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Cryptography and Digital Implementations

• Cryptography has long been a "typical" application for digital 
design

• A large repetitive calculation repeated over all data

• Some significant parallelism opportunities (with limits)

• Situations for dedicated hardware when cost is essential


• Where Hardware is Different

• High throughput operation & multiple streams of encryption

• True Random Number Generators

• Shielding secrets 

• And Why You Should Almost Never build this stuff
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Large Number Arithmetic: 
Diffie/Hellman
• Diffie/Hellman Key Exchange

• Public prime p, public generator g

• Private random variables a and b belonging to "Alice" and "Bob"


• Goal is to create a shared random value

• Alice computes ga mod p and sends it to Bob

• Bob computers gb mod p and sends it to Alice

• Alice then computes gba mod p

• Bob computers gab mod p

• Both values are the same


• Similar math for RSA and other public key systems
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How Big A Number Are We Talking 
About Here?
• Not very secure, p, a, b are 1024b

• OK security they are 2048b

• Properly paranoid security: 3072b

• Result is some pretty significant math:

• Exponentiation by a 3072b exponent modulo a 3072b value


• But these days, software is almost always fast enough

• Vector/SIMD instructions can be used to greatly speed up the multiplication

• Mostly only used for key exchange or signatures: not per data elements
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Real Use: 
Bulk Encryption
• Block ciphers.  Most block ciphers 

consist of:

• Small/medium table lookups

• XORs

• Shifts and rotates

• Same for hash functions as well


• Most common algorithm is AES

• A more detailed description here: 

http://www.moserware.com/2009/09/stick-
figure-guide-to-advanced.html
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Basic Concept

• Block cipher accepts a fixed amount of data (block) & key

• for AES == 128b block, 128b, 192b, or 256b key


• It acts as a keyed permutation, creating a block sized 
output


• There is also an inversion function which can accept this block of data and 
the key and recreate the original input


• Used in an encryption mode

• Lots more details in CS161, but...

• The best encryption modes take the output of the previous block encryption 

when encrypting the next block
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Some Common Encryption Modes
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How AES works...

• Treats data as a 4x4 array of 8b quantities

• Key expansion

• Take the initial key and create a different "subkey" for each round


• At the start: AddRoundKey

• Just xor the data with the key


• Then 10 rounds (for 128b key)

• SubBytes: an 8b->8b S-Box operation for each word

• ShiftRows: a rotation within the array {last round omits this step}

• MixColumns: a bit-oriented mixing of all the input in a column

• Some funky-galios math stuff, but can generally be implemented as 4-LUTs and XORs


• AddRountKey: again an xor
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Visually:
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Comments:

• This is really really good for hardware

• XORs are great

• 8b table lookups map to pretty small ROMs

• 8 BlockRAMs for a round + 2 for the key expansion


• MixColumn is designed to map well to small logic gates

• Since it is a couple of easy galios multiplies (which are bit-twiddling) and then summing things up (which are 

XORs)


• Great target for C-slow designs

• Build one round, pipeline it aggressively: 

Now can be working on C separate blocks at the same time


• Beyond that, for more throughput, just replicate...

• But often latency limited by feedback loops, so just build 1 round w/o 

pipelining
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How To Implement...

• If concerned about latency

• EG, because you are running in a feedback mode


• Implement a single round logic

• Every clock cycle it computes exactly 1 round


• This is effectively optimal

• You could "unroll" and do multiple rounds, but you'd only save the setup & hold-time of 

the flip-flops for a huge cost in area


• If concerned about throughput

• EG, counter mode (don't do it!), or encrypting multiple streams

• Just pipeline the hell out of the single round in a C-slow manner...

• And beyond that, just replicate the entire unit
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Best FPGA AES Implementation circa 2003:

Spartan-II 100 based
• "Key Agile":

• Accept key and data, 

calculate the key 
generation


• 5-stage C-slow

• 5 independent 

encryptions


• 10 BlockRAMs, 
780 slices (2 LUTs in 
each slice)

• 1.3 Gbps, 115 MHz

• Unpipelined still 500 Mbps
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But the REAL special in hardware: 
Random Numbers & Keeping Secrets...
• Cryptography uses random numbers all the time

• And if they can ever be predicted by an adversary, you lose!


• Software sucks for generating random numbers...

• You need true physical randomness to "seed" the random number generator


• But pseudo-random-number-generators are good, if 
seeded properly


• Can flip a heavily biased coin (90% heads) a lot, feed that into a pRNG, and 
get good random numbers out
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Possibility #1: 
Ring Occilators...
• An inverter tied to itself is an 

occilator...

• But not that stable, it has jitter that is affected by 

temperature and a whole bunch of other things...


• So have a fast & noisy oscillator

• And sample it with a slow clock


• Result is a good but biased random 
number generator

• Its based on physical noise, but not all the bits 

are truly independent.


• Can be built in FPGA logic!
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Possibility #2 (Intel): 
Use metastability and watch it fall
• Idea: nudge a latch into a metastable state

• Then let it fall to a 0 or 1
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Intel's Tweaks...

• They don't want the coin to be too biased

• (IMO, somewhat overkill, even .1b of actual entropy works when continually 

mixed into a secure pRNG)


• So they add a balancing circuit underneath

• Adjusts the available capacitance on the two sides of the nodes

• Keep track of several flips, use that to shift the bias function
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And from there...

• Feed into a cryptographically secure psudo-random-
number generator (also called a DRBG)


• Intel uses AES encryption for counter mode DRBG:  Mix in the new entropy 
into the key...


• Output of the DRBG fed into the instruction


• And that is just "ordinary" software for CS161 type stuff...
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The Other Big Use: 
Holding Secrets...
• Have a small amount of data that never leaves the chip

• Either battery-backed SRAM cells

• Or programmable memory that is programmed during the manufacturer


• This data can be a random cryptographic key for everything 
else


• So you can protect the entire system: Unless someone can get the secret


• How Apple Does it (on Whiteboard)

• How I'd Do it w Xilinx: 

A paper design to protect design secrecy & integrity
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The key: 
Bitfile Encryption
• Current FPGAs support bitfile encryption


– A secret key is stored in the FPGA

• In static memory in the Altera Stratix series

• In SRAM in the Xilinx series, with a separate Vbatt input


– Will assume the Xilinx technique for now, its more powerful


• The bitfile is stored off chip in an encrypted form

– When the FPGA first loads, it decrypts the bitfile using the encryption key as it is read into the configuration

• 256b AES in current designs


– The configuration is used to set the circuit function inside the FPGA

• The keys and decrypted configuration only exist within the FPGA


– To determine the configuration, need to break the FPGA encryption

• Easiest is probably to extract the key stored in the FPGA


• Designed to prevent piracy by providing circuit secrecy

– Without circuit secrecy, FPGA piracy is trivial

– With circuit secrecy, it is impossible
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Leveraging Bitfile 
Encryption
• On first boot, in a controlled environment


– FPGA is given initial unencrypted configuration

• Configuration includes an Authorizer key


– Could be just a public key, or a secret key


– FPGA generates an internal random secret Device Key

– FPGA loads the Device Key into the bitfile decryptor’s storage

– FPGA rewrites the configuration

• Inserting the Device Key

• Encrypting it with the Device Key 

– Can also create additional key material at this time

• Such as a public key for device authentication


• All subsequent loads are protected by the device key

– Device key is also used to encrypt optional off-chip memory

• Secure persistent storage


– Device key can also present a unique public key
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Circuit Secrecy

• The design in the FPGA is now protected by the bitfile encryptor

– Outside of the FPGA, the design is always encrypted with a key unique to the specific FPGA

– The cleartext key NEVER leaves the FPGA once programmed

• And is stored in volatile memory


– Within the running FPGA, the design is decrypted internally and stored as distributed SRAM cells

– All off-chip memory is encrypted 
• Provides encrypted storage


• Protection equivalent to the anti-piracy mechanism

– Anti-piracy is all about maintaining circuit secrecy

– Need to either extract the bitfile from SRAM from the running FPGA

– Or extract the bitfile key from the FPGA’s key storage

– Or perform a side channel attack on the bitfile loader

– Or bribe an engineer to give you the design…
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Tamper Resistance

• Attacker CAN run his own design in a stolen device

– As she can always just overwrite/erase the configuration key stored in the FPGA and load the 

design of her choice

• But if the attacker can’t modify the original bitfile (break the circuit secrecy), then 

the entire system can be tamper evident 
– The configuration can also contains a unique public/private key pair for the device as well as the 

Device Key

• Device can now authenticate that it is running a valid bitfile to everyone else


– Attacker’s design can’t access storage (its encrypted with the Device Key) or any external 
resources which require authentication


• Only slightly less powerful than tamper resistance

– But not by much, as the attacker still has to do her own design from scratch, so we can still 

probably call it fully Tamper Resistant
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Activation and Updates

• Present a new bitfile, signed (or encrypted by) the Authorizer key

– Device authenticates that the new bitfile is valid

• Pick your authorization/delegation scheme


– Device decrypts the new bitfile internally, and reencrypts the bitfile using the Device Key

• At this time, the new design is modified to include a copy of the Device Key

• Unencrypted design never leaves the FPGA


– New bitfile is written out to configuration storage

• New design still contains the basic primitive blocks


– Needed so further activation and updating can occur

– So requires a persistent IP core across all designs

• Engineering effort to design: best solution is probably to store all keys in a fixed BlockRAM on the FPGA


• Thus ONLY authorized updates are allowed, and are semantically equivalent to activation

– No limit on the number of upgrades or activations
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Revocation

• If in communication with the device, or after a specified time, we wish to remove 
some functionality…


• Simply have the device overwrite/destroy the configuration state for the revoked 
design


– Need to overwrite the whole data, to prevent a key compromise from recovering the revoked 
design


– Need to include the notion of time in activation, to prevent reactivation of a revoked design

• Perhaps also include a check in the persistent storage, so design could never be reactivated


• Revoke the device completely

– Overwrite the key storage and all designs stop working

• But overwrite the configuration storage anyway 

– “Bricks” the system completely until it can be reprogrammed again in the secure environment
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But Why This Is Don't Try This At Home: 
Side Channels
• There are lots of ways to attack a 

cryptosystem...

• And almost none of them involve breaking the 

cryptography!


• Power consumption

• Directly indicates what bits are being encrypted


• Timing

• How long operations take.  You can not optimize crypto 

systems in some ways


• Fault injection...

• Deliberately cause a hardware device in hand to screw up!
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https://www.blackhat.com/docs/asia-17/materials/
asia-17-Kim-Breaking-Korea-Transit-Card-With-Side-
Channel-Attack-Unauthorized-Recharging-wp.pdf


