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Review

Capacitors/Inductors
Voltage/current relationship
Stored Energy

1st Order Circuits
RL / RC circuits
Steady State / Transient response
Natural / Step response
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Lecture #5
OUTLINE

Chap 4
RC and RL Circuits with General Sources

Particular and complementary solutions
Time constant

Second Order Circuits
The differential equation
Particular and complementary solutions
The natural frequency and the damping ratio

Chap 5
Types of Circuit Excitation
Why Sinusoidal Excitation?
Phasors
Complex Impedances

Reading
Chap 4, Chap 5 (skip 5.7)
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First Order Circuits
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Complete Solution
Voltages and currents in a 1st order circuit satisfy a differential 
equation of the form

f(t) is called the forcing function.
The complete solution is the sum of particular solution (forced 
response) and complementary solution (natural response).

Particular solution satisfies the forcing function
Complementary solution is used to satisfy the initial conditions. 
The initial conditions determine the value of K.

( )( ) ( )dx tx t f t
dt

τ+ =

/

( )( ) 0

( )

c
c

t
c

dx tx t
dt

x t Ke τ

τ

−

+ =

=
( )

( ) ( )p
p

dx t
x t f t

dt
τ+ = Homogeneous 

equation

( ) ( ) ( )p cx t x t x t= +



3

EE40 Summer 2005: Lecture 5                          Instructor: Octavian Florescu 5

The Time Constant
The complementary solution for any 1st 
order circuit is

For an RC circuit, τ = RC
For an RL circuit, τ = L/R

/( ) t
cx t Ke τ−=
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What Does Xc(t) Look Like?

τ = 10-4/( ) t
cx t e τ−=

• τ is the amount of time necessary 
for an exponential to decay to 
36.7% of its initial value.

• -1/τ is the initial slope of an 
exponential with an initial value of 
1.
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The Particular Solution
The particular solution xp(t) is usually a 
weighted sum of f(t) and its first derivative.
If f(t) is constant, then xp(t) is constant.
If f(t) is sinusoidal, then xp(t) is sinusoidal.
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2nd Order Circuits
Any circuit with a single capacitor, a single 
inductor, an arbitrary number of sources, 
and an arbitrary number of resistors is a 
circuit of order 2.
Any voltage or current in such a circuit is 
the solution to a 2nd order differential 
equation.
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A 2nd Order RLC Circuit
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Application: Filters
A bandpass filter such as the IF amp for 
the AM radio.
A lowpass filter with a sharper cutoff 
than can be obtained with an RC circuit.
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The Differential Equation

KVL around the loop:
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The Differential Equation
The voltage and current in a second order circuit is 
the solution to a differential equation of the 
following form:

Xp(t) is the particular solution (forced response) 
and Xc(t) is the complementary solution (natural 
response).
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The Particular Solution
The particular solution xp(t) is usually a 
weighted sum of f(t) and its first and 
second derivatives.
If f(t) is constant, then xp(t) is constant.
If f(t) is sinusoidal, then xp(t) is sinusoidal.
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The Complementary Solution
The complementary solution has the following 
form:

K is a constant determined by initial conditions.
s is a constant determined by the coefficients of 
the differential equation.
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Characteristic Equation
To find the complementary solution, we 
need to solve the characteristic equation:

The characteristic equation has two roots-
call them s1 and s2.
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Damping Ratio and Natural Frequency

The damping ratio determines what type of 
solution we will get:

Exponentially decreasing (ζ >1)
Exponentially decreasing sinusoid (ζ < 1)

The natural frequency is ω0

It determines how fast sinusoids wiggle.

0

αζ
ω

=
2

1 0 0 1s ζω ω ζ= − + −

2
2 0 0 1s ζω ω ζ= − − −damping ratio

EE40 Summer 2005: Lecture 5                          Instructor: Octavian Florescu 16

Overdamped : Real Unequal Roots
If ζ > 1, s1 and s2 are real and not equal.
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Underdamped: Complex Roots
If ζ < 1, s1 and s2 are complex.
Define the following constants:
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Critically damped: Real Equal Roots

If ζ = 1, s1 and s2 are real and equal.
0 0

1 2( ) t t
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Example
For the example, what are ζ and ω0?
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Example
ζ = 0.011
ω0 = 2π455000
Is this system over damped, under 
damped, or critically damped?
What will the current look like?
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Slightly Different Example
Increase the resistor to 1kΩ
What are ζ and ω0?
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Types of Circuit Excitation

Linear Time-
Invariant
Circuit

Steady-State Excitation

Linear Time-
Invariant
Circuit

OR

Linear Time-
Invariant
Circuit

Digital
Pulse
Source

Transient Excitations

Linear Time-
Invariant
Circuit

Sinusoidal (Single-
Frequency) Excitation

AC Steady-State

(DC Steady-State)
Step Excitation
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Why is Single-Frequency Excitation 
Important?

Some circuits are driven by a single-frequency sinusoidal 
source.  
Some circuits are driven by sinusoidal sources whose 
frequency changes slowly over time.
You can express any periodic electrical signal as a sum 
of single-frequency sinusoids – so you can analyze the 
response of the (linear, time-invariant) circuit to each 
individual frequency component and then sum the 
responses to get the total response.

• This is known as Fourier Transform and is 
tremendously important to all kinds of engineering 
disciplines!
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Representing a Square Wave as a Sum of  Sinusoids

(a)Square wave with 1-second period.  (b)  Fundamental component (dotted) with 
1-second period, third-harmonic (solid black) with1/3-second period, and their sum 
(blue).  (c)  Sum of first ten components.  (d) Spectrum with 20 terms.
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Steady-State Sinusoidal Analysis
Also known as AC steady-state
Any steady state voltage or current in a linear circuit with 
a sinusoidal source is a sinusoid.

This is a consequence of the nature of particular solutions for 
sinusoidal forcing functions.

All AC steady state voltages and currents have the same 
frequency as the source.
In order to find a steady state voltage or current, all we 
need to know is its magnitude and its phase relative to 
the source 

We already know its frequency.

Usually, an AC steady state voltage or current is given 
by the particular solution to a differential equation.
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The Good News!
We do not have to find this differential 
equation from the circuit, nor do we have 
to solve it.
Instead, we use the concepts of phasors
and complex impedances.
Phasors and complex impedances convert 
problems involving differential equations 
into circuit analysis problems.
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Phasors
A phasor is a complex number that 
represents the magnitude and phase of a 
sinusoidal voltage or current.
Remember, for AC steady state analysis, 
this is all we need to compute-we already 
know the frequency of any voltage or 
current.
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Complex Impedance
Complex impedance describes the 
relationship between the voltage across an 
element (expressed as a phasor) and the 
current through the element (expressed as 
a phasor).
Impedance is a complex number.
Impedance depends on frequency.
Phasors and complex impedance allow us 
to use Ohm’s law with complex numbers 
to compute current from voltage and 
voltage from current.
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Sinusoids

Amplitude: VM

Angular frequency: ω = 2π f 
Radians/sec 

Phase angle: θ
Frequency: f = 1/T

Unit: 1/sec or Hz
Period: T

Time necessary to go through one cycle

( )( ) cosMv t V tω θ= +
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What is the amplitude, period, frequency, 
and radian frequency of this sinusoid?
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Phasors
A phasor is a complex number that 
represents the magnitude and phase of a 
sinusoid:

( )θω +tX M cos

θ∠= MXX

Time Domain

Frequency Domain


