## Review

- Capacitors/Inductors


## Voltage/current relationship

Stored Energy

- $1^{\text {st }}$ Order Circuits

RL / RC circuits
Steady State / Transient response
$\square$ Natural / Step response

Lecture \#5

## OUTLINE

- Chap 4
$\square$ RC and RL Circuits with General Sources
- Particular and complementary solutions
- Time constant
$\square$ Second Order Circuits
- The differential equation
- Particular and complementary solutions
- The natural frequency and the damping ratio
- Chap 5
$\square$ Types of Circuit Excitation
$\square$ Why Sinusoidal Excitation?
$\square$ Phasors
$\square$ Complex Impedances
Reading
Chap 4, Chap 5 (skip 5.7)


## First Order Circuits



KVL around the loop:
KCL at the node:
$v_{r}(t)+v_{c}(t)=v_{s}(t)$
$R C \frac{d v_{c}(t)}{d t}+v_{c}(t)=v_{s}(t)$

$$
\begin{aligned}
& \frac{v(t)}{R}+\frac{1}{L} \int_{-\infty}^{t} v(x) d x=i_{s}(t) \\
& \frac{L}{R} \frac{d i_{L}(t)}{d t}+i_{L}(t)=i_{s}(t)
\end{aligned}
$$

## Complete Solution

- Voltages and currents in a 1st order circuit satisfy a differential equation of the form

$$
x(t)+\tau \frac{d x(t)}{d t}=f(t)
$$

$\square f(t)$ is called the forcing function.

- The complete solution is the sum of particular solution (forced response) and complementary solution (natural response).

$$
x(t)=x_{p}(t)+x_{c}(t)
$$

$\square$ Particular solution satisfies the forcing function
$\square$ Complementary solution is used to satisfy the initial conditions.
$\square$ The initial conditions determine the value of $K$.
$\begin{array}{lll}x_{p}(t)+\tau \frac{d x_{p}(t)}{d t}=f(t) & x_{c}(t)+\tau \frac{d x_{c}(t)}{d t}=0 & \\ & x_{c}(t)=K e^{-t / \tau} & \begin{array}{l}\text { Homogeneous } \\ \text { equation }\end{array}\end{array}$

## The Time Constant

■ The complementary solution for any 1st order circuit is

$$
x_{c}(t)=K e^{-t / \tau}
$$

- For an RC circuit, $\tau=R C$
- For an RL circuit, $\tau=L / R$


## What Does $X_{c}(t)$ Look Like?



## The Particular Solution

- The particular solution $x_{p}(t)$ is usually a weighted sum of $f(t)$ and its first derivative.
- If $f(t)$ is constant, then $x_{p}(t)$ is constant.

■ If $f(t)$ is sinusoidal, then $x_{p}(t)$ is sinusoidal.

## 2nd Order Circuits

■ Any circuit with a single capacitor, a single inductor, an arbitrary number of sources, and an arbitrary number of resistors is a circuit of order 2.

- Any voltage or current in such a circuit is the solution to a 2nd order differential equation.


## A 2nd Order RLC Circuit



- Application: Filters
$\square$ A bandpass filter such as the IF amp for the AM radio.
$\square$ A lowpass filter with a sharper cutoff than can be obtained with an RC circuit.


## The Differential Equation

KVL around the loop:


$$
\begin{aligned}
& v_{r}(t)+v_{c}(t)+v_{l}(t)=v_{s}(t) \\
& R i(t)+\frac{1}{C} \int_{-\infty}^{t} i(x) d x+L \frac{d i(t)}{d t}=v_{s}(t) \\
& \frac{R}{L} \frac{d i(t)}{d t}+\frac{1}{L C} i(t)+\frac{d^{2} i(t)}{d t^{2}}=\frac{1}{L} \frac{d v_{s}(t)}{d t}
\end{aligned}
$$

## The Differential Equation

The voltage and current in a second order circuit is the solution to a differential equation of the following form:

$$
\begin{aligned}
& \frac{d^{2} x(t)}{d t^{2}}+2 \alpha \frac{d x(t)}{d t}+\omega_{0}^{2} x(t)=f(t) \\
& x(t)=x_{p}(t)+x_{c}(t)
\end{aligned}
$$

$X_{p}(t)$ is the particular solution (forced response) and $X_{c}(t)$ is the complementary solution (natural response).

## The Particular Solution

- The particular solution $x_{p}(t)$ is usually a weighted sum of $f(t)$ and its first and second derivatives.
- If $f(t)$ is constant, then $x_{p}(t)$ is constant.
- If $f(t)$ is sinusoidal, then $x_{p}(t)$ is sinusoidal.


## The Complementary Solution

The complementary solution has the following form:

$$
x_{c}(t)=K e^{s t}
$$

$K$ is a constant determined by initial conditions. $s$ is a constant determined by the coefficients of the differential equation.

$$
\begin{aligned}
& \frac{d^{2} K e^{s t}}{d t^{2}}+2 \alpha \frac{d K e^{s t}}{d t}+\omega_{0}^{2} K e^{s t}=0 \\
& s^{2} K e^{s t}+2 \alpha s K e^{s t}+\omega_{0}^{2} K e^{s t}=0 \\
& s^{2}+2 \alpha s+\omega_{0}^{2}=0
\end{aligned}
$$

## Characteristic Equation

- To find the complementary solution, we need to solve the characteristic equation:

$$
\begin{aligned}
& s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}=0 \\
& \alpha=\zeta \omega_{0}
\end{aligned}
$$

- The characteristic equation has two rootscall them $s_{1}$ and $s_{2}$.

$$
\begin{aligned}
& x_{c}(t)=K_{1} e^{s_{1} t}+K_{2} e^{s_{2} t} \\
& s_{1}=-\zeta \omega_{0}+\omega_{0} \sqrt{\zeta^{2}-1} \\
& s_{2}=-\zeta \omega_{0}-\omega_{0} \sqrt{\zeta^{2}-1}
\end{aligned}
$$

## Damping Ratio and Natural Frequency

$\zeta=\frac{\alpha}{\omega_{0}}$
damping ratio

$$
\begin{aligned}
& s_{1}=-\zeta \omega_{0}+\omega_{0} \sqrt{\zeta^{2}-1} \\
& s_{2}=-\zeta \omega_{0}-\omega_{0} \sqrt{\zeta^{2}-1}
\end{aligned}
$$

- The damping ratio determines what type of solution we will get:

Exponentially decreasing ( $\zeta>1$ )
Exponentially decreasing sinusoid $(\zeta<1)$

- The natural frequency is $\omega_{0}$

It determines how fast sinusoids wiggle.

## Overdamped : Real Unequal Roots

■ If $\zeta>1, s_{1}$ and $s_{2}$ are real and not equal.
$i_{c}(t)=K_{1} e^{\left(-\varsigma \omega_{0}+\omega_{0} \sqrt{\varsigma^{2}-1}\right) t}+K_{2} e^{\left(-\varsigma \omega_{0}-\omega_{0} \sqrt{\varsigma^{2}-1}\right) t}$

t

t

## Underdamped: Complex Roots

- If $\zeta<1, s_{1}$ and $s_{2}$ are complex.
- Define the following constants:
$\alpha=\zeta \omega_{0} \quad \omega_{d}=\omega_{0} \sqrt{1-\zeta^{2}}$
$x_{c}(t)=e^{-\alpha t}\left(A_{1} \cos \omega_{d} t+A_{2} \sin \omega_{d} t\right)$



## Critically damped: Real Equal Roots

- If $\zeta=1, s_{1}$ and $s_{2}$ are real and equal.

$$
x_{c}(t)=K_{1} e^{-\varsigma \omega_{0} t}+K_{2} t e^{-\varsigma \omega_{0} t}
$$

## Example

For the example, what are $\zeta$ and $\omega_{0}$ ?


$$
\begin{aligned}
& \frac{d^{2} i(t)}{d t^{2}}+\frac{R}{L} \frac{d i(t)}{d t}+\frac{1}{L C} i(t)=\frac{1}{L} \frac{d v_{s}(t)}{d t} \\
& \frac{d^{2} x_{c}(t)}{d t^{2}}+2 \zeta \omega_{0} \frac{d x_{c}(t)}{d t}+\omega_{0}^{2} x_{c}(t)=0 \\
& \omega_{0}^{2}=\frac{1}{L C}, 2 \zeta \omega_{0}=\frac{R}{L}, \zeta=\frac{R}{2} \sqrt{\frac{C}{L}}
\end{aligned}
$$

## Example

- $\zeta=0.011$
- $\omega_{0}=2 \pi 455000$
- Is this system over damped, under damped, or critically damped?
- What will the current look like?



## Slightly Different Example

- Increase the resistor to $1 \mathrm{k} \Omega$
- What are $\zeta$ and $\omega_{0}$ ?


$$
\begin{aligned}
& \zeta=2.2 \\
& \omega_{0}=2 \pi 455000
\end{aligned}
$$



## Why is Single-Frequency Excitation Important?

- Some circuits are driven by a single-frequency sinusoidal source.
- Some circuits are driven by sinusoidal sources whose frequency changes slowly over time.
- You can express any periodic electrical signal as a sum of single-frequency sinusoids - so you can analyze the response of the (linear, time-invariant) circuit to each individual frequency component and then sum the responses to get the total response.
- This is known as Fourier Transform and is tremendously important to all kinds of engineering disciplines!

(a)Square wave with 1-second period. (b) Fundamental component (dotted) with 1-second period, third-harmonic (solid black) with1/3-second period, and their sum (blue). (c) Sum of first ten components. (d) Spectrum with 20 terms.


## Steady-State Sinusoidal Analysis

- Also known as AC steady-state
- Any steady state voltage or current in a linear circuit with a sinusoidal source is a sinusoid.
$\square$ This is a consequence of the nature of particular solutions for sinusoidal forcing functions.
- All AC steady state voltages and currents have the same frequency as the source.
- In order to find a steady state voltage or current, all we need to know is its magnitude and its phase relative to the source
$\square$ We already know its frequency.
- Usually, an AC steady state voltage or current is given by the particular solution to a differential equation.


## The Good News!

- We do not have to find this differential equation from the circuit, nor do we have to solve it.
- Instead, we use the concepts of phasors and complex impedances.
- Phasors and complex impedances convert problems involving differential equations into circuit analysis problems.


## Phasors

- A phasor is a complex number that represents the magnitude and phase of a sinusoidal voltage or current.
■ Remember, for AC steady state analysis, this is all we need to compute-we already know the frequency of any voltage or current.


## Complex Impedance

- Complex impedance describes the relationship between the voltage across an element (expressed as a phasor) and the current through the element (expressed as a phasor).
- Impedance is a complex number.
- Impedance depends on frequency.
- Phasors and complex impedance allow us to use Ohm's law with complex numbers to compute current from voltage and voltage from current.


## Sinusoids

$$
v(t)=V_{M} \cos (\omega t+\theta)
$$

- Amplitude: $V_{M}$
- Angular frequency: $\omega=2 \pi f$

Radians/sec

- Phase angle: $\theta$
- Frequency: $f=1 / T$

Unit: 1/sec or Hz
■ Period: T
Time necessary to go through one cycle

## Phase

What is the amplitude, period, frequency, and 8 radian frequency of this sinusoid?


## Phasors

- A phasor is a complex number that represents the magnitude and phase of a sinusoid:

$$
\begin{array}{cl}
X_{M} \cos (\omega t+\theta) & \text { Time Domain } \\
& \\
\mathbf{X}=X_{M} \angle \theta & \text { Frequency Domain }
\end{array}
$$

