EECS151/251A
Spring 2018
Digital Design and Integrated Circuits

Instructors:
John Wawrzynek and Nick Weaver

State...

« For digital design, we are always building

finite state machines

e Just the state can be damn large when you include
external memory

e So how do we build state?
e 4 basic state elements:

e Registers

e Fast, large, little array overhead
e SRAM

e Fairly fast, smaller, significant overhead
e DRAM

e Fairly slow, very dense, significant overhead

e FLASH/EEPROM

e Glacial, very dense, static, significant overhead

State Requires Storage & Access...

e Either as a feedback loop
e atches, Registers, SRAM
o "Static"

« Or as a stored property

e Electrons on a capacitor for DRAM
e Electrons injected into a floating gate for FLASH

* Feedback loop...

e Can just read the output directly (but there are tricks
to speed it up)

« Stored property...

e Need measurement circuits

Basic Static Storage Element

= If Dis high, D_b will be driven low

- Which makes D stay high
= Positive feedback

Positive Feedback: Bi-Stability

Meta-Stability

(b)

Gain should be larger than 1 in the transition region:
For flip-flops we hate metastability...
But for DRAM we love it (as we will see soon)!

Reminder: Latch versus Register (Flip-flop)

& Latch: level-sensitive & Register: edge-triggered
clock is low - hold mode stores data when
clock is high - transparent clock rises
— Clk —PpClk
Clk Clk
D | b

Creating a Latch & Flip-Flop...

« Take our basic static storage element...
e And make it switchable between storage

« When clock is low, have the feedback loop
active
« When lock is high, Q gets D

« Can then chain 2 latches to make a Flip/Flop
e One negative clocked, one positive

CLK

— ... — Clk Clk

Adding an Enable

« A very common motif

e always (@posedge clk begin
q := en ? {something} : g

e Namely, only update Q if an additional enable signal is
high
« Just simply add a higher level feedback

loop with a mux.
e {see board}

Creating a Register File... Reading

« Easiest thing is to start with a flip-flop...

* For reading, just have a MUX on the

output to select the register in question

e A common motif for all array memories:
If you want the nth column/entry, you need a mux
to select which one
Sel_ol 5' 1

* |[f done as flip/flops, e
this is simple... P T E

Creating A Regfile... Write Enable

* We need to decode/demux the register
address to determine which register to

write...

e Decoder is a very common operation:
Take an n bit number and assert a different line for

each bit
Basically each output is an AND gate

« Commonly done with a "predecoder”
e Compute AoA1, AoA1,AcA1,AcA1
e Compute A2A3, A2A3,A2A3,A2A3
e Then do the AND of the intermediaries

11

Predecoder and Decoder

But Flip-Flops are big...

« 12 transistors for both latches...
e Plus 2 to create a negated clock (can be shared)

* Plus the multiplexor to add an enable...
e Since we don't want to always write

« Can we use the basic static element...
e And make something more compact?

e Yes: SRAM

SRAM Memory Cell

Enable Enable

5 L —>— L &
> T T °
HQ_

Complementary data values are written (read) from two sides

6-Transistor CMOS SRAM Cell

1

|
b v,

P THTay M
M3

BL BL

6T-SRAM — Layout

BL BLB

Compact cell
Bitlines: M2
Wordline: bootstrapped in M3

SRAM Operation - Read

Read /T N\

............ Voo | TT_| I> T %
—— H<]_ .
= =

*Initially precharge both the bit lines to VDD

*BL gets pulled down if storinga 1, ~BL ifitsa 0
*There is a fair amount of capacitance, must
not overwhelm the inverter...

CMOS SRAM Analysis (Read)

WL

]
E l _;-D=DO _=|_:'C1 M4 _L Bl
._-I_A;I5_I-_T_ Q=1 1_-| Mg I-_‘
Vo M Voo
CbitI

CMOS SRAM Analysis (Write is a fight)

DD
BL = 1 BL =0

SRAM Column

Periphery

. Decoders

- Sense Amplifiers
d Input/Output Buffers
J Control / Timing Circuitry

Row Decoder

s

M/@ts
-

Word 0

Word 1

Word2 | -

Word N-2

Word N-1

K = logaN

!

Inp(ut-Output

M bits)

Storage
cell

Expands K address lines
into N word lines

A perfect example of logic/
wire optimization

Typically implemented in
hierarchical fashion
Area/Energy Trade-off

Speeding the Read: Sense-Amp

o |t takes a fair bit of time to pull down the

appropriate bitline...
e But really, why not just detect a difference

e |dea: Precharge a reference and then
look for a small change

ls:r':::ition N 9

Differential Sense Amplifier

[] 1
M3 Mg _°|
]l y | jﬂlf
bit _| M+ My |_E‘ _I
] [
] —
SE—1 | Ms

= Directly applicable to
SRAMs

Differential Sensing — SRAM

~C
e l g MLIE
el B = Ve Yo
[e 85 bt 1 Tl 2

P
QR:\!'I ool ¢ I 1
v _qE
1M oo
X Sense % —_— Outnet
ﬁ.mp ¥
—__— g
SEH =
Ou!p\.' —
(A} S1I2A0 Sensng schems (b} Twa stage dmerantal amplher

Column Decoder

2L—K Bit line
| Storage cell

K 3 5 = :

Agoq § I J4F--———1 Word line
o |
A, % —>— |
->| X~ I
\ > |

EEERE RN
Sense amplifiers / Drivers

i Q Basically a multiplexer

Ao
Column decoder /
Ag—1 +
Y
Input-Output

(M bits)

SRAM Read Cycle

* Precharge all the bitlines to Vdd...

e Then assert the word line from the
decoder

e One or the other bit lines starts to drop towards
ground...

e Sense-amp uses this to amplify the result quickly

SRAM Write Cycle

 Actively drive the bitlines to the correct
value

e Then assert the correct word line

« Result is that it will flip the data to the
correct value

Sample Memory Interface Logic

Write cycle Read cycle
Clock \ : \
SE) "
W \ J
Addr'ess| A Address :‘-_for' write X Addres ::_for' read X
Data {Data for write! " bata read
A A
. Write occurs here, Data can be
Drive data bus only when when E1 goes high latched here
clock is low

Access Logic

= Ensures address are
stable for writes

Clock ™ - “1- " TS PC
INT wWritTe enable —
Con’rr'ob__—. T w SRAM
nt_oltput enabl —
= Prevents bus (write, read, reset) S endb & SE

contention ,
. : Write data Data[7:0]
= Minimum clock period

is twice memory access
time

ead data

int_dat
Address nt_aara

Address[12:0]

int_address

aYal

&

Adding More Ports

« Just add a separate set of row selection
decoders, bitlines, wordlines, sense-

damps...
e But keep the common cell

WordlineB
WordlineA

BitB

i
|
¢

oe/
ra
v/

i eis e
:

DRAM...
« Damn, that SRAM cell is still big...

e 6 transistors!!!!

« But we can also build small capacitors...
e And small capacitors can hold their charge...

« IDEA: Lets store using dynamic logic...
e Memory as state of change on a capacitor

e Sense a very small amount of charge...
e And when we check it, we can then update it

1-Transistor DRAM Cell

BL
Write 1 Read 1

WL
T WL / \ / \

My
= . T
| Va
= BL
Vpp/2 ~ Vppl2

sensing

CB L

—
T

Veir=0or (Vpp—Vy)

Write: C sis char ged or discharged by asserting WL and BL.
Read: Charge redistribution takes places between bit line and storage capacitance

Voltage swing is small; typically around 250 mV.

AV, = (V v G __(Yw_y) G
1= (Ve PRE)C i CsL_ L 2 T C; 1 CB, Cs<< CBL

Cs VBD [;S —
= p— "n — . —
AVo = (Yprre reE) Ca ¥ G 2 O, +CB,

Latch-Based Sense Amplifier (DRAM)

LEQ
BL | T L | BL
oo
SE— e L
—1 * |nitialized in its meta-stable point with EQ
| | o q
b » We also precharge the bit lines to the
=} metastable point
= Once adequate voltage gap created,
— sense amp enabled with SE
sE] » Positive feedback quickly forces output to
- a stable operating point.

» Also acts to "write back" the value by
driving the bit lines apart

33

What about that other bitline?

« \WWe want something of the same

capacitance as the bitline
e |dea: Hey, we have a reference: The next column

S0 we only read 1/2 the cells on a row

for a given read
e And use the other set of bit lines for reference

What About "Leakage"

 Those capacitors aren't great...
e They will slowly lose charge over time...

 |dea: Just read every cell at a regular

interval
e This is called DRAM refresh

« Highly temperature dependent:
e Hot DRAM tends to flip

What About Errors?

 Redundancy & sparing for

manufacturing faults...

e Check all the cells. If any fail in a column, replace that
column with a spare column

« ECC memory for transient faults

e EG, radioactive decay, cosmic ray, etc...
e Cheap systems don't use ECC, but you should

Advanced 1T DRAM Cells

Word line .

Insulating Lay,er \ CeII plate CapaC|tor dielectric layer
‘- o .. - ._._ ~4

Cell Pla

Transfer géte Isolatlon
Storage electrode

Capacitor Insu filling Poly

Storage Node

j Substrate
2nd Field Oxj

Trench Cell Stacked-capacitor Cell

A “bank” of 128 Mb (512Mb chip -> 4 banks)

13-bit
Yow
address
input
—

Q CS 250 L10: Memory

Hh O

N O = 0

HR O &0 Q 0

In reality, 16384 columns are
divided into 64 smaller arrays.

A€ >

16384
columns

8192
rows 134 217 728 usable bits

v (tester found good bits in bigger array)

o

16384 bits delivered by sense amps

A
Select requested bits, send off the chip

UC Regents Fall 2013 © UCB

So basic DRAM read operation...

* Precharge all the bit lines in a block to
OVdd

 Enable the word line for the desired row
e "Row Access”

o Activate the sense-amps
e Acts to read the bits and restore the bits

* Once the sense-amps have the row

e Do the column access to get the sub pieces within the
row

« A write will start with a read...
e Then override the bits you want to set

39

“Sensing” is row read into sense amps

13-bit
Yow
address
input
«—>

Q CS 250 L10: Memory

Hh O

N O = 0

HR O &0 Q 0

Slow! A 2.5ns period PRAM (400 MT/s) can
do row reads atf only 99 ns (18 MHz).

PRAM has high latency to first bit out. A fact of life.

y

A€ >

16384
columns

8192
rows 134 217 728 usable bits

v (tester found good bits in bigger array)

o

16384 bits delivered by sense amps

A
Select requested bits, send off the chip

UC Regents Fall 2013 © UCB

Latency is not the same as bandwidth!
What if we want all of the 16384 bits?

Thus, push to
faster PRAM

interfaces

13-bit
Yow
address
input
«—>

w CS 250 L10: Memory

1

o

Hh

N O = 0

HR O &0 Q 0

y

N

In row access time (99 ns) we can do

22 transfers at 400 MT/.

6-bit chip bus -> 22x 16 = 352 bhits << 16384
Now the row access time looks fast!

A€

8192
rows

v (tester found good bits in bigger array)

>

16384
columns

134 217 728 usable bits

o

16384 bits delivered by sense amps

——

Select requested bits, send off the chip

UC Regents Fall 2013 © UCB

Sadly, it’s rarely this good ...

What if we want all of the 16384 bits?
The “we” for a CPU would be the

(o)

13-bit
Yow
address
input
«—>

Hh

N O = 0

program running on the CPU.

Recall Amdalh's law: If 207 of the mewory
accesses need a new row access ... hot good.

A€

8192
rows

v (tester found good bits in bigger array)

>

16384
columns

134 217 728 usable bits

o

16384 bits delivered by sense amps

HR O &0 Q 0

@ CS 250 L10: Memory

——

Select requested bits, send off the chip

UC Regents Fall 2013 © UCB

DRAM latency/bandwidth chip features

Columns: Design the right interface
for CPUs to request the subset of a
column of data it wishes:

16384 bits delivered by sense amps
i

Select requested bits, send off the chip

Interleaving: Design the right interface to
the 4 memory banks on the chip, so
several row requests run in parallel.

Bank 1 Bank 2 Pank 3 Bank 4

Q CS 250 L10: Memor y UC Regents Fall 2013 © UCB

Off-chip interface for a Micron DDR part ...

A clocked bus:
200 MHz clock,

data transfers on
both edges (PPR).

DQS, DQS#

R

———————

Note! This example is best-case!
To access a new row, a slow ACTIVE
command must run before the READ.

——————

CL=3 (AL =0)

PRAM is controlled via

commands
(READ WRITE,
REFRESH, ..))

Q CS 250 L10: Memory

Synchronous data
output.

UC Regents Fall 2013 © UCB

Opening a row before reading ...

TO

DQS, DQS#

DQO

w '
CS 250 L10: Memory

T1

T2

tCK

T3
Ty

T4

T5
TTT TN

T6

;- -

Auto-Frecharge
READ

AN

7

KNP X7,

N4

N4

Nop!

z

@Dm

%/////////// Co

\//4

W‘W///

\Y/4

¢

I

I &

T

N

YT DRBask s X770 7770777 Bk xYQ//M//,%/Z{@///////////////////////////////// L7777 Bans < X
tRCD] 5 ns %’ tRT;<= 3 |
tRAS \ ‘RP : :
RC | N\ o
| | |
|]
tLZ (MIN) - P T | |
‘ {onyemiany J>‘—
‘ L7 (MIN) tAC (]‘\/HN) J iz (‘MIN)—) "
>
55 ns between row opens.

UC Regents Fall 2013 © UCB

However, we can read columns quickly

TO T1 T2 T3 T3n T4 T4n T5 TSn T6 Tén

CK# ----, N - -
e g
DD

CK

Command

Address
[

DQS, DQS# < B oW N L

0 o X@W anre

Note: This is a “normal read” (not Auto-Precharge).
Both READs are to the same bank, but different columns.

w CS 250 L10: Memory UC Regents Fall 2013 © UCB

Why can we read columns quickly?

13-bit
Yow
address
input
—

Q CS 250 L10: Memory

Hh O

N O = 0

HR O &0 Q 0

Column reads select from the 16384 bits here

A€ >

16384
columns

8192
rows 134 217 728 usable bits

v (tester found good bits in bigger array)

o

16384 bits delivered by sense amps

A
Select requested bits, send off the chip

UC Regents Fall 2013 © UCB

Interleave: Access all 4 banks in parallel

TO T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
CK# - 7 e /AnEa - - = 1T T - - = 1T T T LTty 7T T T ~= - 1T T

CK =T S et v AN ‘ v N 1
Command N ACT READ ACT READ) Act %ZZ)(READ 0 act X/ ReaDY///) NOPW NOP Y///)

|
Address Row Col RTW >@< Col >< Row ,////m A" Row W Col X // Row ,/
Bank address ank a Bank ank b Bank W' ,//// w,////m ///////////////////// Bank e>@
RRPAMIN) “
B FAW (MIN) .

Interleaving: Design the right interface to
the 4 memory banks on the chip, so
several row requests run in parallel.

Bank a Bank b Bank d

Can also do other commands on banks concurrently.

Q CS 250 L10: Memory UC Regents Fall 2013 © UCB

The SDRAM interface evolution

e |nitially: 1b transferred per data line per
clock cycle

« DDR: Double Data Rate: 2b per clock
e Rising & falling edge

« DDR2: 4b per clock
« DDR3: 8b per clock
« DDR4: 16b per clock!

« But the latency hasn't really improved

much In a decade+!!!

e So if you are touching DRAM, try to make everything
sequential

49

Only part of a bigger story

DQO-DQ15

., UDQS, UDQs#
LDQS, LDQS#

_____________0.____________

s«— UDM, LDM

ODT —4
1
CKE —0— Control
CK —»o— Logic
CK# —»
CS# —>o—: ER y
OGN A CK, CK# ODT control | Vdd
RASH ! e COLO, COL1 ’ swl sw2 sw3| T q
CAS# —0— £ 8 Bank 3 Il
WE# o8 Bank 2 16, l L
E Mode 1| Refresh ﬁ\]|3al?1611<n(1)(1 | BBaI]:kOI o4 Read 2 > 16 N R swlksw2k5w3
: registers | |!Lcounter =1 Row- |13 - an latch |16 ;MUX Daia ”|IDRVRS [Rl% RZ% R3%
| = ! address _g 16 'y
1 15 ! Address Memory >
: 13 J; MUX latch and array | 4 RIG R BT
! | decoder (8,192 x 256 x 64) - H DQS /
| : Sense amplifiers generator | UDQS, UDQS#
| ' Input LDQS, LDQS# -
' | 16,384 registers
X ! > g SW1 Nsw2 3
| ' 64 ; e % % %
! | 2 -ty — | R13' R23' R3
| ! a > 1/0 gating bk 21 2
' mall s RIS R2
\0-A12, 5 Address [V] Bank DM mask logic) B 8 3 h é 2 - R2{: R3 :
A0, BA1 register 2 control Write | 2| 7
! + : FIFO |Mask | 2 — 2 _l_l_l
: logic and 2 R RCVRS
! drivers 'y 3
O 16
! BT I m
! Internal 7
1 —» CK out 16| 1 SW SwW2
' CK, CK# 64 - e /6 16
X N Column- CKin [16— 16 R1{ R27 R3
! 10 / address + Data T < 1
' counter/ L2 « /l/6 ' R2 R3
1 latch x 4
| COLO, COL1 T 7
1
1
1
1

CS 250 L10: Memory

UC Regents Fall 2013 © UCB

Only part of a bigger story ...

Initialization
sequence

OCD
default

Self
refreshing

BA21BA1 BAO An2A]2 AlT A10 A9 A8 A7 A6 A5 A4 A3 A2 Al AO Address Bus

ARRRRARARARARARE

16/15/14 /n /12 /11 /10 /9 /8 /7 /6 /5 /4 /3 /2 /1 /0 Mode Register (Mx
|0 MR | 0 |PD| WR |DLL| TM|CAS#| Latency| BT |Burst Length

Refreshing

; M12| PD Mode M7| Mode M2 M1 MO |Burst Length
: 0 | Fastexit 0 |Normal 0 0 0 | Reserved
(normal) 1] Test 0 0 1 | Reserved
E 1 Slow exit 010 4
—- - AUtomatic Sequence ! (low power)
--------- » Command Sequence E M8 DLL Reset 0 11 8
. 0 N 1 0 0 Reserved
ACT ACT = ACTIVATE °
i CKE_H = CKE HIGH, exit power-down or self refresh 1 Yes 1 0 1 Reserved
CKE_L = CKE LOW, enter power-down 110 Reserved
(E)MRS = (Extended) mode register set -
CKE_L | PRE = PRECHARGE MI11 MI10 M9| Write Recovery I 11 Reserved
\L\:a/\“ - PRE_A = PRECHARGE ALL
Active \a- ® READ = READ 0 0 0 Reserved
_ READ A = READ with auto precharge
BN REFRESH = REFRESH 0 0 1 2 L Burst Type
0 N 04’6‘ SR = SELF REFRESH 0 1 0 3 0 Sequential
4, 4. WRITE = WRITE T 1
T Bank WRITE A = WRITE with auto precharge 0 1 Interleaved
an
active 1 0 0 5
1 01 6 M6 M5 M4 | CAS Latency (CL)
READ 1 1L 0 7 0 0 0 Reserved
1 1 1 8 0 0 1 Reserved
---------------------------- 0o 1 0 Reserved
M15 M14 Mode Register Definition 0 1 1 3
0 0 Mode register (MR) 1 0 o 4
1 0 1 5
1 1 0 6
1 1 1 7
o, KNS .
N) & T
Writing i Nz PRE, PRE. A < A/ Reading
with |4 \ : %" with
auto . v ,Qq- auto
precharge \A g precharge

CS 250 L10: Memory UC Regents Fall 2013 © UCB

DRAM controllers: reorder requests

(A) Without access scheduling (56 DRAM Cycles)
Time (Cycles)

{

g 15253 45556 7:81:9:10:11i112i13i14i15:16:17:18{19:20:21:22:23:24:25:26:2728:29:30:31:32:33:34:35!36:37:38:39:40:41:42:43:44145:46:47:48:49:50:51:52:53:54:55:56
§ 000 [P A
;“ (01110) P A C
g1l ©omn P A |C
< | 013 P A_|C
g (1,0,0) P A |[C
AN P A_|C
S| aomn P A_[C
Sy (112) T P | A |C
[
g
o
(B) With access scheduling (19 DRAM Cycles)
Time (Cycles) DRAM Operations:
B 1i2i3iaisi6i7i8i0oi10{11{12{13{14}15}16{17}18}10
§ 000 [P A _|C P: bank precharge (3 cycle occupancy)
g Eg;?; c P A_c A: row activation (3 cycle occupancy)
S| 01 BEE C: column access (1 cycle occupancy)
| (1,00 P A IC]
> an P | A [C
8| (1,01 C]
Sy (112
2

From: Memory Access Scheduling

CS 250 L10: Memory Scott Rixner', William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D. Owens UC Regents Fall 2013 © UCB

And Rowhammer....

« These DRAM cells are not perfectly

ISolated...

e In reading a row, there is a chance that it could flip a
bit in a different row

« Rowhammer is a hardware attack

e Repeatedly read the same DRAM row to cause bit-
flips elsewhere

e Asking the OS to effectively fill the memory with page
tables...

e And then when a bit flips, it will cause the page table to be
mapped into the process address space...

e And once you do that, you win!

53

The physics of FLASH memory

Vg Two gates. But the
! middle one

vd | dielectric | Vs is not connected.
1. Electrons “placed” on floating gate stay y
there for many years (ideally). e ‘ d
2.10,000 electrons on floating gate shift s | s
transistor threshold by 2V, s A
3. ln a mewory array, shifted transistors f 1

hold “0” unshifted hold “1" “Floating gate”

CS 250 L10: Memory UC Regents Fall 2013 © UCB

Moving electrons on/off floating gate

A high drain voltage A high gate voltage
injects “hot electrons” ’runnel§ electrons off
onto floating gate. Vg of floating gate.
! /
Vd : dielectric | VS

dlelectrlc

1. Hot electron injection 2. High voltages damage the
and tunneling produce tiny floating gate.
currents, thus writes are Too many writes and a bit

slow. goes “bad”.

CS 250 L10: Memory UC Regents Fall 2013 © UCB

Architecture ...

NAND Flash Memory

U'e

v
-
Eead
-
—
-,
.
=
-
— ™
-
-ty
g _ey
. —
o>
—
—
"-.
-

LI
€81
812 4

| - -t
Q CS 250 L10: Memory UC Regents Fall 2013 © UCB

Flash: Disk Replacement Chip ‘remembers”
for 10 years.

Presents memory to the
CPU as a set of pages.

Page format:

2048 Bytes + (64 Bytes
(user data) (meta data)
1GB Flash: 512K pages AT
Le W :
2GB Flash: 1M pages v 212

4GB Flash: 2M pages

CS 250 L10: Memory

UC Regents Fall 2013 © UCB

Reading a Page ... I —
33 MB/s Read Bandwidth

Read Operation

Flash
Memory

9 Samsung
K9WAGO08U1A

8-bit data or address
(bi-directional)

{CLR

) av N\
GE o\)

wE MI_/—_/__W_F\J 7/ Clock out page bytes:

** 1w 52800 ns
A \ % tRHZ

R Page address in: 175 ns \—/—HM L{

)tRR >

<
I/0Ox % 00h XCoI. Add1 >< Col. Add2><Row Add1 ><Row Add2><Row Add3>< 30h \ Dout N>—éout N+ 1>—<::::>—M7

Column Address Row Address

First byteout: 10000 ns =,

CS 250 L10: Memory UC Regents Fall 2013 © UCB

Where Time Goes

Figure 1. K9K8GO8UOA Functional Block Diagram

First
byte out:

(2,048 + 64)Byte x 524,288 1 0,0 0 0 ns

\4

Vce —»
Vss —>» >
8,192M + 256M Bit
A12-Az | X-Buffers NAND Flash
> Latches ARRAY
A & Decoders >
Pag e Y-Buffers >
address G
& Decoders Data Register & S/A
8
l": _ > Y-Gating
l 75 "s Command
— 3 Command
> Register >
> — > I/0 Buffers & Latches
A
CE » Control Logic [— 4
RE » & High Voltage |———
WE ——»| Generator » Global Buffers
1 i
CLE ALE wp

CS 250 L10: Memory

UC Regents Fall 2013 © UCB

Writing a Page ...

A page lives in a block of 64 pages: Block 0
1GB Flash: 8K blocks e
2GB Flash: 16K blocks :
4GB Flash: 32K blocks :2:2?

To write a page:

1. Erase all pages in the block Time: 1,500,000 ns
(cannot erase just one page).

2. May program each page Time: 200,000 ns
individually, exactly once. per page.

Block lifetime: 100,000 erase/program cycles.

CS 250 L10: Memory UC Regents Fall 2013 © UCB

Block Failure

Even when new, not all blocks work!

1GB: 8K blocks, 160 may be bad.
2GB: 16K blocks, 220 may be bad.
4GB: 32K blocks, 640 may be bad.

During factory testing, Samsung writes good/bad

Block O

Page 0

Page 1

Page 62

Page 63

info for each block in the meta data bytes.

2048 Bytes + |64 Bytes

(user data) (meta data)

After an erase/program, chip can say “write failed”, and block is

now “bad”, 0S must recover (migrate bad block data o a new

block). Bits can also go bad “silently” (1),

CS 250 L10: Memory

UC Regents Fall 2013 © UCB

Flash controllers: Chips or Verilog IP ...

Flash memory controller manages write lifetime
management, block failures, silent bit errors ...

Denali NAND Flash Controller

SoC Flash
ECC

Interface Generator B> Interface
AHB Buffer NAND
PCI And
AXI Control
At Control &

<« State Machine |«

Comand
DMA Format
Engine

Software sees a “perfect” disk-like storage device.

CS 250 L10: Memory UC Regents Fall 2013 © UCB

Actually Using Memory

« Two options:

e Directly instantiate memory blocks:

Can either use IP generators or instantiate primitives
directly

o \Write Verilog with something the tools can infer

e parameter n = 4;
parameter w = 8;
reg [w-1:0] reg array [2**n-1:0];
always @ posed clk begin
if (we) reg[write addr] <= din;
end
always @* begin
dout <= reg[read addr]
end

e should be inferred as a simple dual-port memory:
One synchronous write port, one asynchronous read port

Some Types of Memory...

Single port:
e One address port, one data in port, one data out port
e Can read or write

Simple dual port:

e Two address ports, one for reading, one for writing
¢ VVery good for implementing FIFOs!

True dual port:

e Two address ports, both can be used for reading or
writing

Suggestion for Xilinx version of the project:

e Best way to do the processor reg-file is instantiate simple-
dual-port memories

