

EECS 151/251A Fall 2017 Digital Design and Integrated Circuits

Instructors: Weaver and Wawrzynek

Lecture 8

Administration

Exam in One Week

- Take here in class and with an extra 30 minutes (5:30-7:30).
- □ Covers topics: beginning through 2/6.

Overview of Physical Implementations

The stuff out of which we make systems.

- Integrated Circuits (ICs)
 - Combinational logic circuits, memory elements, analog interfaces.
- Printed Circuits (PC) boards
 - substrate for ICs and interconnection, distribution of CLK,
 Vdd, and GND signals, heat dissipation.

Power Supplies

- Converts line AC voltage to regulated DC low voltage levels.
- Chassis (rack, card case, ...)
 - holds boards, power supply, fans, provides physical interface to user or other systems.

Connectors and Cables.

Printed Circuit Boards

fiberglass or ceramic
 1-25 conductive layers
 ~1-20in on a side
 IC packages are soldered down.

Multichip Modules (MCMs)

• Multiple chips directly connected to a substrate. (silicon, ceramic, plastic, fiberglass) without chip packages.

Integrated Circuits

Chip in Package

- Primarily Crystalline Silicon
- □ 1mm 25mm on a side
- 100 20B transistors
 - (25 250M "logic gates")
- 3 10 conductive layers
- 2018 state-of-the-art feature size
 7nm = 0.007 x 10⁻⁶ m
- "CMOS" most common complementary metal oxide semiconductor
- Package provides:
 - spreading of chip-level signal paths to board-level
 - heat dissipation.
- Ceramic or plastic with gold

From Gates to Circuits

Digital abstraction
 CMOS abstraction
 Switch logic
 Transient properties

CMOS abstraction

CMOS Devices

MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

The gate acts like a capacitor. A high voltage on the gate attracts charge into the channel. If a voltage exists between the source and drain a current will flow. In its simplest approximation, the device acts like a switch.

CMOS Transistors – State-of-the-Art

MOS Transistor as a Switch

MOS Transistor \checkmark A Switch! $V_{GS} \xrightarrow{G} U_{GS} \ge |V_T| R_{on}$ $S \xrightarrow{V_{GS}} \xrightarrow{V_{GS}} \xrightarrow{V_{GS}} \xrightarrow{V_{GS}} \xrightarrow{V_{O}} D$

ON/OFF Switch Model of MOS Transistor

Drain versus Source - Definition

MOS transistors are symmetrical devices (Source and drain are interchangeable)

Source is the node w/ the lowest voltage

A More Realistic Switch

A Logic Perspective

A Complementary Switch

Source is the node w/ the highest voltage!

The CMOS Inverter: A First Glance

The Switch Inverter First-Order DC Analysis

Switch logic

Static Logic Gate

- At every point in time (except during the switching transients) each gate output is connected to either V_{DD} or V_{SS} via a low resistive path.
- The output of the gate assumes at all times the value of the Boolean function implemented by the circuit (ignoring, once again, the transient effects during switching periods).

Example: CMOS Inverter

Building logic from switches

(output undefined if condition not true)

Logic using inverting switches

(output undefined if condition not true)

Static Complementary CMOS

PUN and PDN are dual logic networks PUN and PDN functions are complementary

Complementary CMOS Logic Style

PUN is the <u>dual</u> to PDN (can be shown using DeMorgan's Theorems)

$$\overline{A+B} = \overline{AB}$$
$$\overline{AB} = \overline{A} + \overline{B}$$

□ Static CMOS gates are always inverting

AND = NAND + INV

Example Gate: NAND

- □ PDN: G = AB \Rightarrow Conduction to GND
- □ PUN: $F = \overline{A} + \overline{B} = \overline{AB} \Rightarrow$ Conduction to V_{DD}
- $\Box \ \overline{\mathsf{G}}(\mathsf{In}_1,\mathsf{In}_2,\mathsf{In}_3,\ldots) \equiv \mathsf{F}(\mathsf{In}_1,\mathsf{In}_2,\mathsf{In}_3,\ldots)$

Example Gate: NOR

Complex CMOS Gate

 $OUT = D + A \cdot (B + C)$

 $OUT = D \cdot A + B \cdot C$

Non-inverting logic

PUN and PDN are dual logic networks PUN and PDN functions are complementary

Switch Limitations

Tough luck ...

Transmission Gate

- □ Transmission gates are the way to build "switches" in CMOS.
- In general, both transistor types are needed:
 - □ nFET to pass zeros.
 - □ pFET to pass ones.
- □ The transmission gate is bi-directional (unlike logic gates).

Does not directly connect to Vdd and GND, but can be combined with logic gates or buffers to simplify many logic structures.

Transmission-gate Multiplexor

2-to-1 multiplexor: c = sa + s'b

Switches simplify the implementation:

Compare the cost to logic gate implementation.

4-to-1 Transmission-gate Mux

The series connection of passtransistors in each branch effectively forms the AND of s1 and s0 (or their complement).

Compare cost to logic gate implementation

Any better solutions?

Alternative 4-to-1 Multiplexor

- This version has less delay from in to out.
- In both versions, care must be taken to avoid turning on multiple paths simultaneously (shorting together the inputs).

Tri-state Buffers

Tri-state Buffers

Tri-state buffers enable "bidirectional" connections.

Tri-state buffers are used when multiple circuits all connect to a common wire. Only one circuit at a time is allowed to drive the bus. All others "disconnect" their outputs, but can "listen".

Tri-state Based Multiplexor

Multiplexor

Transistor Circuit for inverting multiplexor:

If s=1 then c=a else c=b

Summary: Complimentary CMOS Properties

- Full rail-to-rail swing
- □ Symmetrical VTC
- □ No (...) static power dissipation
- Direct path current during switching

Digital abstraction

Noise and Digital Systems

□ Circuit needs to works despite "analog" noise

- Digital gates can and must reject noise
- This is actually how digital systems are defined

Digital system is one where:

- Discrete values mapped to analog levels and back
- Elements (gates) can reject noise
 - For "small" amounts of noise, output noise is less than input noise
- Thus, for sufficiently "small" noise, the system acts as if it was noiseless
- This is called regeneration

Bridging the digital and the analog worlds

The Static Definition

- Logic 0: $V_{MIN} \le V \le V_{OL}$
- Logic 1: $V_{OH} \le V \le V_{MAX}$
- Undefined logic value: $V \leq V_0$

Ideal Inverter

Circuit representation and ideal transfer function:

Define switching point or logic threshold :

• $V_M \equiv \text{input voltage for which } V_{OUT} = V_{IN}$ - For $0 \le V_{IN} < V_M \implies V_{OUT} = V^+$ - For $V_M < V_{IN} \le V^+ \implies V_{OUT} = 0$

Ideal inverter returns well defined logical outputs (0 or V⁺) even in the presence of considerable noise in V_{IN} (from voltage spikes, crosstalk, etc.) \Rightarrow signal is *regenerated*!

- Logic 0:
 - $V_{MIN} \equiv$ output voltage for which $V_{IN} = V^+$
 - V_{OL} = smallest output voltage where slope = -1
- Logic 1:
 - V_{OH} = largest output voltage where slope = -1
 - $-V_{MAX} \equiv$ output voltage for which $V_{IN} = 0$

Valid Input Ranges

If range of output values V_{OL} to V_{OH} is *wider* than the range of input values V_{IL} to V_{IH} , then the inverter exhibits some noise immunity. (IVoltage gainl > 1)

Quantify this through *noise margins*.

Definition of Noise Margins

Simulated Inverter VTC (Spice)

