CMOS LOGIC

Inside the CMOS inverter, no I_{D} current flows through transistors when input is logic 1 or logic 0 , because

- the NMOS transistor is cutoff for logic $0(0 \mathrm{~V})$ input
- the PMOS transistor is cutoff for logic $1\left(\mathrm{~V}_{\mathrm{DD}}\right)$ input
- current through the "turned on" transistor has nowhere to go if next stage consists of transistor gates

EECS 40 Spring 2003 Lecture 22

$$
\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}
$$

- NMOS transistor cutoff (since $\mathrm{V}_{\mathrm{GS}(\mathrm{N})}=\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$) "acts as open circuit"
- PMOS transistor "on"
$\left(\mathrm{V}_{G S(P)}=\mathrm{V}_{I N}-\mathrm{V}_{\mathrm{DD}}=-\mathrm{V}_{\mathrm{DD}}\right)$
but $I_{D(P)}=0 \mathrm{~A}=>\mathrm{V}_{\mathrm{DS}(\mathrm{P})}=0 \mathrm{~V}$
$I_{D(N)}\left(=-I_{D(P)}\right)$

- PMOS transistor cutoff $\left(V_{G S(P)}=V_{I N}-V_{D D}=0 V\right)$ "acts as open circuit"
- NMOS transistor "on"
$\left(\mathrm{V}_{\mathrm{GS}(\mathrm{N})}=\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}\right)$ but $I_{D(N)}=0 A \Rightarrow V_{D S(N)}=0 \mathrm{~V}$
$I_{D(N)}\left(=-I_{D(P)}\right)$

EASY MODEL FOR LOGIC ANALYSIS

There is a simpler model for the behavior of transistors in a CMOS logic circuit, which applies when the input to the logic circuit is fully logic 0 or fully logic 1.

We can use the model to quickly determine the logical operation of a CMOS circuit (but we cannot use it to find circuit currents or voltages that will occur for mid-range input voltages).

REVISIT CMOS INVERTER WITH SIMPLE LOGIC MODEL

Fill in the switch positions below...

Verify the logical operation of the CMOS NAND circuit:

Verify the logical operation of the CMOS NAND circuit:

Verify the logical operation of the CMOS NOR circuit:

Verify the logical operation of the CMOS NOR circuit:

PULL-UP AND PULL-DOWN DEVICES

In our logic circuits, the NMOS transistor sources are connected to ground, and the PMOS sources are connected to V_{DD}.

Notice that when NMOS transistors are "on" (when $\mathrm{V}_{\text {GSN }}=\mathrm{V}_{\mathrm{DD}}$) $\mathrm{V}_{\text {DSN }}$ is shorted by switch, helping connect output to ground.

The NMOS transistor functions as a pull-down device; when active, it brings the output to 0 V .

When PMOS transistors are "on" (when $\mathrm{V}_{\mathrm{GSP}}=-\mathrm{V}_{\mathrm{DD}}$)
$V_{D S P}$ is shorted by switch, helping connect output to $V_{D D}$.
The PMOS transistor functions as a pull-up device; when active, it brings the output to V_{DD}.

LIMITATIONS OF SWITCH MODEL

In reality, the pull-up devices must have some V_{DS} voltage

Similarly, the pull-down devices must have some V_{DS} voltage and current flow to bring the output to ground since natural capacitance must be discharged.

This is GATE DELAY.

LIMITATIONS OF SWITCH MODEL

Suppose one needed to fully analyze the circuit for intermediate input voltages.

- NMOS_{1} barely on $\left(\mathrm{V}_{\mathrm{DS}(\mathrm{N} 2)} \geq 0\right)$ => saturation
- NMOS_{2} fully on, but NMOS_{1} limits I_{D} to small value => triode
- PMOS_{2} on, but NMOS_{1} and PMOS_{1} make I_{D} small => triode

