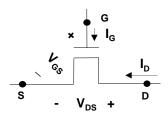
EECS 40 Spring 2003 Lecture 20 S. Ross EECS 40 Spring 2003 Lecture 20

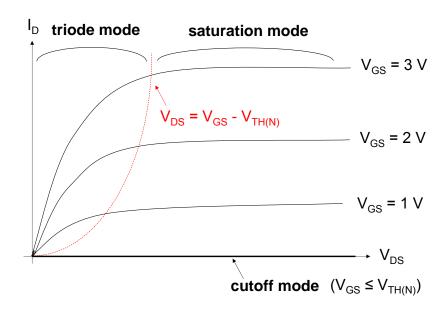
S. Ross


Today we will

- Review NMOS and PMOS I-V characteristic
- Practice useful method for solving transistor circuits
- Build a familiar circuit element using a transistor

S. Ross

EECS 40 Spring 2003 Lecture 20


NMOS I-V CHARACTERISTIC

- Since the transistor is a 3-terminal device, there is no single I-V characteristic.
- Note that because of the gate insulator, I_G = 0 A.
- · We typically define the MOS I-V characteristic as I_D vs. V_{DS} for a fixed V_{GS}.
- 3 modes of operation

EECS 40 Spring 2003 Lecture 20 S. Ross

NMOS I-V CHARACTERISTIC

EECS 40 Spring 2003 Lecture 20 S. Ross

EECS 40 Spring 2003 Lecture 20

NMOS I-V CHARACTERISTIC

S. Ross

Cutoff Mode

• Occurs when $V_{GS} \le V_{TH(N)}$

$$I_D = 0$$

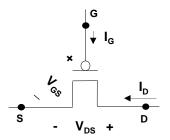
Triode Mode

• Occurs when $V_{GS} > V_{TH(N)}$ and $V_{DS} < V_{GS} - V_{TH(N)}$

$$I_{D} = \frac{W}{I} \mu_{n} C_{OX} (V_{GS} - V_{TH(N)} - (V_{DS}/2)) V_{DS}$$

Saturation Mode

• Occurs when $V_{GS} > V_{TH(N)}$ and $V_{DS} \ge V_{GS} - V_{TH(N)}$


$$I_{D} = \frac{W}{L} \mu_{n} C_{OX} \frac{1}{2} (V_{GS} - V_{TH(N)})^{2} (1 + \lambda_{n} V_{DS})$$

EECS 40 Spring 2003 Lecture 20

S. Ross

EECS 40 Spring 2003 Lecture 20

PMOS I-V CHARACTERISTIC

Symbol has "dot" at gate. NMOS does not.

 I_D , V_{GS} , V_{DS} , and $V_{TH(P)}$ are all **negative for PMOS**. These values are **positive for NMOS**.

Channel formed when $V_{GS} < V_{TH(P)}$. Opposite for NMOS.

Saturation occurs when $V_{DS} \le V_{GS} - V_{TH(P)}$. Opposite for NMOS.

PMOS I-V CHARACTERISTIC

EECS 40 Spring 2003 Lecture 20 S. Ross

S. Ross

$V_{GS} = -1 \text{ V}$ $V_{GS} = -2 \text{ V}$ $V_{GS} = -3 \text{ V}$

PMOS I-V CHARACTERISTIC

Cutoff Mode

• Occurs when $V_{GS} \ge V_{TH(P)}$

$$I_D = 0$$

Triode Mode

• Occurs when $V_{GS} < V_{TH(P)}$ and $V_{DS} > V_{GS} - V_{TH(P)}$

$$I_{D} = -\frac{W}{I} \mu_{p} C_{OX} (V_{GS} - V_{TH(P)} - (V_{DS}/2)) V_{DS}$$

Saturation Mode

• Occurs when $V_{GS} < V_{TH(P)}$ and $V_{DS} \le V_{GS} - V_{TH(P)}$

$$I_{D} = -\frac{W}{L} \mu_{p} C_{OX} \frac{1}{2} (V_{GS} - V_{TH(P)})^{2} (1 + \lambda_{p} V_{DS})$$

EECS 40 Spring 2003 Lecture 20 S. Ross EECS 40 Spring 2003 Lecture 20 S. Ross

SATURATION CURRENT

Since λ is small or zero, current I_D is almost constant in saturation mode.

We can call this current I_{DSAT}:

$$I_{DSAT} = \frac{W}{L} \mu_n C_{OX} \frac{1}{2} (V_{GS} - V_{TH(N)})^2 \quad \text{for NMOS}$$

$$I_{DSAT} = -\frac{W}{L} \mu_p C_{OX} \frac{1}{2} (V_{GS} - V_{TH(P)})^2 \quad \text{for PMOS}$$

LINEAR AND NONLINEAR ELEMENTS

We need to find out how transistors behave as part of a circuit.

Linear circuit

EECS 40 Spring 2003 Lecture 20

To solve a transistor circuit, obtain:

- 1) the **nonlinear** I_D vs. V_{DS} characteristic equation for the transistor
- 2) The **linear** relationship between I_D vs. V_{DS} as determined by the surrounding linear circuit

Then simultaneously solve these two equations for I_D and V_{DS} .

S. Ross

EECS 40 Spring 2003 Lecture 20 S. Ross

SOLVING TRANSISTOR CIRCUITS: STEPS

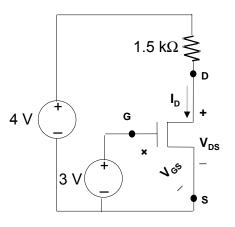
- 1) Guess the mode of operation for the transistor. (We will learn how to make educated guesses).
- 2) Write the I_D vs. V_{DS} equation for this mode of operation.
- 3) Use KVL, KCL, etc. to come up with an equation relating I_D and V_{DS} based on the surrounding linear circuit.
- 4) Solve these equations for I_D and V_{DS}.
- 5) Check to see if the values for I_D and V_{DS} are possible for the mode you guessed for the transistor. If the values are possible for the mode guessed, stop, problem solved. If the values are impossible, go back to Step 1.

EECS 40 Spring 2003 Lecture 20

S. Ross

CHECKING THE ANSWERS

NMOS

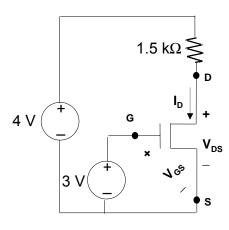

- V_{DS} must be positive
- $V_{DS} < V_{GS} V_{T(N)}$ in triode $V_{DS} \ge V_{GS} V_{T(N)}$ in saturation
- I_D must be positive
- $V_{GS} > V_{T(N)}$ in triode or saturation $V_{GS} \le V_{T(N)}$ in cutoff

PMOS

- V_{DS} must be negative
- $V_{DS} > V_{GS} V_{T(P)}$ in triode $V_{DS} \le V_{GS} V_{T(P)}$ in saturation
- I_D must be negative
- $V_{GS} < V_{T(P)}$ in triode or saturation $V_{GS} \ge V_{T(P)}$ in cutoff

EECS 40 Spring 2003 Lecture 20 S. Ross

EXAMPLE


- 1) Guess the mode:
- 2) Write transistor I_D vs. V_{DS}:

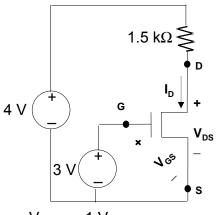
- $V_{TH(N)}$ = 1 V, $\frac{1}{2}$ W/L $\mu_n C_{OX}$ = 250 μ A/V², λ = 0 V⁻¹.
- 3) Write I_D vs. V_{DS} equation using KVL:

EECS 40 Spring 2003 Lecture 20 S. Ross

EECS 40 Spring 2003 Lecture 20

EXAMPLE

4) Solve:

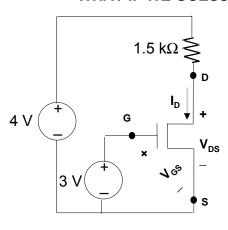

5) Check:

 $V_{TH(N)}$ = 1 V, 1/2 W/L $\mu_n C_{OX}$ = 250 μ A/V², λ = 0 V⁻¹.

EECS 40 Spring 2003 Lecture 20 S. Ross

WHAT IF WE GUESSED THE MODE WRONG?

1) Guess the mode:


2) Write transistor I_D vs. V_{DS} :

- $V_{TH(N)} = 1 \text{ V},$ $\frac{1}{2} \text{ W/L } \mu_n C_{OX} = 250 \text{ } \mu \text{ A/V}^2,$ $\lambda = 0 \text{ V}^{-1}.$
- 3) Write I_D vs. V_{DS} equation using KVL:

EECS 40 Spring 2003 Lecture 20 S. Ross

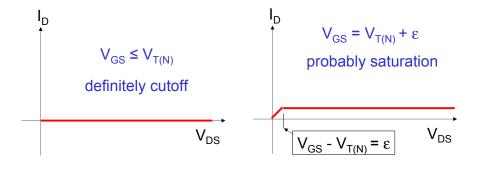
S. Ross

WHAT IF WE GUESSED THE MODE WRONG?

4) Solve for V_{DS} with quadratic equation:

5) Check:

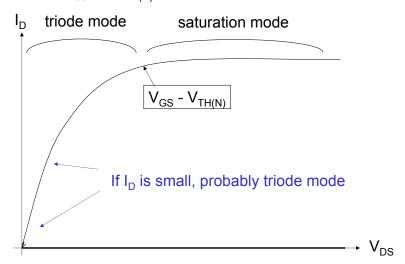
$$V_{TH(N)}$$
 = 1 V,
 $1/2$ W/L $\mu_n C_{OX}$ = 250 μ A/V²,
 λ = 0 V⁻¹.


EECS 40 Spring 2003 Lecture 20 S. Ross

GUESSING RIGHT

How do you guess the right mode?

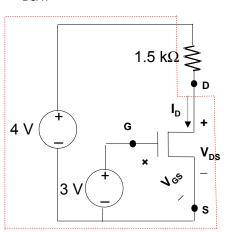
Often, the key is the value of V_{GS} .


(We can often find $\ensuremath{V_{\text{GS}}}$ directly without solving the whole circuit.)

EECS 40 Spring 2003 Lecture 20 S. Ross

GUESSING RIGHT

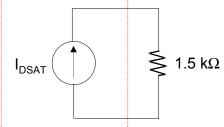
When $V_{GS} >> V_{TH(N)}$, it's harder to guess the mode.



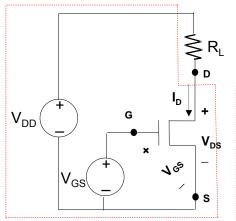
EECS 40 Spring 2003 Lecture 20 S. Ross

A CLOSER LOOK

In this circuit, the transistor delivered a constant current I_{DSAT} to the 1.5 k Ω resistor.


EECS 40 Spring 2003 Lecture 20

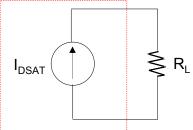
This circuit acts like a constant current source, as long as the transistor remains in saturation mode.


S. Ross

I_{DSAT} does not depend on the attached resistance if saturation is maintained.

A CLOSER LOOK

I_{DSAT} does depend on V_{GS}; one can adjust the current supplied by adjusting V_{GS}.


The circuit will go out of saturation mode if

•
$$V_{GS} < V_{T(N)}$$

or

•
$$V_{DS} < V_{GS} - V_{T(N)}$$

This can happen if V_{GS} is too large or too small, or if the load resistance is too large.

EECS 40 Spring 2003 Lecture 20 S. Ross EECS 40 Spring 2003 Lecture 20

ANOTHER EXAMPLE

- 1.5 kΩ ≤ 2 kΩ≤ 6 kΩ≶
 - $V_{TH(N)} = 1 V$, $\frac{1}{2} \dot{W} \dot{L} \mu_n C_{OX} = 250 \mu A/V^2$, $\lambda = 0 \text{ V}^{-1}$.

1) Guess the mode:

- 2) Write transistor I_D vs. V_{DS}:
- 3) Write I_D vs. V_{DS} equation using KVL:

Effectively the same circuit as previous example: only 1 source.

S. Ross