
EE141

EECS 151/251A 
Spring 2018  
Digital Design and 
Integrated Circuits
Instructors: 
Weaver & Wawrzynek

Lecture 4



EE141

Administrativia

2



EE141

Verilog Assignment 
Types



EE141

Verilog – So Far
❑ Two types of description: 
▪ Structural: design as a composition of 

blocks (also called a netlist) 
– Maps directly into hardware 

▪ Behavioral: design as a set of equations  
– Requires “compiler” (synthesis tool) to generate 

hardware

4



EE141

Example - Ripple Adder
module FullAdder(a, b, ci, r, co);  
 input a, b, ci; 
 output r, co;  
  
 assign r = a ^ b ^ ci; 
  assign co = a&ci | a&b | b&cin; 

endmodule 

module Adder(A, B, R); 
  input [3:0] A; 
  input [3:0] B; 
  output [4:0] R; 

  wire c1, c2, c3; 
  FullAdder 
  add0(.a(A[0]), .b(B[0]), .ci(1’b0), .co(c1),   .r(R[0]) ), 
  add1(.a(A[1]), .b(B[1]), .ci(c1),   .co(c2),   .r(R[1]) ), 
  add2(.a(A[2]), .b(B[2]), .ci(c2),   .co(c3),   .r(R[2]) ), 
  add3(.a(A[3]), .b(B[3]), .ci(c3),   .co(R[4]), .r(R[3]) ); 
endmodule

5



EE141

Non-continuous Assignments
A bit strange from a hardware specification point of view.  

Shows off Verilog roots as a simulation language.

“reg” type declaration.  Not really a register  
in this case.  Just a Verilog idiosyncrasy.

“always” block example:

keyword
“sensitivity” list, triggers 

the action in the body.

module and_or_gate (out, in1, in2, in3); 
  input  in1, in2, in3;  
  output  out;  
  reg   out;  
 
  always @(in1 or in2 or in3) begin 
     out = (in1 & in2) | in3; 
  end 

endmodule brackets multiple statements (not 
necessary in this example.

Isn’t this just: assign out = (in1 & in2) | in3;?   
                                                     Why bother? 6



EE141

Always Blocks
Always blocks give us some constructs that are impossible or 

awkward in continuous assignments.  

module mux4 (in0, in1, in2, in3, select, out); 
   input in0,in1,in2,in3; 
   input [1:0] select; 
   output      out; 
   reg         out; 
    
 always @ (in0 in1 in2 in3 select) 
  case (select) 
   2’b00: out=in0; 
   2’b01: out=in1; 
   2’b10: out=in2; 
   2’b11: out=in3; 
  endcase 
endmodule // mux4

case statement example:

keyword The statement(s) corresponding 
to whichever constant matches 

“select” get applied.

Couldn’t we just do this with nested “if”s?   
                                                     Well yes and no! 7



EE141

Always Blocks

module mux4 (in0, in1, in2, in3, select, out); 
   input in0,in1,in2,in3; 
   input [1:0] select; 
   output      out; 
   reg         out; 
    
 always @ (in0 in1 in2 in3 select) 
  if (select == 2’b00) out=in0; 
      else if (select == 2’b01) out=in1; 
           else if (select == 2’b10) out=in2; 
                else out=in3; 
endmodule // mux4

Nested if-else example:

Nested if structure leads to “priority logic” structure, with 
different delays for different inputs (in3 to out delay > than 
in0 to out delay).       Case version treats all inputs the same.

8



EE141

Review - Ripple Adder Example
module FullAdder(a, b, ci, r, co);  
 input a, b, ci; 
 output r, co;  
  
 assign r = a ^ b ^ ci; 
  assign co = a&ci + a&b + b&cin; 

endmodule 

module Adder(A, B, R); 
  input [3:0] A; 
  input [3:0] B; 
  output [4:0] R; 

  wire c1, c2, c3; 
  FullAdder 
  add0(.a(A[0]), .b(B[0]), .ci(1’b0), .co(c1),   .r(R[0]) ), 
  add1(.a(A[1]), .b(B[1]), .ci(c1),   .co(c2),   .r(R[1]) ), 
  add2(.a(A[2]), .b(B[2]), .ci(c2),   .co(c3),   .r(R[2]) ), 
  add3(.a(A[3]), .b(B[3]), .ci(c3),   .co(R[4]), .r(R[3]) ); 
endmodule

9



EE141

Example - Ripple Adder Generator

module Adder(A, B, R); 
  parameter N = 4; 
  input [N-1:0] A; 
  input [N-1:0] B; 
  output [N:0] R; 
  wire [N:0] C; 

  genvar i; 

  generate  
    for (i=0; i<N; i=i+1) begin:bit       
      FullAdder add(.a(A[i], .b(B[i]), .ci(C[i]), .co(C[i+1]), .r(R[i]));     

end  
  endgenerate  

  assign C[0] = 1’b0; 
  assign R[N] = C[N]; 
endmodule

Parameters give us a way to generalize our designs.  A module becomes a “generator” 
for different variations.   Enables design/module reuse.  Can simplify testing.

variable exists only in the specification - not in the final circuit.

Keyword that denotes synthesis-time operations

Declare a parameter with default value.    
Note:  this is not a port.  Acts like a “synthesis-time” constant.

For-loop creates instances (with unique names)

Adder adder4 ( ... ); 

Adder #(.N(64)) 
adder64 ( ... ); 

Overwrite parameter 
N at instantiation.

Replace all occurrences of “4” with “N”.

10



EE141

More on Generate Loop
Permits variable declarations, modules, user defined primitives, 
gate primitives, continuous assignments, initial blocks and always 
blocks to be instantiated multiple times using a for-loop.

// Gray-code to binary-code converter 
module gray2bin1 (bin, gray); 
    parameter SIZE = 8; 
    output [SIZE-1:0] bin; 
    input  [SIZE-1:0] gray; 
  
    genvar i; 
  
    generate for (i=0; i<SIZE; i=i+1) begin:bit 
      assign bin[i] = ^gray[SIZE-1:i]; 
    end endgenerate 
  endmodule 

Loop must have constant 
bounds

generate if-else-if based on an expression that is deterministic 
at the time the design is synthesized. 
generate case : selecting case expression must be deterministic 
at the time the design is synthesized. 

variable exists only in 
the specification - not in 

the final circuit.

Keywords that denotes 
synthesis-time operations

For-loop creates instances 
of assignments

11



EE141

Defining Processor ALU in 5 mins
❑ Modularity is essential to the success of large designs 
❑ High-level primitives enable direct synthesis of behavioral descriptions 

(functions such as additions, subtractions, shifts (<< and >>), etc.

A[31:0] B[31:0]

+ - *

0 1 0 1

32’d1 32’d1

00 01 10

R[31:0]

F[0]

F[2:1]

F[2:0]

Example: A 32-bit ALU Function Table

F2 F1 F0 

0   0   0 
0   0   1 
0   1   0 
0   1   1 
1    0   X

Function 

A + B 
A + 1 
A - B 
A - 1 
A * B

12



EE141

Module Definitions
2-to-1 MUX 3-to-1 MUX

32-bit Adder

32-bit Subtracter
16-bit Multiplier

module mux32two(i0,i1,sel,out);

input [31:0] i0,i1;
input sel;
output [31:0] out;

assign out = sel ? i1 : i0;

endmodule

module mux32three(i0,i1,i2,sel,out);
input [31:0] i0,i1,i2;
input [1:0] sel;
output [31:0] out;
reg [31:0] out;

always @ (i0 or i1 or i2 or sel)
begin
  case (sel)
    2’b00: out = i0;
    2’b01: out = i1;
    2’b10: out = i2;
    default: out = 32’bx;
  endcase
end
endmodule

module add32(i0,i1,sum);
input [31:0] i0,i1;
output [31:0] sum;

assign sum = i0 + i1;

endmodule
module sub32(i0,i1,diff);

input [31:0] i0,i1;
output [31:0] diff;

assign diff = i0 - i1;

endmodule

module mul16(i0,i1,prod);
input [15:0] i0,i1;
output [31:0] prod;

// this is a magnitude multiplier
// signed arithmetic later
assign prod = i0 * i1;

endmodule
13



EE141

module alu(a, b, f, r);
  input [31:0] a, b;
  input [2:0] f;
  output [31:0] r;
  wire [31:0] addmux_out, submux_out;
  wire [31:0] add_out, sub_out, mul_out;
  mux32two   adder_mux(.io(b), .i1(32'd1), .sel(f[0]), .out(addmux_out));
  mux32two   sub_mux(.io(b), .i1(32'd1), .sel(f[0]), .out(submux_out));
  add32      our_adder(.i0(a), .i1(addmux_out), .sum(add_out));
  sub32      our_subtracter(.i0(a), .i1(submux_out), .diff(sub_out));
  mul16      our_multiplier(.i0(a[15:0]), .i1(b[15:0]), .prod(mul_out));
  mux32three output_mux(.i0(add_out), .i1(sub_out), .i2(mul_out), .sel(f[2:1]), .out(r));
endmodule

Top-Level ALU Declaration
❑ Given submodules: 

❑ Declaration of the ALU Module:

module mux32two(i0,i1,sel,out);
module mux32three(i0,i1,i2,sel,out);
module add32(i0,i1,sum);
module sub32(i0,i1,diff);
module mul16(i0,i1,prod);

module  
names

(unique)  
instance  
names

corresponding 
wires/regs in 
module alu

intermediate output nodes

14

A[31:0] B[31:0]

+ - *
0 1 0 1
32’d1 32’d1

00 01 10

R[31:0]

F[0]

F[2:1]

F[2:0]



EE141

module alu(a, b, f, r);
  input [31:0] a, b;
  input [2:0] f;
  output [31:0] r;
  always @ (a or b or f)
    case (f)
      3’b000:  r = a + b;
      3’b001:  r = a + 1’b1;
      3’b010:  r = a – b;
      3’b011:  r = a – 1’b1;
      3’b100:  r = a * b;
      default: r = 32’bx;
    endcase
endmodule

  

Top-Level ALU Declaration, take 2
❑ No Hierarchy: 
❑ Declaration of the ALU Module:

A[31:0] B[31:0]

+ - *
0 1 0 1
32’d1 32’d1

00 01 10

R[31:0]

F[0]

F[2:1]

F[2:0]

Will this synthesize into 2 adders and 
2 subtractors or 1 of each?



EE141

Verilog in EECS 151/251A – Simple Rules
❑ We use behavioral modeling at the bottom of the hierarchy 
❑ Use instantiation to 1) build hierarchy and, 2) map to FPGA 

and ASIC resources not supported by synthesis. 
❑ Favor continuous assign and avoid always blocks unless: 

▪ no other alternative: ex: state elements, case 
▪ helps readability and clarity of code: ex: large nested if else 

❑ Use named ports. 
❑ Verilog is a big language.  This is only an introduction.   

▪ Harris & Harris book chapter 4 is a good source. 
▪ Be careful of what you read on the web.  Many bad examples out there. 
▪ We will be introducing more useful constructs throughout the semester.  Stay 

tuned!

16



EE141

Final thoughts on Verilog Examples
Verilog looks like C, but it describes hardware: 
Entirely different semantics: multiple physical elements with parallel activities 
and temporal relationships. 

A large part of digital design is knowing how to write Verilog that 
gets you the desired circuit.  First understand the circuit you want 
then figure out how to code it in Verilog.  If you try to write Verilog 
without a clear idea of the desired circuit, you will struggle.   

As you get more practice, you will know how to best write Verilog 
for a desired result. 

Be suspicious of the synthesis tools!  Check the output of the tools 
to make sure you get what you want.  

17



EE141

Sequential Elements



EE141
19

Only Two Types of Circuits Exist
❑ Combinational Logic Blocks (CL) 
❑ State Elements (registers)

• State elements are 
mixed in with CL 
blocks to control 
the flow of data.

Register file 

or 

Memory Block

Address
Input Data

Output Data
Write Control

clock

• Sometimes used in 
large groups by 
themselves for 
“long-term” data 
storage.



EE141
20

Register Details…What’s inside?

❑ n instances of a “Flip-Flop”
❑ Flip-flop name because the output flips and flops 

between 0 and 1 
❑ D is “data”, Q is “output”
❑ Also called “d-type Flip-Flop”



EE141
21

Flip-flop Timing Waveforms
❑ Edge-triggered d-type flip-flop

❑ This one is “positive edge-triggered”
❑ “On the rising edge of the clock, the input d is 

sampled and transferred to the output.  At all other 
times, the input d is ignored.”

❑ Example waveforms:



EE141
22

Accumulator Example

❑ We need something like this:

Assume X is a vector of N integers, presented to the input of 
our accumulator circuit one at a time (one per clock cycle), so 
that after N clock cycles, S hold the sum of all N numbers.

S=0;  Repeat N times 

S = S + X;

❑ But not quite. 

❑ Need to use the clock signal to 
hold up the feedback to match 
up with the input signal.

Xi



EE141
23

Accumulator
❑ Put register in feedback path.
❑ On each clock cycle the 

register prevents the new value 
from reaching the input to the 
adder prematurely.  (The new 
value just waits at the input of 
the register)

Si

Si-1

Timing:

Si

Si-1



EE141
24

Flip-Flop Timing Details

❑ Three important times associated with flip-flops:
▪ Setup time - How long d must be stable before the rising edge of CLK
▪ Hold time - How long D must be stable after the rising edge of CLK
▪ Clock-to-q delay – Propagation delay after rising edge of the CLK



EE141
25

Accumulator Revisited
❑ Note:

– Reset signal 
(synchronous)

– Timing of X signal is not 
known without 
investigating the circuit 
that supplies X.  Here 
we assume it comes 
just after Si-1.

– Observe transient 
behavior of Si.



EE141
26

Level-sensitive Latch Inside Flip-flop

Positive Level-sensitive latch:

Positive Edge-triggered flip-flop built 
from two level-sensitive latches:

When CLK is high, latch is transparent, when clk is low, latch 
retains previous value.



EE141

Sequential Elements 
in Verilog



EE141
28

State Elements in Verilog
Always blocks are the only way to specify the “behavior” of 

state elements.  Synthesis tools will turn state element 
behaviors into state element instances.  

module dff(q, d, clk, set, rst); 

  input d, clk, set, rst; 

  output q; 

  reg q; 

  always @(posedge clk) 

    if (rst) 

      q <= 1’b0; 

    else if (set) 

      q <= 1’b1; 

    else 

      q <= d; 

endmodule

D-flip-flop with synchronous set and reset example:

keyword

“always @ (posedge clk)” is key 
to flip-flop generation.

This gives priority to 
reset over set and set 

over d.

On FPGAs, maps to native flip-flop.

d s
q

rclk

set

rst



EE141

The Sequential always Block

module comb(input a, b, sel, 
            output reg out);
  always @(*) begin
    if (sel) out = b;
    else out = a;
  end    
endmodule

module seq(input a, b, sel, clk,  
           output reg out);
  always @(posedge clk) begin
    if (sel) out <= b;
    else out <= a;
  end    
endmodule

Combinational Sequential

29



EE141

Latches vs. Flip-Flops

module flipflop
(
   input clk, 
   input d,  
   output reg q
);

  always @(posedge clk) 
  begin
    q <= d;
  end    
endmodule

Flip-Flop Latch

module latch
(
   input clk, 
   input d,  
   output reg q
);

  always @(clk or d) 
  begin
    if ( clk )
      q <= d;
  end    
endmodule

Clk

D Q

Clk

D Q

30



EE141

Note: The following is incorrect syntax: always @(clear or negedge clock) 

If one signal in the sensitivity list uses posedge/negedge, then all signals must.  

▪ Assign any signal or variable from only one always block.  
Be wary of race conditions: always blocks with same trigger 
execute concurrently… 

Importance of the Sensitivity List
❑ The use of posedge and negedge makes an always block 

sequential (edge-triggered)
❑ Unlike a combinational always block, the sensitivity list does 

determine behavior for synthesis! 

module dff_sync_clear(
  input d, clearb, clock, 
  output reg q);

  always @(posedge clock)
    begin
      if (!clearb) q <= 1'b0;
      else q <= d; 
    end
endmodule

D-Register with synchronous clear D-Register with asynchronous clear

always block entered only at 
each positive clock edge

always block entered immediately when 
(active-low) clearb is asserted

module dff_async_clear(
  input d, clearb, clock, 
  output reg q);

  always @(negedge clearb or posedge clock)
    begin
      if (!clearb) q <= 1'b0;
      else q <= d; 
    end
endmodule

31



EE141

Blocking vs. Nonblocking Assignments
❑ Verilog supports two types of assignments within always blocks, with 

subtly different behaviors.

always @(*) begin
  x = a | b;      // 1. evaluate a|b, assign result to x
  y = a ^ b ^ c;  // 2. evaluate a^b^c, assign result to y
  z = b & ~c;     // 3. evaluate b&(~c), assign result to z
end

Sometimes, as above, both produce the same result. Sometimes, not!

always @(*) begin
  x <= a | b;     // 1. evaluate a|b, but defer assignment to x
  y <= a ^ b ^ c; // 2. evaluate a^b^c, but defer assignment to y
  z <= b & ~c;    // 3. evaluate b&(~c), but defer assignment to z
  // 4. end of time step: assign new values to x, y and z
end

❑ Blocking assignment (=): evaluation and assignment are immediate

❑ Nonblocking assignment (<=): all assignments deferred to end of 
simulation time step after all right-hand sides have been evaluated 
(even those in other active always blocks)

32



EE141

Assignment Styles for Sequential Logic

Will nonblocking and blocking assignments both produce 
the desired result? 

module nonblocking(
  input in, clk,
  output reg out
);
  reg q1, q2;
  always @(posedge clk) begin
    q1 <= in;
    q2 <= q1;   
    out <= q2;  
  end    

endmodule

What we want: 
Register Based 
Digital Delay 

Line

module blocking(
  input in, clk,
  output reg out
);
  reg q1, q2;
  always @(posedge clk) begin
    q1 = in;
    q2 = q1;   
    out = q2;  
  end    

endmodule
33



EE141

Use Nonblocking for Sequential Logic

“At each rising clock edge, q1, q2, 
and out simultaneously receive the 
old values of in, q1, and q2.”

“At each rising clock edge, q1 = in.  
After that, q2 = q1.  
After that, out = q2.  
Therefore out = in.”

always @(posedge clk) begin
    q1 <= in;
    q2 <= q1;   // uses old q1
    out <= q2;  // uses old q2
  end    

always @(posedge clk) begin
    q1 = in;
    q2 = q1;   // uses new q1
    out = q2;  // uses new q2
  end

❑ Blocking assignments do not reflect the intrinsic behavior of 
multi-stage sequential logic 

❑ Guideline: use nonblocking assignments for sequential always 
blocks

(“old” means value before clock edge, “new” means the value after most recent 
assignment)

34



EE141

Example: A Simple Counter

0 1

0
1

0

+1

enb
clr clk

// 4-bit counter with enable and synchronous clear
module counter(input clk,enb,clr,
               output reg [3:0] count);
  always @(posedge clk) begin
    count <= clr ? 4’b0 : (enb ? count+1 : count);
  end
endmodule

count
44



EE141

module ParToSer(ld, X, out, clk);  

 input [3:0] X; 

 input ld, clk; 

 output out;  

  

 reg [3:0] Q; 

  wire [3:0] NS; 

  assign NS =  

(ld) ? X : {Q[0], Q[3:1]}; 

 always @ (posedge clk) 

    Q <= NS; 

  assign out = Q[0]; 

endmodule 36

Example - Parallel to Serial Converter

Specifies the 
muxing with 
“rotation”

forces Q register (flip-flops) to be 
rewritten every cycle

connect output

ld

out
out


