and switch: open in reverse bias mode, closed in forward bias mode
- Guess which situation diode is in, see if answer makes sense

SMALL-SIGNAL DIODE MODEL

- Diode either has voltage less than V_{F} and zero current, or voltage greater than V_{F} and positive current depending on V
- Diode behaves like a voltage source, resistor and switch: open in reverse bias mode, closed in forward bias mode
- Guess which situation diode is in, see if answer makes sense

SOLVING CIRCUITS WITH NONLINEAR ELEMENTS

Look at circuits with a nonlinear element like this:

A nonlinear element with its own I-V relationship, attached to a linear circuit with its own I-V relationship.

Equations we get:

1. $I_{L}=f_{L}\left(V_{L}\right) \quad$ (linear circuit I-V relationship)
2. $\mathrm{I}_{\mathrm{NL}}=\mathrm{f}_{\mathrm{NL}}\left(\mathrm{V}_{\mathrm{NL}}\right)$ (nonlinear element I-V relationship)
3. $I_{N L}=-I_{L}$
4. $\mathrm{V}_{\mathrm{NL}}=\mathrm{V}_{\mathrm{L}}$

SOLVING CIRCUITS WITH NONLINEAR ELEMENTS
Our 4 equations

1. $\mathrm{I}_{\mathrm{L}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{L}}\right)$ (linear circuit I-V relationship)
2. $\mathrm{I}_{\mathrm{NL}}=\mathrm{g}\left(\mathrm{V}_{\mathrm{NL}}\right)$ (nonlinear element I-V relationship)
3. $I_{N L}=-I_{L}$
4. $\mathrm{V}_{\mathrm{NL}}=\mathrm{V}_{\mathrm{L}}$
can easily become just 2 equations in I_{NL} and V_{NL}
5. $I_{N L}=-f_{L}\left(V_{N L}\right)$
6. $\mathrm{I}_{\mathrm{NL}}=\mathrm{f}_{\mathrm{NL}}\left(\mathrm{V}_{\mathrm{NL}}\right)$
which we can equate and solve for V_{NL}, or...
graph the two equations and solve for the intersection.

LOAD LINE ANALYSIS

To find the solution graphically,

graph the nonlinear I-V relationship,
graph the linear I-V relationship in terms of I_{NL} and V_{NL} (reflect over y-axis),
and find the intersection: the voltage across and current through the nonlinear element.

EXAMPLE REVISITED

Find $V_{N L}$.
Assume small-signal diode model with $\mathrm{V}_{\mathrm{F}}=0.7 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{D}}=20 \Omega$.

1. $\mathrm{I}_{\mathrm{L}}=\left(\mathrm{V}_{\mathrm{L}}-2\right) / 1000$
2. $\mathrm{I}_{\mathrm{NL}}=\left(\mathrm{V}_{\mathrm{NL}}-0.7\right) / 20$ or $I_{N L}=0$
3. $I_{N L}=-I_{L} \quad$ Either substitute into 3. and solve
4. $\mathrm{V}_{\mathrm{NL}}=\mathrm{V}_{\mathrm{L}}$
$\left(\mathrm{V}_{\mathrm{NL}}-0.7\right) / 20=-\left(\mathrm{V}_{\mathrm{NL}}-2\right) / 1000$ or determine graphically that $\mathrm{V}_{\mathrm{NL}}=0.725 \mathrm{~V}$

ONE MORE TIME

Find $V_{N L}$.
Assume small-signal
diode model with $\mathrm{V}_{\mathrm{F}}=0.7 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{D}}=20 \Omega$.

1. $\mathrm{I}_{\mathrm{L}}=\left(\mathrm{V}_{\mathrm{L}}--2\right) / 1000$
2. $\mathrm{I}_{\mathrm{NL}}=\left(\mathrm{V}_{\mathrm{NL}}-0.7\right) / 20$ or $I_{N L}=0$
3. $I_{N L}=-I_{L} \quad$ Either substitute into 3. and solve
4. $\mathrm{V}_{\mathrm{NL}}=\mathrm{V}_{\mathrm{L}} \quad 0=-\left(\mathrm{V}_{\mathrm{NL}}-2\right) / 1000$
or determine graphically that $\mathrm{V}_{\mathrm{NL}}=-2 \mathrm{~V}$

