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Administration
❑ First Midterm Thursday  

❑ Decided on closed book (sorry), but will give you extra 
time.  We will make an exam that is expected to take 
90 minutes, but will give you 3 hours. 
▪ 5-8PM  
▪ 405 Soda 
▪ Material: Everything up to slide 35 of Thursdays lecture 

(Lecture 8) – that is, CMOS logic is included. 
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Static Complementary CMOS
VDD

F(In1,In2,…InN)

In1In2
InN

In1In2
InN

PUN

PDN

PUN and PDN are dual logic networks 
PUN and PDN functions are complementary 

…
…

Inverting switches

Non-Inverting switches
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❑ Full rail-to-rail swing 
❑ Symmetrical VTC 
❑ No (…) static power dissipation 
❑ Direct path current during switching
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Switch (Transmission Gate Logic)

5

Network of switches F

In1
In2

In3

In4

No connections to GND or VDD

Static: 
Output always defined by GND or VDD, never both
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transmission gate 
useful in 
implementation

Tri-state Buffers

“high 
impedance” (output 
disconnected)

Tri-state Buffer:

Inverting buffer Inverted enable

Variations:
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Tri-state Buffers

Tri-state buffers are used when 
multiple circuits all connect to a 
common wire.  Only one circuit at a 
time is allowed to drive the bus.  
All others “disconnect” their 
outputs, but can “listen”.

Tri-state buffers 
enable “bidirectional” 
connections.

= 1

= 0

= 0

= 1

=0

=0

=1
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Tri-state Based Multiplexor

Multiplexor 

 If s=1 then c=a else c=b

Transistor Circuit for inverting 
multiplexor:
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Latches and Flip-flops
Positive Level-sensitive latch: 

Latch Transistor Level:Positive Edge-triggered flip-flop 
built from two level-sensitive 
latches:
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clk’

clk

clk

clk’

Latch Implementation:
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Digital abstraction
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Noise and Digital Systems

❑ Circuit needs to works despite “analog” noise 
▪ Digital gates can and must reject noise 
▪ This is actually how digital systems are defined 

❑ Digital system is one where: 
▪ Discrete values mapped to analog levels and back 
▪ Elements (gates) can reject noise 

– For “small” amounts of noise, output noise is less than input 
noise 

▪ Thus, for sufficiently “small” noise, the system acts as if it 
was noiseless 

▪ This is called regeneration
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Bridging the digital and the analog worlds

12

From MIT 6.012 Spring 2007, Lecture 11

❑ How to represent 0’s and 
1’s in a world that is analog?
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Ideal Inverter

13

Ideal inverter returns well defined logical outputs (0 or V+) even in the 
presence of considerable noise in VIN (from voltage spikes, crosstalk, etc.)  
⇒ signal is regenerated! 

From MIT 6.012 Spring 2007, Lecture 11
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“Real Inverter”

14

From MIT 6.012 Spring 2007, Lecture 11
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Valid Input Ranges

15

If range of output values VOL to VOH is wider than the range of 
input values VIL to VIH, then the inverter exhibits some noise 
immunity. (|Voltage gain| > 1) 

Quantify this through noise margins. 

From MIT 6.012 Spring 2007, Lecture 11
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Definition of Noise Margins

Undefined 
Region

Noise margin high: 
NMH = VOH – VIH 

Noise margin low: 
NML = VIL – VOL

Gate  
Output

Gate  
Input

NML

NMH

“0”

“1”

VOL

VOH

VIL

VIH

(Stage M) (Stage M+1)
16
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Simulated Inverter VTC (Spice) 

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Vin (V)

V ou
t(V

)

❑ VOH =  
❑ VOL = 
❑ VIL =  
❑ VIH = 
❑ NMH = 
❑ NML =  
❑ VM = 
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Transient properties
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The Switch – Dynamic Model

|VGS|

S D

G

|VGS| ≥ |VT|

S D
Ron

G
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The Switch – Dynamic Model (Simplified)

|VGS|

S D

G

|VGS| ≥ |VT|

S D
Ron

G

20

CG

CDCS
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The Switch Inverter: Transient Response 

tpHL = f(RonCL)
= 0.69 Rn CL

(a) Low-to-high (b) High-to-low

Vin Vin

Cin Cin

21

V(t) = V0 e –t/RC 
t1/2  = ln(2) × RC
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Switch Sizing
What happens if we make a switch W 
times larger (wider)

22

|VGS|

S D

G

|VGS| ≥ |VT|

S D
Ron/W

G

CGW

CDWCSW

W
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Switch Parasitic Model

The pull-down switch (NMOS)

Vin

CG

Vout

CD

Minimum-size switch

RN

Sizing the transistor (factor W)

Vin

WCG

Vout

WCDRN

W

23

We assume transistors of minimal length (or at least constant 
length).  R’s and C’s in units of per unit width.
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PMOS Sizing

The PMOS challenge: 

For the same voltages, it provides less 
current (approximately 2 times less)

24
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The pull-up switch (PMOS)

Minimum-size switch

Vin

CG Vout

CD

RP = 2RN
Vin

2CG Vout

2CD

RN

Sized for symmetry

Vin

2WCG Vout

2WCD

RN

General sizing

W

25

Switch Parasitic Model
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Inverter Parasitic Model

Vin

Cin = 3WCG

Vout

Cint = 3WCD

RN
W

RN
W

Drain and gate capacitance of 
transistor are directly related by 
process (γ≈1)

CD= γCG

= 3WγCG

tp = 0.69
RN
W

⎛

⎝
⎜

⎞

⎠
⎟(3WγCG ) = 0.69(3γ )RNCG

Intrinsic delay of inverter 
independent of size

26
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Inverter with Load Capacitance

Vin

Cin =  
3WCG

Vout

Cint =  
3WγCG 

RN
W

RN
W

CL

)()(

))(3(69.0

)3(69.0

)(69.0

0

int

ft
C
Ct

C
CRC

CCW
W
R

CC
W
Rt

in

L
inv

in

L
NG

LG
N

L
N

p

+=+=

+=

+⎟
⎠

⎞
⎜
⎝

⎛=

+⎟
⎠

⎞
⎜
⎝

⎛=

γγ

γ

γ

f = fanout = ratio between load and input capacitance of gate 
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Inverter Delay Model

tp=tinv(γ+f)

f

Delay

γ

tinv technology constant 
▪ Can be dropped from 

expression 
▪ Delay unit-less variable 

(expressed in unit delays)
t’p=γ+f

Question: how does transistor sizing (W) impact delay?

28
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Inverter Delay 
Optimization
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Inverter Chain

CL

In Out

❑ For some given CL: 
▪ How many stages are needed to minimize delay? 
▪ How to size the inverters? 

❑ Anyone want to guess the solution?

30
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Careful about Optimization Problems
❑ Get fastest delay if build one very big inverter 
▪ So big that delay is set only by self-loading 

❑ Likely not the problem you’re interested in 
▪ Someone has to drive this inverter…

Cload

31
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Engineering Optimization Problems in 
General
❑ Need to have a set of constraints 
❑ Constraints key to: 

▪ Making the result useful 
▪ Making the problem have a ‘clean’ solution 

❑ For sizing problem: 
▪ Need to constrain size of first inverter

32
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Delay Optimization Problem #1

❑ You are given: 
▪ A fixed number of inverters 
▪ The size of the first inverter 
▪ The size of the load that needs to be driven 

❑ Your goal: 
▪ Minimize the delay of the inverter chain 

❑ Need model for inverter delay vs. size

33
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CL

In Out

1 2 N

tp = tp1 + tp2 + …+ tpN

, 1

,

in j
pj inv

in j

C
t t

C
γ +⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

, 1
, , 1

1 1 ,

,   
N N

in j
p p j inv in N L

j i in j

C
t t t C C

C
γ +

+
= =

⎛ ⎞
= = + =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

Apply to Inverter Chain
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Optimal Sizing for Given N

, 1
2

, , 1 ,

1 0p in j
inv inv

in j in j in j

dt C
t t

dC C C
+

−

= − =

❑ Delay equation has N-1 unknowns, Cin,2 … Cin,N 

❑ To minimize the delay, find N-1 partial derivatives: 

, , 1

, 1 ,

... ...in j in j
p inv inv

in j in j

C C
t t t

C C
+

−

= + + +
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❑ Result: every stage has equal fanout (f): 

❑ Size of each stage is geometric mean of two 
neighbors: 

❑ Equal fanout à every stage will have same delay

, , 1 , 1in j in j in jC C C− +=

Optimal Sizing for Given N (cont’d)

, , 1

, 1 ,

in j in j

in j in j

C C
C C

+

−

=
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❑ When each stage has same fanout  f : 

❑ Fanout of each stage: 

❑ Minimum path delay:

,1/N
L inf F C C= =

N Ff =

( )N
p invt Nt Fγ= +

Optimum Delay and Number of Stages

37
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Example

CL= 8 C1

In Out

C1
1 f f 2

CL/C1 has to be evenly distributed across N = 3 stages:

38
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Delay Optimization Problem #2

❑ You are given: 
▪ The size of the first inverter 
▪ The size of the load that needs to be driven 

❑ Your goal: 
▪ Minimize delay by finding optimal number and 

sizes of gates 
❑ So, need to find N that minimizes:

( )N
p inv L int Nt C Cγ= +

39
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( )( ) ( )1/ ln
ln

N
p inv L in inv L in

ft Nt C C t C C
f
γ

γ
⎛ ⎞+

= + = ⎜ ⎟
⎝ ⎠

( ) 2

ln 1ln 0
ln

p
inv L in

t f ft C C
f f

γ∂ − −
= ⋅ =

∂

For γ = 0, f = e, N = ln (CL/Cin)

( )ln
 

ln
L inN

L in

C C
f C C N

f
= → =

( )ff γ+= 1exp

Untangling the Optimization Problem 

❑ Rewrite N in terms of fanout/stage f:

(no explicit solution)
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Optimum Effective Fanout f

( )ff γ+= 1exp

❑ Optimum  f  for given process defined by γ

0 0.5 1 1.5 2 2.5 32.5

3

3.5

4

4.5

5

γ

f op
t

fopt = 3.6 
for γ = 1

e
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In Practice: Plot of Total Delay

❑ Why the shape? 
❑ Curves very flat for f > 2 

▪ Simplest/most common choice: f = 4

[Hodges, p.281]
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( ),N
p inv L int Nt F F C Cγ= + =

Normalized Delay As a Function of F

[Rabaey: page 210]

(γ = 1)
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Buffer Design

1

1

1

64

64

64

N f tp 

1  

2  

3  
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Logical Effort
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Question #1

❑ How to best combine logic and drive for a big 
capacitive load?

CL CL
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Question #2

❑ All of these are “decoders” 
▪ Which one is “best”?

47
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Method to answer both of these questions

❑ Extension of buffer sizing problem 

❑ Logical effort

48



EE141

Complex Gate Sizing

49
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Complex Gate Sizing: NAND-2 Example

2

2

22Cgnand = 4CG = (4/3) Cginv 

Cdnand = 6CD = 6γCG =2γCginv 

f  = CL/Cgnand = (3/4) CL/Cginv

tpNAND = kRN(Cdnand+ CL) 
          = kRN(2γCginv+ CL) 
          = kRNCginv (2γ + CL/Cginv) 
          = tinv (2γ + (4/3)f)

50



EE141

Logical Effort

❑ Defines ease of gate to drive external capacitance 
❑ Inverter has the smallest logical effort and intrinsic delay 

of all static CMOS gates 
❑ Logical effort LE is defined as:  

▪ (Req,gateCin,gate)/(Req,invCin,inv) 
▪ Easiest way to calculate (usually):  

– Size gate to deliver same current as an inverter, take ratio of gate 
input capacitance to inverter capacitance 

❑ LE increases with gate complexity

51
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Logical Effort

Measure everything in units of tinv (divide by tinv): 

p – intrinsic delay - gate parameter ≠ f(W) 
LE – logical effort – gate parameter ≠ f(W) 
f – electrical fanout = CL/Cin = f (W) 

Normalize everything to an inverter: 
LEinv =1, pinv = γ

tpgate = tinv (p + LEf) 

52
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Delay of a Logic Gate

Gate delay:
Delay = EF + p    (measured in units of tinv)

effective fanout intrinsic delay

Effective fanout:
EF = LE f

logical effort electrical fanout  = CL/Cin

Logical effort is a function of topology, independent of sizing 
Effective fanout is a function of load/gate size

53
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Logical Effort of Gates

Fan-out (f)

N
or

m
al

iz
ed

 d
el

ay
 (d

)

t

1 2 3 4 5 6 7 

pINVt pNAND-2

LE= 
p= 
d=

LE= 
p= 
d=

p = γ·Fan-in 
(for top input)
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Delay Of NOR-2 Gate

1. Size for same resistance as 
inverter 

2. LE = ratio of input cap of gate 
versus inverter 

     

Intrinsic capacitance (Cdnor) = 

tpint (NOR) =

55
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Question

Any logic function can be implemented using 
NOR gates only or NAND gates only! 

Which of the two approaches is preferable in 
CMOS (from a performance perspective)? 
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Logical Effort

[From Sutherland, Sproull, Harris]
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Optimizing Complex 
Combinational Logic
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Multistage Networks

Effective fanout: EFi = LEifi 
Path delay D = Σdi = Σpi + ΣEFi 

Path electrical fanout: F = CL/Cin = Πfi 

Path logical effort: ΠLE = LE1LE2…LEN 

Path effort: PE = ΠLE F

Only for tree networks

59



EE141

Adding branching

Branching effort: , ,

,

L on path L off path

L on path

C C
b

C
− −

−

+
=

CL,on_path 

CL,off_path 

path of interest
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Multistage Networks

Effective fanout: EFi = LEifi 
Path delay D = Σdi = Σpi + ΣEFi 

Path electrical fanout: F = CL/Cin 

Branching effort: ΠB = b1b2…bN 

Πfi = ΠΒ F   (assuming all paths in the tree are important)
Path logical effort: ΠLE = LE1LE2…LEN 

Path effort: PE = ΠLE ΠΒ F

61
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Optimum Effort per Stage

NEF PE=
When each stage bears the same effort (effective fanout):

NEF PE=

( ) 1/
1 1

ˆ N NN
i i i ii i

D LE f p N PE p
= =

= + = ⋅ +∑ ∑
Minimum path delay

Effective fanouts: LE1f1 = LE2f2 = …  = LENfN
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Optimal Number of Stages

For a given load,  
and given input capacitance of the first gate 
Find optimal number of stages and optimal sizing

1/N
iD N PE p= ⋅ +∑

ˆ1/NEF PE=The ‘best effective fanout’

Remember: we can always add inverters to the end of the chain

is still around 4
(3.6 with γ=1)
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❑ Compute the path effort: PE = (ΠLE)BF 
❑ Find the best number of stages N ~ log4PE 
❑ Compute the effective fanout/stage EF = PE1/N 

❑ Sketch the path with this number of stages 
❑ Work either from either end, find sizes:  

Cin = Cout*LE/EF 

Reference: Sutherland, Sproull, Harris, “Logical Effort”, Morgan-Kaufmann 1999.

Method of Logical Effort: Summary

64



EE141

Optimizing Complex 
Combinational Logic: 
Examples
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Example 1: No branching

Electrical fanout, F = 
Π LE =  
PE = 
EF/stage = 
a = 
b =   
c = 

LE = 1  
f = a

LE = 5/3 
f = b/a

LE = 5/3 
f = c/b

LE = 1  
f = 5/c
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Example 1: No branching

Electrical fanout, F = 5 
Π LE = 25/9 
PE = 125/9 
EF/stage = 1.93 
a = 1.93 
b = 2.23 
c = 2.59

LE = 1  
f = a

LE = 5/3 
f = b/a

LE = 5/3 
f = c/b

LE = 1  
f = 5/c

5/c = 1.93 
(5/3)c/b = 1.93 
(5/3)b/a = 1.93

From the back

67

a, b, c are input 
capacitances 
normalized to 
the  unit inverter
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Our old problem: which one is better?

LE=10/3       1  
ΠLE = 10/3 
P =   8    +    1

LE=2          5/3 
ΠLE = 10/3 
P = 4     +     2 

LE=4/3      5/3       4/3      1 
ΠLE = 80/27 
P =  2   +   2     +    2   +   1 
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5
15

15

90

90
LE = 
F  = 
PE = 
   
EF1  = 
EF2  = 
PE  = 

1
90/5 = 18
18 (wrong!)

(15+15)/5 = 6
90/15 = 6
36, not 18!

Adding Branching

Better: PE = F·LE·B = 18·1·2 = 36
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Select gate sizes y and z to minimize delay from A to B

Logical Effort: LE = 

Electrical Fanout: F = 

Branching Effort: B = 

Path Effort:  PE =   

Best Effective Fanout: EF  =  

Delay:     D =

Example 2 with Branching

70
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Select gate sizes y and z to minimize delay from A to B

Logical Effort: LE = 

Electrical Fanout: F = 

Branching Effort: B = 

Path Effort:  PE =   

Best Effective Fanout: EF  =  

Delay:     D =

(4/3)3

Cout/Cin = 9
2•3 = 6
∏LE·F·B= 128

PE1/3 ≈ 5

3•5 + 3•2 = 21

Work backward for sizes:

5z =
9C•(4/3)

= 2.4C

5y =
3z•(4/3)

= 1.9C

Example 2 with Branching
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