

Logical Effort

Question \#1

- How to best combine logic and drive for a big capacitive load?

Question \#2

- All of these are "decoders"
- Which one is "best"?

Method to answer both of these questions

- Extension of buffer sizing problem
- Logical effort

Complex Gate Sizing

Complex Gate Sizing: NAND-2 Example

$$
\begin{aligned}
& C \text { gnand }=4 C_{G}=(4 / 3) C_{g i n v} \\
& C_{\text {dnand }}=6 C_{D}=6 \gamma C_{G}=2 \gamma C_{\text {ginv }} \\
& f=C_{L} / C_{\text {gnand }}=(3 / 4) C_{L} / C_{\text {ginv }}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{t}_{\text {pNAND }} & =k R_{N}\left(C_{\text {dnand }}+C_{L}\right) \\
& =k R_{N}\left(2 \gamma C_{\text {ginv }}+C_{L}\right) \\
& =k R_{N} C_{\text {ginv }}\left(2 \gamma+C_{L} / C_{\text {ginv }}\right) \\
& =t_{\text {inv }}(2 \gamma+(4 / 3) f)
\end{aligned}
$$

Logical Effort

- Defines ease of gate to drive external capacitance
- Inverter has the smallest logical effort and intrinsic delay of all static CMOS gates
- Logical effort LE is defined as:
- $\left(R_{\text {eq,gate }} C_{\text {in, gate }}\right) /\left(R_{\text {eq,inv }} C_{\text {in,inv }}\right)$
- Easiest way to calculate (usually):
- Size gate to deliver same current as an inverter, take ratio of gate input capacitance to inverter capacitance
- LE increases with gate complexity

Logical Effort

$t_{\text {pgate }}=t_{\text {inv }}(p+L E f)$

Measure everything in units of t_{inv} (divide by t_{inv}):
p - intrinsic delay - gate parameter $\neq \mathrm{f}(W)$
$L E$ - logical effort - gate parameter $\neq \mathrm{f}(W)$
f - electrical fanout $=\mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\text {in }}=\mathrm{f}(W)$
Normalize everything to an inverter:
$L E_{i n v}=1, p_{i n v}=\gamma$

Delay of a Logic Gate

Gate delay:

Delay $=F F+p_{k}\left(\right.$ measured in units of $\left.t_{i n v}\right)$

effective fanout intrinsic delay
Effective fanout:

Logical effort is a function of topology, independent of sizing Effective fanout is a function of load/gate size

Logical Effort of Gates

Delay Of NOR-2 Gate

1. Size for same resistance as inverter
2. LE = ratio of input cap of gate versus inverter

Intrinsic capacitance $\left(\mathrm{C}_{\text {dnor }}\right)=$ $\mathrm{t}_{\text {pint }}(\mathrm{NOR})=$

Question

Any logic function can be implemented using NOR gates only or NAND gates only!

Which of the two approaches is preferable in CMOS (from a performance perspective)?

Logical Effort

(Fate Type

Optimizing Complex Combinational Logic

Multistage Networks

$$
\text { Delay }=\sum_{i=1}^{N}\left(p_{i}+L E_{i} \cdot f_{i}\right)
$$

Effective fanout: $\mathrm{EF}_{i}=\mathrm{LE}_{i} f_{i}$
Only for tree networks
Path delay $D=\Sigma d_{i}=\Sigma p_{i}+\Sigma E F_{i}$
Path electrical fanout: $F=C_{L} / C_{i n}=\Pi f_{i}$
Path logical effort: $\Pi L E=L E_{1} L E_{2} \ldots L E_{N}$
Path effort: $P E=\Pi L E F$

Adding branching

Branching effort: $\quad b=\frac{C_{L, o n-\text { paan }}+C_{L, o f f-\text { parh }}}{C_{L, o o n-\text { paah }}}$

Multistage Networks

$$
\text { Delay }=\sum_{i=1}^{N}\left(p_{i}+L E_{i} \cdot f_{i}\right)
$$

Effective fanout: $\mathrm{EF}_{i}=\mathrm{LE}_{i} f_{i}$
Path delay $D=\Sigma d_{i}=\Sigma p_{i}+\Sigma E F_{i}$
Path electrical fanout: $F=C_{L} / C_{i n}$
Branching effort: $\Pi B=b_{1} b_{2} \ldots b_{N}$

$$
\Pi f_{i}=\Pi В F \quad \text { (assuming all paths in the tree are important) }
$$

Path logical effort: $\Pi L E=L E_{1} L E_{2} \ldots L E_{N}$
Path effort: $P E=$ ПLE ПВ F

Optimum Effort per Stage

When each stage bears the same effort (effective fanout):

$$
\begin{aligned}
& E F^{N}=P E \\
& E F=\sqrt[N]{P E}
\end{aligned}
$$

Effective fanouts: $L E_{1} f_{1}=L E_{2} f_{2}=\ldots=L E_{N} f_{N}$
Minimum path delay

$$
\hat{D}=\sum_{i=1}^{N}\left(L E_{i} f_{i}+p_{i}\right)=N \cdot P E^{1 / N}+\sum_{i=1}^{N} p_{i}
$$

Optimal Number of Stages

For a given load, and given input capacitance of the first gate Find optimal number of stages and optimal sizing

$$
D=N \cdot P E^{1 / N}+\sum p_{i}
$$

Remember: we can always add inverters to the end of the chain
The 'best effective fanout' $E F=P E^{1 / \hat{N}}$ is still around 4 (3.6 with $\gamma=1$)

Method of Logical Effort: Summary

- Compute the path effort: PE = (חLE)BF
- Find the best number of stages $N \sim \log _{4} \mathrm{PE}$
\square Compute the effective fanout/stage EF = PE $1 / \mathrm{N}$
- Sketch the path with this number of stages
- Work either from either end, find sizes: $C_{\text {in }}=C_{\text {out }}{ }^{*} \mathrm{LE} / \mathrm{EF}$

Reference: Sutherland, Sproull, Harris, "Logical Effort", Morgan-Kaufmann 1999.

Optimizing Complex Combinational Logic: Examples

Example 1: No branching

Electrical fanout, $F=$
$\Pi L E=$
$P E=$
$E F /$ stage $=$
$a=$
$b=$
$c=$

Example 1: No branching

Electrical fanout, $F=5$
П $L E=25 / 9$
$P E=125 / 9$
$E F /$ stage $=1.93$
$a=1.93$
$b=2.23$
$c=2.59$
From the back

$$
\begin{aligned}
& 5 / c=1.93 \\
& (5 / 3) c / b=1.93 \\
& (5 / 3) b / a=1.93
\end{aligned}
$$

a, b, c are input capacitances normalized to the unit inverter

Our old problem: which one is better?

Adding Branching

$$
\begin{array}{ll}
L E & =1 \\
F & =90 / 5=18 \\
P E & =18 \text { (wrong!) } \\
\hline E F_{1}=(15+15) / 5=6 \\
E F_{2}=90 / 15=6 \\
P E & =36, \text { not } 18!
\end{array}
$$

Better: $P E=F \cdot L E \cdot B=18 \cdot 1 \cdot 2=36$

Example 2 with Branching

Select gate sizes y and z to minimize delav from A to B

Logical Effort: $\quad L E=$

Electrical Fanout: $F=$
Branching Effort: $\quad B=$
Path Effort:
$P E=$

Best Effective Fanout: $E F=$
Delay:
$D=$

Example 2 with Branching

Select gate sizes y and z to minimize delav from A to B Logical Effort: $\quad L E=(4 / 3)^{3}$
Electrical Fanout: $\quad F=C_{\text {out }} / C_{\text {in }}=9$
Branching Effort: $\quad B=2 \cdot 3=6$
 Path Effort: $\quad P E=\Pi L E \cdot F \cdot B=128$

Best Effective Fanout: $E F=P E^{1 / 3} \approx 5$ Delay:

$$
D=3 \cdot 5+3 \cdot 2=21
$$

Work backward for sizes:

$$
\begin{aligned}
& z=\frac{9 C \cdot(4 / 3)}{5}=2.4 C \\
& y=\frac{3 z \cdot(4 / 3)}{5}=1.9 C
\end{aligned}
$$

