EECS 40 Spring 2003 Lecture 3	W. G. Oldham and S. Ross	EECS 40 Spring 2003 Lecture 3	W. G. Oldham and S. Ross
Lecture 3			
 Definitions: Circuits, Nodes, Bran Kirchoff's Voltage Law (KVL) Kirchoff's Current Law (KCL) Examples and generalizations RC Circuit Solution 	nches		
EECS 40 Spring 2003 Lecture 3	W. G. Oldham and S. Ross	EECS 40 Spring 2003 Lecture 3	W. G. Oldham and S. Ross
BRANCHES AND NO Branch: elements connected end-to-e nothing coming off in between A single branch NOT a single branch NOT a single branch node	DES nd, n (in series) single branch ned—entire wire		

NOTATION: NODE VOLTAGES

The voltage drop from node X to a reference node (ground) is called the **node voltage** V_x .

Example:

EECS 40 Spring 2003 Lecture 3

W. G. Oldham and S. Ross

EECS 40 Spring 2003 Lecture 3

W. G. Oldham and S. Ross

KIRCHOFF'S VOLTAGE LAW (KVL)

The sum of the voltage drops around any closed loop is zero.

We must return to the same potential (conservation of energy).

Closed loop: Path beginning and ending on the same node

Our trick: to sum voltage drops on elements, look at the first sign you encounter on element when tracing path W. G. Oldham and S. Ross

KVL EXAMPLE

Examples of three closed paths:

Path 1:

Path 2:

Path 3:

EECS 40 Spring 2003 Lecture 3

W. G. Oldham and S. Ross

EECS 40 Spring 2003 Lecture 3

W. G. Oldham and S. Ross

UNDERLYING ASSUMPTIONS OF KVL

Assume no time-varying magnetic flux through the loop ... If there was, Faraday's Law \rightarrow induced emf (voltage) Antennas are designed to "pick up" electromagnetic waves

"Regular circuits" often do the same thing \rightarrow not desirable!

+ $\underbrace{\downarrow}_{v(t)}$

Avoid these loops!

How do we deal with antennas (EECS 117A)?

Include a voltage source as the circuit representation of the emf or "noise" pickup.

We have a lumped model rather than a distributed (wave) model.

EECS 40 Spring 2003 Lecture 3

W. G. Oldham and S. Ross

W. G. Oldham and S. Ross

ALTERNATIVE STATEMENTS OF KIRCHHOFF'S VOLTAGE LAW

1) For any node sequence A, B, C, D, ..., M around a closed path, the voltage drop from A to M is given by

 $\mathbf{V}_{\mathsf{A}\mathsf{M}} = \mathbf{V}_{\mathsf{A}\mathsf{B}} + \mathbf{V}_{\mathsf{B}\mathsf{C}} + \mathbf{V}_{\mathsf{C}\mathsf{D}} + \dots + \mathbf{V}_{\mathsf{L}\mathsf{M}}$

2) For all pairs of nodes i and j, the voltage drop from i to j is

 $\mathbf{V}_{ij} = \mathbf{V}_i - \mathbf{V}_j$

where the node voltages are measured with respect to the common node.

EECS 40 Spring 2003 Lecture 3

W. G. Oldham and S. Ross

EECS 40 Spring 2003 Lecture 3

W. G. Oldham and S. Ross

MAJOR IMPLICATION

KVL tells us that any set of elements which are **connected at both ends** carry the **same voltage**.

We say these elements are in parallel.

W. G. Oldham and S. Ross

W. G. Oldham and S. Ross

EECS 40 Spring 2003 Lecture 3

KIRCHOFF'S CURRENT LAW

Circuit with several branches connected at a node:

KIRCHOFF's CURRENT LAW "KCL":

(Sum of currents <u>entering</u> node) – (Sum of currents <u>leaving</u> node) = 0

Charge stored **in node** is zero (e.g. entire capacitor is part of a branch)

EECS 40 Spring 2003 Lecture 3

USING KCL

Kirchhoff's Current Law (KCL)

Formulation 1:

Sum of currents **entering** node = sum of currents **leaving** node

Use/write reference directions to determine "entering" and "leaving" currents--no concern about actual current directions W. G. Oldham and S. Ross

ALTERNATIVE KCL FORMULATIONS

Formulation 2:

"Algebraic sum" of currents **entering** node = 0

where "algebraic sum" means currents **leaving** are included with a **minus sign**

Formulation 3:

"Algebraic sum" of currents **leaving** node = 0

currents entering are included with a minus sign

EECS 40 Spring 2003 Lecture 3

W. G. Oldham and S. Ross

EECS 40 Spring 2003 Lecture 3

W. G. Oldham and S. Ross

MAJOR IMPLICATION

KCL tells us that all of the elements in a single branch carry the same current.

We say these elements are in series.

Current entering node = Current leaving node

 $i_1 = i_2$

EECS 40 Spring 2003 Lecture 3	W. G. Oldnam and S. Ross	EECS 40 Spring 2003 Lecture 3	W. G. Olulialit and S. Ross
KIRCHHOFF'S CURRENT LAW EXAN	IPLE		
10 µА -4 µА			
Currents entering the node:			
Currents leaving the node:			
Three formulations of KCL:			
EECS 40 Spring 2003 Lecture 3	W. G. Oldham and S. Ross	EECS 40 Spring 2003 Lecture 3	W. G. Oldham and S. Ross
EECS 40 Spring 2003 Lecture 3 GENERALIZATION OF KCL	W. G. Oldham and S. Ross	EECS 40 Spring 2003 Lecture 3	W. G. Oldham and S. Ross
EECS 40 Spring 2003 Lecture 3 GENERALIZATION OF KCL Sum of currents entering/leaving a closed surf	W. G. Oldham and S. Ross	EECS 40 Spring 2003 Lecture 3	W. G. Oldham and S. Ross

W. G. Oldham and S. Ross

EECS 40 Spring 2003 Lecture 3

W. G. Oldham and S. Ross

KIRCHOFF'S CURRENT LAW USING SURFACES

