Lecture 2
 Cast of Characters

- Basic quantities
- Charge
- Current
- Voltage
- Power
- Basic elements
- Resistor
- Voltage Source
- Current Source
- Capacitor
- Inductor

Measuring Charge

Charge is measured in Coulombs.
An electron has charge $-1.6 \times 10^{-19} \mathrm{C}$.

```
Charge flow
Charge storage
```


Definition of Current

1 Ampere = flow of 1 Coulomb per second
$i(A)=\frac{d q}{d t}\left(\frac{C}{S}\right)$
where q is the charge in Coulombs and t is the time in seconds

Current is defined as flow of positive charge!

Voltage is the difference in electric potential between two points.

VOLTAGE

" V_{ab} " means the potential at a minus the potential at b.

Potential is always defined by two points.
We can use the subscript convention above to define a voltage between two labeled points (e. g. a and babove),

$$
-\quad V x
$$

or draw a + and - indicating polarity.

A question like "Find the current" or "Find the voltage" is always accompanied by a definition of the direction:

In this example if the current turned out to be 1 mA , but flowing to the left we would merely say $I=-1 \mathrm{~mA}$.

To solve circuits, you may need to specify reference directions for currents. But there is no need to guess the reference direction so that the answer comes out positive....Your guess won't affect what the charge carriers are doing!

Suppose you have an unlabelled battery and you measure its voltage with a digital voltmeter. It will tell you magnitude and sign of the voltage.

With this circuit, you are measuring $\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}$ (or V_{ab}).
DVM indicates -1.401, so $\quad \mathrm{V}_{\mathrm{a}}<\mathrm{V}_{\mathrm{b}}$
by 1.401 V .
Which is the positive battery terminal?

Now you make a change. What would this circuit measure?

Note that we have used "ground" symbol (∇) for reference node on DVM. Often it is labeled "C" or "common."

Power: Transfer of energy per unit time (Joules per second = Watts)
In falling through a potential drop $\mathrm{V}>0$, a positive charge q gains energy
Potential energy change $=\mathrm{qV}$ for each charge q
Power $=\mathrm{P}=\mathrm{V}(\mathrm{dq} / \mathrm{dt})=\mathrm{VI}$
$\mathrm{P}=\mathrm{V} \times \mathrm{I} \quad$ Volt \times Amps $=$ Volts \times Coulombs $/ \mathrm{sec}=$ Joules $/ \mathrm{sec}=$ Watts
Circuit elements can absorb power from or release power to the circuit. How to keep the signs straight for absorbing and releasing power? Memorize our convention:

```
+ Power \equiv absorbed into element
- Power \equivdelivered from element
```

If an element is absorbing power, positive charge will flow from higher potential to lower potential-over a voltage drop.
$\mathrm{P}=\mathrm{VI}>0$ corresponds to the element absorbing power if the definitions of I and V are "associated".

How can a circuit element absorb power?
By converting electrical energy into heat (resistors in toasters); light (light bulbs); acoustic energy (speakers); by storing energy (charging a battery).

In class, we will mostly assume that wire is a perfect conductor. In reality, wire does have a very small resistance.

Wire: No voltage drop, all points on wire at same potential Current does flow, defined by other circuit elements

We will also assume that air is a perfect insulator (no "arcing").

Air: No current flow May carry voltage, defined by other circuit elements

There can be a nonzero voltage over a "hole" in a circuit!

IDEAL VOLTAGE SOURCE

Symbol

The ideal voltage source explicitly defines the voltage between its terminals.

Constant (DC) voltage source: $\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$
Time-Varying voltage source: $\mathrm{V}_{\mathrm{s}}=10 \sin (\mathrm{t}) \mathrm{V}$

The ideal voltage source has known voltage, but unknown current!
The current through the voltage source is defined by the rest of the circuit to which the source is attached.

You cannot assume that the current is zero!

REALISTIC VOLTAGE SOURCE

In reality, the voltage across a voltage source decreases slightly as more current is drawn.

Real voltage sources can be thought of as an ideal voltage source with a small resistance.

When you are using a voltage source such as a battery or function generator to provide power to a circuit, positive current will flow towards the rise in source voltage.

The small resistance will carry a small voltage, causing the output voltage V_{ab} to be slightly less than V_{s}.

IDEAL CURRENT SOURCE

Symbol

The ideal current source sets the value of the current running through it.

Constant (DC) current source: $\mathrm{I}_{\mathrm{s}}=2 \mathrm{~A}$
Time-Varying current source: $I_{s}=-3 \sin (t) A$

The ideal current source has known current, but unknown voltage!
The voltage over the current source is defined by the rest of the circuit to which the source is attached.

You cannot assume that the voltage is zero!

Any two conductors a and b separated by an insulator with a difference in voltage V_{ab} will have an equal and opposite charge on their surfaces whose value is given by $\mathrm{Q}=\mathrm{CV}_{\mathrm{ab}}$,
where C is the capacitance of the structure, and the + charge is on the more positive electrode.

We learned about the parallel-plate capacitor in physics. If the area of the plate is A, the separation d, and the dielectric constant of the insulator is ε, the capacitance equals $\mathrm{C}=\mathrm{A} \varepsilon / \mathrm{d}$.

You might think the energy (in Joules) is QV, which has the dimension of joules. But during charging the average voltage was only half the final value of V .

Thus, energy is $\frac{1}{2} Q V=\frac{1}{2} C V^{2}$

INDUCTORS

Inductors are the dual of capacitors - they store energy in magnetic fields that are proportional to current.

Capacitor Inductor

$I=C \frac{d V}{d t} \quad V=L \frac{d l}{d t}$

$$
\mathrm{E}=\frac{1}{2} \mathrm{CV}^{2} \quad \mathrm{E}=\frac{1}{2} \mathrm{LI}^{2}
$$

