

EECS 151/251A Spring 2018 Digital Design and Integrated Circuits

Instructors:
Nick Weaver \& John Wawrzynek

Lecture 9

Administration

- First Midterm Thursday
- Decided on closed book (sorry), but will give you extra time. We will make an exam that is expected to take 90 minutes, but will give you 3 hours.
- 5-8PM
- 405 Soda
- Material: Everything up to slide 35 of Thursdays lecture (Lecture 8) - that is, CMOS logic is included.

Previous Lecture

Static Complementary CMOS

PUN and PDN are dual logic networks PUN and PDN functions are complementary

- Full rail-to-rail swing
- Symmetrical VTC
- No (...) static power dissipation
- Direct path current during switching

Switch (Transmission Gate Logic)

Static:
Output always defined by GND or VDD, never both

Tri-state Buffers

Tri-state Buffer:

$O E$	N	C LIT
	J	Z
r	1	Z
1	J	C
1	1	1

"high
--impedance" (output disconnected)

Variations:

Inverting buffer

Inverted enable

Tri-state Buffers

Tri-state buffers enable "bidirectional" connections.

Tri-state buffers are used when multiple circuits all connect to a common wire. Only one circuit at a out1
 time is allowed to drive the bus. All others "disconnect" their outputs, but can "listen".

Tri-state Based Multiplexor

Transistor Circuit for inverting multiplexor:

Latches and Flip-flops

Positive Edge-triggered flip-flop

 built from two level-sensitive latches:

Latch Implementation:

Digital abstraction

Noise and Digital Systems

- Circuit needs to works despite "analog" noise
- Digital gates can and must reject noise
- This is actually how digital systems are defined
- Digital system is one where:
- Discrete values mapped to analog levels and back
- Elements (gates) can reject noise
- For "small" amounts of noise, output noise is less than input noise
- Thus, for sufficiently "small" noise, the system acts as if it was noiseless
- This is called regeneration

Bridging the digital and the analog worlds

- How to represent 0's and 1 's in a world that is analog?

The Static Definition

- Logic 0:

$$
\mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V} \leq \mathrm{V}_{\mathrm{OL}}
$$

- Logic 1:

$$
\mathrm{V}_{\mathrm{OH}} \leq \mathrm{V} \leq \mathrm{V}_{\mathrm{MAX}}
$$

- Undefined logic ualue: $\mathrm{FOL}_{\mathrm{OL}} \mathrm{V} \leq \mathrm{V}_{\mathrm{OH}}$

Ideal Inverter

Circuit representation and ideal transfer function:

Define switching point or logic threshold:

- $\mathrm{V}_{\mathrm{M}} \equiv$ input voltage for which $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }}$
- For $0 \leq V_{\text {IN }}<V_{M} \quad \Rightarrow V_{\text {OUT }}=V^{\prime}$
- For $\mathrm{V}_{\mathrm{M}}<\mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}^{+} \Rightarrow \mathrm{V}_{\text {OUT }}=0$

Ideal inverter returns well defined logical outputs $\left(0\right.$ or $\left.\mathrm{V}^{+}\right)$even in the presence of considerable noise in V_{IN} (from voltage spikes, crosstalk, etc.)
\Rightarrow signal is regenerated!

"Real Inverter"

logic 1
transition region
logic 0

- Logic 0:

$-\mathrm{V}_{\mathrm{MIN}} \equiv$ output voltage for which $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}$
$-\mathrm{V}_{\mathrm{OL}} \equiv$ smallest output voltage where slope $=-1$
- Logic 1:
$-\mathrm{V}_{\mathrm{OH}} \equiv$ largest output voltage where slope $=-1$
$-\mathrm{V}_{\mathrm{MAX}} \equiv$ output voltage for which $\mathrm{V}_{\mathrm{IN}}=0$

Valid Input Ranges

If range of output values V_{OL} to V_{OH} is wider than the range of input values V_{IL} to V_{IH}, then the inverter exhibits some noise immunity. (|Voltage gainl>1)

Quantify this through noise margins.

Definition of Noise Margins

Gate
Output
(Stage M)

Gate Input
(Stage M+1)

Simulated Inverter VTC (Spice)

Transient properties

The Switch - Dynamic Model

The Switch - Dynamic Model (Simplified)

G

The Switch Inverter: Transient Response

Switch Sizing

What happens if we make a switch W times larger (wider)

G

$$
\left|\mathrm{V}_{\mathrm{GS}}\right| \geq\left|\mathrm{V}_{\mathrm{T}}\right|
$$

Switch Parasitic Model

The pull-down switch (NMOS)

Minimum-size switch

Sizing the transistor (factor W)

We assume transistors of minimal length (or at least constant length). R's and C's in units of per unit width.

PMOS Sizing

The PMOS challenge:

For the same voltages, it provides less current (approximately 2 times less)

Switch Parasitic Model

The pull-up switch (PMOS)

Inverter Parasitic Model

Inverter with Load Capacitance

$$
\begin{aligned}
t_{p} & =0.69\left(\frac{R_{N}}{W}\right)\left(C_{\mathrm{int}}+C_{L}\right) \\
& =0.69\left(\frac{R_{N}}{W}\right)\left(3 W \gamma C_{G}+C_{L}\right) \\
& =0.69\left(3 C_{G} R_{N}\right)\left(\gamma+\frac{C_{L}}{C_{i n}}\right) \\
& =t_{\text {inv }}\left(\gamma+\frac{C_{L}}{C_{i n}}\right)=t_{0}(\gamma+f)
\end{aligned}
$$

$f=$ fanout $=$ ratio between load and input capacitance of gate

Inverter Delay Model

$$
t_{p}=t_{\text {inv }}(\gamma+f)
$$

$t_{\text {inv }}$ technology constant

- Can be dropped from expression
- Delay unit-less variable (expressed in unit delays)

Question: how does transistor sizing (W) impact delay?

Inverter Delay Optimization

Inverter Chain

- For some given C_{L} :
- How many stages are needed to minimize delay?
- How to size the inverters?
- Anyone want to guess the solution?

Careful about Optimization Problems

- Get fastest delay if build one very big inverter
- So big that delay is set only by self-loading

- Likely not the problem you're interested in
- Someone has to drive this inverter...

Engineering Optimization Problems in General

- Need to have a set of constraints
- Constraints key to:
- Making the result useful
- Making the problem have a 'clean’ solution
- For sizing problem:
- Need to constrain size of first inverter

Delay Optimization Problem \#1

- You are given:
- A fixed number of inverters
- The size of the first inverter
- The size of the load that needs to be driven
- Your goal:
- Minimize the delay of the inverter chain
- Need model for inverter delay vs. size

Apply to Inverter Chain

$$
\begin{aligned}
t_{p} & =t_{p 1}+t_{p 2}+\ldots+t_{p N} \\
t_{p j} & =t_{i n v}\left(\gamma+\frac{C_{i n, j+1}}{C_{i n, j}}\right) \\
t_{p} & =\sum_{j=1}^{N} t_{p, j}=t_{i n v} \sum_{i=1}^{N}\left(\gamma+\frac{C_{i n, j+1}}{C_{i n, j}}\right), \quad C_{i n, N+1}=C_{L}
\end{aligned}
$$

Optimal Sizing for Given N

- Delay equation has $N-1$ unknowns, $C_{i n, 2} \ldots C_{i n, N}$
- To minimize the delay, find $N-1$ partial derivatives:

$$
\begin{aligned}
& t_{p}=\ldots+t_{i n v} \frac{C_{i n, j}}{C_{i n, j-1}}+t_{i n v} \frac{C_{i n, j+1}}{C_{i n, j}}+\ldots \\
& \frac{d t_{p}}{d C_{i n, j}}=t_{i n v} \frac{1}{C_{i n, j-1}}-t_{i n v} \frac{C_{i n, j+1}}{C_{i n, j}^{2}}=0
\end{aligned}
$$

Optimal Sizing for Given $\mathbf{N}_{\text {(cont'd) }}$

\square Result: every stage has equal fanout (f):
$\frac{C_{i n, j}}{C_{i n, j-1}}=\frac{C_{i n, j+1}}{C_{i n, j}}$

- Size of each stage is geometric mean of two neighbors:

$$
C_{i n, j}=\sqrt{C_{i n, j-1} C_{i n, j+1}}
$$

- Equal fanout \rightarrow every stage will have same delay

Optimum Delay and Number of Stages

- When each stage has same fanout f :

$$
f^{N}=F=C_{L} / C_{i n, 1}
$$

- Fanout of each stage:

$$
f=\sqrt[N]{F}
$$

- Minimum path delay:

$$
t_{p}=N t_{i n v}(\gamma+\sqrt[N]{F})
$$

Example

C_{L} / C_{1} has to be evenly distributed across $N=3$ stages:

Delay Optimization Problem \#2

- You are given:
- The size of the first inverter
- The size of the load that needs to be driven
- Your goal:
- Minimize delay by finding optimal number and sizes of gates
\square So, need to find N that minimizes:

$$
t_{p}=N t_{i n v}\left(\gamma+\sqrt[N]{C_{L} / C_{i n}}\right)
$$

Untangling the Optimization Problem

- Rewrite N in terms of fanout/stage f :

$$
\begin{aligned}
& f^{N}=C_{L} / C_{i n} \rightarrow N=\frac{\ln \left(C_{L} / C_{i n}\right)}{\ln f} \\
& t_{p}=N t_{i n v}\left(\left(C_{L} / C_{i n}\right)^{1 / N}+\gamma\right)=t_{i n v} \ln \left(C_{L} / C_{i n}\right)\left(\frac{f+\gamma}{\ln f}\right) \\
& \frac{\partial t_{p}}{\partial f}=t_{i n v} \ln \left(C_{L} / C_{i n}\right) \cdot \frac{\ln f-1-\gamma / f}{\ln ^{2} f}=0
\end{aligned}
$$

$$
f=\exp (1+\gamma / f) \quad \text { (no explicit solution) }
$$

$$
\text { For } \gamma=0, f=\mathrm{e}, N=\ln \left(C_{L} / C_{i n}\right)
$$

Optimum Effective Fanout f

\square Optimum f for given process defined by γ

$$
f=\exp (1+\gamma / f)
$$

In Practice: Plot of Total Delay

[Hodges, p.281]

- Why the shape?
- Curves very flat for $f>2$
- Simplest/most common choice: $f=4$

Normalized Delay As a Function of F

$$
t_{p}=N t_{i n v}(\gamma+\sqrt[N]{F}), F=C_{L} / C_{i n}
$$

\boldsymbol{F}	Unburfored	Two Stage	Inverter Chain
10	$1 \mathbf{1}$	8.3	8.3
100	101	22	16.5
1000	1001	65	24.8
10,000	10,001	202	33.1

$$
(\gamma=\mathbf{1})
$$

[Rabaey: page 210]

Buffer Design

Logical Effort

Question \#1

- How to best combine logic and drive for a big capacitive load?

Question \#2

- All of these are "decoders"
- Which one is "best"?

Method to answer both of these questions

- Extension of buffer sizing problem
- Logical effort

Complex Gate Sizing

Complex Gate Sizing: NAND-2 Example

$$
\begin{aligned}
& C \text { gnand }=4 C_{G}=(4 / 3) C_{g i n v} \\
& C_{\text {dnand }}=6 C_{D}=6 \gamma C_{G}=2 \gamma C_{\text {ginv }} \\
& f=C_{L} / C_{\text {gnand }}=(3 / 4) C_{L} / C_{\text {ginv }}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{t}_{\text {pNAND }} & =k R_{N}\left(C_{\text {dnand }}+C_{L}\right) \\
& =k R_{N}\left(2 \gamma C_{\text {ginv }}+C_{L}\right) \\
& =k R_{N} C_{\text {ginv }}\left(2 \gamma+C_{L} / C_{\text {ginv }}\right) \\
& =t_{\text {inv }}(2 \gamma+(4 / 3) f)
\end{aligned}
$$

Logical Effort

\square Defines ease of gate to drive external capacitance

- Inverter has the smallest logical effort and intrinsic delay of all static CMOS gates
- Logical effort LE is defined as:
- $\left(R_{\text {eq,gate }} C_{\text {in, gate }}\right) /\left(R_{\text {eq,inv }} C_{\text {in,inv }}\right)$
- Easiest way to calculate (usually):
- Size gate to deliver same current as an inverter, take ratio of gate input capacitance to inverter capacitance
- LE increases with gate complexity

Logical Effort

$t_{\text {pgate }}=t_{\text {inv }}(p+L E f)$

Measure everything in units of t_{inv} (divide by t_{inv}):
p - intrinsic delay - gate parameter $\neq f(W)$
$L E$ - logical effort - gate parameter $\neq \mathrm{f}(W)$
f - electrical fanout $=\mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\text {in }}=\mathrm{f}(W)$
Normalize everything to an inverter:
$L E_{i n v}=1, p_{i n v}=\gamma$

Delay of a Logic Gate

Gate delay:

Delay $=F F+p_{k}\left(\right.$ measured in units of $\left.t_{i n v}\right)$

effective fanout intrinsic delay
Effective fanout:

Logical effort is a function of topology, independent of sizing Effective fanout is a function of load/gate size

Logical Effort of Gates

Delay Of NOR-2 Gate

1. Size for same resistance as inverter
2. LE = ratio of input cap of gate versus inverter

Intrinsic capacitance $\left(\mathrm{C}_{\text {dnor }}\right)=$ $\mathrm{t}_{\text {pint }}(\mathrm{NOR})=$

Question

Any logic function can be implemented using NOR gates only or NAND gates only!

Which of the two approaches is preferable in CMOS (from a performance perspective)?

Logical Effort

Nate Type \quad Number of lnputs

Optimizing Complex Combinational Logic

Multistage Networks

$$
\text { Delay }=\sum_{i=1}^{N}\left(p_{i}+L E_{i} \cdot f_{i}\right)
$$

Effective fanout: $\mathrm{EF}_{i}=\mathrm{LE}_{i} f_{i}$
Only for tree networks
Path delay $D=\Sigma d_{i}=\Sigma p_{i}+\Sigma E F_{i}$
Path electrical fanout: $F=C_{L} / C_{i n}=\Pi f_{i}$
Path logical effort: $\Pi L E=L E_{1} L E_{2} \ldots L E_{N}$
Path effort: $P E=$ ILE F

Adding branching

Branching effort: $\quad b=\frac{C_{L . o n-\text { path }}+C_{L ., o f-\text { path }}}{C_{L, o n-\text { paat }}}$

Multistage Networks

$$
\text { Delay }=\sum_{i=1}^{N}\left(p_{i}+L E_{i} \cdot f_{i}\right)
$$

Effective fanout: $E F_{i}=L E_{i} f_{i}$
Path delay $D=\Sigma d_{i}=\Sigma p_{i}+\Sigma E F_{i}$
Path electrical fanout: $F=C_{L} / C_{i n}$
Branching effort: $\Pi B=b_{1} b_{2} \ldots b_{N}$

$$
\Pi f_{i}=\Pi В F \quad \text { (assuming all paths in the tree are important) }
$$

Path logical effort: $\Pi L E=L E_{1} L E_{2} \ldots L E_{N}$
Path effort: $P E=$ ПLE ПВ F

Optimum Effort per Stage

When each stage bears the same effort (effective fanout):

$$
\begin{aligned}
& E F^{N}=P E \\
& E F=\sqrt[N]{P E}
\end{aligned}
$$

Effective fanouts: $L E_{1} f_{1}=L E_{2} f_{2}=\ldots=L E_{N} f_{N}$
Minimum path delay

$$
\hat{D}=\sum_{i=1}^{N}\left(L E_{i} f_{i}+p_{i}\right)=N \cdot P E^{1 / N}+\sum_{i=1}^{N} p_{i}
$$

Optimal Number of Stages

For a given load, and given input capacitance of the first gate Find optimal number of stages and optimal sizing

$$
D=N \cdot P E^{1 / N}+\sum p_{i}
$$

Remember: we can always add inverters to the end of the chain
The 'best effective fanout' $E F=P E^{1 / \hat{N}}$ is still around 4 (3.6 with $\gamma=1$)

Method of Logical Effort: Summary

- Compute the path effort: PE = (חLE)BF
- Find the best number of stages $N \sim \log _{4} \mathrm{PE}$
- Compute the effective fanout/stage EF $=$ PE $1 / \mathrm{N}$
- Sketch the path with this number of stages
- Work either from either end, find sizes: $C_{\text {in }}=C_{\text {out }}{ }^{*} \mathrm{LE} / \mathrm{EF}$

Reference: Sutherland, Sproull, Harris, "Logical Effort", Morgan-Kaufmann 1999.

Optimizing Complex Combinational Logic: Examples

Example 1: No branching

Electrical fanout, $F=$
$\Pi L E=$
$P E=$
$E F /$ stage $=$
$a=$
$b=$
$c=$

Example 1: No branching

a, b, c are input capacitances normalized to the unit inverter

> | Electrical fanout, $F=5$ | |
| :--- | :--- |
| $\Pi L E=25 / 9$ | From the back |
| $P E=125 / 9$ | $\begin{array}{l}5 / c=1.93 \\ E F / \text { stage }=1.93 \\ a=1.93 \\ b=2.23 \\ c=2.59\end{array}$ |
| $(5 / 3) b / b=1.93$ | |

Our old problem: which one is better?

Adding Branching

$$
\begin{array}{ll}
L E & =1 \\
F & =90 / 5=18 \\
P E & =18 \text { (wrong!) } \\
\hline E F_{1}=(15+15) / 5=6 \\
E F_{2}=90 / 15=6 \\
P E & =36, \text { not } 18!
\end{array}
$$

Better: $P E=F \cdot L E \cdot B=18 \cdot 1 \cdot 2=36$

Example 2 with Branching

Select gate sizes y and z to minimize delav from A to B

Logical Effort: $\quad L E=$

Electrical Fanout: $F=$
Branching Effort: $\quad B=$
Path Effort:
$P E=$

Best Effective Fanout: $E F=$
Delay:
$D=$

Example 2 with Branching

Select gate sizes y and z to minimize delav from A to B Logical Effort: $\quad L E=(4 / 3)^{3}$
Electrical Fanout: $\quad F=C_{\text {out }} / C_{\text {in }}=9$
Branching Effort: $\quad B=2 \cdot 3=6$
 Path Effort: $\quad P E=\Pi L E \cdot F \cdot B=128$

Best Effective Fanout: $E F=P E^{1 / 3} \approx 5$ Delay:

$$
D=3 \cdot 5+3 \cdot 2=21
$$

Work backward for sizes:

$$
\begin{aligned}
& z=\frac{9 C \cdot(4 / 3)}{5}=2.4 C \\
& y=\frac{3 z \cdot(4 / 3)}{5}=1.9 C
\end{aligned}
$$

