Lecture 5

- Series and Parallel Resistors
- Voltage and Current Divider
- Ammeters and Voltmeters
- Series and Parallel Capacitors
-2-Capacitor Circuit
- Useful insights and tips to avoid dumb mistakes

SERIES ELEMENTS

KCL tells us that all of the elements in a single branch carry the same current.

We say these elements are in series.

Current entering node $=$ Current leaving node

$$
\mathrm{i}_{1}=\mathrm{i}_{2}
$$

RESISTORS IN SERIES

Circuit with several resistors in series: Find "equivalent resistance"

Thus, equivalent resistance of resistors in series is the sum

Circuit with several resistors in series

-We know
$\mathrm{I}=\mathrm{V}_{\mathrm{SS}} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}\right)$

- Thus,
$V_{1}=\frac{R_{1}}{R_{1}+R_{2}+R_{3}+R_{4}} \cdot V_{S S}$ and
$V_{3}=\frac{R_{3}}{R_{1}+R_{2}+R_{3}+R_{4}} \cdot V_{S S}$ etc...

WHEN IS VOLTAGE DIVIDER FORMULA CORRECT?

Correct if nothing else connected to nodes

because R_{5} removes condition of resistors in series $\mathrm{I}_{3} \neq 1$

MEASURING CURRENT

To measure current in a circuit, insert DMM (in current mode) into circuit, in series with measured element.

But ammeters change the circuit. Ammeters are characterized by their "ammeter input resistance," $\mathrm{R}_{\text {in }}$. Ideally this should be very low. Typical value 1Ω.

MEASURING CURRENT

Potential measurement error due to non-zero input resistance:

undisturbed circuit

$$
I=\frac{V}{R_{1}+R_{2}}
$$

Example: $\mathrm{V}=1 \mathrm{~V}, \mathrm{R}_{1}=\mathrm{R}_{2}=500 \Omega, \mathrm{R}_{\text {in }}=1 \Omega$

$$
I=\frac{1 \mathrm{~V}}{500 \Omega+500 \Omega}=1 \mathrm{~mA}, \quad I_{\text {meas }}=\frac{1 \mathrm{~V}}{500 \Omega+500 \Omega+1 \Omega} \cong 0.999 \mathrm{~mA}_{13}
$$

PARALLEL ELEMENTS

KVL tells us that any set of elements which are connected at both ends carry the same voltage.
We say these elements are in parallel.

RESISTORS IN PARALLEL

Resistors in parallel can be made into one equivalent resistor

$$
R_{e q}=\left(R_{1}^{-1}+R_{2}^{-1}+R_{3}^{-1}+\ldots\right)^{-1} \quad \text { Special case: } R_{\text {eq }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

- For resistors in series:
- Current through $R_{\text {eq }}$ is equal to the current through each of the original resistors (all have same current)
- Voltage over $R_{\text {eq }}$ is the sum of the voltages over the original resistors
- For resistors in parallel:
- Current through R_{eq} is equal to the sum of the currents through each of the original resistors
- Voltage over $R_{\text {eq }}$ is equal to the voltage over the original resistors (all have same voltage)

CURRENT DIVIDER

There is a simple equation for the way current splits between
two parallel resistors:

X

REAL VOLTMETERS
How is voltage measured? Digital multimeter (DMM) in parallel with measured element.

Connecting a real voltmeter across two nodes changes the circuit. The voltmeter may be modeled by an ideal voltmeter (open circuit) in parallel with a resistance: "voltmeter input resistance," $\mathrm{R}_{\text {in }}$. Typical value: $10 \mathrm{M} \Omega$

REAL VOLTMETERS

CAPACITORS IN PARALLEL

Equivalent capacitance defined by

$$
\begin{gathered}
i(t)=C_{e q} \frac{d V}{d t} \\
i(t)=C_{1} \frac{d V}{d t}+C_{2} \frac{d V}{d t} \\
C_{e q}=C_{1}+C_{2}
\end{gathered}
$$

DIGITAL CIRCUIT: DRAM

