
EE141

EECS151/251A 
Spring	2018  
Digital	Design	and	
Integrated	Circuits
Instructors:		
John	Wawrzynek	and	Nick	Weaver

Lecture 19: 
Caches

EE141

Cache Introduction

40% of this
ARM CPU is
devoted to
SRAM
cache.

But the
role of
cache in
computer
design has
varied
widely over
time.

3

EE141

1977: DRAM faster than microprocessors
 Apple II (1977)

Steve
Wozniak

Steve Jobs

 CPU: 1000 ns

 DRAM: 400 ns

4

EE141

1980-2003, CPU speed outpaced DRAM ...

10

DRAM

CPU

Performance
(1/latency)

100

1000

1980 20001990

Year

Gap grew 50% per
year

Q. How do architects address this gap?
A. Put smaller, faster “cache” memories between CPU and

DRAM.
Create a “memory hierarchy”.

10000
The

power
wall

2005

CPU
60% per yr
2X in 1.5 yrs

DRAM
9% per yr
2X in 10 yrs

5

EE141

Nahalem Die Photo (i7, i5)

6

❑ Per core:
▪ 32KB L1 I-Cache (4-way set associative)
▪ 32KB L1 D-Cache (8-way set associative)
▪ 256KB unified L2 (8-way SA, 64B blocks)

❑ Common L3 8MB cache

L1

L2

EE141

EE141

Second-
Level
Cache

(SRAM)

Typical Memory Hierarchy

Control

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip Components

R
egFile

Main
Memory
(DRAM)D

ata
C

ache
Instr

C
ache

Speed (cycles): ½’s 1’s 10’s 100’s 1,000,000’s

Size (bytes): 100’s 10K’s M’s G’s T’s

❑ Principle of locality + memory hierarchy presents programmer
with ≈ as much memory as is available in the cheapest
technology at the ≈ speed offered by the fastest technology

 Cost/bit: highest lowest

Third-
Level
Cache

(SRAM)

EE141

CPU-Cache Interaction 
(5-stage pipeline)

PC addr inst

Primary	
Instruction	
Cache

0x4
Add

IR

D

bubble

hit?
PCen

Decode,	
Register	
Fetch

wdata
R

addr

wdata

rdata
Primary	
Data		
Cache

we
A

B

YYALU

MD1 MD2

Cache	Refill	Data	from	Lower	Levels	of	
Memory	Hierarchy

hit?

Stall	entire	
CPU	on	data	
cache	miss

To	Memory	Control

M
E

EE141

❑ Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced,

it will tend to be referenced again soon.
– Spatial Locality (Locality in Space): If an item is referenced,

items whose addresses are close by tend to be referenced
soon.

❑ By taking advantage of the principle of locality:
– Present the user with as much memory as is available in the

cheapest technology.
– Provide access at the speed offered by the fastest

technology.
❑ DRAM is slow but cheap and dense:

– Good choice for presenting the user with a BIG memory
system

❑ SRAM is fast but expensive and not very dense:
– Good choice for providing the user FAST access time.

Review from 61C

EE141

For a 2N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

9
Block address

Example: 1 KB Direct Mapped Cache with 32 B Blocks

EE141

Fully Associative Cache
– Forget about the Cache Index
– Compare the Cache Tags of all cache entries in parallel
– Example: Block Size = 32 B blocks, we need N 27-bit

comparators
By definition: Conflict Miss = 0 for a fully associative cache

:

 Cache Data
Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

 Cache Tag

Byte Select
Ex: 0x01

=

=
=

=

=

Extreme Example: Fully Associative

EE141

N-way set associative: N entries for each Cache Index
– N direct mapped caches operates in parallel

Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– The two tags in the set are compared to the input in parallel
– Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Set Associative Cache

EE141

N-way Set Associative Cache versus Direct Mapped Cache:
– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss decision and set selection

In a direct mapped cache, Cache Block is available BEFORE Hit/Miss:
– Possible to assume a hit and continue. Recover later if miss.

Disadvantage of Set Associative Cache

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

EE141

Cache Design and
Optimization

EE141

Improving Cache Performance: 3 general options

1. Reduce the miss rate,
2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache (although this
is very often 1 cycle).

Performance =
 Intr. Count x Clock Freq x (ideal CPI + stalls)

Average Memory Access time =
Hit Time + Miss Rate x Miss Penalty

EE141

Primary Cache Parameters
❑ Block size
▪ how many bytes of data in each cache entry?

❑ Associativity
▪ how many ways in each set?
▪ Direct-mapped => Associativity = 1
▪ Set-associative => 1 < Associativity < #Entries
▪ Fully associative => Associativity = #Entries

❑ Capacity (bytes) = Total #Entries * Block size
❑ #Entries = #Sets * Associativity

EE141

In general, larger block size takes advantage of spatial locality BUT:
– Larger block size means larger miss penalty:

– Takes longer time to fill up the block
– If block size is too big relative to cache size, miss rate will go

up
– Too few cache blocks

In general, Average Memory Access Time (AMAT):
= Hit Time + Miss Penalty x Miss Rate

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size

Block Size Tradeoff

EE141

Compulsory (cold start, first reference): first access to a block
– “Cold” fact of life: not a whole lot you can do about it
– Note: If you are going to run “billions” of instruction,

Compulsory Misses are insignificant
Conflict (collision):

– Multiple memory locations mapped 
to the same cache location

– Solution 1: increase cache size
– Solution 2: increase associativity

Capacity:
– Cache cannot contain all blocks access by the program
– Solution: increase cache size

Invalidation: other process (e.g., I/O) updates memory

Summary on Sources of Cache Misses

EE141

3Cs Analysis

❑ Three sources of misses (SPEC2000 integer and floating-point
benchmarks)
▪ Compulsory misses 0.006%; not visible
▪ Capacity misses, function of cache size
▪ Conflict portion depends on associativity and cache size

EE141

4 Questions for Caches (and Memory Hierarchy)

Q1: Where can a block be placed in the upper level?
(Block placement)

Q2: How is a block found if it is in the upper level?  
 (Block identification)

Q3: Which block should be replaced on a miss?  
(Block replacement)

Q4: What happens on a write?  
(Write strategy)

EE141

Q1: Where can a block be placed in the upper level?

Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set

associative
– S.A. Mapping = Block Number Modulo Number Sets

0 1 2 3 4 5 6 7Block
no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4 (12
mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

EE141

Q2: How is a block found if it is in the upper level?

Direct indexing (using index and block offset), tag
compares, or combination

Increasing associativity shrinks index, expands tag

Block
offset

Block Number
Tag Index

EE141

Q3: Which block should be replaced on a miss?

Easy for Direct Mapped

Set Associative or Fully Associative:
– Random
– LRU (Least Recently Used)

Associativity: 2-way 4-way 8-way

Size LRU Random LRU Random LRU Random

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Miss-rate

EE141

Q4: What happens on a write?

Write through—The information is written to both the
block in the cache and to the block in the lower-level
memory.
Write back—The information is written only to the
block in the cache. The modified cache block is
written to main memory only when it is replaced.

– is block clean or dirty?
Pros and Cons of each?

– WT: simple, read misses cannot result in writes
– WB: no writes of repeated writes (saves energy)

WT always combined with write buffers so that don’t
wait for lower level memory

EE141

Write Buffer for Write Through

A Write Buffer is needed between the Cache and Memory
– Processor: writes data into the cache and the write buffer
– Memory controller: write contents of the buffer to memory

Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write

cycle
Memory system designer’s nightmare:

– Store frequency (w.r.t. time) > 1 / DRAM write cycle
– Write buffer saturation

Processor
Cache

Write Buffer

DRAM

EE141

Write-miss Policy: Write Allocate versus Not Allocate
Assume: a 16-bit write to memory location 0x0 and causes a miss

– Do we read in the block?
– Yes: Write Allocate
– No: Write Not Allocate

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0431

:

Cache Tag Example: 0x00
Ex: 0x00

0x50
Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

9

Usually: Write-back cache uses write allocate.
 Write-through cache uses no-write allocate.

EE141

Another Real-word Example:
❑ At ISSCC 2015 in San Francisco, latest IBM

mainframe chip details
❑ z13 designed in 22nm SOI technology with

seventeen metal layers, 4 billion transistors/chip
❑ 8 cores/chip, with 2MB L2 cache, 64MB L3

cache, and 480MB L4 off-chip cache.
❑ 5GHz clock rate, 6 instructions per cycle, 2

threads/core
❑ Up to 24 processor chips in shared memory node

28

EE141

IBM z13 Memory Hierarchy

29

