EECS 40 Spring 2003 Lecture 25	S. Ross	EECS 40 Spring 2003 Lecture 25	S. Ross	
EXAMPLES OF FEEDBACK				
Today we will				
 Look at an example of negative feedback: a single transistor circuit with source resistance 				
Look at an example of positive feedback: Schmitt trig	gger			
	1		2	
EECS 40 Spring 2003 Lecture 25	S. Ross	EECS 40 Spring 2003 Lecture 25	S. Ross	
NEGATIVE AND POSITIVE FEEDBACK				
A circuit exhibits feedback when the circuit input is affered by the value of the circuit output.	ected			
Suppose some disturbance occurs in a circuit, changing value of the output.	g the			

3

If the circuit has **negative feedback**, the change in output adjusts the value of the input so as to bring the circuit back closer to its original state.

If the circuit has **positive feedback**, the change in output adjusts the value of the input so as to make an even bigger change in the output. This continues until the circuit reaches a new stable state. $R_1 \leq$

 $R_2 \gtrless$

 $_{\odot}V_{DD}$

≦R_D

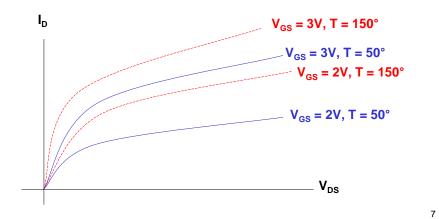
5

S. Ross

Consider our usual transistor circuit, being used as a constant current source supplying the resistor R_D .

Problem: The transistor curves are greatly affected by changes in temperature.

The relatively constant I_{DSAT} supplied to R_D increases as the circuit operates and heats up.


This makes the current supplied by this constant current source unpredictable. Increased I_{DSAT} could put the transistor in triode mode.

EECS 40 Spring 2003 Lecture 25

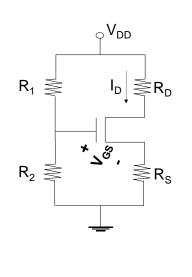
EXAMPLE OF NEGATIVE FEEDBACK

When temperature rises, electron mobility μ increases (generally).

So, the I_D vs. V_{DS} curves get higher with heat.

EECS 40 Spring 2003 Lecture 25

S. Ross


6

9

S. Ross

EXAMPLE OF NEGATIVE FEEDBACK

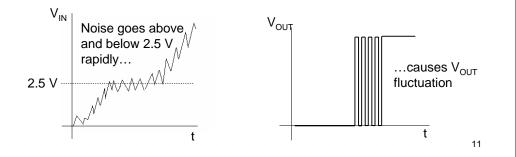
Solution: Add a feedback resistor R_s.

 $V_{GS} = V_{DD} \frac{R_2}{R_1 + R_2} - I_D R_S$

If I_D increases (e. g. due to heat), V_{GS} decreases.

This brings I_D back down a little.

Small adjustments continue until an equilibrium is reached.

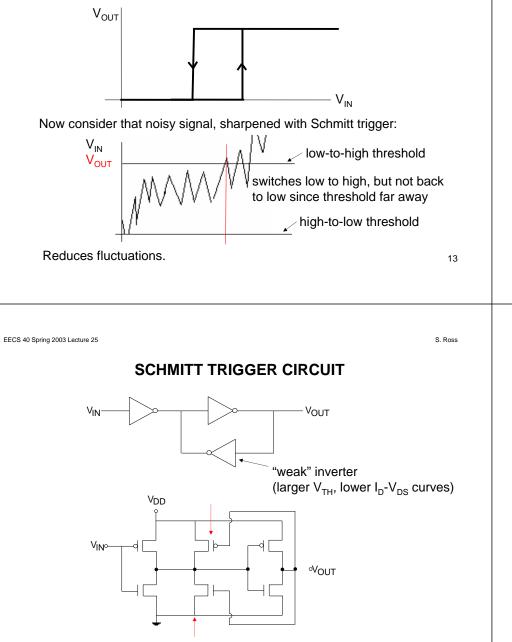

The final value of I_D will be closer to the original "cold" value than it would be without feedback.

EECS 40 Spring 2003 Lecture 25

POSITIVE FEEDBACK: SCHMITT TRIGGER

We used a comparator to "sharpen" a signal; to convert input voltages to either logic 1 (high rail) or logic 0 (low rail) depending on whether input is higher or lower than threshold.

What if the signal had a high-frequency noise component?


EECS 40 Spring 2003 Lecture 25

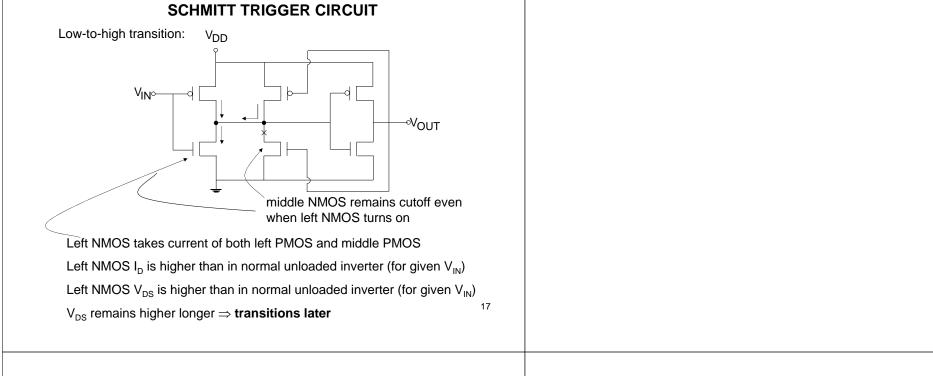
S. Ross

10

POSITIVE FEEDBACK: SCHMITT TRIGGER

A Schmitt trigger has a higher low-to-high threshold than high-to-low:

middle transistors have higher threshold magnitude, shallower I_D vs V_{DS} curves

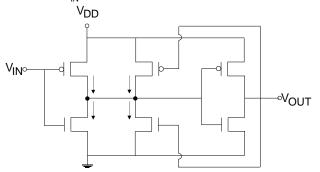

15

EECS 40 Spring 2003 Lecture 25

S. Ross

14

EECS 40 Spring 2003 Lecture 25


S. Ross

19

EECS 40 Spring 2003 Lecture 25

SCHMITT TRIGGER CIRCUIT

Now we reach the $V_{\rm IN}$ value that turns on the middle NMOS...

Now middle NMOS can accept current; less current remains for left NMOS. $\rm I_D$ in left NMOS decreases. $\rm V_{DS}$ on left NMOS decreases.

 V_{OUT} , the inverse of V_{DS} , increases. V_{GS} on middle NMOS increases. I_D in middle NMOS increases. I_D in left NMOS decreases.

Chain reaction causes rapid transition. The transition region is **unstable**. When we start up, we are pushed up all the way by positive feedback!

18

S Ross