
EE141

EECS151/251A 
Spring 2018  
Digital Design and Integrated Circuits

Instructors:
John Wawrzynek and Nick Weaver

Lecture 17: 
State

EE141

State...
• For digital design, we are always building

finite state machines
• Just the state can be damn large when you include

external memory
• So how do we build state?

• 4 basic state elements:
• Registers

•Fast, large, little array overhead
• SRAM

•Fairly fast, smaller, significant overhead
• DRAM

•Fairly slow, very dense, significant overhead
• FLASH/EEPROM

•Glacial, very dense, static, significant overhead
2

EE141

State Requires Storage & Access...
• Either as a feedback loop
• Latches, Registers, SRAM
• "Static"

• Or as a stored property
• Electrons on a capacitor for DRAM
• Electrons injected into a floating gate for FLASH

• Feedback loop...
• Can just read the output directly (but there are tricks

to speed it up)
• Stored property...
• Need measurement circuits

3

EE141

Basic Static Storage Element

D D

▪ If D is high, D_b will be driven low
- Which makes D stay high

▪ Positive feedback

4

EE141

Positive Feedback: Bi-Stability

5

EE141

Gain should be larger than 1 in the transition region: 
For flip-flops we hate metastability... 
But for DRAM we love it (as we will see soon)!

Meta-Stability

6

EE141

Reminder: Latch versus Register (Flip-flop)

7

D

Clk

Q D

Clk

Q

⬥ Register: edge-triggered
 stores data when  

clock rises

Clk Clk

D D

Q Q

⬥ Latch: level-sensitive
 clock is low - hold mode 

clock is high - transparent

EE141

Creating a Latch & Flip-Flop...
• Take our basic static storage element...
• And make it switchable between storage

• When clock is low, have the feedback loop
active

• When lock is high, Q gets D
• Can then chain 2 latches to make a Flip/Flop
•One negative clocked, one positive

8

D

Clk

Q D

Clk

Q

EE141

Adding an Enable
• A very common motif
• always @posedge clk begin  
 q := en ? {something} : q

• Namely, only update Q if an additional enable signal is
high

• Just simply add a higher level feedback
loop with a mux.
• {see board}

9

EE141

Creating a Register File... Reading
• Easiest thing is to start with a flip-flop...
• For reading, just have a MUX on the

output to select the register in question
• A common motif for all array memories:  

If you want the nth column/entry, you need a mux 
to select which one

• If done as flip/flops, 
this is simple...

10

EE141

Creating A Regfile... Write Enable
• We need to decode/demux the register

address to determine which register to
write...
• Decoder is a very common operation: 

Take an n bit number and assert a different line for
each bit 
Basically each output is an AND gate

• Commonly done with a "predecoder"
• Compute A0A1, A0A1,A0A1,A0A1
• Compute A2A3, A2A3,A2A3,A2A3
• Then do the AND of the intermediaries

11

EE141

Predecoder and Decoder

A0 A1 A4 A5A2 A3

12

EE141

But Flip-Flops are big...
• 12 transistors for both latches...
• Plus 2 to create a negated clock (can be shared)

• Plus the multiplexor to add an enable...
• Since we don't want to always write

• Can we use the basic static element...
• And make something more compact?

• Yes: SRAM

13

EE141

SRAM Memory Cell

Complementary data values are written (read) from two sides

D

Enable

D

Enable

D

14

EE141

WL

BL

VDD

M5 M6

M4

M1

M2

M3

BL

Q
Q

6-Transistor CMOS SRAM Cell

15

EE141

6T-SRAM — Layout

VDD

GND

WL

BL BLB

Compact cell
Bitlines: M2
Wordline: bootstrapped in M3

EE141

SRAM Operation - Read

BL

WL

BL
0 1

•Initially precharge both the bit lines to VDD
•BL gets pulled down if storing a 1, ~BL if its a 0

•There is a fair amount of capacitance, must
not overwhelm the inverter...

Read

17

EE141

WL

BL
VDD

M5
M6

M 4

M1 VDD
VDD VDD

BL
Q = 1Q = 0

Cbit Cbit

CMOS SRAM Analysis (Read)

18

EE141

CMOS SRAM Analysis (Write is a fight)

BL = 1 BL = 0

Q = 0
Q = 1

M1

M4

M5
M6

VDD

VDD

WL

19

EE141

SRAM Column

WL2

WL0

WL3

BLBL_B

20

EE141

Periphery

❑ Decoders
❑ Sense Amplifiers
❑ Input/Output Buffers
❑ Control / Timing Circuitry

21

EE141

Row Decoder

M bits

A0
A1

AK-1

K = log2N

Word 0
Word 1
Word 2

Word N-2
Word N-1

Storage
cell

S0

Input-Output
(M bits)

D
e
c
o
d
e
r

• Expands K address lines
into N word lines

• A perfect example of logic/
wire optimization

• Typically implemented in
hierarchical fashion

• Area/Energy Trade-off

22

EE141

Speeding the Read: Sense-Amp
• It takes a fair bit of time to pull down the

appropriate bitline...
• But really, why not just detect a difference

• Idea: Precharge a reference and then
look for a small change

23

EE141

Differential Sense Amplifier

Directly applicable to 
SRAMs

M4

M1

M5

M3

M2

VDD

bitbit

SE

Outy

24

EE141

Differential Sensing ― SRAM

25

EE141

Column Decoder

❑ Basically a multiplexer

26

EE141

SRAM Read Cycle
• Precharge all the bitlines to Vdd...
• Then assert the word line from the

decoder
•One or the other bit lines starts to drop towards

ground...
• Sense-amp uses this to amplify the result quickly

27

EE141

SRAM Write Cycle
• Actively drive the bitlines to the correct

value
• Then assert the correct word line

• Result is that it will flip the data to the
correct value

28

EE141

Sample Memory Interface Logic

Clock
SE
W

Address
Data Data for write

Address for write Address for read

Data read

Write occurs here,
when E1 goes high

Data can be
latched hereDrive data bus only when

clock is low
▪ Ensures address are

stable for writes
▪ Prevents bus

contention
▪ Minimum clock period

is twice memory access
time

Write cycle Read cycle

FSM

Clock

DQ

Address
Read data

Write data

Control  
(write, read, reset)

Data[7:0]

Address[12:0]

 W
 SE

 PC

SRAM
int_write_enable
int_output_enable

int_address

int_data
QD

QD

int_data

Access Logic

29

EE141

Adding More Ports
• Just add a separate set of row selection

decoders, bitlines, wordlines, sense-
amps...
• But keep the common cell

30

CS250, UC Berkeley, Fall 2012Lecture 9, Memory

Adding More Ports

15

BitA BitA

WordlineA

WordlineB

BitB BitB

Wordline

Read Bitline

Differential
Read or Write

ports

Optional Single-ended
Read port

EE141

DRAM...
• Damn, that SRAM cell is still big...
• 6 transistors!!!!

• But we can also build small capacitors...
• And small capacitors can hold their charge...

• IDEA: Lets store using dynamic logic...
•Memory as state of change on a capacitor

• Sense a very small amount of charge...
• And when we check it, we can then update it

31

EE141

Write: C S is charged or discharged by asserting WL and BL.
Read: Charge redistribution takes places between bit line and storage capacitance

Voltage swing is small; typically around 250 mV.

1-Transistor DRAM Cell

32

VBL

CS << CBL

VBIT= 0 or (VDD – VT)

EE141

Latch-Based Sense Amplifier (DRAM)

• Initialized in its meta-stable point with EQ
• We also precharge the bit lines to the

metastable point
• Once adequate voltage gap created,

sense amp enabled with SE
• Positive feedback quickly forces output to

a stable operating point.
• Also acts to "write back" the value by

driving the bit lines apart

EQ

VDD

BL BL

SE

SE

33

EE141

What about that other bitline?
• We want something of the same

capacitance as the bitline
• Idea: Hey, we have a reference: The next column

• So we only read 1/2 the cells on a row
for a given read
• And use the other set of bit lines for reference

34

EE141

What About "Leakage"
• Those capacitors aren't great...
• They will slowly lose charge over time...

• Idea: Just read every cell at a regular
interval
• This is called DRAM refresh

• Highly temperature dependent:
• Hot DRAM tends to flip

35

EE141

What About Errors?
• Redundancy & sparing for

manufacturing faults...
• Check all the cells. If any fail in a column, replace that

column with a spare column
• ECC memory for transient faults
• EG, radioactive decay, cosmic ray, etc...
• Cheap systems don't use ECC, but you should

36

EE141

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench Cell Stacked-capacitor Cell

Capacitor dielectric layerCell plateWord line
Insulating Layer

IsolationTransfer gate
Storage electrode

Advanced 1T DRAM Cells

37

UC Regents Fall 2013 © UCBCS 250 L10: Memory

8192
rows

16384
columns

134 217 728 usable bits
(tester found good bits in bigger array)

1

o
f

8
1
9
2

d
e
c
o
d
e
r

13-bit
row

address
input

16384 bits delivered by sense amps

Select requested bits, send off the chip

A “bank” of 128 Mb (512Mb chip -> 4 banks)

In reality, 16384 columns are
divided into 64 smaller arrays.

EE141

So basic DRAM read operation...
• Precharge all the bit lines in a block to  

.5Vdd
• Enable the word line for the desired row
• "Row Access"

• Activate the sense-amps
• Acts to read the bits and restore the bits

• Once the sense-amps have the row
• Do the column access to get the sub pieces within the

row
• A write will start with a read...
• Then override the bits you want to set

39

UC Regents Fall 2013 © UCBCS 250 L10: Memory

8192
rows

16384
columns

134 217 728 usable bits
(tester found good bits in bigger array)

1

o
f

8
1
9
2

d
e
c
o
d
e
r

13-bit
row

address
input

16384 bits delivered by sense amps

Select requested bits, send off the chip

“Sensing” is row read into sense amps
Slow! A 2.5ns period DRAM (400 MT/s) can

do row reads at only 55 ns (18 MHz).

DRAM has high latency to first bit out. A fact of life.

UC Regents Fall 2013 © UCBCS 250 L10: Memory

8192
rows

16384
columns

134 217 728 usable bits
(tester found good bits in bigger array)

1

o
f

8
1
9
2

d
e
c
o
d
e
r

13-bit
row

address
input

16384 bits delivered by sense amps

Select requested bits, send off the chip

Latency is not the same as bandwidth!
What if we want all of the 16384 bits?

In row access time (55 ns) we can do
22 transfers at 400 MT/s.

16-bit chip bus -> 22 x 16 = 352 bits << 16384
Now the row access time looks fast!

Thus, push to
faster DRAM

interfaces

UC Regents Fall 2013 © UCBCS 250 L10: Memory

8192
rows

16384
columns

134 217 728 usable bits
(tester found good bits in bigger array)

1

o
f

8
1
9
2

d
e
c
o
d
e
r

13-bit
row

address
input

16384 bits delivered by sense amps

Select requested bits, send off the chip

Sadly, it’s rarely this good ...
What if we want all of the 16384 bits?

 The “we” for a CPU would be the
program running on the CPU.

Recall Amdalh’s law: If 20% of the memory
accesses need a new row access ... not good.

UC Regents Fall 2013 © UCBCS 250 L10: Memory

DRAM latency/bandwidth chip features
Columns: Design the right interface
for CPUs to request the subset of a
column of data it wishes:

16384 bits delivered by sense amps

Select requested bits, send off the chip
Interleaving: Design the right interface to
the 4 memory banks on the chip, so
several row requests run in parallel.

Bank 1 Bank 2 Bank 3 Bank 4

UC Regents Fall 2013 © UCBCS 250 L10: Memory

Off-chip interface for a Micron DDR part ...
Note! This example is best-case!

To access a new row, a slow ACTIVE
command must run before the READ.

A clocked bus:
200 MHz clock,

data transfers on
both edges (DDR).

CAS Latency (CL)

The CAS latency (CL) is defined by bits M4–M6, as shown in Figure 34 (page 72). CL is
the delay, in clock cycles, between the registration of a READ command and the availa-
bility of the first bit of output data. The CL can be set to 3, 4, 5, 6, or 7 clocks, depending
on the speed grade option being used.

DDR2 SDRAM does not support any half-clock latencies. Reserved states should not be
used as an unknown operation otherwise incompatibility with future versions may result.

DDR2 SDRAM also supports a feature called posted CAS additive latency (AL). This fea-
ture allows the READ command to be issued prior to tRCD (MIN) by delaying the
internal command to the DDR2 SDRAM by AL clocks. The AL feature is described in
further detail in Posted CAS Additive Latency (AL) (page 78).

Examples of CL = 3 and CL = 4 are shown in Figure 35; both assume AL = 0. If a READ
command is registered at clock edge n, and the CL is m clocks, the data will be available
nominally coincident with clock edge n + m (this assumes AL = 0).

Figure 35: CL

DO
 n + 3

DO
 n + 2

DO
 n + 1

CK

CK#

Command

DQ

DQS, DQS#

CL = 3 (AL = 0)

READ

T0 T1 T2

Don’t careTransitioning data

NOP NOP NOP

DO
 n

T3 T4 T5

NOP NOP

T6

NOP

DO
 n + 3

DO
 n + 2

DO
 n + 1

CK

CK#

Command

DQ

DQS, DQS#

CL = 4 (AL = 0)

READ

T0 T1 T2

NOP NOP NOP

DO
 n

T3 T4 T5

NOP NOP

T6

NOP

Notes: 1. BL = 4.
2. Posted CAS# additive latency (AL) = 0.
3. Shown with nominal tAC, tDQSCK, and tDQSQ.

512Mb: x4, x8, x16 DDR2 SDRAM
Mode Register (MR)

PDF: 09005aef82f1e6e2
512MbDDR2.pdf - Rev. O 7/09 EN 75 Micron Technology, Inc. reserves the right to change products or specifications without notice.

©2004 Micron Technology, Inc. All rights reserved.

DRAM is controlled via
commands

(READ, WRITE,
REFRESH, ...)

Synchronous data
output.

UC Regents Fall 2013 © UCBCS 250 L10: Memory

Opening a row before reading ...Figure 52: Bank Read – with Auto Precharge

 4-bit
prefetch

CK

CK#

CKE

A10

Bank address

tCK tCH tCL

RA

tRCD

tRAS

tRC

tRP

CL = 3

DM

T0 T1 T2 T3 T4 T5 T7n T8nT6 T7 T8

DQ6

DQS, DQS#

Case 1: tAC (MIN) and tDQSCK (MIN)

Case 2: tAC (MAX) and tDQSCK (MAX)

DQ6

DQS, DQS#

tRPRE

tRPRE

tRPST

tRPST

tDQSCK (MIN)

tDQSCK (MAX)

tLZ (MIN)

tLZ (MAX)

tAC (MIN)tLZ (MIN)

tHZ (MAX)tAC (MAX)tLZ (MAX)

DO
 n

NOP1NOP1Command1 ACT

RA Col n

Bank x

RA

RA

Bank x

ACT

Bank x

NOP1 NOP1 NOP1 NOP1 NOP1

tHZ (MIN)

Don’t CareTransitioning Data

READ2,3

Address

AL = 1

tRTP

Internal
precharge

4

55

5 5

DO
 n

Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at
these times.

2. BL = 4, RL = 4 (AL = 1, CL = 3) in the case shown.
3. The DDR2 SDRAM internally delays auto precharge until both tRAS (MIN) and tRTP (MIN)

have been satisfied.
4. Enable auto precharge.
5. I/O balls, when entering or exiting High-Z, are not referenced to a specific voltage level,

but to when the device begins to drive or no longer drives, respectively.
6. DO n = data-out from column n; subsequent elements are applied in the programmed

order.

512Mb: x4, x8, x16 DDR2 SDRAM
READ

PDF: 09005aef82f1e6e2
512MbDDR2.pdf - Rev. O 7/09 EN 96 Micron Technology, Inc. reserves the right to change products or specifications without notice.

©2004 Micron Technology, Inc. All rights reserved.

Figure 52: Bank Read – with Auto Precharge

 4-bit
prefetch

CK

CK#

CKE

A10

Bank address

tCK tCH tCL

RA

tRCD

tRAS

tRC

tRP

CL = 3

DM

T0 T1 T2 T3 T4 T5 T7n T8nT6 T7 T8

DQ6

DQS, DQS#

Case 1: tAC (MIN) and tDQSCK (MIN)

Case 2: tAC (MAX) and tDQSCK (MAX)

DQ6

DQS, DQS#

tRPRE

tRPRE

tRPST

tRPST

tDQSCK (MIN)

tDQSCK (MAX)

tLZ (MIN)

tLZ (MAX)

tAC (MIN)tLZ (MIN)

tHZ (MAX)tAC (MAX)tLZ (MAX)

DO
 n

NOP1NOP1Command1 ACT

RA Col n

Bank x

RA

RA

Bank x

ACT

Bank x

NOP1 NOP1 NOP1 NOP1 NOP1

tHZ (MIN)

Don’t CareTransitioning Data

READ2,3

Address

AL = 1

tRTP

Internal
precharge

4

55

5 5

DO
 n

Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at
these times.

2. BL = 4, RL = 4 (AL = 1, CL = 3) in the case shown.
3. The DDR2 SDRAM internally delays auto precharge until both tRAS (MIN) and tRTP (MIN)

have been satisfied.
4. Enable auto precharge.
5. I/O balls, when entering or exiting High-Z, are not referenced to a specific voltage level,

but to when the device begins to drive or no longer drives, respectively.
6. DO n = data-out from column n; subsequent elements are applied in the programmed

order.

512Mb: x4, x8, x16 DDR2 SDRAM
READ

PDF: 09005aef82f1e6e2
512MbDDR2.pdf - Rev. O 7/09 EN 96 Micron Technology, Inc. reserves the right to change products or specifications without notice.

©2004 Micron Technology, Inc. All rights reserved.

55 ns between row opens.

15 ns
15 ns

Auto-Precharge
READ

UC Regents Fall 2013 © UCBCS 250 L10: Memory

However, we can read columns quickly

Figure 45: Consecutive READ Bursts

CK

CK#

Command READ NOP READ NOP NOP NOP NOP

Address Bank,
Col n

Bank,
Col b

Command READ NOP READ NOP NOP NOP

Address Bank,
Col n

Bank,
Col b

RL = 3

CK

CK#

DQ

DQS, DQS#

RL = 4

DQ

DQS, DQS#

DO
n

DO
b

DO
n

DO
b

T0 T1 T2 T3 T3n T4nT4 T5 T6T5n T6n

T0 T1 T2 T3T2n

NOP

T3n T4nT4 T5 T6T5n T6n

Don’t CareTransitioning Data

tCCD

tCCD

Notes: 1. DO n (or b) = data-out from column n (or column b).
2. BL = 4.
3. Three subsequent elements of data-out appear in the programmed order following

DO n.
4. Three subsequent elements of data-out appear in the programmed order following

DO b.
5. Shown with nominal tAC, tDQSCK, and tDQSQ.
6. Example applies only when READ commands are issued to same device.

512Mb: x4, x8, x16 DDR2 SDRAM
READ

PDF: 09005aef82f1e6e2
512MbDDR2.pdf - Rev. O 7/09 EN 90 Micron Technology, Inc. reserves the right to change products or specifications without notice.

©2004 Micron Technology, Inc. All rights reserved.

Note: This is a “normal read” (not Auto-Precharge).
Both READs are to the same bank, but different columns.

UC Regents Fall 2013 © UCBCS 250 L10: Memory

8192
rows

16384
columns

134 217 728 usable bits
(tester found good bits in bigger array)

1

o
f

8
1
9
2

d
e
c
o
d
e
r

13-bit
row

address
input

16384 bits delivered by sense amps

Select requested bits, send off the chip

Column reads select from the 16384 bits here

Why can we read columns quickly?

UC Regents Fall 2013 © UCBCS 250 L10: Memory

Interleave: Access all 4 banks in parallel

Can also do other commands on banks concurrently.

Figure 43: Multibank Activate Restriction

Command

Don’t Care

T1T0 T2 T3 T4 T5 T6 T7

tRRD (MIN)

Row Row

READACT ACT NOP

tFAW (MIN)

Bank address

CK#

Address

CK

T8 T9

Col

Bank a

ACTREAD READ READACT NOP

RowCol RowCol Col

Bank cBank b Bank dBank c Bank e

ACT

Row

T10

Bank dBank bBank a

Note: 1. DDR2-533 (-37E, x4 or x8), tCK = 3.75ns, BL = 4, AL = 3, CL = 4, tRRD (MIN) = 7.5ns,
tFAW (MIN) = 37.5ns.

512Mb: x4, x8, x16 DDR2 SDRAM
ACTIVATE

PDF: 09005aef82f1e6e2
512MbDDR2.pdf - Rev. O 7/09 EN 87 Micron Technology, Inc. reserves the right to change products or specifications without notice.

©2004 Micron Technology, Inc. All rights reserved.

Interleaving: Design the right interface to
the 4 memory banks on the chip, so
several row requests run in parallel.

Bank a Bank b Bank c Bank d

EE141

The SDRAM interface evolution
• Initially: 1b transferred per data line per

clock cycle
• DDR: Double Data Rate: 2b per clock
• Rising & falling edge

• DDR2: 4b per clock
• DDR3: 8b per clock
• DDR4: 16b per clock!
• But the latency hasn't really improved

much in a decade+!!!
• So if you are touching DRAM, try to make everything

sequential
49

UC Regents Fall 2013 © UCBCS 250 L10: Memory

Only part of a bigger story ...

Figure 4: 64 Meg x 8 Functional Block Diagram

14 Row-
address

MUX

Control
logic

Column-
address
counter/
latch

Mode
registers

10

C
o

m
m

an
d

d
ec

o
d
e

A0–A13,
BA0, BA1

14

Address
register16

256
(x32)

8,192

I/O gating
DM mask logic

Column
decoder

Bank 0

Memory
array

(16,384 x 256 x 32)

Bank 0
row-

address
latch and
decoder

16,384

Sense amplifiers

Bank
control
logic

16

Bank 1
Bank 2
Bank 3

14

8

2

2

Refresh
counter

8

8
8

2

RCVRS

32

32

32

CK out

Data

DQS, DQS#

internal
CK, CK#

CK, CK#COL0, COL1

COL0, COL1

CK in

DRVRS

DLL

MUX

DQS
generator

8

8

8

8

8

DQ0–DQ7

DQS, DQS#

2

Read
latch

Write
FIFO
and

drivers

Data

8
8

8
832

1
1

1
1

Mask

1
1

1
1 14

8

8

2

Bank 1
Bank 2
Bank 3

Input
registers

DM

RDQS#

RAS#
CAS#

CK

CS#

WE#

CK#

CKE

ODT

RDQS

VddQ

R1

R1

R2

R2

sw1 sw2

VssQ

sw1 sw2
ODT control

sw3

R3

R3

sw3

R1

R1

R2

R2

sw1 sw2

R3

R3

sw3

R1

R1

R2

R2

sw1 sw2

R3

R3

sw3

Figure 5: 32 Meg x 16 Functional Block Diagram

13
Row-

address
MUX

Control
Logic

Column-
address
counter/
latch

Mode
registers

10

A0–A12,
BA0, BA1

13

Address
register15

256
(x64)

16,384

I/O gating
DM mask logic

Column
decoder

Bank 0

Memory
array

(8,192 x 256 x 64)

Bank 0
row-

Address
latch and
decoder

8,192

Sense amplifiers

Bank
control
logic

15

Bank 1
Bank 2
Bank 3

13

8

2

2

Refresh
counter

16

16
16

4

64

64

64

CK out

Data

UDQS, UDQS#
LDQS, LDQS#

Internal
CK, CK#

CK, CK#
COL0, COL1

COL0, COL1

CK in

DLL

MUX

DQS
generator

16

16

16
16

16

UDQS, UDQS#
LDQS, LDQS#

4

Read
latch

Write
FIFO
and

drivers

Data

16

16

16
16

64

2

2

2

2Mask

2

2

2

2
28

16

16

2

Bank 1
Bank 2
Bank 3

Input
registers

UDM, LDM

DQ0–DQ15

RAS#
CAS#

CK

CS#

WE#

CK#

C
o

m
m

an
d

d
ec

o
d
e

CKE

ODT

DRVRS

RCVRS

VddQ

R1

R1

R2

R2

sw1 sw2

VssQ

sw1 sw2
ODT control

sw3

R3

R3

sw3

R1

R1

R2

R2

sw1 sw2

R3

R3

sw3

R1

R1

R2

R2

sw1 sw2

R3

R3

sw3

512Mb: x4, x8, x16 DDR2 SDRAM
Functional Block Diagrams

PDF: 09005aef82f1e6e2
512MbDDR2.pdf - Rev. O 7/09 EN 12 Micron Technology, Inc. reserves the right to change products or specifications without notice.

©2004 Micron Technology, Inc. All rights reserved.

UC Regents Fall 2013 © UCBCS 250 L10: Memory

Only part of a bigger story ...
State Diagram

Figure 2: Simplified State Diagram

Automatic Sequence

Command Sequence

PRE

Initialization
sequence

Self
refreshing

CKE_L

Refreshing

Precharge
power-
down

Setting
MRS
EMRS

SR

CKE_
H

REFRESH
Idle

all banks
precharged

CK
E_
L

CKE_L

CKE_L

(E)MRS

OCD
default

Activating

ACT

Bank
active

Reading

READ

Writing

WRIT
E

Active
power-
down

CKE
_L

CKE_L

CKE_H

CKE_L

Writing
with
auto

precharge

Reading
with
auto

precharge

READ A

WRITE A

PRE, PRE_A

W
RI
TE

 A

WRIT
E A

READ A

PR
E

,
PR
E_
A

READ A

READ
WRITE

Precharging

CKE_H

WRITE READ

PRE, PRE_A

ACT = ACTIVATE
CKE_H = CKE HIGH, exit power-down or self refresh
CKE_L = CKE LOW, enter power-down
(E)MRS = (Extended) mode register set
PRE = PRECHARGE
PRE_A = PRECHARGE ALL
READ = READ
READ A = READ with auto precharge
REFRESH = REFRESH
SR = SELF REFRESH
WRITE = WRITE
WRITE A = WRITE with auto precharge

Note: 1. This diagram provides the basic command flow. It is not comprehensive and does not
identify all timing requirements or possible command restrictions such as multibank in-
teraction, power down, entry/exit, etc.

512Mb: x4, x8, x16 DDR2 SDRAM
State Diagram

PDF: 09005aef82f1e6e2
512MbDDR2.pdf - Rev. O 7/09 EN 8 Micron Technology, Inc. reserves the right to change products or specifications without notice.

©2004 Micron Technology, Inc. All rights reserved.

Burst Length

Burst length is defined by bits M0–M2, as shown in Figure 34. Read and write accesses
to the DDR2 SDRAM are burst-oriented, with the burst length being programmable to
either four or eight. The burst length determines the maximum number of column loca-
tions that can be accessed for a given READ or WRITE command.

When a READ or WRITE command is issued, a block of columns equal to the burst
length is effectively selected. All accesses for that burst take place within this block,
meaning that the burst will wrap within the block if a boundary is reached. The block is
uniquely selected by A2–Ai when BL = 4 and by A3–Ai when BL = 8 (where Ai is the most
significant column address bit for a given configuration). The remaining (least signifi-
cant) address bit(s) is (are) used to select the starting location within the block. The
programmed burst length applies to both read and write bursts.

Figure 34: MR Definition

Burst LengthCAS# BTPD

A9 A7 A6 A5 A4 A3A8 A2 A1 A0

Mode Register (Mx)

Address Bus

9 7 6 5 4 38 2 1 0

A10A12 A11BA0BA1

101112n

0 0

14

Burst Length

Reserved

Reserved

4

8

Reserved

Reserved

Reserved

Reserved

M0

0

1

0

1

0

1

0

1

M1

0

0

1

1

0

0

1

1

M2

0

0

0

0

1

1

1

1

0

1

Burst Type

Sequential

Interleaved

M3

CAS Latency (CL)

Reserved

Reserved

Reserved

3

4

5

6

7

M4

0

1

0

1

0

1

0

1

M5

0

0

1

1

0

0

1

1

M6

0

0

0

0

1

1

1

1

0

1

Mode

Normal

Test

M7

15

DLL TM

0

1

DLL Reset

No

Yes

M8

Write Recovery

Reserved

2

3

4

5

6

7

8

M9

0

1

0

1

0

1

0

1

M10

0

0

1

1

0

0

1

1

M11

0

0

0

0

1

1

1

1

WR

An2

MR

M14

0

1

0

1

Mode Register Definition

Mode register (MR)

Extended mode register (EMR)

Extended mode register (EMR2)

Extended mode register (EMR3)

M15

0

0

1

1

M12
0

1

PD Mode

Fast exit
(normal)

Slow exit
(low power)

Latency

16

BA21

Notes: 1. M16 (BA2) is only applicable for densities !1Gb, reserved for future use, and must be
programmed to “0.”

2. Mode bits (Mn) with corresponding address balls (An) greater than M12 (A12) are re-
served for future use and must be programmed to “0.”

3. Not all listed WR and CL options are supported in any individual speed grade.

512Mb: x4, x8, x16 DDR2 SDRAM
Mode Register (MR)

PDF: 09005aef82f1e6e2
512MbDDR2.pdf - Rev. O 7/09 EN 72 Micron Technology, Inc. reserves the right to change products or specifications without notice.

©2004 Micron Technology, Inc. All rights reserved.

UC Regents Fall 2013 © UCBCS 250 L10: Memory

charge, a row access, and a column access for a total of
seven cycles per reference, or 56 cycles for all eight refer-
ences. If we reschedule these operations as shown in Figure
1B they can be performed in 19 cycles.

The following section discusses the characteristics of mod-
ern DRAM architecture. Section 3 introduces the concept of
memory access scheduling and the possible algorithms that
can be used to reorder DRAM operations. Section 4
describes the streaming media processor and benchmarks
that will be used to evaluate memory access scheduling.
Section 5 presents a performance comparison of the various
memory access scheduling algorithms. Finally, Section 6
presents related work to memory access scheduling.

2 Modern DRAM Architecture

As illustrated by the example in the Introduction, the order
in which DRAM accesses are scheduled can have a dra-
matic impact on memory throughput and latency. To
improve memory performance, a memory controller must
take advantage of the characteristics of modern DRAM.

Figure 2 shows the internal organization of modern
DRAMs. These DRAMs are three-dimensional memories
with the dimensions of bank, row, and column. Each bank
operates independently of the other banks and contains an
array of memory cells that are accessed an entire row at a
time. When a row of this memory array is accessed (row
activation) the entire row of the memory array is transferred
into the bank’s row buffer. The row buffer serves as a cache
to reduce the latency of subsequent accesses to that row.
While a row is active in the row buffer, any number of reads
or writes (column accesses) may be performed, typically
with a throughput of one per cycle. After completing the

available column accesses, the cached row must be written
back to the memory array by an explicit operation (bank
precharge) which prepares the bank for a subsequent row
activation. An overview of several different modern DRAM
types and organizations, along with a performance compari-
son for in-order access, can be found in [4].

For example, the 128Mb NEC µPD45128163 [13], a typical
SDRAM, includes four internal memory banks, each com-
posed of 4096 rows and 512 columns. This SDRAM may be
operated at 125MHz, with a precharge latency of 3 cycles
(24ns) and a row access latency of 3 cycles (24ns). Pipe-
lined column accesses that transfer 16 bits may issue at the
rate of one per cycle (8ns), yielding a peak transfer rate of
250MB/s. However, it is difficult to achieve this rate on
non-sequential access patterns for several reasons. A bank
cannot be accessed during the precharge/activate latency, a
single cycle of high impedance is required on the data pins
when switching between read and write column accesses,
and a single set of address lines is shared by all DRAM
operations (bank precharge, row activation, and column
access). The amount of bank parallelism that is exploited
and the number of column accesses that are made per row
access dictate the sustainable memory bandwidth out of
such a DRAM, as illustrated in Figure 1 of the Introduction.

A memory access scheduler must generate a schedule that
conforms to the timing and resource constraints of these
modern DRAMs. Figure 3 illustrates these constraints for
the NEC SDRAM with a simplified bank state diagram and
a table of operation resource utilization. Each DRAM oper-
ation makes different demands on the three DRAM
resources: the internal banks, a single set of address lines,
and a single set of data lines. The scheduler must ensure that

Figure 1. Time to complete a series of memory references without (A) and with (B) access reordering.

11

(0,0,0)

(1,1,2)

(1,0,1)

(1,1,1)

(1,0,0)

(0,1,3)

(0,0,1)

(0,1,0)

P A C

292827262524232221191817161514131210987654321 20 39383736353433323130 4443424140

P A C
P A C

P A C
P A C

P A C
P A C

P A C

4948474645 50 565554535251

11

(0,0,0)

(1,1,2)

(1,0,1)

(1,1,1)

(1,0,0)

(0,1,3)

(0,0,1)

(0,1,0)

P A C

191817161514131210987654321

P A

C
P

C
P A

C

A C

C

C

C

Time (Cycles)

R
e
fe

re
n
c
e
s
 (

B
a
n
k
,
R

o
w

,
C

o
lu

m
n
)

R
e
fe

re
n
c
e
s
 (

B
a
n
k
,
R

o
w

,
C

o
lu

m
n

)

Time (Cycles) DRAM Operations:

P: bank precharge (3 cycle occupancy)

A: row activation (3 cycle occupancy)

C: column access (1 cycle occupancy)

(A) Without access scheduling (56 DRAM Cycles)

(B) With access scheduling (19 DRAM Cycles)

129

DRAM controllers: reorder requests

Memory Access Scheduling

Scott Rixner1, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D. Owens

Computer Systems Laboratory

Stanford University

Stanford, CA 94305

{rixner, billd, ujk, pmattson, jowens}@cva.stanford.edu

Abstract

The bandwidth and latency of a memory system are strongly

dependent on the manner in which accesses interact with
the “3-D” structure of banks, rows, and columns character-

istic of contemporary DRAM chips. There is nearly an order

of magnitude difference in bandwidth between successive

references to different columns within a row and different

rows within a bank. This paper introduces memory access
scheduling, a technique that improves the performance of a
memory system by reordering memory references to exploit

locality within the 3-D memory structure. Conservative

reordering, in which the first ready reference in a sequence

is performed, improves bandwidth by 40% for traces from

five media benchmarks. Aggressive reordering, in which

operations are scheduled to optimize memory bandwidth,
improves bandwidth by 93% for the same set of applica-

tions. Memory access scheduling is particularly important

for media processors where it enables the processor to make

the most efficient use of scarce memory bandwidth.

1 Introduction

Modern computer systems are becoming increasingly lim-
ited by memory performance. While processor performance
increases at a rate of 60% per year, the bandwidth of a mem-
ory chip increases by only 10% per year making it costly to
provide the memory bandwidth required to match the pro-
cessor performance [14] [17]. The memory bandwidth bot-
tleneck is even more acute for media processors with
streaming memory reference patterns that do not cache well.
Without an effective cache to reduce the bandwidth
demands on main memory, these media processors are more

often limited by memory system bandwidth than other com-
puter systems.

To maximize memory bandwidth, modern DRAM compo-
nents allow pipelining of memory accesses, provide several
independent memory banks, and cache the most recently
accessed row of each bank. While these features increase
the peak supplied memory bandwidth, they also make the
performance of the DRAM highly dependent on the access
pattern. Modern DRAMs are not truly random access
devices (equal access time to all locations) but rather are
three-dimensional memory devices with dimensions of
bank, row, and column. Sequential accesses to different
rows within one bank have high latency and cannot be pipe-
lined, while accesses to different banks or different words
within a single row have low latency and can be pipelined.

The three-dimensional nature of modern memory devices
makes it advantageous to reorder memory operations to
exploit the non-uniform access times of the DRAM. This
optimization is similar to how a superscalar processor
schedules arithmetic operations out of order. As with a
superscalar processor, the semantics of sequential execution
are preserved by reordering the results.

This paper introduces memory access scheduling in which
DRAM operations are scheduled, possibly completing
memory references out of order, to optimize memory sys-
tem performance. The several memory access scheduling
strategies introduced in this paper increase the sustained
memory bandwidth of a system by up to 144% over a sys-
tem with no access scheduling when applied to realistic syn-
thetic benchmarks. Media processing applications exhibit a
30% improvement in sustained memory bandwidth with
memory access scheduling, and the traces of these applica-
tions offer a potential bandwidth improvement of up to
93%.

To see the advantage of memory access scheduling, con-
sider the sequence of eight memory operations shown in
Figure 1A. Each reference is represented by the triple (bank,
row, column). Suppose we have a memory system utilizing
a DRAM that requires 3 cycles to precharge a bank, 3 cycles
to access a row of a bank, and 1 cycle to access a column of
a row. Once a row has been accessed, a new column access
can issue each cycle until the bank is precharged. If these
eight references are performed in order, each requires a pre-

1. Scott Rixner is an Electrical Engineering graduate student at
the Massachusetts Institute of Technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ISCA 00 Vancouver, British Columbia Canada
Copyright (c) 2000 ACM 1-58113-287-5/00/06-128 $5.00

128

From:
charge, a row access, and a column access for a total of
seven cycles per reference, or 56 cycles for all eight refer-
ences. If we reschedule these operations as shown in Figure
1B they can be performed in 19 cycles.

The following section discusses the characteristics of mod-
ern DRAM architecture. Section 3 introduces the concept of
memory access scheduling and the possible algorithms that
can be used to reorder DRAM operations. Section 4
describes the streaming media processor and benchmarks
that will be used to evaluate memory access scheduling.
Section 5 presents a performance comparison of the various
memory access scheduling algorithms. Finally, Section 6
presents related work to memory access scheduling.

2 Modern DRAM Architecture

As illustrated by the example in the Introduction, the order
in which DRAM accesses are scheduled can have a dra-
matic impact on memory throughput and latency. To
improve memory performance, a memory controller must
take advantage of the characteristics of modern DRAM.

Figure 2 shows the internal organization of modern
DRAMs. These DRAMs are three-dimensional memories
with the dimensions of bank, row, and column. Each bank
operates independently of the other banks and contains an
array of memory cells that are accessed an entire row at a
time. When a row of this memory array is accessed (row
activation) the entire row of the memory array is transferred
into the bank’s row buffer. The row buffer serves as a cache
to reduce the latency of subsequent accesses to that row.
While a row is active in the row buffer, any number of reads
or writes (column accesses) may be performed, typically
with a throughput of one per cycle. After completing the

available column accesses, the cached row must be written
back to the memory array by an explicit operation (bank
precharge) which prepares the bank for a subsequent row
activation. An overview of several different modern DRAM
types and organizations, along with a performance compari-
son for in-order access, can be found in [4].

For example, the 128Mb NEC µPD45128163 [13], a typical
SDRAM, includes four internal memory banks, each com-
posed of 4096 rows and 512 columns. This SDRAM may be
operated at 125MHz, with a precharge latency of 3 cycles
(24ns) and a row access latency of 3 cycles (24ns). Pipe-
lined column accesses that transfer 16 bits may issue at the
rate of one per cycle (8ns), yielding a peak transfer rate of
250MB/s. However, it is difficult to achieve this rate on
non-sequential access patterns for several reasons. A bank
cannot be accessed during the precharge/activate latency, a
single cycle of high impedance is required on the data pins
when switching between read and write column accesses,
and a single set of address lines is shared by all DRAM
operations (bank precharge, row activation, and column
access). The amount of bank parallelism that is exploited
and the number of column accesses that are made per row
access dictate the sustainable memory bandwidth out of
such a DRAM, as illustrated in Figure 1 of the Introduction.

A memory access scheduler must generate a schedule that
conforms to the timing and resource constraints of these
modern DRAMs. Figure 3 illustrates these constraints for
the NEC SDRAM with a simplified bank state diagram and
a table of operation resource utilization. Each DRAM oper-
ation makes different demands on the three DRAM
resources: the internal banks, a single set of address lines,
and a single set of data lines. The scheduler must ensure that

Figure 1. Time to complete a series of memory references without (A) and with (B) access reordering.

11

(0,0,0)

(1,1,2)

(1,0,1)

(1,1,1)

(1,0,0)

(0,1,3)

(0,0,1)

(0,1,0)

P A C

292827262524232221191817161514131210987654321 20 39383736353433323130 4443424140

P A C
P A C

P A C
P A C

P A C
P A C

P A C

4948474645 50 565554535251

11

(0,0,0)

(1,1,2)

(1,0,1)

(1,1,1)

(1,0,0)

(0,1,3)

(0,0,1)

(0,1,0)

P A C

191817161514131210987654321

P A

C
P

C
P A

C

A C

C

C

C

Time (Cycles)

R
e
fe

re
n
c
e
s
 (

B
a
n
k
,
R

o
w

,
C

o
lu

m
n
)

R
e
fe

re
n
c
e
s
 (

B
a
n
k
,
R

o
w

,
C

o
lu

m
n

)

Time (Cycles) DRAM Operations:

P: bank precharge (3 cycle occupancy)

A: row activation (3 cycle occupancy)

C: column access (1 cycle occupancy)

(A) Without access scheduling (56 DRAM Cycles)

(B) With access scheduling (19 DRAM Cycles)

129

EE141

And Rowhammer....
• These DRAM cells are not perfectly

isolated...
• In reading a row, there is a chance that it could flip a

bit in a different row
• Rowhammer is a hardware attack
• Repeatedly read the same DRAM row to cause bit-

flips elsewhere
• Asking the OS to effectively fill the memory with page

tables...
•And then when a bit flips, it will cause the page table to be

mapped into the process address space...
•And once you do that, you win!

53

UC Regents Fall 2013 © UCBCS 250 L10: Memory

The physics of FLASH memory

p-

n+

Vd

n+

Vs
dielectric

Vg

dielectric

Two gates. But the
middle one
is not connected.

I ds

I ds
Vs

Vd
V g

“Floating gate”.

2. 10,000 electrons on floating gate shift
transistor threshold by 2V.
3. In a memory array, shifted transistors
hold “0”, unshifted hold “1”.

1. Electrons “placed” on floating gate stay
there for many years (ideally).

++
+

--
-

++
+ --
-

UC Regents Fall 2013 © UCBCS 250 L10: Memory

Moving electrons on/off floating gate

p-

n+

Vd

n+

Vs
dielectric

Vg

dielectric

1. Hot electron injection
and tunneling produce tiny
currents, thus writes are
slow.

A high drain voltage
injects “hot electrons”
onto floating gate.

A high gate voltage
“tunnels” electrons off
of floating gate.

2. High voltages damage the
floating gate.

Too many writes and a bit
goes “bad”.

UC Regents Fall 2013 © UCBCS 250 L10: Memory

NAND Flash Memory

Architecture ...

UC Regents Fall 2013 © UCBCS 250 L10: Memory

Flash: Disk Replacement
Presents memory to the
CPU as a set of pages.

2048 Bytes 64 Bytes+

(user data) (meta data)

Page format:

1GB Flash: 512K pages
2GB Flash: 1M pages
4GB Flash: 2M pages

Chip “remembers”
for 10 years.

UC Regents Fall 2013 © UCBCS 250 L10: Memory

Reading a Page ... Flash
Memory

8-bit data or address
(bi-directional)

Bus Control

!"#$%&'(')*+

!"

,-.#/0123#

,-,1/0120# ,-45/0126#

789&):7;8<=>?#$%&'()'&'+,-.,/01

@(

@"(

*A5

.(

#"(

*(

234.

00B 563&,7 563&,789 563&,78!

:6;,<++('44/6=3>%,<++('44

&?2

&<:
&/@A

&:

&::

&:/

C0B

*789&):7;8<=>?

@(

@"(

*A5

.(

#"(

*(

234.

BBC, /6=D,<++9 /6=D,<++! :6;,<++9 563&,7 563&,789

/6=3>%,<++('44 :6;,<++('44

&?2

&<:

&: &:/
&:@A

&::

563&,E

&?/

!
!

!

:6;,<++! FBC,

&/G:

DA)E

DA)E /6=D,<++9 /6=D,<++! :6;,<++9 :6;,<++!

:6;,<++F

:6;,<++F

&/H@

Page address in: 175 ns

First byte out: 10,000 ns

Clock out page bytes:
52,800 ns

33 MB/s Read Bandwidth
Samsung

K9WAG08U1A

UC Regents Fall 2013 © UCBCS 250 L10: Memory

!"AS% 'E'OR+

!

K9WAG08U1A

K9K8G08U0A K9NBG08U5A

 #$ %&tes *+ %&tes

!igure 1. K9K8G08U0A !unctional Block Diagram

!igure 2. K9K8G08U0A Array OrganiHation

NOTE , -ol01n A445ess , 6ta5tin9 A445ess o: the <e9iste5=

> ? 10st @e set to A?oBA=

> The 4eDice i9no5es an& a44itional inF0t o: a445ess c&cles than 5eG0i5e4=

I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O O

Hst -&cle AI AH A# AJ A+ AK A* AL

#n4 -&cle AM A! AHI AHH >? >? >? >?

J54 -&cle AH# AHJ AH+ AHK AH* AHL AHM AH!

+th -&cle A#I A#H A## A#J A#+ A#K A#* A#L

Kth -&cle A#M A#! AJI >? >? >? >? >?

PCC

R-Buffers

Command

I/O Buffers & "atches

"atches
& Decoders

+-Buffers
"atches
& Decoders

Register

Control "ogic
& %igh Poltage

Generator Global Buffers Output
Driver

PSS

A12 - A30

A0 - A11

Command

-N
<N
ON

-?N OP

QRI I

QRI L

S--

S66

KH#$ Pa9es

TUMVH!# %locWsX

 #$ %&tes

M @it

*+ %&tes

H %locW U *+ Pa9es

TH#M$ Y +WX %&te

QRZ I [QRZ L

H Pa9e U T#$ Y *+X%&tes

H %locW U T#$ Y *+X% \ *+ Pa9es

 U TH#M$ Y +$X %&tes

H DeDice U T#$Y*+X% \ *+Pa9es \ MVH!# %locWs

 U MV++M ^@its

Row Address

Pa9e <e9iste5

A?N

8,192' ^ 256' Bit
NAND !lash

ARRA+

(2,048 ^ 64)Byte x 524,288

+-Gating

Row Address

Column Address

Column Address

Row Address

 Data Register & S/A

Where Time Goes

Page
address
in:
175 ns

First
byte out:
10,000 ns

Clock
out
page
bytes:
52,
800 ns

UC Regents Fall 2013 © UCBCS 250 L10: Memory

Writing a Page ...
A page lives in a block of 64 pages:

!"#$%&'(')*+

!!

,-.#/0123#

,-,1/0120# ,-45/0126#

"#"$%&$'&()*+),--,./01)*.)234-)5%6)7073-8)9:,.0+;)<,=>)9:,.0)=3.?,*.+)5@&A$)6:3=B+),.1)5!!5)68?0)9,/0)-0/*+?0-+;)C>*+),::3D+)*?

?3)90-23-7)+*74:?,.034+)9,/0)9-3/-,7),.1)6:3=B)0-,+0)68)+0:0=?*./)3.0)9,/0)3-)6:3=B)2-37)0,=>)9:,.0;)C>0)6:3=B),11-0++)7,9)*+

=3.2*/4-01)+3)?>,?)?D3E9:,.0)9-3/-,7F0-,+0)390-,?*3.+)=,.)60)0G0=4?01)68)1*H*1*./)?>0)7073-8),--,8)*.?3)9:,.0)&I!)3-)9:,.0)5IJ

+09,-,?0:8;)

K3-)0G,79:0@)?D3E9:,.0)9-3/-,7F0-,+0)390-,?*3.)*.?3)9:,.0)&),.1)9:,.0)5)*+)9-3>*6*?01;)C>,?)*+)?3)+,8@)?D3E9:,.0)9-3/-,7F0-,+0)390-E

,?*3.)*.?3)9:,.0)&),.1)9:,.0)!)3-)*.?3)9:,.0)5),.1)9:,.0)J)*+),::3D01

L:,.0)& L:,.0)! L:,.0)5 L:,.0)J

M5&A$)N:3=BO M5&A$)N:3=BO M5&A$)N:3=BO M5&A$)N:3=BO

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

'789:;&'<=

N:3=B)&

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)!

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A&#P

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A&#Q

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A&#A

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A&#R

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)$!#&

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)$!#!

>33>?;@7&A<B7&*7BCD@7:D >33>?;@7&A<B7&*7BCD@7:D >33>?;@7&A<B7&*7BCD@7:D >33>?;@7&A<B7&*7BCD@7:D

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)5

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)J

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A&#$

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A&##

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A&#J

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)$!$$

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)$!$#

To write a page:
1. Erase all pages in the block
(cannot erase just one page).

Time: 1,500,000 ns

2. May program each page
individually, exactly once.

Time: 200,000 ns
per page.

1GB Flash: 8K blocks
2GB Flash: 16K blocks
4GB Flash: 32K blocks

Block lifetime: 100,000 erase/program cycles.

UC Regents Fall 2013 © UCBCS 250 L10: Memory

Block Failure
Even when new, not all blocks work!

!"#$%&'(')*+

!!

,-.#/0123#

,-,1/0120# ,-45/0126#

"#"$%&$'&()*+),--,./01)*.)234-)5%6)7073-8)9:,.0+;)<,=>)9:,.0)=3.?,*.+)5@&A$)6:3=B+),.1)5!!5)68?0)9,/0)-0/*+?0-+;)C>*+),::3D+)*?

?3)90-23-7)+*74:?,.034+)9,/0)9-3/-,7),.1)6:3=B)0-,+0)68)+0:0=?*./)3.0)9,/0)3-)6:3=B)2-37)0,=>)9:,.0;)C>0)6:3=B),11-0++)7,9)*+

=3.2*/4-01)+3)?>,?)?D3E9:,.0)9-3/-,7F0-,+0)390-,?*3.+)=,.)60)0G0=4?01)68)1*H*1*./)?>0)7073-8),--,8)*.?3)9:,.0)&I!)3-)9:,.0)5IJ

+09,-,?0:8;)

K3-)0G,79:0@)?D3E9:,.0)9-3/-,7F0-,+0)390-,?*3.)*.?3)9:,.0)&),.1)9:,.0)5)*+)9-3>*6*?01;)C>,?)*+)?3)+,8@)?D3E9:,.0)9-3/-,7F0-,+0)390-E

,?*3.)*.?3)9:,.0)&),.1)9:,.0)!)3-)*.?3)9:,.0)5),.1)9:,.0)J)*+),::3D01

L:,.0)& L:,.0)! L:,.0)5 L:,.0)J

M5&A$)N:3=BO M5&A$)N:3=BO M5&A$)N:3=BO M5&A$)N:3=BO

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

'789:;&'<=

N:3=B)&

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)!

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A&#P

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A&#Q

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A&#A

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A&#R

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)$!#&

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)$!#!

>33>?;@7&A<B7&*7BCD@7:D >33>?;@7&A<B7&*7BCD@7:D >33>?;@7&A<B7&*7BCD@7:D >33>?;@7&A<B7&*7BCD@7:D

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)5

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)J

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A&#$

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A&##

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)A&#J

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)$!$$

L,/0)&

L,/0)!

L,/0)PJ

L,/0)P5

N:3=B)$!$#

1GB: 8K blocks, 160 may be bad.
2GB: 16K blocks, 220 may be bad.
4GB: 32K blocks, 640 may be bad.

During factory testing, Samsung writes good/bad
info for each block in the meta data bytes.

2048 Bytes 64 Bytes+

(user data) (meta data)

After an erase/program, chip can say “write failed”, and block is
now “bad”. OS must recover (migrate bad block data to a new
block). Bits can also go bad “silently” (!!!).

UC Regents Fall 2013 © UCBCS 250 L10: Memory

Flash controllers: Chips or Verilog IP ...
Flash memory controller manages write lifetime
management, block failures, silent bit errors ...

Software sees a “perfect” disk-like storage device.

EE141

Actually Using Memory
• Two options:
• Directly instantiate memory blocks: 

Can either use IP generators or instantiate primitives
directly

•Write Verilog with something the tools can infer
•parameter n = 4;  
parameter w = 8;  
reg [w-1:0] reg_array [2**n-1:0];  
always @ posed clk begin  
 if (we) reg[write_addr] <= din;  
end  
always @* begin  
 dout <= reg[read_addr]  
end
• should be inferred as a simple dual-port memory: 

One synchronous write port, one asynchronous read port
63

EE141

Some Types of Memory...
• Single port:
•One address port, one data in port, one data out port
• Can read or write

• Simple dual port:
• Two address ports, one for reading, one for writing

•Very good for implementing FIFOs!

• True dual port:
• Two address ports, both can be used for reading or

writing
• Suggestion for Xilinx version of the project:
• Best way to do the processor reg-file is instantiate simple-

dual-port memories

64

