
EE141

EECS 151/251A 
Fall 2017 
Digital Design and Integrated Circuits

Instructor:
John Wawrzynek and Nicholas Weaver

Lecture 13

EE141

Project Introduction
❑ You will design and optimize a RISC-V

processor
❑ Phase 1: Design a processor that is functional

and demonstrate
❑ Phase 2:
▪ ASIC Lab – Improve performance using

accelerator
▪ FPGA Lab – Add streaming input-output

accerelation

2

EE141

RISC-V

EECS151/251A Project

3

• Executes most commonly used RISC-V instructions (http://riscv.org).
• Lightly Pipelined (high performance) implementation.
• FPGA Focus: add I/O functions and optimize.
• ASIC Focus: Adding accelerators.

(FPGA lab)

I/O
Functions

 PYNQ Board (FPGA LAB)

EE141

Outline

4

❑ Processor Introduction
❑ MIPS CPU implementation
❑ Pipelining for Performance
❑ 3-Stage Pipeline

Check Harris & Harris – Chapter 6

EE141

Processor
Introduction

EE141

The Purpose of This Lecture...
❑ To Speed Run 1.5 weeks of 61C in

preparation for the project
❑ Since the project is you need to build

a RISC-V processor
❑ To include the differences between

RISC-V and MIPS

6

EE141

RISC-V vs MIPS
❑ All RISC processors are effectively the same

except for one or two design decisions that
"seemed like a good idea at the time"

❑ MIPS 'seems like a good idea':
❑ The branch delay slot: Always execute the

instruction after a branch or jump whether or
not the branch or jump is taken

❑ RISC-V...
❑ Nothing yet, but the immediate encoding can

be hard to explain to people
❑ Lecture are MIPS (match book), project is RISC-V

7

EE141

Real Differences
❑ Different register naming conventions & calling conventions

❑ $4 vs x4, $s0 vs s0, etc...
❑ Instruction encodings and encoding formats

❑ 3 encodings vs 6
❑ all-0 is a noop in MIPS but invalid in RISC-V
❑ all RISC-V immediates are sign extended
❑ RISC-V doesn't support "trap on overflow" signed math

❑ Instruction alignment
❑ RISC-V only requires 2-byte alignment for instructions when including

an optional 16b instruction encoding
❑ RISC-V also supports some 48b and 64b instructions in

extensions
❑ Instructions

❑ RISC-V has dedicated "compare 2 registers & branch" operation
❑ RISC-V doesn't have j or jr, just jal and jalr: 

Write to x0 to eliminate the side effect

8

EE141

Abstraction Layers
❑ Architecture: the programmer’s view of the

computer
– Defined by instructions (operations) and operand

locations
❑ Microarchitecture: how to implement an

architecture in hardware (covered in great
detail later)

❑ The microarchitecture is built out of “logic”
circuits and memory elements (this
semester).

❑ All logic circuits and memory elements are
implemented in the physical world with
transistors.

❑ This semester we will implement our projects
using circuits on FPGAs (field programmable
gate arrays) or standard-cell ASIC design.

9

EE141

Interpreting Machine Code

10

A processor is a machine code interpreter build in hardware!

EE141

Page

Processor Microarchitecture Introduction

Microarchitecture: how to
implement an architecture in
hardware

Good examples of how to put
principles of digital design to
practice.

Introduction to eecs151/251a
final project.

11

EE141

EECS150 - Lec07-MIPS

MIPS Microarchitecture Oganization

12

Datapath + Controller + External Memory

Controller

EE141

How to Design a Processor: step-by-step
1. Analyze instruction set architecture (ISA) ⇒ datapath

requirements

– meaning of each instruction is given by the data transfers (register
transfers)

– datapath must include storage element for ISA registers
– datapath must support each data transfer

2. Select set of datapath components and establish clocking
methodology

3. Assemble datapath meeting requirements

4. Analyze implementation of each instruction to determine
setting of control points that effects the data transfer.

5. Assemble the control logic.

13

EE141

MIPS CPU Implementation
- Datapath

EE141

Review: The MIPS Instruction Formats
 

R-type  

I-type  

J-type
 

The different fields are:
op: operation (“opcode”) of the instruction
rs, rt, rd: the source and destination register specifiers
shamt: shift amount
funct: selects the variant of the operation in the “op” field
address / immediate: address offset or immediate value
target address: target address of jump instruction

op target address
02631

6 bits 26 bits

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt address/immediate
016212631

6 bits 16 bits5 bits5 bits

15

register

jump

immediate

EE141

Subset for Lecture

add, sub, or, slt
•addu rd,rs,rt
•subu rd,rs,rt

lw, sw
•lw rt,rs,imm16
•sw rt,rs,imm16

beq
•beq rs,rt,imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

16

EE141

Register Transfer Descriptions
All start with instruction fetch:
{op , rs , rt , rd , shamt , funct} ← IMEM[PC] OR

{op , rs , rt , Imm16} ← IMEM[PC] THEN

inst Register Transfers

add R[rd] ← R[rs] + R[rt], PC ← PC + 4;

sub R[rd] ← R[rs] – R[rt], PC ← PC + 4;

or R[rd] ← R[rs] | R[rt], PC ← PC + 4;

slt R[rd] ← (R[rs] < R[rt]) ? 1 : 0, PC ← PC + 4;

lw R[rt] ← DMEM[R[rs] + sign_ext(Imm16)],

 PC ← PC + 4;

sw DMEM[R[rs] + sign_ext(Imm16)] ← R[rt], PC ← PC + 4;

beq if (R[rs] == R[rt]) then

 PC ← PC + 4 + {sign_ext(Imm16), 00}

 else PC ← PC + 4;
17

EE141

Microarchitecture

Multiple implementations for a single architecture:

– Single-cycle
– Each instruction executes in a single clock cycle.

– Multicycle
– Each instruction is broken up into a series of shorter steps with one step per

clock cycle.
– Pipelined (variant on “multicycle”)

– Each instruction is broken up into a series of steps with one step per clock
cycle

– Multiple instructions execute at once by overlapping in time.
– Superscalar

– Multiple functional units to execute multiple instructions at the same time
– Out of order...

– Hey, who says we have to follow the program exactly....

18

EE141

CPU clocking (1/2)
❑ Single Cycle CPU: All stages of an instruction

are completed within one long clock cycle.
– The clock cycle is made sufficient long to allow

each instruction to complete all stages without
interruption and within one cycle.

1. Instruction
Fetch

2. Decode/
 Register

Read

3. Execute 4. Memory 5. Reg.
 Write

19

EE141

CPU clocking (2/2)
❑ Multiple-cycle CPU: Only one stage of

instruction per clock cycle.
– The clock is made as long as the slowest stage.

Several significant advantages over single cycle
execution: Unused stages in a particular instruction
can be skipped OR instructions can be pipelined
(overlapped).

1. Instruction
Fetch

2. Decode/
 Register

Read

3. Execute 4. Memory 5. Reg.
 Write

20

EE141

MIPS State Elements

21

❑ State encodes everything about the
execution status of a processor:
– PC register
– 32 registers

– Memory

Note: for these state elements, clock is used for write but not
for read (asynchronous read, synchronous write).

EE141

Single-Cycle Datapath: lw fetch
❑ First consider executing lw

STEP 1: Fetch instruction

22

R[rt] ← DMEM[R[rs] + sign_ext(Imm16)]

EE141

Single-Cycle Datapath: lw register read

STEP 2: Read source operands from register file

23

R[rt] ← DMEM[R[rs] + sign_ext(Imm16)]

EE141

Single-Cycle Datapath: lw immediate

STEP 3: Sign-extend the immediate

24

R[rt] ← DMEM[R[rs] + sign_ext(Imm16)]

EE141

Single-Cycle Datapath: lw address

STEP 4: Compute the memory address

25

R[rt] ← DMEM[R[rs] + sign_ext(Imm16)]

EE141

Single-Cycle Datapath: lw memory read

STEP 5: Read data from memory and write it back to
register file

26

R[rt] ← DMEM[R[rs] + sign_ext(Imm16)]

EE141

Single-Cycle Datapath: lw PC increment

STEP 6: Determine the address of the next instruction

27

PC ← PC + 4

EE141

Single-Cycle Datapath: sw

❑ Write data in rt to memory

28

DMEM[R[rs] + sign_ext(Imm16)] ← R[rt]

EE141

Single-Cycle Datapath: R-type instructions
❑ Read from rs and rt
❑ Write ALUResult to register file
❑ Write to rd (instead of rt)

29

R[rd] ← R[rs] op R[rt]

EE141

Single-Cycle Datapath: beq

❑ Determine whether values in rs and rt are equal
❑ Calculate branch target address:
 BTA = (sign-extended immediate << 2) + (PC+4)

30

if (R[rs] == R[rt]) then PC ← PC + 4 + {sign_ext(Imm16), 00}

EE141

Complete Single-Cycle Processor

31

EE141

MIPs Processor
Implementation - Control

EE141

ALU Control

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT

33

EE141

Control Unit

34

EE141

Control Unit: ALU Decoder
ALUOp1:0 Meaning

00 Add
01 Subtract
10 Look at Funct
11 Not Used

ALUOp1:0 Funct ALUControl2:0

00 XXXXXX 010 (Add)

X1 XXXXXX 110 (Subtract)

1X 100000 (add) 010 (Add)

1X 100010 (sub) 110 (Subtract)

1X 100100 (and) 000 (And)

1X 100101 (or) 001 (Or)

1X 101010 (slt) 111 (SLT) 35

EE141

Control Unit: Main Decoder
Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000

lw 100011

sw 101011

beq 000100

36

EE141

Control Unit: Main Decoder

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10
lw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 0 1 X 00
beq 000100 0 X 0 1 0 X 01

37

EE141

Single-Cycle Datapath Example: or

38

EE141

Extended Functionality: addi

• No change to datapath

39

EE141

Control Unit: addi

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10
lw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 0 1 X 00
beq 000100 0 X 0 1 0 X 01
addi 001000

40

EE141

Control Unit: addi

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0

R-type 000000 1 1 0 0 0 0 10
lw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 0 1 X 00
beq 000100 0 X 0 1 0 X 01
addi 001000 1 0 1 0 0 0 00

41

EE141

Extended Functionality: j

42

EE141

Control Unit: Main Decoder
Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 000000 1 1 0 0 0 0 10 0
lw 100011 1 0 1 0 0 1 00 0
sw 101011 0 X 1 0 1 X 00 0
beq 000100 0 X 0 1 0 X 01 0
j 000100

43

EE141

Control Unit: Main Decoder
Instructio

n
Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 0 1 1 0 0 0 0 10 0
lw 100011 1 0 1 0 0 1 0 0
sw 101011 0 X 1 0 1 X 0 0
beq 100 0 X 0 1 0 X 1 0
j 100 0 X X X 0 X XX 1

44

EE141

Reminder on Don't Cares (X)
❑ You can use don't cares on any signal

that doesn't change state
❑ Gives the synthesis tool freedom, at

the cost of potential bugs if you mess
up

❑ You must never specify don't care on
signals which cause side effects
❑ Otherwise the tool will cause

unintended writes

45

EE141

A Verilog Convention
❑ Control logic works really well as a case

statement... 
always @* begin  
 op = instr[26:31];  
 imm = instr[15:0]; ...  
  
 reg_dst = 1'bx; // Don't care  
 reg_write = 1'b0; // Do care, side effecting 
 ...  
 case (op)  
 6'b000000: begin reg_write = 1; ... end 
 ...

46

EE141

Processor Pipelining

EE141

Review: Processor Performance 
(The Iron Law)
 Program Execution Time
 = (# instructions)(cycles/instruction)(seconds/cycle)

 = # instructions x CPI x TC

48

EE141

Single-Cycle Performance

• TC is limited by the critical path (lw)

49

EE141

Single-Cycle Performance
• Single-cycle critical path:

 Tc = tq_PC + tmem + max(tRFread, tsext + tmux) + tALU +
tmem + tmux + tRFsetup

• In most implementations, limiting paths are:

– memory, ALU, register file.
– Tc = tq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

50

EE141

Pipelined MIPS Processor
• Temporal parallelism

• Divide single-cycle processor into 5 stages:
– Fetch
– Decode
– Execute

– Memory

– Writeback

• Add pipeline registers between stages

51

EE141

Single-Cycle vs. Pipelined Performance

52

EE141

Single-Cycle and Pipelined Datapath

53

EE141

Corrected Pipelined Datapath

• WriteReg must arrive at the same time as Result

54

EE141

Pipelined Control

Same control unit as single-cycle processor

Control delayed to proper pipeline stage 55

EE141

Pipeline Hazards
❑ Occurs when an instruction depends on results

from previous instruction that hasn’t completed.
❑ Types of hazards:

– Data hazard: register value not written back to
register file yet

– Control hazard: next instruction not decided yet
(caused by branches)

56

EE141

Processor Pipelining

57

IF1 IF2 ID X1 X2 M1 M2 WB
IF1 IF2 ID X1 X2 M1 M2 WB

Deeper pipelines => less logic per stage => high clock rate.

Deeper pipeline example.

Deeper pipelines* => more hazards => more cost and/or higher CPI.

Remember, Performance = # instructions X Frequencyclk / CPI

But

Cycles per instruction might go up because of unresolvable hazards.

How about shorter pipelines ... Less cost, less performance

*Many designs included pipelines as long as 7, 10 and even 20 stages (like in the Intel Pentium 4). The later
"Prescott" and "Cedar Mill" Pentium 4 cores (and their Pentium D derivatives) had a 31-stage pipeline.

http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Pentium_4
http://en.wikipedia.org/wiki/Pentium_D

EE141

3-Stage Pipeline

EE141

3-Stage Pipeline (used for project)

59

I X M

The blocks in the datapath with the greatest
delay are: IMEM, ALU, and DMEM. Allocate
one pipeline stage to each:

Use PC register as address
to IMEM and retrieve next

instruction. Instruction gets
stored in a pipeline register,

also called “instruction
register”, in this case.

Most details you will need to work out for yourself. Some details to follow ...
In particular, let’s look at hazards.

Access data memory or I/O
device for load or store.
Allow for setup time for
register file write.

Use ALU to compute
result, memory

address, or compare
registers for branch.

EE141

3-stage Pipeline

60

 add $5, $3, $4 I X M
 add $7, $6, $5 I X M

reg 5 value updated herereg 5 value needed here!

Data Hazard

Selectively forward ALU result back to input of ALU.

The fix:

• Need to add mux at input
to ALU, add control logic to
sense when to activate.
Check book for details.ALU

control

EE141

3-stage Pipeline

61

 lw $5, offset($4) I X M
I X M

Memory value known here. It is
written into the regfile on this edge.

value needed here!

Load Hazard

 add $7, $6, $5

 lw $5, offset($4) I X M
I nop nop

I X M
 add $7, $6, $5
 add $7, $6, $5

The fix: Delay the dependent instruction by one cycle to
allow the load to complete, send the result of
load directly to the ALU.

EE141

Control Hazard3-stage Pipeline

62

 beq $1, $2, L1 I X M
 add $5, $3, $4 I X M

add $6, $1, $2 I X M
L1: sub $7, $6, $5 I X

branch address ready herebut needed here!

The fix:
Several Possibilities:*
1. Always delay fetch of instruction after branch
2. Assume branch “not taken”, continue with instruction

at PC+4, and correct later if wrong.
3. Predict branch taken or not based on history (state)

and correct later if wrong.

1. Simple, but all branches now take 2 cycles (lowers performance)
2. Simple, only some branches take 2 cycles (better performance)
3. Complex, very few branches take 2 cycles (best performance)

* MIPS defines “branch delay slot”, RISC-V doesn’t

EE141

Control HazardPredict “not taken”

63

 bneq $1, $1, L1 I X M
 add $5, $3, $4 I X M

add $6, $1, $2 I X M
L1: sub $7, $6, $5 I X

 beq $1, $1, L1 I X M
 add $5, $3, $4 I nop nop
L1: sub $7, $6, $5 I X M

Branch address ready at end of X stage:
• If branch “not taken”, do nothing.
• If branch “taken”, then kill instruction in I stage (about to

enter X stage) and fetch at new target address (PC)

EE141

EECS151 Project CPU Pipelining Summary

❑ Pipeline rules:
– Writes/reads to/from DMem are clocked on the leading

edge of the clock in the “M” stage
– Writes to RegFile use trailing edge of the clock of “M” stage

– reg-file writes are 180 degrees out of phase

– Instruction Decode and Register File access is up to you.
❑ Branch: predict “not-taken”

❑ Load: 1 cycle delay/stall
❑ Bypass ALU for data hazards

❑ More details in upcoming spec 64

I X M
instruction

fetch
execute access

data
memory

3-stage
pipeline

