

EECS 151/251A Spring 2018 Digital Design and Integrated Circuits

Instructors: Nick Weaver & John Wawrzynek

Lecture 9

Administration

- First Midterm Thursday
- Decided on closed book (sorry), but will give you extra time. We will make an exam that is expected to take 90 minutes, but will give you 3 hours.
 - 5-8PM
 - 405 Soda
 - Material: Everything up to slide 35 of Thursdays lecture (Lecture 8) – that is, CMOS logic is included.

Previous Lecture

Static Complementary CMOS

PUN and PDN are dual logic networks PUN and PDN functions are complementary

- □ Full rail-to-rail swing
- Symmetrical VTC
- □ No (...) static power dissipation
- Direct path current during switching

Switch (Transmission Gate Logic)

Static:

Output always defined by GND or VDD, never both

No connections to GND or VDD

Tri-state Buffers

Tri-state Buffers

Tri-state buffers enable "bidirectional" connections.

Tri-state buffers are used when multiple circuits all connect to a common wire. Only one circuit at a time is allowed to drive the bus. All others "disconnect" their outputs, but can "listen".

Tri-state Based Multiplexor

Transistor Circuit for inverting multiplexor:

Latches and Flip-flops

Digital abstraction

Noise and Digital Systems

□ Circuit needs to works despite "analog" noise

- Digital gates can and must reject noise
- This is actually how digital systems are defined

Digital system is one where:

- Discrete values mapped to analog levels and back
- Elements (gates) can reject noise
 - For "small" amounts of noise, output noise is less than input noise
- Thus, for sufficiently "small" noise, the system acts as if it was noiseless
- This is called regeneration

Bridging the digital and the analog worlds

The Static Definition

- Logic 0: $V_{MIN} \le V \le V_{OL}$
- Logic 1: $V_{OH} \le V \le V_{MAX}$
- Undefined logic value: $V \leq V_{OL}$

Ideal Inverter

Circuit representation and ideal transfer function:

Define switching point or logic threshold :

• $V_M \equiv \text{input voltage for which } V_{OUT} = V_{IN}$ - For $0 \le V_{IN} < V_M \implies V_{OUT} = V^+$ - For $V_M < V_{IN} \le V^+ \implies V_{OUT} = 0$

Ideal inverter returns well defined logical outputs (0 or V⁺) even in the presence of considerable noise in V_{IN} (from voltage spikes, crosstalk, etc.) \Rightarrow signal is *regenerated*! 13

- Logic 0:
 - $V_{MIN} \equiv$ output voltage for which $V_{IN} = V^+$
 - V_{OL} = smallest output voltage where slope = -1
- Logic 1:
 - V_{OH} = largest output voltage where slope = -1
 - $-V_{MAX} \equiv$ output voltage for which $V_{IN} = 0$

Valid Input Ranges

If range of output values V_{OL} to V_{OH} is *wider* than the range of input values V_{IL} to V_{IH} , then the inverter exhibits some noise immunity. (IVoltage gainl > 1)

Quantify this through *noise margins*.

Definition of Noise Margins

Simulated Inverter VTC (Spice)

Transient properties

The Switch – Dynamic Model

The Switch – Dynamic Model (Simplified)

The Switch Inverter: Transient Response

 $t_{1/2} = ln(2) \times RC$

Switch Sizing

What happens if we make a switch W times larger (wider)

Switch Parasitic Model

The pull-down switch (NMOS)

We assume transistors of minimal length (or at least constant length). R's and C's in units of per unit width.

The PMOS challenge:

For the same voltages, it provides less current (approximately 2 times less)

Switch Parasitic Model

The pull-up switch (PMOS)

Minimum-size switch

Sized for symmetry

General sizing

Inverter Parasitic Model

Inverter with Load Capacitance

f = **fanout** = ratio between load and input capacitance of gate

Inverter Delay Model

$$t_{\rho} = t_{inv}(\gamma + f)$$

- t_{inv} technology constant
- Can be dropped from expression
- Delay unit-less variable (expressed in unit delays)

Question: how does transistor sizing (W) impact delay?

Inverter Delay Optimization

Inverter Chain

\Box For some given C_L :

- How many stages are needed to minimize delay?
- How to size the inverters?
- □ Anyone want to guess the solution?

Careful about Optimization Problems

- Get fastest delay if build one very big inverter
 - So big that delay is set only by self-loading

- Likely not the problem you're interested in
 - Someone has to drive this inverter...

Engineering Optimization Problems in General

- Need to have a set of constraints
 Constraints key to:
 - Making the result useful
 - Making the problem have a 'clean' solution
- □ For sizing problem:
 - Need to constrain size of first inverter

Delay Optimization Problem #1

□ You are given:

- A fixed number of inverters
- The size of the first inverter
- The size of the load that needs to be driven

□ Your goal:

- Minimize the delay of the inverter chain
- □ Need model for inverter delay vs. size

Apply to Inverter Chain

34

Optimal Sizing for Given N

□ Delay equation has N-1 unknowns, $C_{in,2} \dots C_{in,N}$

□ **To minimize the delay,** find *N*-1 partial derivatives:

$$\begin{split} t_p &= \dots + t_{inv} \frac{C_{in,j}}{C_{in,j-1}} + t_{inv} \frac{C_{in,j+1}}{C_{in,j}} + \dots \\ \frac{dt_p}{dC_{in,j}} &= t_{inv} \frac{1}{C_{in,j-1}} - t_{inv} \frac{C_{in,j+1}}{C_{in,j}^2} = 0 \end{split}$$

Optimal Sizing for Given N (cont'd)

Result: every stage has <u>equal fanout (f)</u>:

$$\frac{C_{in,j}}{C_{in,j-1}} = \frac{C_{in,j+1}}{C_{in,j}}$$

Size of each stage is geometric mean of two neighbors:

$$C_{in,j} = \sqrt{C_{in,j-1}C_{in,j+1}}$$

 \Box Equal fanout \rightarrow every stage will have same delay

Optimum Delay and Number of Stages

 \Box When each stage has same fanout f:

$$f^N = F = C_L / C_{in,1}$$

□ Fanout of each stage:

$$f = \sqrt[N]{F}$$

□ Minimum path delay:

$$t_p = N t_{inv} \left(\gamma + \sqrt[N]{F} \right)$$

 C_L/C_1 has to be evenly distributed across N = 3 stages:

Delay Optimization Problem #2

□ You are given:

- The size of the first inverter
- The size of the load that needs to be driven

□ Your goal:

- Minimize delay by finding optimal number and sizes of gates
- □ So, need to find N that minimizes:

$$t_p = N t_{inv} \left(\gamma + \sqrt[N]{C_L / C_{in}} \right)$$

Untangling the Optimization Problem

□ Rewrite N in terms of fanout/stage *f*:

$$f^{N} = C_{L}/C_{in} \rightarrow N = \frac{\ln (C_{L}/C_{in})}{\ln f}$$

$$t_{p} = Nt_{inv} \left(\left(C_{L}/C_{in} \right)^{1/N} + \gamma \right) = t_{inv} \ln \left(C_{L}/C_{in} \right) \left(\frac{f + \gamma}{\ln f} \right)$$

$$\frac{\partial t_{p}}{\partial f} = t_{inv} \ln \left(C_{L}/C_{in} \right) \cdot \frac{\ln f - 1 - \gamma / f}{\ln^{2} f} = 0$$

$$f = \exp(1 + \gamma / f) \quad \text{(no explicit solution)}$$

For
$$\gamma = 0, f = e, N = \ln (C_L/C_{in})$$

Optimum Effective Fanout *f*

• Optimum f for given process defined by γ $f = \exp(1 + \gamma / f)$

In Practice: Plot of Total Delay

□ Why the shape?

 \Box Curves very flat for f > 2

Simplest/most common choice: f = 4

Normalized Delay As a Function of F

$$t_p = N t_{inv} \left(\gamma + \sqrt[N]{F} \right), F = C_L / C_{in}$$

F	Unbuffered	Two Stage	Inverter Chain
10	11	8.3	8.3
100	101	22	16.5
1000	1001	65	24.8
10,000	10,001	202	33.1

(γ = **1)**

[Rabaey: page 210]

Buffer Design

How to best combine logic and drive for a big capacitive load?

Question #2

□ All of these are "decoders"

Which one is "best"?

Method to answer both of these questions

Extension of buffer sizing problem

Logical effort

Complex Gate Sizing

Complex Gate Sizing: NAND-2 Example

$$C_{gnand} = 4C_G = (4/3) C_{ginv}$$

$$C_{dnand} = 6C_D = 6\gamma C_G = 2\gamma C_{ginv}$$

$$f = C_L/C_{gnand} = (3/4) C_L/C_{ginv}$$

$$t_{pNAND} = kR_N(C_{dnand} + C_L)$$

= $kR_N(2\gamma C_{ginv} + C_L)$
= $kR_N C_{ginv} (2\gamma + C_L/C_{ginv})$
= $t_{inv} (2\gamma + (4/3)f)$

Logical Effort

- Defines ease of gate to drive external capacitance
- Inverter has the smallest logical effort and intrinsic delay of all static CMOS gates
- Logical effort LE is defined as:
 - $(R_{eq,gate}C_{in,gate})/(R_{eq,inv}C_{in,inv})$
 - Easiest way to calculate (usually):
 - Size gate to deliver same current as an inverter, take ratio of gate input capacitance to inverter capacitance
- □ LE increases with gate complexity

Logical Effort

$$t_{pgate} = t_{inv} \left(p + LEf \right)$$

Measure everything in units of t_{inv} (divide by t_{inv}):

p – intrinsic delay - gate parameter ≠ f(W) LE – logical effort – gate parameter ≠ f(W) f – electrical fanout = C_L/C_{in} = f (W)

Normalize everything to an inverter: $LE_{inv} = 1$, $p_{inv} = \gamma$

Delay of a Logic Gate

Logical effort is a function of topology, independent of sizing Effective fanout is a function of load/gate size

Logical Effort of Gates

Delay Of NOR-2 Gate

- 1. Size for same resistance as inverter
- 2. LE = ratio of input cap of gate versus inverter

Intrinsic capacitance $(C_{dnor}) = t_{pint} (NOR) =$

Question

Any logic function can be implemented using NOR gates only or NAND gates only!

Which of the two approaches is preferable in CMOS (from a performance perspective)?

Logical Effort

Logical Effort Designing Past Cattor Circuits

Ivan Sutherland Bob Sprcull David Harris

Gate Type	Number of Inputs				
	1	2	3	n	
Inverter	1				
NAND		4/3	5/3	(n + 2)/3	
NOR		5/3	7/3	(2n + 1)/3	
Multiplexer		2	2	2	
XOR		4	12		

[From Sutherland, Sproull, Harris]

Optimizing Complex Combinational Logic

Multistage Networks

$$Delay = \sum_{i=1}^{N} (p_i + LE_i \cdot f_i)$$

Effective fanout: $EF_i = LE_i f_i$

Only for tree networks

Path delay $D = \Sigma d_i = \Sigma p_i + \Sigma EF_i$

Path electrical fanout: $F = C_L/C_{in} = \Pi f_i$

Path logical effort: $\Pi LE = LE_1 LE_2 ... LE_N$

Path effort: $PE = \prod LE F$

Adding branching

Branching effort:
$$b = \frac{C_{L,on-path} + C_{L,off-path}}{C_{L,on-path}}$$

Multistage Networks

$$Delay = \sum_{i=1}^{N} (p_i + LE_i \cdot f_i)$$

Effective fanout: $EF_i = LE_i f_i$ Path delay $D = \Sigma d_i = \Sigma p_i + \Sigma EF_i$ Path electrical fanout: $F = C_L / C_{in}$ Branching effort: $\Pi B = b_1 b_2 ... b_N$ $\Pi f_i = \Pi B F$ (assuming all paths in the tree are important) Path logical effort: $\Pi LE = LE_1 LE_2 ... LE_N$ Path effort: $PE = \Pi LE \Pi B F$

Optimum Effort per Stage

When each stage bears the same effort (effective fanout):

$$EF^N = PE$$

$$EF = \sqrt[N]{PE}$$

Effective fanouts: $LE_1f_1 = LE_2f_2 = \dots = LE_Nf_N$

Minimum path delay

$$\hat{D} = \sum_{i=1}^{N} (LE_i f_i + p_i) = N \cdot PE^{1/N} + \sum_{i=1}^{N} p_i$$

Optimal Number of Stages

For a given load, and given input capacitance of the first gate Find optimal number of stages and optimal sizing

$$D = N \cdot P E^{1/N} + \sum p_i$$

Remember: we can always add inverters to the end of the chain

The 'best effective fanout' $EF = PE^{1/\hat{N}}$ is still around 4 (3.6 with γ =1)

Method of Logical Effort: Summary

- □ Compute the path effort: $PE = (\Pi LE)BF$
- □ Find the best number of stages $N \sim \log_4 PE$
- Compute the effective fanout/stage EF = PE^{1/N}
 Sketch the path with this number of stages
- □ Work either from either end, find sizes: $C_{in} = C_{out}^* LE/EF$

Reference: Sutherland, Sproull, Harris, "Logical Effort", Morgan-Kaufmann 1999.

Optimizing Complex Combinational Logic: Examples

Example 1: No branching

Electrical fanout, F = II LE = PE = EF/stage = a = b = c =

Example 1: No branching

a, b, c are input capacitances normalized to the unit inverter

Electrical fanout, $F = 5$ $\Pi LE = 25/9$	
PE = 125/9	From the back
<i>EF/stage</i> = 1.93 <i>a</i> = 1.93	5/c = 1.93
b = 2.23 c = 2.59	(5/3)c/b = 1.93 (5/3)b/a = 1.93

Our old problem: which one is better?

LE=10/31LE=25/3LE=4/35/34/31 $\Pi LE = 10/3$ $\Pi LE = 10/3$ $\Pi LE = 80/27$ P = 8 + 1P = 4 + 2P = 2 + 2 + 2 + 1

Adding Branching

LE = 1 F = 90/5 = 18PE = 18 (wrong!)

$$EF_1 = (15+15)/5 = 6$$

 $FF_2 = 90/15 = 6$

$$F_2 = 90/15 = 6$$

$$PE = 36, not 18!$$

Better: $PE = F \cdot LE \cdot B = 18 \cdot 1 \cdot 2 = 36$

Example 2 with Branching

Select gate sizes y and z to minimize delaw from A to B

- Logical Effort: LE =
- Electrical Fanout: F =
- Branching Effort: B =
- Path Effort: PE =

Best Effective Fanout: *EF* = Delay: *D* =

Example 2 with Branching

