
EE141

EECS 151/251A 
Fall	2018  
Digital	Design	and	Integrated	Circuits

Instructor:		
John	Wawrzynek	&	Nicholas	Weaver

Lecture 5



EE141

Representations of 
Combinational Logic



EE141
3

Combinational Logic (CL) Defined

yi = fi(x0 , . . . . , xn-1), where x, y are {0,1}.  
 Y is a function of only X.  

❑ If we change X, Y will change immediately (well almost!).  
❑ There is an implementation dependent delay from X to Y. 



EE141
4

CL Block Example #1

Truth Table Description: 

Boolean Equation: 
 y0 = (x0 AND not(x1))  

  OR (not(x0) AND x1) 

     y0 = x0x1' + x0'x1 

Gate Representation: 

 

How would we prove that all three representations are equivalent?



EE141
5

Boolean Algebra/Logic Circuits
❑ Why are they called “logic circuits”?  
❑ Logic: The study of the principles of reasoning. 
❑ The 19th Century Mathematician, George Boole, developed 

a math. system (algebra) involving logic, Boolean Algebra.   
❑ His variables took on TRUE, FALSE 
❑ Later Claude Shannon (father of information theory) 

showed (in his Master's thesis!) how to map Boolean 
Algebra to digital circuits: 

❑ Primitive functions of Boolean Algebra:



EE141
6

Relationship Among Representations
* Theorem: Any Boolean function that can be expressed as a truth table can be 

written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?



EE141
7

CL Block Example – 4 Bit Adder

  
        R = A + B,  
        c is carry out

• Truth Table Representation:

In general: 2n rows for n inputs.  
Is there a more efficient (compact) way to specify this function? 

256 rows!



EE141
8

4-bit Adder Example
❑ Motivate the adder circuit design 

by hand addition: 

❑ Add a0 and b0 as follows:

• Add a1 and b1 as follows:

carry to next 
stage

r = a XOR b = a ⊕ b 
c = a AND b = ab r = a ⊕ b ⊕ ci 

co = ab + aci + bci



EE141
9

4-bit Adder Example
❑ In general: 

ri = ai ⊕ bi ⊕ cin 

cout = aicin + aibi + bicin = cin(ai + bi) + aibi 

❑ Now, the 4-bit adder: “Full adder cell”

“ripple” adder



EE141
10

4-bit Adder Example
❑ Graphical Representation of FA-cell 

ri = ai ⊕ bi ⊕ cin 

cout = aicin + aibi + bicin

• Alternative Implementation (with 
only 2-input gates): 

ri = (ai ⊕ bi) ⊕ cin 

cout = cin(ai + bi) + aibi



EE141

FPGAs:  
Directly Mapping 
Truth Tables



EE141

So We Want To Map Designs...
• FPGAs: Programmable fabric design to 

map arbitrary digital designs 
• The prototypical design: A 

Microprocessor...

12



EE141

So What Do We Need?
• Arbitrary boolean functions 

▪ For control logic 
• State registers 
• Multiplexors 

▪ The ever-present need to switch from several 
possible inputs 
•EG, select an add or a shift as the output of the ALU 
•Select the proper value for the forwarding 

• Small memories for register files 
• Larger memories for caches 
• Stuff to speak to the outside world

13



EE141

Our FPGA Fabric: The Xilinx 7 Series
• A family of FPGAs 

▪ Ranging from <$20 and 900 "slices" to  
>$4000 and 13,600 slices (actually multiple chips) 

• A common set of logic cells 
▪ Combinational Logic Blocks 
▪ Larger distributed memory blocks 
▪ Distributed DSP-blocks with multipliers 

• A common set of tools 
▪ Verilog & VHDL 

• Differing levels of interconnect 
▪ Larger FPGAs need more wires per unit of logic

14



EE141
15

FPGA Overview
• Basic idea: two-dimensional array of logic blocks and flip-flops with a 

means for the user to configure (program): 
  1. the interconnection between the logic blocks, 
  2. the function of each block.

Simplified version of FPGA internal architecture



EE141

Why are FPGAs Interesting?
• Technical viewpoint: 

▪ For hardware/system-designers, like ASICs -  only 
better:  “Tape-out” new design every few minutes/
hours. 

▪ “reconfigurability” or  “reprogrammability” may offer 
other advantages over fixed logic? 
• In-field reprogramming? Dynamic reconfiguration? Self-

modifying hardware, evolvable hardware? 
▪ Coupled to large & useful fixed logic 

•Processor/FPGA hybrids 

• Cost viewpoint: 
▪ Not only is the design cost vastly less 
▪ The manufacturers produce a lot of these things

16



EE141
17

Why are FPGAs Interesting?
• Staggering logic capacity growth (10,000x): 

▪ FPGAs have tracked Moore's Law better than any 
other programmable device. 
•Effectively almost perfectly: Just keep adding 

more transistors 
•Plus they are also a lot faster...

Year Introduced Device Logic Cells “logic gate 
equivalents”

1985 XC2064 128 1024

2015 XCVU37P 2.8M 10M+

1995 EECS150 XC4005 196 5000

2015 EECS151 XCZ7020 85K ....



EE141
18

User Programmability
• Latches are used to: 

1. control a switch to make or 
break cross-point 
connections in the 
interconnect 

2. define the function of the 
logic blocks 

3. set user options: 
• within the logic blocks 
• in the input/output blocks 
• global reset/clock 

• “Configuration bit stream” is 
loaded under user control: 
Shift in the programming 
data

• Latch-based (Xilinx, Altera, …) 

+ reconfigurable 

– volatile 

– relatively large.



EE141

Idealized FPGA Logic Block

• 4-input look up table (LUT) 
▪ implements combinational logic 

functions 
• Register 

▪ optionally stores output of LUT

19

Function defined 
by configuration 
bit-stream



EE141
20

4-LUT Implementation
• n-bit LUT is implemented as a 2n x 1 

memory: 
▪ inputs choose one of 2n memory 

locations. 
▪ memory locations (latches) are 

normally loaded with values from 
user's configuration bit stream. 

▪ Inputs to mux control are the CLB 
inputs. 

• Result is a general purpose “logic 
gate”.   
▪ n-LUT can implement any function of 

n inputs by simply directly 
implementing the truth table 
representation



EE141
21

LUT as general logic gate
• An n-lut as a direct implementation of a 

function truth-table. 
• Each latch location holds the value of 

the function corresponding to one input 
combination.

Example: 4-lut

Example: 2-lut

Implements any function of 2 inputs.  

How many of these  are there?

How many functions of n inputs?



EE141

How Big A LUT...
• The original FPGAs used 4-input LUTs 

▪ Able to implement an arbitrary 4 input binary function 
• But what's the most common function? 

▪ A mux... 
• A 4-LUT can only implement a 2-1 MUX 

▪ Additional logic around the LUTs to build larger 
MUXes 

• A 6-LUT can implement a 4-1 MUX... 
▪ So in the past few years the FPGA primary 

architectures have switched from 4-LUTs to 6-LUTs 
▪ Well, actually paired 5-LUTs: 

Two 5-LUTs with common inputs and a final 
multiplexor

22



EE141
23

FPGA Generic Design Flow

• Design Entry: 

– Create your design files using: 
•  schematic editor or  
• HDL (hardware description languages: Verilog, VHDL) 

• Design Implementation: 

– Logic synthesis (in case of using HDL entry) followed by, 
▪ Partition, place, and route to create configuration bit-stream file 

• Design verification: 

– Optionally use simulator to check function, 
– Load design onto FPGA device (cable connects PC to development 

board), optional “logic scope” on FPGA 
• check operation at full speed in real environment.



EE141
24

Example Partition, Placement, and Route
• Example Circuit: 

▪ collection of gates and flip-flops
• Idealized FPGA structure:

Circuit combinational logic must be “covered” by 4-input 1-output LUTs.
Flip-flops from circuit must map to FPGA flip-flops.  
 (Best to preserve “closeness” to CL to minimize wiring.)
Best placement in general attempts to minimize wiring.
Vdd, GND, clock, and global resets are all “prewired”.



EE141
25

Example Partition, Placement, and Route
• Example Circuit: 

▪ collection of gates and flip-flops

Two partitions.  Each has single output, no more than 4 inputs, and  
no more than 1 flip-flop.  In this case, inverter goes in both partitions. 
   
Note:  the partition can be arbitrarily large as long as it has not more  
than 4 inputs and 1 output, and no more than 1 flip-flop.

A

A

B

B

INOUT



EE141
26

Xilinx FPGAs (interconnect detail): OLD SCHOOL



EE141

Xilinx 7-Series CLB "Slice"
• Two types of slices: 

▪ SLICEL: Logic Functionality 
▪ SLICEM: + Memory Functionality 
▪ Two slices in a Combinational Logic Block 

• Arranged in columns with other 
functionality 
▪ DSP slices:  Multiply/Accumulate logic  

(you have 120 of them if you are in the FPGA lab) 
▪ Larger 36 Kb, dual-ported distributed memories 
▪ I/O pins 
▪ Hard modules for serial communication, analog 

input, processor, abstract DRAM interface etc

27



EE141

7 Series FPGAs CLB User Guide www.xilinx.com 19
UG474 (v1.8) September 27, 2016

Slice Description

X-Ref Target - Figure 2-3

Figure 2-3: Diagram of SLICEM

A6:A1

D

COUT

D

DX

C

CX

B

BX

A

AX

O6

DI2

O5

DI1

MC31WEN

CK

DI1

MC31WEN

CK

DI1

MC31WEN

CK

DI1

MC31WEN

CK

UG474_c2_02_110510

DX
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

D

FF/LAT
INIT1
INIT0
SRHI
SRLO

SR

CE
CK

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

D

SR

CE
CK

D

SR

CE
CK

D

SR

Q

CE
CK

CIN

0/1

WEN
WE

CK

Sync/Async

FF/LAT

A6:A1

O6
O5

C6:1

CX

D6:1

DI

A6:A1

O6
O5

B6:1

BX

A6:A1
W6:W1

W6:W1

W6:W1

W6:W1

O6
O5

A6:1

AX

SR
CE

CLK

CE
Q

CK SR

Q

Q

Q

SRHI
SRLO
INIT1
INIT0

D

CE
Q

CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q
CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q
CK SR

SRHI
SRLO
INIT1
INIT0

DI2

DI2

DI2

CI

BI

AI

The SLICEL and SLICEM
• 8 flip/flops 

▪ Common clock/CE/
RST line 

• Each LUT 
▪ 6-LUT 
▪ 2x 5-LUT with 

common inputs 
▪ 32b memory 
▪ 32b shift register 

• Dedicated carry 
chain 
▪ FPGA interconnect 

is slow

20 www.xilinx.com 7 Series FPGAs CLB User Guide
UG474 (v1.8) September 27, 2016

Chapter 2: Functional Details

X-Ref Target - Figure 2-4

Figure 2-4: Diagram of SLICEL

A6:A1

D
COUT

D

DX

C

CX

B

BX

A

AX

O6
O5

UG474_c2_03_101210

DX
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

D

FF/LAT
INIT1
INIT0
SRHI
SRLO

SR

CE
CK

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

D

SR

CE
CK

D

SR

CE
CK

D

SR

Q

CE
CK

CIN

0/1

Sync/Async

FF/LAT

A6:A1

O6
O5

C6:1

CX

D6:1

A6:A1

O6
O5

B6:1

BX

A6:A1

O6
O5

A6:1

AX

SR
CE

CLK

CE
Q

CK SR

Q

Q

Q

SRHI
SRLO
INIT1
INIT0

D

CE
Q

CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q
CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q
CK SR

SRHI
SRLO
INIT1
INIT0



EE141

Xilinx Virtex-5 XC5VLX110T
Virtex-5 “die photo” 

A die is an unpackaged part 



EE141
30

From die to PC board ...
Ball Grid 

Array (BGA) 
Flip-Chip 
Package



EE141

Perhaps the Biggest Problem  
with FPGAs: POWER
• Not only is the interconnect 

and gates somewhat slower 
than an ASIC... 
▪ They have a lot more capacitance 

and therefore burn a lot more 
power 

• Plus multiple voltages 
▪ 1.0V core 
▪ 1.5V DDR3 
▪ 1.8V high speed I/O 
▪ 3.3V lower speed I/O 

• It isn't just the power supply... 
▪ But also the need for  

bypass capacitors: 
Temporary energy supplies  
to provide a stable power supply

31



EE141

Boolean Algebra



EE141
33

Boolean Algebra



EE141
34

Some Laws of Boolean Algebra
Duality: A dual of a Boolean expression is derived by interchanging OR and 

AND operations, and 0s and 1s (literals are left unchanged).

Any law that is true for an expression is also true for its dual. 

Operations with 0 and 1: 
x + 0 = x                 x * 1 = x 
x + 1 = 1                 x * 0 = 0 

Idempotent Law: 
x + x = x                 x * x = x x = x 

Involution Law: 
(x')' = x 

Laws of Complementarity: 
x + x' = 1                  x x' = 0 

Commutative Law: 
x + y = y + x                  x y = y x



EE141
35

Some Laws of Boolean Algebra (cont.)
Associative Laws: 

(x + y) + z = x + (y + z) 
x y z = x(y z) 

Distributive Laws: 
x (y + z) = (x y) + (x z)   
x +(y z) = (x + y)(x + z) 

“Simplification” Theorems: 
x y + x y' = x 
(x + y) (x + y') = x 
x + x y = x 
x (x + y) = x 

DeMorgan's Law: 
(x + y + z + …)' = x'y'z' 
(x y z …)' = x' + y' +z' 

Theorem for Multiplying and Factoring: 
(x + y) (x' + z) = x z + x'y 

Consensus Theorem: 
x y + y z + x' z = (x + y) (y + z) (x' + z) 
x y + x' z = (x + y) (x' + z)



EE141
36

DeMorgan's Law
(x + y)' = x' y'

(x y)' = x' + y'

Exhaustive 
Proof

Exhaustive 
Proof



EE141
37

Relationship Among Representations
* Theorem: Any Boolean function that can be expressed as a truth table can be 

written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?



EE141
38

Canonical Forms
❑ Standard form for a Boolean expression - unique algebraic expression 

directly from a true table (TT) description. 
❑ Two Types: 

* Sum of Products (SOP) 
* Product of Sums (POS)

• Sum of Products (disjunctive normal form, minterm expansion).  Example: 

Minterms     a b c  f f' 
a'b'c'     0 0 0  0 1 
a'b'c'     0 0 1  0 1 
a'bc'     0 1 0  0 1 
a'bc     0 1 1  1 0 
ab'c'     1 0 0  1 0 
ab'c     1 0 1  1 0 
abc'     1 1 0  1 0 
abc     1 1 1  1 0 

One product (and) term for each 1 in f: 
 f = a'bc + ab'c' + ab'c + abc' + abc 
 f' = a'b'c' + a'b'c + a'bc'

What is the cost?



EE141
39

Sum of Products (cont.)
Canonical Forms are usually not minimal: 
Our Example: 

f  = a'bc + ab'c' + ab'c + abc' +abc  (xy' + xy = x)  
   = a'bc + ab' + ab  
   = a'bc + a                 (x'y + x = y + x) 
   = a + bc 

 f' = a'b'c' + a'b'c + a'bc' 
     = a'b' + a'bc' 
     = a' ( b' + bc' ) 
     = a' ( b' + c' ) 
     = a'b' + a'c'



EE141
40

Canonical Forms
• Product of Sums (conjunctive normal form, maxterm expansion).  

 Example: 
maxterms    a b c  f  f' 

a+b+c    0 0 0  0 1 

a+b+c'    0 0 1  0 1 

a+b'+c    0 1 0  0 1 

a+b'+c'      0 1 1  1 0 
a'+b+c    1 0 0  1 0 

a'+b+c'       1 0 1  1 0 
a'+b'+c    1 1 0  1 0 

a'+b'+c'    1 1 1  1 0 

One sum (or) term for each 0 in f: 
   f = (a+b+c)(a+b+c')(a+b'+c) 
   f' = (a+b'+c')(a'+b+c)(a'+b+c') 
  (a'+b'+c)(a+b+c')



EE141

Simplify … algebra or K-maps
❑ Algebra: f = a+bc 
❑ K-maps: 
    

41

1
1
1

1
1

0 0
0



EE141

Multi-level Logic



EE141
43

Multi-level Combinational Logic
❑ Example: reduced sum-of-products form 
 x = adf + aef + bdf + bef + cdf + cef + g 
❑ Implementation in 2-levels with gates: 

cost: 1 7-input OR, 6 3-input AND  
   => 50 transistors 
delay: 3-input OR gate delay + 7-input AND gate delay



EE141
44

Multi-level Combinational Logic
❑ Example: reduced sum-of-products form 
 x = adf + aef + bdf + bef + cdf + cef + g 
❑ Implementation in 2-levels with gates: 

cost: 1 7-input OR, 6 3-input AND  
   => 50 transistors 
delay: 3-input OR gate delay + 7-input AND gate delay 

❑ Factored form: 
 x = (a + b +c)(d + e)f + g 

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND 
      => 20 transistors 
delay: 3-input OR + 3-input AND + 2-input OR 

Footnote: NAND would be used in 
place of all ANDs and ORs.



EE141
45

Multi-level Combinational Logic
❑ Example: reduced sum-of-products form 
 x = adf + aef + bdf + bef + cdf + cef + g 
❑ Implementation in 2-levels with gates: 

cost: 1 7-input OR, 6 3-input AND  
   => 50 transistors 
delay: 3-input OR gate delay + 7-input AND gate delay 

❑ Factored form: 
 x = (a + b +c)(d + e)f + g 

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND 
      => 20 transistors 
delay: 3-input OR + 3-input AND + 2-input OR  

Which is faster? 
In general: Using multiple levels (more than 2) will reduce the cost.  Sometimes also 

delay. 
Sometimes a tradeoff between cost and delay.

Footnote: NAND would be used in 
place of all ANDs and ORs.



EE141
46

Multi-level Combinational Logic
Another Example:  F = abc + abd +a'c'd' + b'c'd'   
     let x = ab  y = c+d 
       f = xy + x'y' 

No convenient hand methods exist for multi-level logic simplification: 
a) CAD Tools use sophisticated algorithms and heuristics 

Guess what?  These problems tend to be NP-complete 
b) Humans and tools often exploit some special structure (example adder)

Incorporates fanout.



EE141

Binary decision diagrams as the base

47

Binary decision tree

Binary decision diagram (BDD)



EE141
48

NAND-NAND & NOR-NOR Networks
DeMorgan's Law Review: 
  (a + b)' = a' b'        (a b)' = a' + b' 
   a + b   = (a' b')'      (a b)  = (a' + b')' 

push bubbles or introduce in pairs or remove pairs:         
(x')' = x.



EE141
49

NAND-NAND & NOR-NOR Networks
❑ Mapping from AND/OR to NAND/NAND



EE141
50

Multi-level Networks
Convert to NANDs: 
F = a(b + cd) + bc'



EE141

Finite State 
Machines



EE141

Finite State Machines (FSMs)
❑ FSM circuits are a type of 

sequential circuit: 
▪ output depends on present 

and past inputs 
– effect of past inputs is 

represented by the current 
state 

❑ Behavior is represented 
by State Transition 
Diagram: 
▪ traverse one edge per 

clock cycle.
52



EE141

FSM Implementation

❑ Flip-flops form state register 

❑ number of states ≤ 2number of flip-flops 

❑ CL (combinational logic) calculates next state and output 
❑ Remember:  The FSM follows exactly one edge per cycle.

Later we will learn how to implement in Verilog.  Now we 
learn how to design “by hand” to the gate level.

53



EE141

Parity Checker Example
A string of bits has “even parity” if the number of 1's in the string is even. 
❑ Design a circuit that accepts a bit-serial stream of bits, and outputs a 0 if 

the parity thus far is even and outputs a 1 if odd:

Next we take this example through the “formal design process”.  But 
first, can you guess a circuit that performs this function?

54



EE141

Parity Counter

55



EE141

Formal Design Process (2) 

“State Transition Diagram” 
▪ circuit is in one of two 

“states”. 
▪ transition on each cycle 

with each new input, over 
exactly one arc (edge). 

▪ Output depends on which 
state the circuit is in.

56



EE141

Formal Design Process (3,4)
State Transition Table: 

Invent a code to represent states: 
Let 0 = EVEN state, 1 = ODD state

present                   next 
state       OUT  IN   state 

 EVEN       0     0    EVEN 
 EVEN       0     1     ODD 
 ODD         1     0     ODD 
 ODD         1     1    EVEN

present state (ps)   OUT   IN   next state (ns) 
            0                    0      0                0 
            0                    0      1                1 
            1                    1      0                1 
            1                    1      1                0

Derive logic equations from 
table (how?): 

OUT = PS 
NS = PS xor IN

57



EE141

Formal Design Process (5,6)

❑ Circuit Diagram: 

▪ XOR gate for NS 
calculation 

▪ DFF to hold present state 
▪ no logic needed for output 

in this example.

Logic equations from table: 
OUT = PS 
NS = PS xor IN

nsps

58



EE141

Formal Design Process
Review of Design Steps: 

 1. Specify circuit function (English) 
 2. Draw state transition diagram 
 3. Write down symbolic state transition table 
 4. Write down encoded state transition table 
 5. Derive logic equations 
 6. Derive circuit diagram 
  Register to hold state 
  Combinational Logic for Next State and Outputs

59



EE141

FSM Design 
Example



EE141

Combination Lock Example

❑ Used to allow entry to a locked room: 
2-bit serial combination.  Example 01,11: 
 1. Set switches to 01, press ENTER 
 2. Set switches to 11, press ENTER 
 3. OPEN is asserted (OPEN=1). 
  If wrong code, ERROR is asserted (after second combo word entry). 
  Press Reset at anytime to try again.

61



EE141

Combinational Lock STD

Assume the ENTER 
button when pressed 
generates a pulse for 
only one clock cycle.

62



EE141

Symbolic State Transition Table
RESET  ENTER  COM1  COM2  Preset State         Next State  OPEN ERROR 
0 0 * * START  START 0 0 
0 1 0 * START  BAD1 0 0 
0 1 1 * START  OK1 0 0 
0 0 * * OK1  OK1 0 0 
0 1 * 0 OK1  BAD2 0 0 
0 1 * 1 OK1  OK2 0 0 
0 * * * OK2  OK2 1 0 
0 0 * * BAD1  BAD1 0 0 
0 1 * * BAD1  BAD2 0 0 
0 * * * BAD2  BAD2 0 1 
1 * * * *  START 0 0

Decoder logic for checking 
combination (01,11):

63



EE141

Encoded ST Table
• Assign states: 
START=000, OK1=001, OK2=011 
BAD1=100, BAD2=101 
• Omit reset.  Assume that primitive flip-flops has reset 

input. 
• Rows not shown have don't cares in output.  

Correspond to invalid PS values. 

• What are the output functions for OPEN and ERROR?

NS2 NS1 NS0

64



EE141

State Encoding

❑ In general: 
     # of possible FSM states = 2# of Flip-flops 

  Example:  
   state1 = 01, state2 = 11, state3 = 10, state4 = 00 

❑ However, often more than log2(# of states) 
FFs are used, to simplify logic at the cost of 
more FFs. 

❑ Extreme example is one-hot state encoding.

65



EE141

State Encoding
❑ One-hot encoding of states. 
❑ One FF per state. 

❑ Why one-hot encoding? 
▪ Simple design procedure. 

– Circuit matches state transition diagram (example next page). 
▪ Often can lead to simpler and faster “next state” and output logic. 

❑ Why not do this? 
▪ Can be costly in terms of Flip-flops for FSMs with large number of 

states. 
❑ FPGAs are “Flip-flop rich”, therefore one-hot state machine 

encoding is often a good approach.  

66



EE141

One-hot encoded FSM
❑ Even Parity Checker Circuit: 

❑ In General:
• FFs must be initialized for correct 

operation (only one 1)

Circuit generated 
through direct 
inspection of the STD.

67



EE141

One-hot encoded combination lock

68



EE141

Moore Versus Mealy 
Machines



EE141

FSM Implementation Notes

❑ All examples so far generate 
output based only on the 
present state, commonly 
called a “Moore Machine”: 

❑ If output functions include 
both present state and input 
then called a “Mealy 
Machine”:

70



EE141

Finite State Machines
❑ Example: Edge Detector 
  Bit are received one at a time (one per cycle),  
  such as:   000111010       time 

   
  Design a circuit that asserts 
  its output for one cycle when  
  the input bit stream changes 
  from 0 to 1.   
  
  We'll try two different solutions.

FSM

CLK

IN OUT

71



EE141

State Transition Diagram Solution A

IN   PS    NS  OUT 
 0    00     00    0 
 1    00     01    0 
 0    01     00    1 
 1    01     11    1 
 0    11     00    0 
 1    11     11    0

ZERO

CHANGE

ONE

72



EE141

Solution A, circuit derivation
IN   PS    NS  OUT 
 0    00     00    0 
 1    00     01    0 
 0    01     00    1 
 1    01     11    1 
 0    11     00    0 
 1    11     11    0

ZERO

CHANGE

ONE

73



EE141

Solution B
Output depends not only on PS but also on input, IN

IN   PS   NS   OUT 
 0     0      0       0 
 0     1      0       0 
 1     0      1       1 
 1     1      1       0

Let ZERO=0, 
        ONE=1

NS = IN, OUT = IN PS'

What's the intuition about this solution?

74



EE141

Edge detector timing diagrams

• Solution A: output follows the clock 
• Solution B: output changes with input rising edge and is 

asynchronous wrt the clock.

75



EE141

FSM Comparison
Solution A 

Moore Machine 
❑ output function only of PS 
❑ maybe more states (why?) 
❑ synchronous outputs 

▪ Input glitches not send at output 
▪ one cycle “delay” 
▪ full cycle of stable output

Solution B 
Mealy Machine 

• output function of both PS & input 
• maybe fewer states 
• asynchronous outputs 
– if input glitches, so does output 
– output immediately available 
– output may not be stable long enough to 

be useful (below):

If output of Mealy FSM 
goes through 
combinational logic before 
being registered, the CL 
might delay the signal and 
it could be missed by the 
clock edge. 

76



EE141

FSM Recap
Moore Machine Mealy Machine

Both machine types allow one-hot implementations.

77



EE141

Final Notes on Moore versus Mealy
1. A given state machine could have both Moore and Mealy 

style outputs.  Nothing wrong with this, but you need to be 
aware of the timing differences between the two types. 

2. The output timing behavior of the Moore machine can be 
achieved in a Mealy machine by “registering” the Mealy 
output values:

78


