W EECS151/251A
BT & Spring 2018

S SSUE Digital Design and
Integrated Circuits

- Instructors:
" John Wawrzynek and Nick Weaver

Caches






40% of this
ARM CPU is
devoted to
SRAM
cache.

But the
role of

cache in

computer

design has

varied

widely over "m

time. HE™ odn B 12 |
. | SN ' k" - gl 2
f\{ 3% s
O»MQ«---- ...

) e AEREY I TR IX A B U
. A TN B N - 3

e Ko ba
A ..




1977: DRAM faster than microprocessors

TIMING . 2 ————

IR\ [ Apple Il (1977)
yoEo Acess  mocEzion CPU: 1000 ns

REFRESH PROGRAM
———— EXECYTION

VIDEO GENEMATON I:IV nnnso- TIMING AND CONTMOL 1 l DRA M: 400 nS

@, mOow Or
COLUMN SELECY

(GRAPHICS)

F |
PHASE COLOR - -
woro PROLRAUMARLE SHIFTCR GEnERATOR [~ = -
Vet avrd MEMORY , g -
- - — - w7y -r"! - (‘“ 'o ‘.‘ I’V"lﬂ : :
PROCE 3308 31385 coLoA - -
' - L
QRRACTER P SIGNAL -
; GENERATOR o -
HOW AND COLUMN | - -
ADORESSES . [ -
SERaL 3%23" o -
VIDEQ {cman) - :

PROCESSOR SEWALIZER

SO0FTWARE
CONTROLLED
VIDEO Mux

Steve Jobs  Steve
Wozniak

HE G EE
= E R G R e s

HEHEEE

RAM Apple Il
Complement| System

4K $1,298.00
48K 2,638.00




1980-2003, CPU speed outpaced DRAM ...

Q. How do architects address this gap?

PZ’/’}‘;ZZZ,"’C”;‘* A. Put smaller, faster 'bacvlrlnze; memories between CPU and
00 Create a “memory hierarchy”. The
' CPU “—— power
0 60% per yr wall
109 2X in 1.5 yrs \
00 \ Gap grew 507 per
1
DRAM year
9% per yr /
1 2Xin 10 yrs |




Nahalem Die Photo (i7, i5)

| (|
Shared L3 Cache

d Per core:
= 32KB L1 I-Cache (4-way set associative)

= 32KB L1 D-Cache (8-way set associative)
= 256KB unified L2 (8-way SA, 64B blocks) 6



Characteristic

L1 cache organization

Iintel Nehalem

Split instruction and data caches

AMD Opteron X4 (Barcelona)

Split instruction and data caches

L1 cache size

32 KB each for instructions/data per
core

64 KB each for instructions/data
per core

L1 block size

64 bytes

64 bytes

L1 write policy

Write-back, Write-allocate

Write-back, Write-allocate

L1 hit time (load-use)
L2 cache organization

Not Available
Unified (instruction and data) per core

3 clock cycles
Unified (instruction and data) per core

L2 cache size

256 KB (0.25 MB)

512 KB (0.5 MB)

L2 block size 64 bytes 64 bytes
L2 write policy Write-back, Write-allocate Write-back, Write-allocate
L2 hit time Not Available 9 clock cycles

L3 cache organization

Unified (instruction and data)

Unified (instruction and data)

L3 cache size

8192 KB (8 MB), shared

2048 KB (2 MB), shared

L3 block size 64 bytes 64 bytes
L3 write policy Write-back, Write-allocate Write-back, Write-allocate
L3 hit time Not Available 38 (?)clock cycles




Typical Memory Hierarchy

On-Chip Components B SR
Control ) -
. Q= ' Main Secondary
I S & Memory Memory
= ,
Datapath [ R o (DRAM) (Disk
S Or Flash)
I
5 LI R —
Speed (cycles): 7 1’s 10’s 100’s 1,000,000’s
Size (bytes): 100’s 10K’s M’s G’s T’s
Cost/bit: highest < > lowest

d Principle of locality + memory hierarchy presents programmer
with = as much memory as is available in the cheapest
technology at the = speed offered by the fastest technology




CPU-Cache Interaction

(5-stage pipeline)
E
] M
A | V we
bubble Decode, | & Y T—"paer
_l__D—>|E|—> Register [T2 > P ata
wocl—hddr inst Fetch — — Cache .
A hit> D "pudata 1107
PCen Primary * ~ 1
Instruction MD1 MD2
Cache p
2 Stall entire
| CPU on data
I cache m/s
To Memory Control 1 \

Cache Refill Data from Lower Levels of
Memory Hierarchy




3

Review from 61C

Two Different Types of Locality:

- Temporal Locality (Locality in Time): If an item is referenced,
it will tend to be referenced again soon.

- Spatial Locality (Locality in Space): If an item is referenced,
items whose addresses are close by tend to be referenced
soon.

By taking advantage of the principle of locality:

- Present the user with as much memory as is available in the
cheapest technology.

- Provide access at the speed offered by the fastest
technology.

DRAM is slow but cheap and dense:

- Good choice for presenting the user with a BIG memory
system

SRAM is fast but expensive and not very dense:
- Good choice for providing the user FAST access time.



Example: 1 KB Direct Mapped Cache with 32 B Blocks

For a 2N byte cache:
— The uppermost (32 - N) bits are always the Cache Tag

— The lowest M bits are the Byte Select (Block Size = 2M)

. Block address .
31 9 4 0
Cache Tag  Example: 0x30 Cache Index Byte Select
Ex: 0x01 Ex: 0x00
Stored as part
of the cache “state”
Valid Bit  Cache Tag Cache Data
Byte 31| ., |Bytel |Byte0 |0
0x50 v Byte 63| ., |Byte33| Byt&32|1 <
2
3

Byte 1023 o Byte 992 |31




Extreme Example: Fully Associative

Fully Associative Cache
— Forget about the Cache Index
— Compare the Cache Tags of all cache entries in parallel
— Example: Block Size = 32 B blocks, we need N 27-bit

comparators
By definition: Conflict Miss = 0 for a fully associative cache
31 4 0
Cache Tag (27 bits long) Byte Select
Ex: 0x01
Cache Tag Valid Bit Cache Data !
>®<— Byte31| ., |Bytel |Byte0

>

Byte 63| ., |Byte 33| Byte 32

o

O
>@<—
o—

>




Set Associative Cache

N-way set associative: N entries for each Cache Index
— N direct mapped caches operates in parallel
Example: Two-way set associative cache
— Cache Index selects a “set” from the cache
— The two tags in the set are compared to the input in parallel
— Data is selected based on the tag result

Valid

Cache Index
Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

Cache Block

<




Disadvantage of Set Associative Cache

N-way Set Associative Cache versus Direct Mapped Cache:
— N comparators vs. 1

— Extra MUX delay for the data
— Data comes AFTER Hit/Miss decision and set selection

In a direct mapped cache, Cache Block is available BEFORE Hit/Miss:
— Possible to assume a hit and continue. Recover later if miss.

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
g i etttk tentntiniinlintinliuiell shels Sk Knfieiiatielielietonks t Sttt Lt
| I < > I I

Cache Block







Performance =
Intr. Count x Clock Freq x (ideal CPI + stalls)

Average Memory Access time =
Hit Time + Miss Rate x Miss Penalty

Improving Cache Performance: 3 general options

1. Reduce the miss rate,
2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache (although this
is very often 1 cycle).



Primary Cache Parameters

2 Block size
= how many bytes of data in each cache entry?
Q Associativity
= how many ways in each set?
= Direct-mapped => Associativity = 1
= Set-associative => 1 < Associativity < #Entries
» Fully associative => Associativity = #Entries
A Capacity (bytes) = Total #Entries * Block size

Q #Entries = #Sets * Associativity




Block Size Tradeoff

In general, larger block size takes advantage of spatial locality BUT:
— Larger block size means larger miss penalty:
— Takes longer time to fill up the block
— If block size is too big relative to cache size, miss rate will go
up
— Too few cache blocks
In general, Average Memory Access Time (AMAT):
= Hit Time + Miss Penalty x Miss Rate

Average
Miss Miss A?,-ff,’gs
Peﬂalty Rate Expjoits Spatial Locality A
Increased Miss Penalty
Fewer blocks: & Miss Rate
compromises
\ temporal locality \ y

5 »
Block Size Block Size Block Size




Summary on Sources of Cache Misses

Compulsory (cold start, first reference): first access to a block
— “Cold” fact of life: not a whole lot you can do about it

— Note: If you are going to run “billions” of instruction,
Compulsory Misses are insignificant

Conflict (collision):

— Multiple memory locations mapped
to the same cache location

— Solution 1: increase cache size
— Solution 2: increase associativity
Capacity:
— Cache cannot contain all blocks access by the program
— Solution: increase cache size

Invalidation: other process (e.g., I/0) updates memory




10%

3Cs Analysis

One-way

9%

8%
7%
% Two-way
6% -
Miss rate 59 -
per type
4% -

Four-way

3% -

2% -

1% 1

0% I I I 1 I I 1 I
4 8 16 32 64 128 256 512 1024

Cache size (KB)

Q Three sources of misses (SPEC2000 integer and floating-point
benchmarks)
= Compulsory misses 0.006%; not visible
= Capacity misses, function of cache size



4 Questions for Caches (and Memory Hierarchy)

Q1: Where can a block be placed in the upper level?
(Block placement)

Q2: How is a block found if it is in the upper level?
(Block identification)

Q3: Which block should be replaced on a miss?
(Block replacement)

Q4: What happens on a write?
(Write strategy)




Q1: Where can a block be placed in the upper level?

Block 12 placed in 8 block cache:
— Fully associative, direct mapped, 2-way set

assoOciative
— S.A. Mapping = Block Number Modulo Number Sets
Fully associative: Direct mapped: Set associative:
block 12 can go block 12 can go block 12 can go
anywhere only into block 4 (12 anywhere in set 0
mod 8) (12 mod 4)
Block 91234567 Block 91234567 Block 91234567
no. no. no.
Set Set Set Set
Block-frame address 0 1 2 3
Block 1111111111222222222233

no.

01234567890123456789012345678901




Q2: How is a block found if it is in the upper level?

Block Number Block
Tag Index offset

Direct indexing (using index and block offset), tag
compares, or combination

Increasing associativity shrinks index, expands tag




3: Which block should be replaced on a miss?

Easy for Direct Mapped
Set Associative or Fully Associative:

— Random
— LRU (Least Recently Used)
Associativity: 2-way 4-way 8-way

Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 53% 4.4% 5.0%
64KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Miss-rate



Q4: What happens on a write?

Write through—The information is written to both the
block in the cache and to the block in the lower-level
memory.

Write back—The information is written only to the
block in the cache. The modified cache block is
written to main memory only when it is replaced.

— is block clean or dirty?

Pros and Cons of each?
— WT: simple, read misses cannot result in writes
— WB: no writes of repeated writes (saves energy)

WT always combined with write buffers so that don’t
wait for lower level memory




Write Buffer for Write Through

Processor

A Write Buffer is needed between the Cache and Memory
— Processor: writes data into the cache and the write buffer
— Memory controller: write contents of the buffer to memory

L

Cache |

Write Buffer

Write buffer is just a FIFO:
— Typical number of entries: 4

— Works fine if: Store frequency (w.r.t. time) << 1/ DRAM write

cycle

Memory system designer’s nightmare:
— Store frequency (w.r.t. time) > 1/ DRAM write cycle

— Write buffer saturation

DRAM




Write-miss Policy: Write Allocate versus Not Allocate

Assume: a 16-bit write to memory location 0x0 and causes a miss
— Do we read in the block?

— Yes: Write Allocate
— No: Write Not Allocate

31 9 4
Cache Tag  Example: 0x00 Cache Index Byte Select
Ex: 0x00 Ex: 0x00
Valid Bit  Cache Tag Cache Data ! !
0x50 Byte 31 | . . Byte I |Byte 0 |0 «—
Byte 63 | ., |Byte33 |Byte32 |1
2
3
Byte 1023 Byte 992 |31

Usually: Write-back cache uses write allocate.
Write-through cache uses no-write allocate.



Another Real-word Example:

Q2 At ISSCC 2015 in San Francisco, latest IBM
mainframe chip details

A z13 designed in 22nm SOI technology with
seventeen metal layers, 4 billion transistors/chip

Q 8 cores/chip, with 2MB L2 cache, 64MB L3
cache, and 480MB L4 off-chip cache.

A 5GHz clock rate, 6 instructions per cycle, 2
threads/core

A Up to 24 processor chips in shared memory node




IBM 213 Memory Hierarchy

Shared L4
480 MB eDRAM
(1 SC chip)

—1 |
Shared L3
64 MB eDRAM
|
(] |-|!2 D-L2 |
2MB H2MmB
eDRAM-IeDRAM x8
I | |7
L1 |[D-L1 ]| @
96K || 128K || ©
__ (_[SRAM|[SRAM| ‘_’/

CPU chips

X-Bus RCV I
IH

S-Bus DRV |-X-Bus RCV “|X-Bus DRV

|

S-Bus RCV-=JX-Bus DRV}-X-Bus RCV=}X-Bus DRV

7 1
<y A
|3 I
. E v " g 1
i i
F » 1 ‘ 1 Ll ) ) | RN

g
-
'g
¢

~—XBUS Drivers & Recei




