S. Ross

S. Ross

EECS 40 Spring 2003 Lecture 27

Today we will

- Put a twist on our normally linear operational amplifier circuits to make them perform nonlinear computations
- Make a linear circuit model for the nonlinear NMOS transistor (Preview of EE 105)

Next time we will

- Show how we can design a pipelined computer datapath at the transistor level
- · Use a relay to design an analog circuit that counts

Trying to expose you to various complicated circuits/topics to use the tools you've developed and prepare you for final exam...

EECS 40 Spring 2003 Lecture 27

NONLINEAR OPERATIONAL AMPLIFIERS

When I put a nonlinear device in an operational amplifier circuit, I can compute a nonlinear function.

Consider the following circuit using the realistic diode model:

S. Ross

EECS 40 Spring 2003 Lecture 27

This circuit acts like a constant current source, as long as the transistor remains in saturation mode.

But this hides the fact that I_{DSAT} depends on V_{GS} ; it is really a **voltage-dependent** current source!

S. Ross

If V_{GS} is not constant, the model fails. What if V_{GS} changes? What if there is noise in the circuit?

Load

S. Ross

THE EFFECT OF A SMALL SIGNAL

IDSAT

EECS 40 Spring 2003 Lecture 27

S. Ross

THE SMALL-SIGNAL MODEL

Let's include the effect of noise in V_{GS}. Suppose we have tried to set V_{GS} to some value V_{GS,DC} with a fixed voltage source, but some noise ΔV_{GS} gets added in. V_{GS} = V_{GS,DC} + ΔV_{GS}

We get the predicted $I_{DSAT,DC}$ plus a change due to noise, ΔI_{DSAT} .

No current flows into or out of the gate because of the opening.

S. Ross

	S. Ross	EECS 40 Spring 2003 Lecture 27	S. Ross
THE SMALL-SIGNAL MODEL			
How do we find the values for the model?			
$I_{DSAT,DC}$ = ½ W/L $\mu_N C_{OX} (V_{GS,DC} - V_{TH})^2$			
This is a constant depending on $V_{GS,DC}$.			
$\Delta I_{\text{DSAT}} \approx \frac{\partial I_{\text{DSAT}}}{\partial V_{\text{GS}}} (V_{\text{GS,DC}}) \Delta V_{\text{GS}}$			
This is a first-order Taylor series approximation whic	ch works out to		
ΔI_{DSAT} = W/L μ_N C _{OX} (V _{GS,DC} – V _{TH}) ΔV_{GS}			
We often refer to W/L μ_{N} C_{\text{OX}} (V_{\text{GS,DC}} – $V_{\text{TH}})$ as g_{m} , s	0		
$\Delta I_{DSAT} = g_m \Delta V_{GS}.$			
EECS 40 Spring 2003 Lecture 27	S. Ross	EECS 40 Spring 2003 Lecture 27	S. Ross
EECS 40 Spring 2003 Lecture 27 THE SMALL-SIGNAL MODEL	S. Ross	EECS 40 Spring 2003 Lecture 27	S. Ross
EECS 40 Spring 2003 Lecture 27 $\label{eq:spring 2003 Lecture 27} THE SMALL-SIGNAL MODEL \\ Including the effect of \lambda via r_o, the added current conthe resistor is$	S. Ross	EECS 40 Spring 2003 Lecture 27	S. Ross
EECS 40 Spring 2003 Lecture 27 THE SMALL-SIGNAL MODEL Including the effect of λ via r _o , the added current corr the resistor is $I_{r0} = \frac{1}{2} W/L \mu_N C_{OX} (V_{GS} - V_{TH})^2 \lambda V_{DS}$	S. Ross	EECS 40 Spring 2003 Lecture 27	S. Ross
EECS 40 Spring 2003 Lecture 27 THE SMALL-SIGNAL MODEL Including the effect of λ via r _o , the added current corr the resistor is $I_{r0} = \frac{1}{2} W/L \mu_N C_{OX} (V_{GS} - V_{TH})^2 \lambda V_{DS}$ To make things much easier, since the λ effect is so we neglect the effect of ΔV_{GS} in the resistance, so the	s. Ross ntributed by nall anyway, ne current is	EECS 40 Spring 2003 Lecture 27	S. Ross
EECS 40 Spring 2003 Lecture 27 THE SMALL-SIGNAL MODEL Including the effect of λ via r _o , the added current corr the resistor is $I_{r0} = \frac{1}{2} W/L \mu_N C_{OX} (V_{GS} - V_{TH})^2 \lambda V_{DS}$ To make things much easier, since the λ effect is since we neglect the effect of ΔV_{GS} in the resistance, so the $I_{r0} \approx \frac{1}{2} W/L \mu_N C_{OX} (V_{GS,DC} - V_{TH})^2 \lambda V_{DS}$ $= I_{DSAT,DC} \lambda V_{DS}$	s. Ross ntributed by nall anyway, ne current is	EECS 40 Spring 2003 Lecture 27	S. Ross
EECS 40 Spring 2003 Lecture 27 THE SMALL-SIGNAL MODEL Including the effect of λ via r _o , the added current corr the resistor is $I_{r0} = \frac{1}{2} W/L \mu_N C_{OX} (V_{GS} - V_{TH})^2 \lambda V_{DS}$ To make things much easier, since the λ effect is since we neglect the effect of ΔV_{GS} in the resistance, so the $I_{r0} \approx \frac{1}{2} W/L \mu_N C_{OX} (V_{GS,DC} - V_{TH})^2 \lambda V_{DS}$ $= I_{DSAT,DC} \lambda V_{DS}$ This leads to	s. Ross ntributed by nall anyway, ne current is	EECS 40 Spring 2003 Lecture 27	S. Ross
EECS 40 Spring 2003 Lecture 27 THE SMALL-SIGNAL MODEL Including the effect of λ via r_o , the added current corr the resistor is $I_{r0} = \frac{1}{2} W/L \mu_N C_{OX} (V_{GS} - V_{TH})^2 \lambda V_{DS}$ To make things much easier, since the λ effect is since we neglect the effect of ΔV_{GS} in the resistance, so the $I_{r0} \approx \frac{1}{2} W/L \mu_N C_{OX} (V_{GS,DC} - V_{TH})^2 \lambda V_{DS}$ $= I_{DSAT,DC} \lambda V_{DS}$ This leads to $r_0 = V_{DS} / I_{r0} = (\lambda I_{DSAT,DC})^{-1}$	s.ross	EECS 40 Spring 2003 Lecture 27	S. Ross
THE SMALL-SIGNAL MODEL Including the effect of λ via r _o , the added current cont the resistor is	s.ross	EECS 40 Spring 2003 Lecture 27	

