
EECS 151 Spring 2018 Wawrzynek and Weaver

Cryptographic Implementations 
In Digital Design

 1

EECS 151 Spring 18 Wawrzynek and Weaver

Cryptography and Digital Implementations

• Cryptography has long been a "typical" application for digital
design

• A large repetitive calculation repeated over all data

• Some significant parallelism opportunities (with limits)

• Situations for dedicated hardware when cost is essential

• Where Hardware is Different

• High throughput operation & multiple streams of encryption

• True Random Number Generators

• Shielding secrets

• And Why You Should Almost Never build this stuff
 2

EECS 151 Spring 18 Wawrzynek and Weaver

Large Number Arithmetic: 
Diffie/Hellman
• Diffie/Hellman Key Exchange

• Public prime p, public generator g

• Private random variables a and b belonging to "Alice" and "Bob"

• Goal is to create a shared random value

• Alice computes ga mod p and sends it to Bob

• Bob computers gb mod p and sends it to Alice

• Alice then computes gba mod p

• Bob computers gab mod p

• Both values are the same

• Similar math for RSA and other public key systems
 3

EECS 151 Spring 18 Wawrzynek and Weaver

How Big A Number Are We Talking 
About Here?
• Not very secure, p, a, b are 1024b

• OK security they are 2048b

• Properly paranoid security: 3072b

• Result is some pretty significant math:

• Exponentiation by a 3072b exponent modulo a 3072b value

• But these days, software is almost always fast enough

• Vector/SIMD instructions can be used to greatly speed up the multiplication

• Mostly only used for key exchange or signatures: not per data elements

 4

EECS 151 Spring 18 Wawrzynek and Weaver

Real Use: 
Bulk Encryption
• Block ciphers. Most block ciphers

consist of:

• Small/medium table lookups

• XORs

• Shifts and rotates

• Same for hash functions as well

• Most common algorithm is AES

• A more detailed description here: 

http://www.moserware.com/2009/09/stick-
figure-guide-to-advanced.html

 5

EECS 151 Spring 18 Wawrzynek and Weaver

Basic Concept

• Block cipher accepts a fixed amount of data (block) & key

• for AES == 128b block, 128b, 192b, or 256b key

• It acts as a keyed permutation, creating a block sized
output

• There is also an inversion function which can accept this block of data and
the key and recreate the original input

• Used in an encryption mode

• Lots more details in CS161, but...

• The best encryption modes take the output of the previous block encryption

when encrypting the next block
 6

EECS 151 Spring 18 Wawrzynek and Weaver

Some Common Encryption Modes

 7

EECS 151 Spring 18 Wawrzynek and Weaver

How AES works...

• Treats data as a 4x4 array of 8b quantities

• Key expansion

• Take the initial key and create a different "subkey" for each round

• At the start: AddRoundKey

• Just xor the data with the key

• Then 10 rounds (for 128b key)

• SubBytes: an 8b->8b S-Box operation for each word

• ShiftRows: a rotation within the array {last round omits this step}

• MixColumns: a bit-oriented mixing of all the input in a column

• Some funky-galios math stuff, but can generally be implemented as 4-LUTs and XORs

• AddRountKey: again an xor
 8

EECS 151 Spring 18 Wawrzynek and Weaver

Visually:

 9

EECS 151 Spring 18 Wawrzynek and Weaver

Comments:

• This is really really good for hardware

• XORs are great

• 8b table lookups map to pretty small ROMs

• 8 BlockRAMs for a round + 2 for the key expansion

• MixColumn is designed to map well to small logic gates

• Since it is a couple of easy galios multiplies (which are bit-twiddling) and then summing things up (which are

XORs)

• Great target for C-slow designs

• Build one round, pipeline it aggressively: 

Now can be working on C separate blocks at the same time

• Beyond that, for more throughput, just replicate...

• But often latency limited by feedback loops, so just build 1 round w/o

pipelining
 10

EECS 151 Spring 18 Wawrzynek and Weaver

How To Implement...

• If concerned about latency

• EG, because you are running in a feedback mode

• Implement a single round logic

• Every clock cycle it computes exactly 1 round

• This is effectively optimal

• You could "unroll" and do multiple rounds, but you'd only save the setup & hold-time of

the flip-flops for a huge cost in area

• If concerned about throughput

• EG, counter mode (don't do it!), or encrypting multiple streams

• Just pipeline the hell out of the single round in a C-slow manner...

• And beyond that, just replicate the entire unit

 11

EECS 151 Spring 18 Wawrzynek and Weaver

Best FPGA AES Implementation circa 2003:

Spartan-II 100 based
• "Key Agile":

• Accept key and data,

calculate the key
generation

• 5-stage C-slow

• 5 independent

encryptions

• 10 BlockRAMs, 
780 slices (2 LUTs in
each slice)

• 1.3 Gbps, 115 MHz

• Unpipelined still 500 Mbps

 12

EECS 151 Spring 18 Wawrzynek and Weaver

But the REAL special in hardware: 
Random Numbers & Keeping Secrets...
• Cryptography uses random numbers all the time

• And if they can ever be predicted by an adversary, you lose!

• Software sucks for generating random numbers...

• You need true physical randomness to "seed" the random number generator

• But pseudo-random-number-generators are good, if
seeded properly

• Can flip a heavily biased coin (90% heads) a lot, feed that into a pRNG, and
get good random numbers out

 13

EECS 151 Spring 18 Wawrzynek and Weaver

Possibility #1: 
Ring Occilators...
• An inverter tied to itself is an

occilator...

• But not that stable, it has jitter that is affected by

temperature and a whole bunch of other things...

• So have a fast & noisy oscillator

• And sample it with a slow clock

• Result is a good but biased random
number generator

• Its based on physical noise, but not all the bits

are truly independent.

• Can be built in FPGA logic!
 14

EECS 151 Spring 18 Wawrzynek and Weaver

Possibility #2 (Intel): 
Use metastability and watch it fall
• Idea: nudge a latch into a metastable state

• Then let it fall to a 0 or 1

 15

EECS 151 Spring 18 Wawrzynek and Weaver

Intel's Tweaks...

• They don't want the coin to be too biased

• (IMO, somewhat overkill, even .1b of actual entropy works when continually

mixed into a secure pRNG)

• So they add a balancing circuit underneath

• Adjusts the available capacitance on the two sides of the nodes

• Keep track of several flips, use that to shift the bias function

 16

EECS 151 Spring 18 Wawrzynek and Weaver

And from there...

• Feed into a cryptographically secure psudo-random-
number generator (also called a DRBG)

• Intel uses AES encryption for counter mode DRBG: Mix in the new entropy
into the key...

• Output of the DRBG fed into the instruction

• And that is just "ordinary" software for CS161 type stuff...

 17

EECS 151 Spring 18 Wawrzynek and Weaver

The Other Big Use: 
Holding Secrets...
• Have a small amount of data that never leaves the chip

• Either battery-backed SRAM cells

• Or programmable memory that is programmed during the manufacturer

• This data can be a random cryptographic key for everything
else

• So you can protect the entire system: Unless someone can get the secret

• How Apple Does it (on Whiteboard)

• How I'd Do it w Xilinx: 

A paper design to protect design secrecy & integrity
 18

EECS 151 Spring 18 Wawrzynek and Weaver

The key: 
Bitfile Encryption
• Current FPGAs support bitfile encryption

– A secret key is stored in the FPGA

• In static memory in the Altera Stratix series

• In SRAM in the Xilinx series, with a separate Vbatt input

– Will assume the Xilinx technique for now, its more powerful

• The bitfile is stored off chip in an encrypted form

– When the FPGA first loads, it decrypts the bitfile using the encryption key as it is read into the configuration

• 256b AES in current designs

– The configuration is used to set the circuit function inside the FPGA

• The keys and decrypted configuration only exist within the FPGA

– To determine the configuration, need to break the FPGA encryption

• Easiest is probably to extract the key stored in the FPGA

• Designed to prevent piracy by providing circuit secrecy

– Without circuit secrecy, FPGA piracy is trivial

– With circuit secrecy, it is impossible

 19

EECS 151 Spring 18 Wawrzynek and Weaver

© 2006 International Computer Science Institute. By Nicholas C Weaver. Free use as long as this notice remains

Leveraging Bitfile 
Encryption
• On first boot, in a controlled environment

– FPGA is given initial unencrypted configuration

• Configuration includes an Authorizer key

– Could be just a public key, or a secret key

– FPGA generates an internal random secret Device Key

– FPGA loads the Device Key into the bitfile decryptor’s storage

– FPGA rewrites the configuration

• Inserting the Device Key

• Encrypting it with the Device Key

– Can also create additional key material at this time

• Such as a public key for device authentication

• All subsequent loads are protected by the device key

– Device key is also used to encrypt optional off-chip memory

• Secure persistent storage

– Device key can also present a unique public key

 20

Config
Memory

FPGA

RAM &
FLASH

FPGA

Config
Memory

FPGA

RAM &
FLASH

EECS 151 Spring 18 Wawrzynek and Weaver

© 2006 International Computer Science Institute. By Nicholas C Weaver. Free use as long as this notice remains

Circuit Secrecy

• The design in the FPGA is now protected by the bitfile encryptor

– Outside of the FPGA, the design is always encrypted with a key unique to the specific FPGA

– The cleartext key NEVER leaves the FPGA once programmed

• And is stored in volatile memory

– Within the running FPGA, the design is decrypted internally and stored as distributed SRAM cells

– All off-chip memory is encrypted
• Provides encrypted storage

• Protection equivalent to the anti-piracy mechanism

– Anti-piracy is all about maintaining circuit secrecy

– Need to either extract the bitfile from SRAM from the running FPGA

– Or extract the bitfile key from the FPGA’s key storage

– Or perform a side channel attack on the bitfile loader

– Or bribe an engineer to give you the design…

 21

EECS 151 Spring 18 Wawrzynek and Weaver

© 2006 International Computer Science Institute. By Nicholas C Weaver. Free use as long as this notice remains

Tamper Resistance

• Attacker CAN run his own design in a stolen device

– As she can always just overwrite/erase the configuration key stored in the FPGA and load the

design of her choice

• But if the attacker can’t modify the original bitfile (break the circuit secrecy), then

the entire system can be tamper evident
– The configuration can also contains a unique public/private key pair for the device as well as the

Device Key

• Device can now authenticate that it is running a valid bitfile to everyone else

– Attacker’s design can’t access storage (its encrypted with the Device Key) or any external
resources which require authentication

• Only slightly less powerful than tamper resistance

– But not by much, as the attacker still has to do her own design from scratch, so we can still

probably call it fully Tamper Resistant

 22

EECS 151 Spring 18 Wawrzynek and Weaver

© 2006 International Computer Science Institute. By Nicholas C Weaver. Free use as long as this notice remains

Activation and Updates

• Present a new bitfile, signed (or encrypted by) the Authorizer key

– Device authenticates that the new bitfile is valid

• Pick your authorization/delegation scheme

– Device decrypts the new bitfile internally, and reencrypts the bitfile using the Device Key

• At this time, the new design is modified to include a copy of the Device Key

• Unencrypted design never leaves the FPGA

– New bitfile is written out to configuration storage

• New design still contains the basic primitive blocks

– Needed so further activation and updating can occur

– So requires a persistent IP core across all designs

• Engineering effort to design: best solution is probably to store all keys in a fixed BlockRAM on the FPGA

• Thus ONLY authorized updates are allowed, and are semantically equivalent to activation

– No limit on the number of upgrades or activations

 23

EECS 151 Spring 18 Wawrzynek and Weaver

© 2006 International Computer Science Institute. By Nicholas C Weaver. Free use as long as this notice remains

Revocation

• If in communication with the device, or after a specified time, we wish to remove
some functionality…

• Simply have the device overwrite/destroy the configuration state for the revoked
design

– Need to overwrite the whole data, to prevent a key compromise from recovering the revoked
design

– Need to include the notion of time in activation, to prevent reactivation of a revoked design

• Perhaps also include a check in the persistent storage, so design could never be reactivated

• Revoke the device completely

– Overwrite the key storage and all designs stop working

• But overwrite the configuration storage anyway

– “Bricks” the system completely until it can be reprogrammed again in the secure environment

 24

EECS 151 Spring 18 Wawrzynek and Weaver

But Why This Is Don't Try This At Home: 
Side Channels
• There are lots of ways to attack a

cryptosystem...

• And almost none of them involve breaking the

cryptography!

• Power consumption

• Directly indicates what bits are being encrypted

• Timing

• How long operations take. You can not optimize crypto

systems in some ways

• Fault injection...

• Deliberately cause a hardware device in hand to screw up!

 25

https://www.blackhat.com/docs/asia-17/materials/
asia-17-Kim-Breaking-Korea-Transit-Card-With-Side-
Channel-Attack-Unauthorized-Recharging-wp.pdf

