Copyright, Regents University of California

S. Ross and W. G. Oldham

EECS 40 Spring 2003 Lecture 6

Copyright, Regents University of California

Lecture 6

FINDING VOLTAGES IN A CIRCUIT

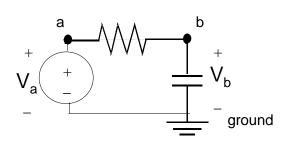
So far, we have been applying KVL and KCL "haphazardly" to find voltages and currents in a circuit.

Good for developing intuition, finding things quickly...

...but what if the circuit is complicated? What if you get stuck?

Systematic way to find all node voltages in a circuit:

Nodal Analysis


NOTATION: NODE VOLTAGES

The voltage drop from node X to a reference node (ground) is called the **node voltage** V_x .

Copyright, Regents University of California

Example:

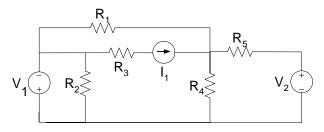
EECS 40 Spring 2003 Lecture 6

3

1

S. Ross and W. G. Oldham

2

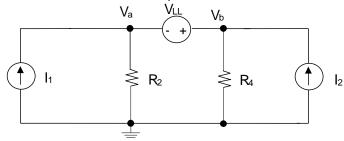

S. Ross and W. G. Oldham

EECS 40 Spring 2003 Lecture 6	Copyright, Regents University of California	S. Ross and W. G. Oldham	EECS 40 Spring 2003 Lecture 6	Copyright, Regents University of California	S. Ross and W. G. Oldham
	IRCUIT ANALYSIS USING NODAL ANALYSIS				
(Memorize tr	nese steps and apply them ri	gorousiy!)			
1 Choose a reference node (ground, node 0) (look for the one with the most connections!)					
2 Define unknowr voltage sources	n node voltages (those not fi: s)	ked by			
in terms of the r	ich unknown node, expressin node voltages (using the I-V branch elements*)	ng current			
4 Solve the set of node voltages)	f equations (N equations for	N unknown			
* with floating	voltages we will use a modified St	тер 3 ⁵			6
EECS 40 Spring 2003 Lecture 6	Copyright, Regents University of California	S. Ross and W. G. Oldham	EECS 40 Spring 2003 Lecture 6	Copyright, Regents University of California	S. Ross and W. G. Oldham
EXAM	IPLE OF NODE ANALYSIS				
node voltage se	$R_1 V_a R_3 D$ $R_2 R_4 P_2$ $R_2 R_4 P_4$ $R_2 R_4 P_4$	What if we used different ref node? s			
1. Choose a refe	erence node.				
Define the node voltages (except reference node and the one set by the voltage source).					
3. Apply KCL at	the nodes with unknown vol	tage.			
4. Solve for Va	and Vb in terms of circuit pa	rameters. 7			8

9

S. Ross and W. G. Oldham

EXAMPLE OF NODE ANALYSIS



EECS 40 Spring 2003 Lecture 6

Copyright, Regents University of California

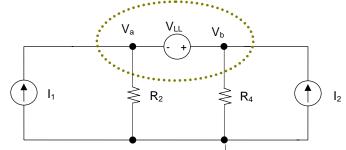
NODAL ANALYSIS WITH "FLOATING" VOLTAGE SOURCES

A "floating" voltage source is a voltage source for which neither side is connected to the reference node. V_{LL} in the circuit below is an example.

Problem: We cannot write KCL at node a or b because there is no way to express the current through the voltage source in terms of $V_a - V_b$.

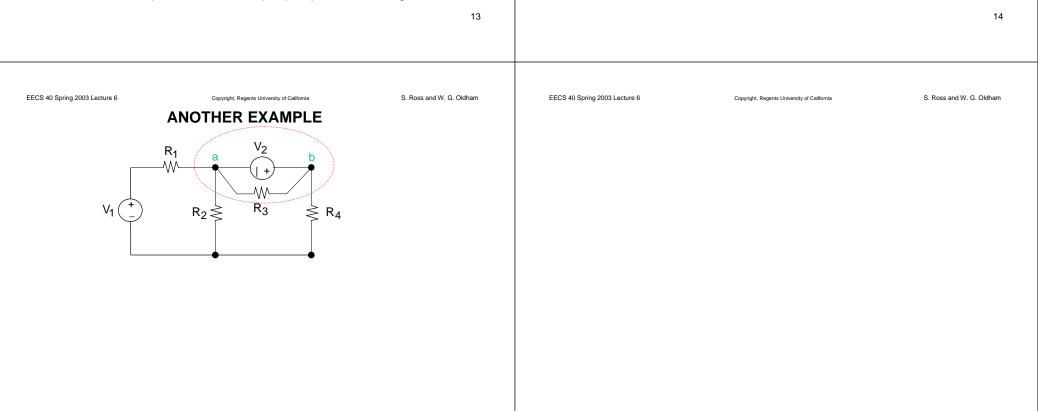
Solution: Define a "supernode" – that chunk of the circuit containing nodes a <u>and</u> b. Express KCL at this supernode. 11

EECS 40 Spring 2003 Lecture 6


Copyright, Regents University of California

S. Ross and W. G. Oldham

10



Use a Gaussian surface to enclose the floating voltage source; write KCL for that surface. supernode

Two unknowns: V_a and V_b . = Get one equation from KCL at supernode:

Get a second equation from the property of the voltage source:

