EECS 40 Spring 2003 Lecture 2

Lecture 2 Cast of Charae Basic quantities - Charge - Current - Voltage - Power Basic elements - Resistor - Resistor - Voltage Source - Current Source - Capacitor - Inductor			
EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross	EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross
CHARGE Most matter is macroscopically electrically neutral most of the time.			
Exceptions: clouds in thunderstorm dry weather, plates of a charged ca			
Microscopically, of course, matter is full of charges.			
The application of an electric field causes charges to drift, or move. Electrons will naturally move from lower electric potential to higher potential.			
The rate at which the charges move magnitude of the potential difference of the matter.			
CURRENT – VOLTAGE RELATIO	NSHIP		

EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross	EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross
Measuring Charge			
Charge is measured in	Coulombs.		
An electron has charge	-1.6 x 10 ⁻¹⁹ C.		
Charge flow - Current	Charge storage 🗯 Energy		
Definition of Current			
1 Ampere = flow of 1 Coulomb per second			
$i(A) = \frac{dq}{dt} \begin{pmatrix} C \\ S \end{pmatrix}$	where q is the charge in Coulombs and t is the time in seconds		
Current is defined as flo	v of positive charge!		
EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross	EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross
EECS 40 Spring 2003 Lecture 2 Voltage is the difference in electric potential between two points.	VOLTAGE $a + V_{ab}$ "Vab" means the potential at a minus the potential at b.	EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross
Voltage is the difference in electric potential	VOLTAGE $a + V_{ab}$ "V _{ab} " means the potential at a minus the potential at b.	EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross
Voltage is the difference in electric potential between two points. Potential is always define	 VOLTAGE a + Vab (Vab) (Wab) (Wab)	EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross

W. G. Oldham and S. Ross

REFERENCE DIRECTIONS

A question like "Find the current" or "Find the voltage" is always accompanied by a definition of the direction:

In this example if the current turned out to be 1mA, but flowing to the left we would merely say I = -1mA.

To solve circuits, you may need to specify reference directions for currents. But there is no need to guess the reference direction so that the answer comes out positive....Your guess won't affect what the charge carriers are doing!

EECS 40 Spring 2003 Lecture 2

W. G. Oldham and S. Ross

SIGN CONVENTIONS

Suppose you have an unlabelled battery and you measure its voltage with a digital voltmeter. It will tell you magnitude and sign of the voltage.

With this circuit, you are measuring $V_a - V_b$ (or V_{ab}). DVM indicates -1.401, so $V_a < V_b$ by 1.401 V. Which is the positive battery terminal?

Note that we have used "ground" symbol (_▼) for reference node on DVM. Often it is labeled "C" or "common."

EECS 40 Spring 2003 Lecture 2

W. G. Oldham and S. Ross

W. G. Oldham and S. Ross

SIGN CONVENTIONS

Example 1

What is V_{AD} ?

Example 2 Find V_1 and V_x .

EECS 40 Spring 2003 Lecture 2

W. G. Oldham and S. Ross

EECS 40 Spring 2003 Lecture 2

W. G. Oldham and S. Ross

POWER IN ELECTRIC CIRCUITS

Power: Transfer of energy per unit time (Joules per second = Watts)

In falling through a potential drop V>0, a positive charge q gains energy

Potential energy change = qV for each charge q

Power = P = V (dq/dt) = VI

 $P = V \times I$ Volt × Amps = Volts × Coulombs/sec = Joules/sec = Watts

Circuit elements can *absorb* power from or *release* power to the circuit. How to keep the signs straight for absorbing and releasing power? Memorize our convention:

- + Power \equiv absorbed into element
- Power \equiv delivered from element

"ASSOCIATED REFERENCE DIRECTIONS"

If an element is absorbing power, positive charge will flow from higher potential to lower potential—over a voltage drop.

P = VI > 0 corresponds to the element absorbing power if the definitions of I and V are "associated".

How can a circuit element absorb power?

Find the power absorbed by each element.

.5 mA

By converting electrical energy into heat (resistors in toasters); light (light bulbs); acoustic energy (speakers); by storing energy (charging a battery).

EXAMPLES OF CALCULATING POWER

¥

2.5 mA

EECS 40 Spring 2003 Lecture 2

3 \/

W. G. Oldham and S. Ross

EECS 40 Spring 2003 Lecture 2

W. G. Oldham and S. Ross

Element \blacklozenge :

Element × :

Element + :

EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross	EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross
	With the "associated" current and voltage relationship shown, we get Ohm's law: V = I R where R is the resistance in Ohms. gative => resistor always absorbs power rent, you know resistor voltage		
EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross	EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross
w	IRE AND AIR soume that wire is a perfect conductor.	EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross
W In class, we will mostly as In reality, wire does have Wire: No voltage drop,	IRE AND AIR soume that wire is a perfect conductor.	EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross
W In class, we will mostly as In reality, wire does have Wire: No voltage drop, Current does flow	IRE AND AIR soume that wire is a perfect conductor. a very small resistance. all points on wire at same potential	EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross
W In class, we will mostly as In reality, wire does have Wire: No voltage drop, Current does flow We will also assume that Air: No current flow	IRE AND AIR ssume that wire is a perfect conductor. a very small resistance. all points on wire at same potential y, defined by other circuit elements	EECS 40 Spring 2003 Lecture 2	W. G. Oldham and S. Ross

IDEAL VOLTAGE SOURCE

Symbol

The ideal voltage source explicitly defines the voltage between its terminals.

Constant (DC) voltage source: $V_s = 5 V$

Time-Varying voltage source: $V_s = 10 \sin(t) V$

The ideal voltage source has known voltage, but unknown current!

The current through the voltage source is defined by the rest of the circuit to which the source is attached.

REALISTIC VOLTAGE SOURCE

You cannot assume that the current is zero!

EECS 40 Spring 2003 Lecture 2

W. G. Oldham and S. Ross

EECS 40 Spring 2003 Lecture 2

W. G. Oldham and S. Ross

In reality, the voltage across a voltage source decreases slightly as more current is drawn.

Real voltage sources can be thought of as an ideal voltage source with a small resistance.

When you are using a voltage source such as a battery or function generator to provide power to a circuit, positive current will flow towards the rise in source voltage.

The small resistance will carry a small voltage, causing the output voltage V_{ab} to be slightly less than $V_{\rm s}.$

IDEAL CURRENT SOURCE

The ideal current source has known current, but unknown voltage!

CAPACITOR

Any two conductors a and b separated by an insulator with a

difference in voltage V_{ab} will have an equal and opposite charge on their surfaces whose value is given by

where C is the **capacitance** of the structure, and the + charge

The voltage over the current source is defined by the rest of the circuit to which the source is attached.

You cannot assume that the voltage is zero!

EECS 40 Spring 2003 Lecture 2

 $Q = CV_{ab}$,

W. G. Oldham and S. Ross

EECS 40 Spring 2003 Lecture 2

W. G. Oldham and S. Ross

We learned about the *parallel-plate* capacitor in physics. If the area of the plate is A, the separation d, and the dielectric constant of the insulator is ε , the capacitance equals C = A ε /d.

is on the more positive electrode.

W. G. Oldham and S. Ross

CAPACITOR

EECS 40 Spring 2003 Lecture 2

W. G. Oldham and S. Ross

EECS 40 Spring 2003 Lecture 2

W. G. Oldham and S. Ross

ENERGY STORED IN A CAPACITOR

You might think the energy (in Joules) is QV, which has the dimension of joules. But during charging the average voltage was only half the final value of V.

Thus, energy is
$$\frac{1}{2}QV = \frac{1}{2}CV^2$$

INDUCTORS

Inductors are the **dual** of capacitors – they store energy in magnetic fields that are proportional to current.