Cryptographic Implementations
In Digital Design

ELECTRICAL ENGINEERING & COMPUTER SCIENCES

Cryptography and Digital Implementations

EECS 151 Spring 18 Wawrzynek and Weaver

» Cryptography has long been a "typical” application for digital
design
* A large repetitive calculation repeated over all data

* Some significant parallelism opportunities (with limits)
 Sijtuations for dedicated hardware when cost is essential

- Where Hardware Is Different
* High throughput operation & multiple streams of encryption

e True Random Number Generators
e Shielding secrets

- And Why You Should Almost Never build this stuff

ELECTRICAL ENGINEERING & C..()T\-'IPlfTI?R SCIENCES

Large Number Arithmetic:
Diffie/Hellman

EECS 151 Spring 18

- Diffie/Hellman Key Exchange

* Public prime p, public generator g
* Private random variables a and b belonging to "Alice” and "Bob"

« (Goal is to create a shared random value

* Alice computes g2 mod p and sends it to Bob
 Bob computers g mod p and sends it to Alice
* Alice then computes gba mod p

 Bob computers gab mod p
Both values are the same

- Similar math for RSA and other public key systems

ELECTRICAL ENGINEERING & C..()T\-'IPlITI"'.R SCIENCES

How Big A Number Are We Talking
About Here?

EECS 151 Spring 18

- Not very secure, p, a, b are 1024b
» OK security they are 2048b
» Properly paranoid security: 3072b

- Result iIs some pretty significant math:
* Exponentiation by a 3072b exponent modulo a 3072b value

- But these days, software Is almost always fast enough

* Vector/SIMD instructions can be used to greatly speed up the multiplication
* Mostly only used for key exchange or signatures: not per data elements

ELECTRICAL ENGINEERING & C..()T\-'IPlfTI?R SCIENCES

Real Use:

Bulk Encryption

* Block ciphers. Most block ciphers Foor=Shooting
consist of: Prevention Agreement
* Small/medium table lookups Y promise thar once
* XORs e e 14 1 produchion code.
 Shifts and rotates even though it would be really fun.

This asreemenf sha” be I g) e.‘F‘Fecf
unfi| fhe undersigned creotes a
meaning‘ful inferprefive dance fhaf

« Same for hash functions as well

 Most common algorithm IS AES compares znd hconfrjsfshcache(baaect
fimins, and other side channel attacKks
* A more detailed description here: and their countermeasures.
http://www.moserware.com/2009/09/stick-
figure-guide-to-advanced.html y

“
Berkeley EE Signature Date
ELECTRICAL ENGINEERING & CE()T\-‘IPlle_'.R SCIENCES

Basic Concept

EECS 151 Spring 18 Wawrzynek and Weaver

» Block cipher accepts a fixed amount of data (block) & key
* for AES == 128b block, 128b, 192b, or 256b key

- It acts as a keyed permutation, creating a block sized
output

* There iIs also an inversion function which can accept this block of data and
the key and recreate the original input

- Used in an encryption mode

* Lots more details in CS161, but...

* The best encryption modes take the output of the previous block encryption

when encrypting the next block
Berkeley EEC - ¢

Some Common Encryption Modes

EECS 151 Spring 18 Wawrzynek and Weaver

I Plaintext 1 H Plaintext 2 I [Plaintext 1 I I Plaintext 2 I I Counter 1 I l Counter 2 l

l
— Il v
Encrypt Encrypt
Encrypt Encrypt Encrypt ‘ Encrypt \ Plaintext 1 Plaintext 2

l ICyphertext 1 I—‘ \Cyphertext 2 I—‘

|Cyphertext 1‘ ‘Cyphertext 2| lephertext 1I ICyphertext 2‘
l l l ! l ‘ Counter 1 \ ‘ Counter 2 I
| Decrypt H Decrypt | ‘ Decrypt I I Decrypt ‘
! ! % —
| Plaintext 1 H Plaintext 2 | I Plaintext 1 ‘ ‘ Plaintext 2 ‘ I Plaintext 1 ‘ I Plaintext 2 I
(A) (B) (C)
Berkeley EE ;

ELECTRICAL ENGINEERING & COMPUTER SCIENCES

How AES works...

EECS 151 Spring 18 Wawrzynek and Weaver

» Treats data as a 4x4 array of 8b quantities

- Key expansion
* Take the initial key and create a different "subkey" for each round

- At the start: AddRoundKey
* Just xor the data with the key

» Then 10 rounds (for 128b key)

 SubBytes: an 8b->8b S-Box operation for each word
* ShiftRows: a rotation within the array {last round omits this step}

 MixColumns: a bit-oriented mixing of all the input in a column
Some funky-galios math stuff, but can generally be implemented as 4-LUTs and XORs

* AddRountKey: again an xor
Berkeley EEC © :

Visually:

EECS 151 Spring 18

%b.0| %,1| 2| %3

al,O al,l al,Z al,3
0[] 8,
a3,0 a3,l a3,2 a3,3

[SubBytes

—>

Berkeley EE

ELECTRICAL ENGINEERING & COMPUTER SCIENCES

EhiftRows

—

491

=57

MixCqumns]

E«ddRoundKeJ

EE——

Wawrzynek and Weaver

Comments:

EECS 151 Spring 18 Wawrzynek and Weaver

 This Is really really good for hardware

 XORs are great
* 8b table lookups map to pretty small ROMs

8 BlockRAMs for a round + 2 for the key expansion
 MixColumn is desighed to map well to small logic gates

Since it is a couple of easy galios multiplies (which are bit-twiddling) and then summing things up (which are
XORs)

- Great target for C-slow designs

* Build one round, pipeline it aggressively:
Now can be working on C separate blocks at the same time

- Beyond that, for more throughput, just replicate...

- But often latency limited by feedback loops, so just build 1 round w/o
Ipelinin
Befkegyﬁ'ﬁ > 0

‘ER

How To Implement...

EECS 151 Spring 18 Wawrzynek and Weaver

- |f concerned about latency
 EG, because you are running in a feedback mode

- Implement a single round logic
* Every clock cycle it computes exactly 1 round

 This is effectively optimal

* You could "unroll" and do multiple rounds, but you'd only save the setup & hold-time of
the flip-flops for a huge cost in area

» |f concerned about throughput
 EG, counter mode (don't do it!), or encrypting multiple streams
» Just pipeline the hell out of the single round in a C-slow mannet...

* And beyond that, just replicate the entire unit
Berkeley EEC -]

S
o
>
o
=
e
=
©
x
©
c
S,
N
S
5
=

irca 2003:

10N C

Best FPGA AES Implementat
Spartan-ll 100 based

EECS 151 Spring 18

S-Boxes

7, ' B A Y, ¥, ,.,T‘,...,,\\\{\\\\t\{\\
t‘ni'nlittlinnli\}\}\\\\\(}\1\

: ‘!'i!"-i"b'il'li

- = - R T T
i i i i
. K11 L.l. ru'l vull ‘\\v\k\\\‘ T

.I . n‘. [)
RN 4)77 NN . .
réd'g N . 14
- R

\\\\\s\\\i

o
4t o

VA ALY S A,
P L L P

WA S WS A A
T v

A SRS A
AN A A A

A S Al A A S S
B S A A S

-,
omm

v

”~

nnn

“

\\\\\\\\\\

V A F S

g

Q\NNW\ S AT G A P)

el
Suis i §

P Ll

A A A S A
M S A S

VU P L e
A S AR A

A S S A B,
oA A S A

P P

v\u

Vol i/ &/ & & A

1. 11 -1
n j!p!l-p !Jlnn
O‘ Loking Iradiandiaidaaiondion A Eaoln ol ..-) .-

N wnw ._

N O u Ry o mm
DAL \.\u\\w\\\ A
<~ o s s X \\\}\w K

VA7 N %, “@
= : : ..;v\vxvmmﬁsuﬁ,:.m',. .\W “ e “‘P

2 m : “ww“we G ka,‘

m— — . '\vh,\ﬂ.\.%‘..dvn‘ﬁ . - .a
— . ST s A\' .‘

ST (e (.
m _ i
w - _
m ‘ \v 1 \\o\\v]
o \\\n\ S Mm WAt o/ i s n\ \\\.\k\\\
m : m e h\b\\w m‘
S vkl will . o owwll
w .

<

o

s_ =2

o O O w
. C X qun
ueae _@s
D X822 o Q2
L 38 Do
> 832 ® 8 g5
ecme._&.ln
< OD I' v O
= o 5.
o o

- 10 BlockRAMSs,

780 slices (2 LUTs in

each slice)

EE

1.3 Gbps, 115 MHz
Unpipelined still 500 Mbps

ELECTRICAL ENGINEERING & COMPUTER SCIENCES

Berkeley

But the REAL special in hardware:
Random Numbers & Keeping Secrets...

EECS 151 Spring 18

- Cryptography uses random numbers all the time
* And if they can ever be predicted by an adversary, you lose!

- Software sucks for generating random numbers...
* You need true physical randomness to "seed"” the random number generator

- But pseudo-random-number-generators are good, If

seeded properly

* (Can flip a heavily biased coin (90% heads) a lot, feed that into a pRNG, and
get good random numbers out

ELECTRICAL ENGINEERING & CL()I\-‘IP[ITI?R SCIENCES

Possiblility #1:
Ring Occilators...

EECS 151 Spring 18 Wawrzynek and Weaver

« An Inverter tied to itself Is an -

occilator... —[>. . i :
* But not that stable, it has jitter that is affected by v)

temperature and a whole bunch of other things...

- S0 have a fast & noisy oscillator
 And sample it with a slow clock

* Result Is a good but brased random
number generator

* |ts based on physical noise, but not all the bits
are truly independent.

» Can be built in FPGA logic!

ELECTRICAL ENGINEERING & C()T\-‘IP[ITI"‘.R SCIENCES

Possibility #2 (Intel):
Use metastability and watch it fall

EECS 151 Spring 18

- |dea: nudge a latch into a metastable state
* Thenletitfalltoa O or 1

Transistor1 Transistor 2
Logical 1
Clock —d S
Inverters
Node A Node B

Logical O

Berkeley EEC - E

Intel's Tweaks...

EECS 151 Spring 18

- They don't want the coin to be too biased

* (IMO, somewhat overkill, even .1b of actual entropy works when continually
mixed into a secure pRNG)

- So they add a balancing circuit underneath

* Adjusts the available capacitance on the two sides of the nodes
* Keep track of several flips, use that to shift the bias function

ELECTRICAL ENGINEERING & C()T\-‘IP[ITI"‘.R SCIENCES

And from there...

EECS 151 Spring 18

* Feed Into a cryptographically secure psudo-random-
number generator (also called a DRBG)

* Intel uses AES encryption for counter mode DRBG: Mix in the new entropy
Into the key...

* QOutput of the DRBG fed into the instruction
- And that is just "ordinary" software for CS161 type stuff...

ELECTRICAL ENGINEERING & C()T\-‘IP[ITI"‘.R SCIENCES

The Other Big Use:
Holding Secrets...

EECS 151 Spring 18 Wawrzynek and Weaver

- Have a small amount of data that never leaves the chip

* Either battery-backed SRAM cells
* Or programmable memory that is programmed during the manufacturer

» This data can be a random cryptographic key for everything
else
* SO0 you can protect the entire system: Unless someone can get the secret

» How Apple Does it (on Whiteboard)

 How I'd Do 1t w Xilinx:

A paper design to protect design secrecy & integrity

The Key:
Bitfile Encryption

EECS 151 Spring 18 Wawrzynek and Weaver
» Current FPGAs support bitfile encryption

— A secret key is stored in the FPGA

- In static memory in the Altera Stratix series
- In SRAM in the Xilinx series, with a separate Vi input
— Will assume the Xilinx technique for now, its more powerful

- The bitfile is stored off chip in an encrypted form

— When the FPGA first loads, it decrypts the bitfile using the encryption key as it is read into the configuration

« 256b AES in current designs
— The configuration is used to set the circuit function inside the FPGA

- The keys and decrypted configuration only exist within the FPGA

— To determine the configuration, need to break the FPGA encryption
- Easiest is probably to extract the key stored in the FPGA

- Designed to prevent piracy by providing circuit secrecy
— Without circuit secrecy, FPGA piracy is trivial
— With circuit secrecy, it Is impossible

ELECTRICAL ENGINEERING & C()T\-‘IP[ITI"‘.R SCIENCES

Leveraging Bitfile
Encryption

EECS 151 Spring 18 Wawrzynek and Weaver
* On first boot, in a controlled environment
— FPGA is given initial unencrypted configuration B
- Configuration includes an Authorizer key Conﬁg
— Could be just a public key, or a secret key
— FPGA generates an internal random secret Device Key MemOry
— FPGA loads the Device Key into the bitfile decryptor’s storage $
— FPGA rewrites the configuration = H
Inserting the Device Ke
Encrypt?ng it with the IJ);evice Key FPGA
— (Can also create additional key material at this time
- Such as a public key for device authentication $
- All subsequent loads are protected by the device key
— Device key is also used to encrypt optional off-chip memory RAM &
- Secure persistent storage FLLASH
— Device key can also present a unique public key

ELECTRICAL ENGINEERING & C()T\-‘IP[ITI?R SCIENCES

© 2006 International Computer Science Institute. By Nicholas C Weaver. Free use as long as this notice remains

Circuit Secrecy

EECS 151 Spring 18 Wawrzynek and Weaver

- The design in the FPGA is now protected by the bitfile encryptor
— OQOutside of the FPGA, the design is always encrypted with a key unique to the specific FPGA

— The cleartext key NEVER leaves the FPGA once programmed

- And is stored in volatile memory
— Within the running FPGA, the design is decrypted internally and stored as distributed SRAM cells

— All off-chip memory 1s encrypted

* Provides encrypted storage
* Protection equivalent to the anti-piracy mechanism
— Anti-piracy is all about maintaining circuit secrecy
— Need to either extract the bitfile from SRAM from the running FPGA
— Or extract the bitfile key from the FPGA’s key storage
— Or perform a side channel attack on the bitfile loader
— Or bribe an engineer to give you the design...

ELECTRICAL ENGINEERING & C()T\-‘IP[ITI"‘.R SCIENCES

© 2006 International Computer Science Institute. By Nicholas C Weaver. Free use as long as this notice remains

Tamper Resistance

EECS 151 Spring 18 Wawrzynek and Weaver

- Attacker CAN run his own design in a stolen device

— As she can always just overwrite/erase the configuration key stored in the FPGA and load the
design of her choice
- But if the attacker can’t modify the original bitfile (break the circuit secrecy), then
the entire system can be tamper evident

— The configuration can also contains a unigue public/private key pair for the device as well as the
Device Key

- Device can now authenticate that it is running a valid bitfile to everyone else

— Attacker’s design can’t access storage (its encrypted with the Device Key) or any external
resources which require authentication

Only slightly less powerful than tamper resistance

— But not by much, as the attacker still has to do her own design from scratch, so we can still
probably call it fully Tamper Resistant

ESCFI%SJ‘]S(ZC(EESCIl"\'CI'S 22

© 2006 International Computer Science Institute. By Nicholas C Weaver. Free use as long as this notice remains

Activation and Updates

EECS 151 Spring 18 Wawrzynek and Weaver

- Present a new bitfile, signed (or encrypted by) the Authorizer key

— Device authenticates that the new bitfile is valid

Pick your authorization/delegation scheme
— Device decrypts the new bitfile internally, and reencrypts the bitfile using the Device Key

- At this time, the new design is modified to include a copy of the Device Key
- Unencrypted design never leaves the FPGA

— New bitfile is written out to configuration storage

* New design still contains the basic primitive blocks
— Needed so further activation and updating can occur

— S0 requires a persistent |IP core across all designs
Engineering effort to design: best solution is probably to store all keys in a fixed BlockRAM on the FPGA

- Thus ONLY authorized updates are allowed, and are semantically equivalent to activation
— No limit on the number of upgrades or activations

ELECTRICAL ENGINEERING & C()T\-‘IP[ITI"‘.R SCIENCES

© 2006 International Computer Science Institute. By Nicholas C Weaver. Free use as long as this notice remains

Revocation

EECS 151 Spring 18 Wawrzynek and Weaver

» |f In communication with the device, or after a specified time, we wish to remove
some functionality...

- Simply have the device overwrite/destroy the configuration state for the revoked
design

— Need to overwrite the whole data, to prevent a key compromise from recovering the revoked
design

— Need to include the notion of time in activation, to prevent reactivation of a revoked design
* Perhaps also include a check in the persistent storage, so design could never be reactivated
- Revoke the device completely

— Overwrite the key storage and all designs stop working
- But overwrite the configuration storage anyway
— “Bricks” the system completely until it can be reprogrammed again in the secure environment

ESCFI%EI;IITIE(ZC(EESCIl"\'CI'S 24

© 2006 International Computer Science Institute. By Nicholas C Weaver. Free use as long as this notice remains

But Why This Is Don't Try This At Home:
Side Channels

EECS 151 Spring 18 Wawrzynek and Weaver

There are lots of ways to attack a

cryptosystem...

 And almost none of them involve breaking the
cryptography!

- Power consumption

%'53 }' t\’

T
-~
c 0

. TR L £ ’I,“’“Mvpi
* Directly indicates what bits are being encrypted =M ”‘“w“‘*%o” T

b ': : 'a " ‘ ~l
‘”u’ mm M s m u

| | |
I I I l 2.2 24 72 74
I Ing Tm(.‘nples) Tm f ample)
\.)

(b)

* How long operations take. You can not optimize crypto Figure 9. Countermeasure effects in the measurements
systems in some ways

https:/www.blackhat.com/docs/asia-17/materials/
asia-17-Kim-Breaking-Korea-Transit-Card-With-Side-

° Fau It IﬂjeCtIOﬂ . Channel-Attack-Unauthorized-Recharging-wp.pdf

* Deliberately cause a hardware device in hand to screw up!
Berkeley EE(- 25

