1

3

EECS 40 Spring 2003 Lecture 4

Copyright Regents of University of California

2

Sheila Ross and W. G. Oldham

When we perform a sequence of computations using a digital circuit, we switch the input voltages between logic 0 and logic 1.

The output of the digital circuit fluctuates between logic 0 and logic 1 as computations are performed.

Capacitor charging effects are responsible!

Every node in a circuit has capacitance to ground, and it's the charging of these capacitances that limits real circuit performance (speed)

Charging and discharging in RC Circuits (The official EE40 Easy Method)

Method of solving for any node voltage in a single capacitor circuit.

1) Simplify the circuit so it looks like one resistor, a source, and a capacitor (it will take another two weeks to learn all the tricks to do this.) But then the circuit looks like this:

Vin

2) The time constant is τ = RC.

the transient, $V_{out}(t=0)$.

3) Solve for the capacitor voltage before

Input node Output node Vout С ground

4) Solve the for asymptotic value of capacitor voltage. Hint: Capacitor eventually conducts no current (dV/dt dies out asymptotically).

- 5) Sketch the transient. It is 63% complete after one time constant.
- 6) Write the equation by inspection.

13

Sheila Ross and W. G. Oldham

Output node

Example

Copyright Regents of University of Californi

Input node

 $R = 1k\Omega$, C = 1pF.

Assume V_{in} has been zero for a long time, then steps from zero to 10 V at t=0.

📥 around At t=0, since V_{in} has been constant for a long time, the circuit is in "steady-state". Capacitor current is zero (since dV/dt = 0), so by KVL, Vout(t=0) = 0.

EECS 40 Spring 2003 Lecture 4

Copyright Regents of University of California

Sheila Ross and W. G. Oldham

Copyright Regents of University of California

Sheila Ross and W. G. Oldham

21

EECS 40 Spring 2003 Lecture 4

Copyright Regents of University of California

Suppose a voltage pulse of width 5 μ s and height 4 V is applied to the input of the circuit at the right.

Sketch the output voltage.

First, the output voltage will increase to approach the 4 V input, following the exponential form. When the input goes back down, the output voltage will decrease back to zero, again following exponential form.

How far will it increase? Time constant = RC = $2.5 \,\mu$ s The output increases for 5μ s or 2 time constants. It reaches 1-e⁻² or 86% of the final value. $0.86 \times 4 \text{ V} = 3.44 \text{ V}$ is the peak value.

Sheila Ross and W. G. Oldham

24

Copyright Regents of University of California

Sheila Ross and W. G. Oldham

APPLICATIONS

- Now we can find "propagation delay" t_p; the time between the input reaching 50% of its final value and the output to reaching 50% of final value.
- For instantaneous input transitions between 0 V and logic 1, $0.5 = e^{-tp}$

t_p = - In 0.5 = 0.69

It takes 0.69 time constants, or 0.69 RC.

- We can find the time it takes for the output to reach other desired levels. For example, we can find the time required for the output to go from 0 V to the minimum voltage level recognizable as logic 1 (known as V_{IH}).
- Knowing these delays helps us design clocked circuits.

25