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Project Introduction
❑ You will design and optimize a RISC-V 

processor 
❑ Phase 1: Design a processor that is functional 

and demonstrate 
❑ Phase 2:  
▪ ASIC Lab – Improve performance using 

accelerator 
▪ FPGA Lab – Add streaming input-output 

accerelation
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RISC-V

EECS151/251A Project 
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• Executes most commonly used RISC-V instructions (http://riscv.org). 
• Lightly Pipelined (high performance) implementation. 
• FPGA Focus: add I/O functions and optimize. 
• ASIC Focus: Adding accelerators.

(FPGA lab)

I/O 
Functions

   PYNQ  Board (FPGA LAB)
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Outline
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❑ Processor Introduction 
❑ MIPS CPU implementation 
❑ Pipelining for Performance 
❑ 3-Stage Pipeline

Check Harris & Harris – Chapter 6
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Processor 
Introduction
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The Purpose of This Lecture...
❑ To Speed Run 1.5 weeks of 61C in 

preparation for the project 
❑ Since the project is you need to build 

a RISC-V processor 
❑ To include the differences between 

RISC-V and MIPS

6



EE141

RISC-V vs MIPS
❑ All RISC processors are effectively the same 

except for one or two design decisions that 
"seemed like a good idea at the time" 

❑ MIPS 'seems like a good idea': 
❑ The branch delay slot: Always execute the 

instruction after a branch or jump whether or 
not the branch or jump is taken 

❑ RISC-V... 
❑ Nothing yet, but the immediate encoding can 

be hard to explain to people 
❑ Lecture are MIPS (match book), project is RISC-V
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Real Differences
❑ Different register naming conventions & calling conventions 

❑ $4 vs x4, $s0 vs s0, etc... 
❑ Instruction encodings and encoding formats 

❑ 3 encodings vs 6 
❑ all-0 is a noop in MIPS but invalid in RISC-V 
❑ all RISC-V immediates are sign extended 
❑ RISC-V doesn't support "trap on overflow" signed math 

❑ Instruction alignment 
❑ RISC-V only requires 2-byte alignment for instructions when including 

an optional 16b instruction encoding 
❑ RISC-V also supports some 48b and 64b instructions in 

extensions 
❑ Instructions 

❑ RISC-V has dedicated "compare 2 registers & branch" operation 
❑ RISC-V doesn't have j or jr, just jal and jalr: 

Write to x0 to eliminate the side effect
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Abstraction Layers
❑ Architecture: the programmer’s view of the 

computer 
– Defined by instructions (operations) and operand 

locations 
❑ Microarchitecture: how to implement an 

architecture in hardware (covered in great 
detail later) 

❑ The microarchitecture is built out of “logic” 
circuits and memory elements (this 
semester). 

❑ All logic circuits and memory elements are 
implemented in the physical world with 
transistors. 

❑ This semester we will implement our projects 
using circuits on FPGAs (field programmable 
gate arrays) or standard-cell ASIC design.
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Interpreting Machine Code
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A processor is a machine code interpreter build in hardware!
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Page 

Processor Microarchitecture Introduction

Microarchitecture: how to 
implement an architecture in 
hardware 

Good examples of how to put 
principles of digital design to 
practice. 

Introduction to eecs151/251a 
final project.

11



EE141

EECS150 - Lec07-MIPS

MIPS Microarchitecture Oganization
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Datapath + Controller + External Memory

Controller
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How to Design a Processor: step-by-step
1. Analyze instruction set architecture (ISA) ⇒ datapath 

requirements 

– meaning of each instruction is given by the data transfers (register 
transfers) 

– datapath must include storage element for ISA registers 
– datapath must support each data transfer 

2. Select set of datapath components and establish clocking 
methodology 

3. Assemble datapath meeting requirements 

4. Analyze implementation of each instruction to determine 
setting of control points that effects the data transfer. 

5. Assemble the control logic.

13
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MIPS CPU Implementation 
- Datapath
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Review: The MIPS Instruction Formats
 

R-type  

I-type  

J-type 
 

The different fields are: 
op: operation (“opcode”) of the instruction 
rs, rt, rd: the source and destination register specifiers 
shamt: shift amount 
funct: selects the variant of the operation in the “op” field 
address / immediate: address offset or immediate value 
target address: target address of jump instruction 

op target address
02631

6 bits 26 bits

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt address/immediate
016212631

6 bits 16 bits5 bits5 bits

15

register

jump

immediate



EE141

Subset for Lecture

add, sub, or, slt
•addu rd,rs,rt 
•subu rd,rs,rt 

lw, sw
•lw rt,rs,imm16 
•sw rt,rs,imm16 

beq
•beq rs,rt,imm16 
 

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

16
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Register Transfer Descriptions
All start with instruction fetch:
{op , rs , rt , rd , shamt , funct} ← IMEM[ PC ]   OR

{op , rs , rt ,   Imm16} ← IMEM[ PC ]                   THEN

inst  Register Transfers 

add R[rd] ← R[rs] + R[rt],             PC ← PC + 4; 

sub R[rd] ← R[rs] – R[rt],             PC ← PC + 4; 

or      R[rd] ← R[rs] | R[rt],             PC ← PC + 4; 

slt      R[rd] ← (R[rs] < R[rt]) ? 1 : 0,   PC ← PC + 4; 

lw R[rt] ← DMEM[ R[rs] + sign_ext(Imm16)], 

        PC ← PC + 4;

sw DMEM[ R[rs] + sign_ext(Imm16) ] ← R[rt],    PC ← PC + 4;

beq          if ( R[rs] == R[rt] ) then   

       PC ← PC + 4 + {sign_ext(Imm16), 00}  

       else PC ← PC + 4;
17
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Microarchitecture

Multiple implementations for a single architecture: 

– Single-cycle 
– Each instruction executes in a single clock cycle. 

– Multicycle 
– Each instruction is broken up into a series of shorter steps with one step per 

clock cycle. 
– Pipelined (variant on “multicycle”) 

– Each instruction is broken up into a series of steps with one step per clock 
cycle 

– Multiple instructions execute at once by overlapping in time. 
– Superscalar 

– Multiple functional units to execute multiple instructions at the same time 
– Out of order... 

– Hey, who says we have to follow the program exactly....

18
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CPU clocking (1/2)
❑ Single Cycle CPU: All stages of an instruction 

are completed within one long clock cycle.   
– The clock cycle is made sufficient long to allow 

each instruction to complete all stages without 
interruption and within one cycle.

1. Instruction
Fetch

2. Decode/
    Register

Read

3. Execute 4. Memory 5. Reg.
     Write

19
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CPU clocking (2/2)
❑ Multiple-cycle CPU: Only one stage of 

instruction per clock cycle.   
– The clock is made as long as the slowest stage. 

Several significant advantages over single cycle 
execution: Unused stages in a particular instruction 
can be skipped OR instructions can be pipelined 
(overlapped).

1. Instruction
Fetch

2. Decode/
    Register

Read

3. Execute 4. Memory 5. Reg.
     Write

20
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MIPS State Elements

21

❑ State encodes everything about the 
execution status of a processor: 
– PC register 
– 32 registers 

– Memory

Note: for these state elements, clock is used for write but not 
for read (asynchronous read, synchronous write).
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Single-Cycle Datapath: lw fetch
❑ First consider executing lw 

STEP 1: Fetch instruction

22

R[rt] ← DMEM[ R[rs] + sign_ext(Imm16)]
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Single-Cycle Datapath: lw register read

STEP 2: Read source operands from register file

23

R[rt] ← DMEM[ R[rs] + sign_ext(Imm16)]
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Single-Cycle Datapath: lw immediate

STEP 3: Sign-extend the immediate

24

R[rt] ← DMEM[ R[rs] + sign_ext(Imm16)]
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Single-Cycle Datapath: lw address

STEP 4: Compute the memory address

25

R[rt] ← DMEM[ R[rs] + sign_ext(Imm16)]
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Single-Cycle Datapath: lw memory read

STEP 5: Read data from memory and write it back to 
register file

26

R[rt] ← DMEM[ R[rs] + sign_ext(Imm16)]
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Single-Cycle Datapath: lw PC increment

STEP 6: Determine the address of the next instruction

27

PC ← PC + 4
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Single-Cycle Datapath: sw

❑ Write data in rt to memory

28

DMEM[ R[rs] + sign_ext(Imm16) ] ← R[rt]
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Single-Cycle Datapath: R-type instructions
❑ Read from rs and rt 
❑ Write ALUResult to register file 
❑ Write to rd (instead of rt)

29

R[rd] ← R[rs] op R[rt]
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Single-Cycle Datapath: beq

❑ Determine whether values in rs and rt are equal 
❑ Calculate branch target address:  
        BTA = (sign-extended immediate << 2) + (PC+4)

30

if ( R[rs] == R[rt] ) then  PC ← PC + 4 + {sign_ext(Imm16), 00}
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Complete Single-Cycle Processor

31
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MIPs Processor 
Implementation - Control
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ALU Control

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT

33
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Control Unit

34
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Control Unit: ALU Decoder
ALUOp1:0 Meaning

00 Add
01 Subtract
10 Look at Funct
11 Not Used

ALUOp1:0 Funct ALUControl2:0

00 XXXXXX 010 (Add)

X1 XXXXXX 110 (Subtract)

1X 100000 (add) 010 (Add)

1X 100010 (sub) 110 (Subtract)

1X 100100 (and) 000 (And)

1X 100101 (or) 001 (Or)

1X 101010 (slt) 111 (SLT) 35



EE141

Control Unit: Main Decoder
Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000

lw 100011

sw 101011

beq 000100

36
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Control Unit: Main Decoder

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10
lw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 0 1 X 00
beq 000100 0 X 0 1 0 X 01

37
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Single-Cycle Datapath Example: or

38
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Extended Functionality: addi

• No change to datapath

39
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Control Unit: addi

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10
lw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 0 1 X 00
beq 000100 0 X 0 1 0 X 01
addi 001000

40
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Control Unit: addi

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10
lw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 0 1 X 00
beq 000100 0 X 0 1 0 X 01
addi 001000 1 0 1 0 0 0 00

41
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Extended Functionality: j 

42
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Control Unit: Main Decoder
Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 000000 1 1 0 0 0 0 10 0
lw 100011 1 0 1 0 0 1 00 0
sw 101011 0 X 1 0 1 X 00 0
beq 000100 0 X 0 1 0 X 01 0
j 000100

43
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Control Unit: Main Decoder
Instructio

n
Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 0 1 1 0 0 0 0 10 0
lw 100011 1 0 1 0 0 1 0 0
sw 101011 0 X 1 0 1 X 0 0
beq 100 0 X 0 1 0 X 1 0
j 100 0 X X X 0 X XX 1

44
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Reminder on Don't Cares (X)
❑ You can use don't cares on any signal 

that doesn't change state 
❑ Gives the synthesis tool freedom, at 

the cost of potential bugs if you mess 
up 

❑ You must never specify don't care on 
signals which cause side effects 
❑ Otherwise the tool will cause 

unintended writes

45
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A Verilog Convention
❑ Control logic works really well as a case 

statement... 
always @* begin  
   op = instr[26:31];  
   imm = instr[15:0]; ...  
    
   reg_dst = 1'bx;   // Don't care  
   reg_write = 1'b0; // Do care, side effecting 
   ...  
   case (op)  
    6'b000000: begin reg_write = 1; ... end 
    ...

46
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Processor Pipelining
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Review: Processor Performance 
(The Iron Law)
 Program Execution Time  
  = (# instructions)(cycles/instruction)(seconds/cycle) 

  = # instructions x CPI x TC

48
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Single-Cycle Performance

• TC is limited by the critical path (lw) 
   

49
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Single-Cycle Performance
• Single-cycle critical path: 

   Tc = tq_PC + tmem + max(tRFread, tsext + tmux) + tALU + 
tmem + tmux + tRFsetup 

• In most implementations, limiting paths are:  

– memory, ALU, register file.  
– Tc = tq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

50
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Pipelined MIPS Processor
• Temporal parallelism 

• Divide single-cycle processor into 5 stages: 
– Fetch 
– Decode 
– Execute 

– Memory 

– Writeback 

• Add pipeline registers between stages

51
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Single-Cycle vs. Pipelined Performance

52
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Single-Cycle and Pipelined Datapath

53
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Corrected Pipelined Datapath

• WriteReg must arrive at the same time as Result

54
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Pipelined Control

Same control unit as single-cycle processor 

Control delayed to proper pipeline stage 55
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Pipeline Hazards
❑ Occurs when an instruction depends on results 

from previous instruction that hasn’t completed. 
❑ Types of hazards: 

– Data hazard: register value not written back to 
register file yet 

– Control hazard: next instruction not decided yet 
(caused by branches)

56
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Processor Pipelining
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IF1 IF2 ID X1 X2 M1 M2 WB
IF1 IF2 ID X1 X2 M1 M2 WB

Deeper pipelines => less logic per stage => high clock rate.

Deeper pipeline example.

Deeper pipelines* => more hazards => more cost and/or higher CPI.

Remember,  Performance = # instructions X Frequencyclk / CPI

But

Cycles per instruction might go up because of unresolvable hazards.

How about shorter pipelines ... Less cost, less performance

*Many designs included pipelines as long as 7, 10 and even 20 stages (like in the Intel Pentium 4). The later 
"Prescott" and "Cedar Mill" Pentium 4 cores (and their Pentium D derivatives) had a 31-stage pipeline.

http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Pentium_4
http://en.wikipedia.org/wiki/Pentium_D
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3-Stage Pipeline
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3-Stage Pipeline (used for project)

59

I X M

The blocks in the datapath with the greatest 
delay are: IMEM, ALU, and DMEM.  Allocate 
one pipeline stage to each:

Use PC register as address 
to IMEM and retrieve next 

instruction.  Instruction gets 
stored in a pipeline register, 

also called “instruction 
register”, in this case.

Most details you will need to work out for yourself.  Some details to follow ...  
In particular, let’s look at hazards.

Access data memory or I/O 
device for load or store.  
Allow for setup time for 
register file write.

Use ALU to compute 
result, memory 

address, or compare 
registers for branch.  
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3-stage Pipeline

60

       add  $5, $3, $4 I X M
      add  $7, $6, $5 I X M

reg 5 value updated herereg 5 value needed here!

Data Hazard

Selectively forward ALU result back to input of ALU.

The fix:

• Need to add mux at input 
to ALU, add control logic to 
sense when to activate.   
Check book for details.ALU

control
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3-stage Pipeline

61

     lw  $5, offset($4) I X M
I X M

Memory value known here.  It is 
written into the regfile on this edge.

value needed here!

Load Hazard

     add  $7, $6, $5

     lw  $5, offset($4) I X M
I nop nop

I X M
     add  $7, $6, $5
     add  $7, $6, $5

The fix: Delay the dependent instruction by one cycle to 
allow the load to complete, send the result of 
load directly to the ALU.
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Control Hazard3-stage Pipeline
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       beq  $1, $2, L1 I X M
      add  $5, $3, $4 I X M

add $6, $1, $2 I X M
L1: sub $7, $6, $5 I X

branch address ready herebut needed here!

The fix:
Several Possibilities:* 
1.   Always delay fetch of instruction after branch 
2.   Assume branch “not taken”, continue with instruction 

at PC+4, and correct later if wrong. 
3.   Predict branch taken or not based on history (state) 

and correct later if wrong. 

1.  Simple, but all branches now take 2 cycles (lowers performance) 
2.   Simple, only some branches take 2 cycles (better performance) 
3.   Complex, very few branches take 2 cycles (best performance)

* MIPS defines “branch delay slot”, RISC-V doesn’t 
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Control HazardPredict “not taken”
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       bneq  $1, $1, L1 I X M
      add  $5, $3, $4 I X M

add $6, $1, $2 I X M
L1: sub $7, $6, $5 I X

       beq  $1, $1, L1 I X M
      add  $5, $3, $4 I nop nop
L1: sub $7, $6, $5 I X M

Branch address ready at end of X stage: 
• If branch “not taken”, do nothing. 
• If branch “taken”, then kill instruction in I stage (about to 

enter X stage) and fetch at new target address (PC) 
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EECS151 Project CPU Pipelining Summary

❑ Pipeline rules:  
– Writes/reads to/from DMem are clocked on the leading 

edge of the clock in the “M” stage 
– Writes to RegFile use trailing edge of the clock of “M” stage 

– reg-file writes are 180 degrees out of phase 

– Instruction Decode and Register File access is up to you. 
❑ Branch: predict “not-taken” 

❑ Load: 1 cycle delay/stall 
❑ Bypass ALU for data hazards 

❑ More details in upcoming spec 64

I X M
instruction 

fetch
execute access 

data 
memory

3-stage 
pipeline


