

EECS 151/251A Fall 2017 Digital Design and Integrated Circuits

Instructors:
Weaver and Wawrzynek

Lecture 8

Administration

- Exam in One Week
- Take here in class and with an extra 30 minutes (5:30-7:30).
\square Covers topics: beginning through 2/6.

Overview of Physical Implementations

The stuff out of which we make systems.

- Integrated Circuits (ICs)
- Combinational logic circuits, memory elements, analog interfaces.
- Printed Circuits (PC) boards
- substrate for ICs and interconnection, distribution of CLK, Vdd, and GND signals, heat dissipation.
- Power Supplies
- Converts line AC voltage to regulated DC low voltage levels.
- Chassis (rack, card case, ...)
- holds boards, power supply, fans, provides physical interface to user or other systems.
- Connectors and Cables.

Printed Circuit Boards

Multichip Modules (MCMs)

- Multiple chips directly connected to a substrate. (silicon, ceramic, plastic, fiberglass) without chip packages.

Integrated Circuits

- Primarily Crystalline Silicon
- $1 \mathrm{~mm}-25 \mathrm{~mm}$ on a side
- 100-20B transistors
- (25-250M "logic gates")
- 3-10 conductive layers
- 2018 state-of-the-art feature size $7 \mathrm{~nm}=0.007 \times 10^{-6} \mathrm{~m}$
- "CMOS" most common complementary metal oxide semiconductor

Chip in Package

- Package provides:
- spreading of chip-level signal paths to board-level
- heat dissipation.
- Ceramic or plastic with gold

From Gates to Circuits

- Digital abstraction
- CMOS abstraction
- Switch logic
\square Transient properties

CMOS abstraction

CMOS Devices

- MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

$$
\underline{I} B
$$

The gate acts like a capacitor. A high voltage on the gate attracts charge into the channel. If a voltage exists between the source and drain a current will flow. In its simplest approximation, the device acts like a switch.

CMOS Transistors - State-of-the-Art

MOS Transistor as a Switch

MOS Transistor

$\longleftrightarrow \quad$ A Switch!

ON/OFF Switch Model of MOS Transistor

Drain versus Source - Definition

MOS transistors are symmetrical devices (Source and drain are interchangeable)

Source is the node w/ the lowest voltage

A More Realistic Switch

A Logic Perspective

NMOS Transistor

A Complementary Switch

$$
Y=Z \text { if } X=0
$$

PMOS Transistor

Source is the node w/ the highest voltage!

The CMOS Inverter: A First Glance

The Switch Inverter
 First-Order DC Analysis

$$
\begin{gathered}
V_{O L}=0 \\
V_{O H}=V_{D D} \\
V_{M}=f\left(R_{n}, R_{p}\right)
\end{gathered}
$$

Switch logic

- At every point in time (except during the switching transients) each gate output is connected to either $\mathrm{V}_{D D}$ or $\mathrm{V}_{S S}$ via a low resistive path.
- The output of the gate assumes at all times the value of the Boolean function implemented by the circuit (ignoring, once again, the transient effects during switching periods).

Example: CMOS Inverter

Building logic from switches

$$
\begin{gathered}
\text { AND } \\
Y=X \text { if } A \text { AND } B
\end{gathered}
$$

Parallel

OR
$Y=X$ if A OR B
(output undefined if condition not true)

Logic using inverting switches

NAND
$Y=X$ if \bar{A} OR \bar{B}
$=\overline{\boldsymbol{A B}}$
(output undefined if condition not true)

Static Complementary CMOS

PUN and PDN are dual logic networks
PUN and PDN functions are complementary

Dual Graphs

Complementary CMOS Logic Style

- PUN is the dual to PDN
(can be shown using DeMorgan's Theorems)

$$
\begin{aligned}
& \overline{A+B}=\overline{A B} \bar{B} \\
& \overline{A B}=\bar{A}+\bar{B}
\end{aligned}
$$

- Static CMOS gates are always inverting

Example Gate: NAND

\mathbf{A}	\mathbf{B}	Out
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Truth Table of a 2 imput NAND gate

- PDN: $\mathrm{G}=\mathrm{AB} \Rightarrow$ Conduction to GND
- PUN: $F=\bar{A}+\bar{B}=\overline{A B} \Rightarrow$ Conduction to $V_{D D}$
- $\overline{G\left(\ln _{1}, \ln _{2}, \ln _{3}, \ldots\right)} \equiv F\left(\overline{\mathrm{In}_{1}}, \overline{\mathrm{In}_{2}}, \overline{\ln }{ }_{3}, \ldots\right)$

Example Gate: NOR

| |
| :---: | :---: | :---: |
| \mathbf{A} \mathbf{B} Out
 $\mathbf{0}$ $\mathbf{0}$ $\mathbf{1}$
 $\mathbf{0}$ $\mathbf{1}$ $\mathbf{0}$
 $\mathbf{1}$ $\mathbf{0}$ $\mathbf{0}$
 $\mathbf{1}$ $\mathbf{1}$ $\mathbf{0}$ |
| Truth Table of a 2 input NOR gate |

Complex CMOS Gate

OUT $=\overline{D+A \cdot(B+C)}$
OUT $=\overline{D \cdot A+B \cdot C}$

Non-inverting logic

PUN and PDN are dual logic networks
PUN and PDN functions are complementary

Switch Limitations

Tough luck ...

Transmission Gate

- Transmission gates are the way to build "switches" in CMOS.
- In general, both transistor types are needed:
nFET to pass zeros.
$\square \mathrm{pFET}$ to pass ones.
- The transmission gate is bi-directional (unlike logic gates).

- Does not directly connect to Vdd and GND, but can be combined with logic gates or buffers to simplify many logic structures.

Transmission-gate Multiplexor

2-to-1 multiplexor:

$$
c=s a+s^{\prime} b
$$

Switches simplify the implementation:

Compare the cost to logic gate implementation.

4-to-1 Transmission-gate Mux

- The series connection of passtransistors in each branch effectively forms the AND of $s 1$ and s 0 (or their complement).
- Compare cost to logic gate implementation

Any better solutions?

Alternative 4-to-1 Multiplexor

- This version has less delay from in to out.
- In both versions, care must be taken to avoid turning on multiple paths simultaneously (shorting together the inputs).

Tri-state Buffers

Tri-state Buffer:

$O E$	N	$C L T$
C	J	Z
Γ	1	Z
1	J	C
1	1	1

"high
--impedance" (output disconnected)

Variations:

Inverting buffer

Inverted enable

Tri-state Buffers

Tri-state buffers enable "bidirectional" connections.

Tri-state buffers are used when multiple circuits all connect to a common wire. Only one circuit at a out1
 time is allowed to drive the bus. All others "disconnect" their outputs, but can "listen".

Tri-state Based Multiplexor

Multiplexor

Transistor Circuit for inverting multiplexor:

If $s=1$ then $c=a$ else $c=b$

Latches and Flip-flops

Positive Level-sensitive latch: CLK

Positive Edge-triggered flip-flop

 built from two level-sensitive latches:

Latch Implementation:

Summary:
 Complimentary CMOS Properties

- Full rail-to-rail swing
- Symmetrical VTC
- No (...) static power dissipation
- Direct path current during switching

Digital abstraction

Noise and Digital Systems

- Circuit needs to works despite "analog" noise
- Digital gates can and must reject noise
- This is actually how digital systems are defined
- Digital system is one where:
- Discrete values mapped to analog levels and back
- Elements (gates) can reject noise
- For "small" amounts of noise, output noise is less than input noise
- Thus, for sufficiently "small" noise, the system acts as if it was noiseless
- This is called regeneration

Bridging the digital and the analog worlds

- How to represent 0's and 1 's in a world that is analog?

The Static Definition

- Logic 0:

$$
\mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V} \leq \mathrm{V}_{\mathrm{OL}}
$$

- Logic 1:

$$
\mathrm{V}_{\mathrm{OH}} \leq \mathrm{V} \leq \mathrm{V}_{\mathrm{MAX}}
$$

- Undefined logic ualue: $\mathrm{FOL}_{\mathrm{OL}} \mathrm{V} \leq \mathrm{V}_{\mathrm{OH}}$

Ideal Inverter

Circuit representation and ideal transfer function:

Define switching point or logic threshold:

- $\mathrm{V}_{\mathrm{M}} \equiv$ input voltage for which $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }}$
- For $0 \leq V_{\text {IN }}<V_{M} \quad \Rightarrow V_{\text {OUT }}=V^{\prime}$
- For $\mathrm{V}_{\mathrm{M}}<\mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}^{+} \Rightarrow \mathrm{V}_{\text {OUT }}=0$

Ideal inverter returns well defined logical outputs $\left(0\right.$ or $\left.\mathrm{V}^{+}\right)$even in the presence of considerable noise in V_{IN} (from voltage spikes, crosstalk, etc.)
\Rightarrow signal is regenerated!

"Real Inverter"

logic 1
transition region
logic 0

- Logic 0:

$-\mathrm{V}_{\mathrm{MIN}} \equiv$ output voltage for which $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}$
$-\mathrm{V}_{\mathrm{OL}} \equiv$ smallest output voltage where slope $=-1$
- Logic 1:
$-\mathrm{V}_{\mathrm{OH}} \equiv$ largest output voltage where slope $=-1$
$-\mathrm{V}_{\mathrm{MAX}} \equiv$ output voltage for which $\mathrm{V}_{\mathrm{IN}}=0$

Valid Input Ranges

If range of output values V_{OL} to V_{OH} is wider than the range of input values V_{IL} to V_{IH}, then the inverter exhibits some noise immunity. (|Voltage gainl>1)

Quantify this through noise margins.

Definition of Noise Margins

Gate
Output
(Stage M)

Gate Input
(Stage $\mathrm{M}+1$)

Simulated Inverter VTC (Spice)

