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Administration
A First Midterm Thursday

Q Decided on closed book (sorry), but will give you extra
time. We will make an exam that is expected to take
90 minutes, but will give you 3 hours.

= 5-8PM
= 405 Soda

= Material: Everything up to slide 35 of Thursdays lecture
(Lecture 8) — that is, CMOS logic is included.






Static Complementary CMOS

VDD
|2; ] PUN Inverting switches
™y F(In,,In,,...Iny)
In, —
:nz | PDN | Non-Inverting switches
NN

PUN and PDN are dual logic networks
PUN and PDN functions are complementary

Q Full rail-to-rail swing
Q Symmetrical VTC
Q No (...) static power dissipation



Switch (Transmission Gate Logic)

Static:
Output always defined by GND or VDD, never both

In,
In; — Network of switches | =
In; —
In, —

No connections to GND or VDD

—
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Tri-state Buffers

Tri-state Buffer:
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Tri-state Buffers
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Tri-state buffers are used when
multiple circuits all connect to a
common wire. Only one circuit at a
time is allowed to drive the bus.
All others "disconnect” their
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Tri-state Based Multiplexor

Transistor Circuit for inverting
Multiplexor multiplexor:
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Latches and Flip-flops

Positive Level-sensitive latch: Ci
D

1D aQl—
T Q

Positive Edge-triggered flip-flop
built from two level-sensitive
latches:

—Q 0

clk

Latch Implementation:
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Noise and Digital Systems

a Circuit needs to works despite “analog” noise
= Digital gates can and must reject noise
= This is actually how digital systems are defined

4 Digital system is one where:
= Discrete values mapped to analog levels and back
= Elements (gates) can reject noise

— For “small” amounts of noise, output noise is less than input
noise

= Thus, for sufficiently “small” noise, the system acts as if it
was noiseless

= This is called regeneration
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Bridging the digital and the analog worlds

V
Vmax

Q How to represent O’s and y
OH

1’s in a world that is analog? undefined
region

VoL
logic O

VMIN

The Static Definition

= Logic0: Vun <V <V

= Logicl: Vou SV <V ax

* Undefined log




Ideal Inverter Circuit representation and ideal transfer function:

VouT +
v+
+
| v VouT=VIN
oY
+ + 2
ViN Vour
. 3 0 L~ ;
v 0 V+ V+ V|N

V= =

Define switching point or logic threshold
« V,,=input voltage for which V,,, =V,
— For0<vV, <V, =V,,=V'
— ForVy,<Vp<VY = Vamp=0

Ideal inverter returns well defined logical outputs (0 or V) even in the
presence of considerable noise in V  (from voltage spikes, crosstalk, etc.)

=> signal is regenerated!
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“Real Inverter”

transition
region

logic O

« Logic 0:

Vout .

Vmax

Vou

— Vypy = output voltage for which Vi = V'
— Vg = smallest output voltage where slope = -1

» Logic I:

— Vg = largest output voltage where slope = -1

— Vyax = output voltage for which V,, =0
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Vour

Valid Input Ranges v

undefined
region

logic O

If range of output values V, to V_,is wider than the range of

input values V,, to V,, then the inverter exhibits some noise

IH?
immunity. (IVoltage gainl > 1)

Quantify this through noise margins.
15



Definition of Noise Margins

Noise margin high:
Vi NMy =V, —Viy

Vi, Noise margin low:
NM_ =V - Vg

Gate — Gate
Output Input

(Stage M) (Stage M+1)




Simulated Inverter VTC (Spice)
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The Switch — Dynamic Model
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The Switch — Dynamic Model (Simplified)
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The Switch Inverter: Transient Response

V(O — VO e —/RC
t;2 =1In(2) X RC

Voo
Rp § tpHL = f(RonCL)
=0.69 R,CL
Vin - - in
.
in _:!__: E . in

?V,-,,= O =, Vin= Vpn

(a) Low-to-high (b) High-to-low



Switch Sizing

What happens if we make a switch W
times larger (wider)
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CWI= R/W = ©W
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Switch Parasitic Model

The pull-down switch (NMOS)

out
R, J_
Lo , S T
_L o L
+ ¥
Minimum-size switch Sizing the transistor (factor W)

We assume transistors of minimal length (or at least constant

length). R’s and C’s in units of per unit width.
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PMOS Sizing

The PMOS challenge:

For the same voltages, it provides less
current (approximately 2 times less)




Switch Parasitic Model

The pull-up switch (PMOS)

\//n RN Vin I?_N

l 1 W

2C; T V. 2WC, 1 V.,
2 2WC
—T % T

Minimum-size switch Sized for symmetry General sizing




Inverter Parasitic Model

Drain and gate capacitance of
transistor are directly related by
\ Z process (y=1)

Cp=vCq
Vin
C,, = 3WC, % == Cin=3WC, =3W/Cy
E_ISTN t—069( )(3|/WCG) 0.69(37)R,C;

— Intrinsic delay of inverter
independent of size
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Inverter with Load Capacitance

| _ R,
_!- I ) ‘) 069( W)(c +C,)
R |
' N I R,
i " éw v, = 0. 69( v )(3WyC +C,)
c,= L [ L T _L C
e, L S L L% | =0696CR+ )
1 l RN Cmtz C mn
N W wcs 4B =11+ )

f = fanout = ratio between load and input capacitance of gate
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Inverter Delay Model

t._ technology constant D¢

= Can be dropped from
L Lt

expression
f

= Delay unit-less variable
Question: how does transistor sizing (W) impact delay?

(expressed in unit delays)







Inverter Chain

a For some given C;:

= How many stages are needed to minimize delay?
= How to size the inverters?

A Anyone want to guess the solution?
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Careful about Optimization Problems

A Get fastest delay if build one very big inverter
= SO big that delay is set only by self-loading

T

A Likely not the problem you're interested in
= Someone has to drive this inverter...




Engineering Optimization Problems in
General

a Need to have a set of constraints

d Constraints key to:
= Making the result useful
= Making the problem have a ‘clean’ solution

4 For sizing problem:
= Need to constrain size of first inverter



Delay Optimization Problem #1

d You are given:

= Afixed number of inverters

» The size of the first inverter

» The size of the load that needs to be driven
4 Your goal:

= Minimize the delay of the inverter chain

d Need model for inverter delay vs. size
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Apply to Inverter Chain

In

L=t tt,+ .. .ty

Cz’n,N+1 =

Cin,j+1




Optimal Sizing for Given N

2 Delay equation has N-1 unknowns, C,, , ... C;, y

4 To minimize the delay, find N-1 partial derivatives:

[ =...+1. Ciny + 1. Cin +
p inv C inv C °cc
in,j—1 in,j
dtp =7 1 ¢ Cin,j+1 _ O
dC - %Yinv C inv C2 -
in,j in,j—1 in,j




Optimal Sizing for Given N . ..

d Result: every stage has equal fanout (f):

Cin,j _ Cin,j+1
C C.

in,j—1 in,j

QA Size of each stage is georﬁetric mean of two

neighbors:

C; =JCin,-1C

in,j+1

d Equal fanout - every stage wi

| have same delay
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Optimum Delay and Number of Stages

Q When each stage has same fanout 71
fN=F=cC,/C,,

Q Fanout of each stage:
f=NFr

d Minimum path delay:

t, = Nt,, (y + ]X/f)



C,/C, has to be evenly distributed across N = 3 stages:



Delay Optimization Problem #2

d You are given:

= The size of the first inverter

» The size of the load that needs to be driven
4 Your goal:

= Minimize delay by finding optimal number and
sizes of gates

d So, need to find N that minimizes:

L, = Nt,,, (Y +]VCL/Cin )
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Untangling the Optimization Problem

1 Rewrite N in terms of fanout/stage f:

 Inf

.]rl]v:CjL/Cjine N

t, = N, (€, /€)' +v )-1,.n(C, /C, )( Sy )

In 7
atp =tinv ln(CL/Cm ). lnf_i_v/f =O
of In” f

f =exp(+vy /fj (no explicit solution)

Fory=0,f=e,N=1n (C,/C,)



Optimum Effective Fanout f

d Optimum £ for given process defined by vy
S =exp(+y /1)




In Practice: Plot of Total Delay

Delay versus Fanout

Delay
S = NN W A 0 &
|

oY=2.0 ; [Hodges, p.281]

~ B

a Why the shape?
d Curves very flat for /> 2
= Simplest/most common choice: f = 4



Normalized Delay As a Function of F

t, =Nt,, (Y +]¥/F) F = CL/Cin

Unbuffcred

Two Stage

Inverter Chain

10 11 8.3 8.3

100 1C1 6.5

1000 1O as 8

10000 10,00 ] Z02 5.1
(vy=1)

[Rabaey: page 210]




Buffer Design







Question #1

d How to best combine logic and drive for a big
capacitive load?

= T = o>

=C, =L




Question #2

4 All of these are “decoders’
= Which one is “best”?

D
=

:

:




Method to answer both of these questions

QA Extension of buffer sizing problem

A Logical effort




Complex Gate Sizing




Complex Gate Sizing: NAND-2 Example
5 b :

Cgnand = 4C (4/ 3) Cgmv —— OUT=As*BR
Ca’nand - 6C - 6YC =2 YCgmv 3 H_II:
f C /C nand (3/4) C /Cgmv D_IEE

LnanD = KRN(C janat CL)

- kRN(ZYngnv CL)
= kR\C,, (2y + C,/C

ginv L ginv)
=

inv (21 + (473)1)



Logical Effort

4 Defines ease of gate to drive external capacitance

d Inverter has the smallest logical effort and intrinsic delay
of all static CMOS gates
A Logical effort LE is defined as:

u (Req,gateCin,gate)/(Req,invCin,inv)
» Easiest way to calculate (usually):

— Size gate to deliver same current as an inverter, take ratio of gate
input capacitance to inverter capacitance

d LE increases with gate complexity
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Logical Effort

t

nv

t

pgate = (P T LE’?

Measure everything in units of £, (divide by ... ):

p — intrinsic delay - gate parameter = f(W)
LE — logical effort — gate parameter = f(W)
f — electrical fanout = C /C,, = f (W)

Normalize everything to an inverter:

LEinv =1 ’ pinv =Y

52



Delay of a Logic Gate

Gate delay:
Delay ;EF + p\(measured in units of t;)
effective fanout intrinsic delay

Effective fanout:

EF/='LE f\

logical effort electrical fanout = C,/C;,

Logical effort is a function of topology, independent of sizing
Effective fanout is a function of load/gate size

53



Logical Effort of Gates

S
> LE= f pPNAND-2 EJINV
[
©
e
0]
N
'©
£
O
Z
p =yvFan-in ——
(for top input) 1 2 3 4 5 6 7

Fan-out (f)



Delay Of NOR-2 Gate

| 1
B —O
1. Size for same resistance as ]
Inverter A —°| OUT = A+ B
2. LE = ratio of input cap of gate =
versus inverter * _I » [_‘l

Intrinsic capacitance (C,,.,) =
tint (NOR) =



Question

Any logic function can be implemented using
NOR gates only or NAND gates only!

Which of the two approaches is preferable in
CMQOS (from a performance perspective)?




Logical Effort

Logical Gate Type 1 2 3 n

E ffo r Tovertes .

NANT A3 543 L+ 2p3
Designing Fast CVIOE CIrsyaes
NOR 53 T 12n+ | W3
Multipkescr 2 2 2
Ivan Sutherfand
Bob Sproull : B XOR 12

[From Sutherland, Sproull, Harris]







Multistage Networks

Delay =i(p, L E f;)
i=1

Effective fanout: EF; = LEf, Only for tree networks
Path delay D = 2d, = Zp, + ZEF;

Path electrical fanout: F = C,/C,, = IIf,
Path logical effort: IILE = LE,LE,...LE,,
Path effort: PE = TILE F



Adding branching

— [ C [ path of interest
| L,on_path
L CL,off_path




Multistage Networks

Delay = i(p, L E f;)
i=1

Effective fanout: EF, = LEf,
Path delay D = 2d, = Zp, + ZEF,
Path electrical fanout: F = C,/C,,
Branching effort: I1B = b,b,...by
[1f,=TIB F (assuming all paths in the tree are important)
Path logical effort: IILE = LE,LE,...LE,,
Path effort: PE =TILEIIB F



Optimum Effort per Stage

When each stage bears the same effort (effective fanout):

EF" = PE
EF =XY/PE
Effective fanouts: LE,f, = LE,f, = ... = LE\fy
Minimum path delay
D=N" (LE f,+p,)=N-PE"N + 3" p,




Optimal Number of Stages

For a given load,

and given input capacitance of the first gate
Find optimal number of stages and optimal sizing

D=N-PE"" +% p,
Remember: we can always add inverters to the end of the chain

The ‘best effective fanout’ EF = PEY¥is still around 4
(3.6 with y=1)

63



Method of Logical Effort: Summary

a Compute the path effort: PE = (IILE)BF
2 Find the best number of stages N ~ log,PE
d Compute the effective fanout/stage EF = PE1/N

Q Sketch the path with this number of stages

Q Work either from either end, find sizes:
C.,=C,,,LE/EF

out

Reference: Sutherland, Sproull, Harris, “Logical Effort”, Morgan-Kaufmann 1999.



Optimizing Complex
Combinational Logic:
Examples




Example 1: No branching

Do) 2 eI

_ —
LE =1 LE=5/3 LE=5/3 LE=1 |
f=a f=bla f=clb f=5/c =

Electrical fanout, F =
I1LE =

PE =

EF/stage =

a -

b=

C -




Example 1: No branching

a, b, c are input
capacitances
normalized to

—{D>o— a & b‘ o 1. the unit inverter
LE=1 LE=5/3 LE=53 LE=1 |
f=a f=bla f=clb f=5lc =

Electrical fanout, F =5

ITLE=25/9

PE = 125/9 From the back
EF/stage = 1.93

a=193 5/c=1.93

c =259 (5/3)b/a = 1.93




Our old problem: which one is better?

D=8 gae-

LE=10/3 1  LE=2 5/3 LE=4/3 5/3
IILE = 10/3 [ILE=10/3  TIILE = 80/27
P=8 + 1 P=4 + 2 P=2+ 2 + 2 + 1




Adding Branching

15 LE
—XI 90 F
O - PE
15

XL 90

1
90/5=18

18 (wrong!)

EF, = (15+15)/5=6
EF, = 90/15=6
PE = 36, not 18!

Better: PE=F-LE-B=18-1-2 =36



Example 2 with Branching

Select gate sizes y and z to minimize delav from A to B

Logical Effort: LE = 9C

- 9C
Electrical Fanout: = =
Branching Effort: = = ¢
Path Effort: PE =

Best Effective Fanout: EF =
Delay: D =




Example 2 with Branching

Select gate sizes y and z to minimize delav from A to B

Logical Effort: LE =(4/3)3

A
Electrical Fanout: F= Cou/Cin =9
Branching Effort: B = 2°3=6

Path Effort: pe =[ILE-F-B=128

Best Effective Fanout: EF =PE =9

Delay: p =35 + 32 = 21

Work backward for sizes:
9C-(4/3)
3z:(4/3) _
y = = =1.9C
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