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Cache Introduction



40% of this 
ARM CPU is 
devoted to 
SRAM 
cache.


But the 
role of 
cache in 
computer 
design has 
varied 
widely over 
time.
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1977: DRAM faster than microprocessors
 Apple II (1977)

Steve  
Wozniak

Steve Jobs

 CPU: 1000 ns

 DRAM: 400 ns
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1980-2003, CPU speed outpaced DRAM ...

10

DRAM

CPU

Performance 
(1/latency)

100

1000

1980 20001990

Year

Gap grew 50% per 
year

Q. How do architects address this gap? 
A. Put smaller, faster “cache” memories between CPU and 

DRAM.  
Create a “memory hierarchy”.

10000
The  

power  
wall

2005

CPU 
60% per yr 
2X in 1.5 yrs

DRAM 
9% per yr 
2X in 10 yrs
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Nahalem Die Photo (i7, i5)
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❑ Per core: 
▪ 32KB L1 I-Cache (4-way set associative) 
▪ 32KB L1 D-Cache (8-way set associative) 
▪ 256KB unified L2 (8-way SA, 64B blocks) 

❑ Common L3 8MB cache

L1

L2
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Second-
Level 
Cache 

(SRAM)

Typical Memory Hierarchy

Control

Datapath

Secondary 
Memory 

(Disk 
Or Flash)

On-Chip Components
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Main 
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(DRAM)D
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Instr 

C
ache

Speed (cycles):        ½’s                     1’s                           10’s               100’s               1,000,000’s

Size (bytes):         100’s                  10K’s                         M’s                    G’s                      T’s

❑ Principle of locality + memory hierarchy presents programmer 
with ≈ as much memory as is available in the cheapest 
technology at the ≈ speed offered by the fastest technology

 Cost/bit:         highest                                                                                                 lowest

Third-
Level 
Cache 

(SRAM)
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CPU-Cache Interaction 
(5-stage pipeline)
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❑ Two Different Types of Locality: 
– Temporal Locality (Locality in Time): If an item is referenced, 

it will tend to be referenced again soon. 
– Spatial Locality (Locality in Space): If an item is referenced, 

items whose addresses are close by tend to be referenced 
soon. 

❑ By taking advantage of the principle of locality: 
– Present the user with as much memory as is available in the 

cheapest technology. 
– Provide access at the speed offered by the fastest 

technology. 
❑ DRAM is slow but cheap and dense: 

– Good choice for presenting the user with a BIG memory 
system 

❑ SRAM is fast but expensive and not very dense: 
– Good choice for providing the user FAST access time.

Review from  61C
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For a 2N byte cache: 
– The uppermost (32 - N) bits are always the Cache Tag 
– The lowest M bits are the Byte Select (Block Size = 2M)

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part 
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

9
Block address

Example: 1 KB Direct Mapped Cache with 32 B Blocks
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Fully Associative Cache 
– Forget about the Cache Index 
– Compare the Cache Tags of  all cache entries in parallel 
– Example: Block Size = 32 B blocks, we need N 27-bit 

comparators 
By definition: Conflict Miss = 0 for a fully associative cache

:

 Cache Data
Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

 Cache Tag

Byte Select
Ex: 0x01

=

=
=

=

=

Extreme Example: Fully Associative



EE141

N-way set associative: N entries for each Cache Index 
– N direct mapped caches operates in parallel 

Example: Two-way set associative cache 
– Cache Index selects a “set” from the cache 
– The two tags in the set are compared to the input in parallel 
– Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Set Associative Cache
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N-way Set Associative Cache versus Direct Mapped Cache: 
– N comparators vs. 1 
– Extra MUX delay for the data 
– Data comes AFTER Hit/Miss decision and set selection 

In a direct mapped cache, Cache Block is available BEFORE Hit/Miss: 
– Possible to assume a hit and continue.  Recover later if miss.

Disadvantage of Set Associative Cache

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
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Cache Design and 
Optimization
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Improving Cache Performance: 3 general options

1. Reduce the miss rate,  
2. Reduce the miss penalty, or 

3. Reduce the time to hit in the cache (although this 
is very often 1 cycle). 

Performance = 
 Intr. Count x Clock Freq x (ideal CPI + stalls)

Average Memory Access time =  
Hit Time + Miss Rate x Miss Penalty
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Primary Cache Parameters
❑ Block size 
▪ how many bytes of data in each cache entry? 

❑ Associativity 
▪ how many ways in each set? 
▪ Direct-mapped => Associativity = 1 
▪ Set-associative => 1 < Associativity < #Entries 
▪ Fully associative => Associativity = #Entries 

❑ Capacity (bytes) = Total #Entries * Block size 
❑ #Entries = #Sets * Associativity
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In general, larger block size takes advantage of spatial locality BUT: 
– Larger block size means larger miss penalty: 

– Takes longer time to fill up the block 
– If block size is too big relative to cache size, miss rate will go 

up 
– Too few cache blocks 

In general, Average Memory Access Time (AMAT):  
= Hit Time  +  Miss Penalty x Miss Rate

Miss 
Penalty

Block Size

Miss 
Rate Exploits Spatial Locality

Fewer blocks:  
compromises 
temporal locality

Average 
Access 

Time

Increased Miss Penalty 
& Miss Rate

Block Size Block Size

Block Size Tradeoff
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Compulsory (cold start, first reference): first access to a block 
– “Cold” fact of life: not a whole lot you can do about it 
– Note: If you are going to run “billions” of instruction, 

Compulsory Misses are insignificant 
Conflict (collision): 

– Multiple  memory locations  mapped 
to the same cache location 

– Solution 1: increase  cache size 
– Solution 2: increase associativity 

Capacity: 
– Cache cannot contain all blocks access by the program 
– Solution: increase cache size 

Invalidation: other process (e.g., I/O) updates memory 

Summary on Sources of Cache Misses
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3Cs Analysis

❑ Three sources of misses (SPEC2000 integer and floating-point 
benchmarks) 
▪ Compulsory misses 0.006%; not visible 
▪ Capacity misses, function of cache size 
▪ Conflict portion depends on associativity and cache size
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4 Questions for Caches (and Memory Hierarchy)

Q1: Where can a block be placed in the upper level? 
(Block placement) 

Q2: How is a block found if it is in the upper level?  
 (Block identification) 

Q3: Which block should be replaced on a miss?  
(Block replacement) 

Q4: What happens on a write?  
(Write strategy)
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Q1: Where can a block be placed in the upper level? 

Block 12 placed in 8 block cache: 
– Fully associative, direct mapped, 2-way set 

associative 
– S.A. Mapping = Block Number Modulo Number Sets

0 1 2 3 4 5 6 7Block 
no.

Fully associative: 
block 12 can go 
anywhere

0 1 2 3 4 5 6 7Block 
no.

Direct mapped: 
block 12 can go 
only into block 4 (12 
mod 8)

0 1 2 3 4 5 6 7Block 
no.

Set associative: 
block 12 can go 
anywhere in set 0 
(12 mod 4)

Set 
0

Set 
1

Set 
2

Set 
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block 
no.
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Q2: How is a block found if it is in the upper level?

Direct indexing (using index and block offset), tag 
compares, or combination 

Increasing associativity shrinks index, expands tag

Block 
offset

Block Number
Tag Index
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Q3: Which block should be replaced on a miss?

Easy for Direct Mapped 

Set Associative or Fully Associative: 
– Random 
– LRU (Least Recently Used) 

Associativity:  2-way  4-way  8-way 

Size LRU  Random  LRU  Random  LRU  Random 

16 KB 5.2% 5.7%     4.7% 5.3%      4.4% 5.0% 

64 KB 1.9% 2.0%     1.5% 1.7%      1.4% 1.5% 

256 KB 1.15% 1.17%    1.13%   1.13%   1.12%   1.12%

Miss-rate
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Q4: What happens on a write?

Write through—The information is written to both the 
block in the cache and to the block in the lower-level 
memory. 
Write back—The information is written only to the 
block in the cache. The modified cache block is 
written to main memory only when it is replaced. 

– is block clean or dirty? 
Pros and Cons of each? 

– WT: simple, read misses cannot result in writes 
– WB: no writes of repeated writes (saves energy) 

WT always combined with write buffers so that don’t 
wait for lower level memory
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Write Buffer for Write Through

A Write Buffer is needed between the Cache and Memory 
– Processor: writes data into the cache and the write buffer 
– Memory controller: write contents of the buffer to memory 

Write buffer is just a FIFO: 
– Typical number of entries: 4 
– Works fine if:  Store frequency (w.r.t. time) << 1 / DRAM write 

cycle 
Memory system designer’s nightmare: 

– Store frequency (w.r.t. time) >  1 / DRAM write cycle 
– Write buffer saturation

Processor
Cache

Write Buffer

DRAM
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Write-miss Policy: Write Allocate versus Not Allocate
Assume: a 16-bit write to memory location 0x0 and causes a miss 

– Do we read in the block? 
– Yes: Write Allocate 
– No: Write Not Allocate

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0431

:

Cache Tag Example: 0x00
Ex: 0x00

0x50
Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

9

Usually: Write-back cache uses write allocate.  
               Write-through cache uses no-write allocate. 
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Another Real-word Example:
❑ At ISSCC 2015 in San Francisco, latest IBM 

mainframe chip details 
❑ z13 designed in 22nm SOI technology with 

seventeen metal layers, 4 billion transistors/chip 
❑ 8 cores/chip, with 2MB L2 cache, 64MB L3 

cache, and 480MB L4 off-chip cache. 
❑ 5GHz clock rate, 6 instructions per cycle, 2 

threads/core 
❑ Up to 24 processor chips in shared memory node

28
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IBM z13 Memory Hierarchy

29


