
EECS 151 Spring 2018 Wawrzynek and Weaver

Kestrel Project: 
FPGA Design

 1

EECS 151 Spring 18 Wawrzynek and Weaver

So Why This Lecture?

• We have a slot for a "real world" design example...

• So lets go with a design that I am actually developing...

• This is also a forcing function

• Before I start coding in earnest I want to know what I'll be building: 

Design first, then code.

• How to test this stuff for the exam...

• Idea: Look at the skills I've used from this class.

 2

EECS 151 Spring 18 Wawrzynek and Weaver

Real World Design Exercise: 
Kestrel Functionality
• Objective: low(ish) cost & compact vision-based

autonomy for small UAVs

• Zynq XCZ7010 or 7020

• Single 1/2 GB, 16b, 800 MHz data-rate DDR3 DRAM

• Two Raspberry Pi-0 interfaces to OmniVision OV5647 cameras:

• Two data lane MIPI CSI-2 serial data transfer,

• 2592x1944x15 frames per second (SXGA),  

1920x1080x30 frames per second (1080p)

• Wide variety of lens options including wide angle and "no IR cut" (aka,

'see into the near IR on the red channel')

• SD card, WiFi, Bluetooth

• GPS + two accelerometer/gyros (one with compass)

• 4 serial wires to control arbitrary RC equipment

• Board status: Out for fabrication...
 3

EECS 151 Spring 18 Wawrzynek and Weaver

Major Constraints

• Low Cost:

• ~$200-300 bill of materials cost in respectable volume

• Very compact & light:

• 30.5mm x 30.5mm mounting form

• 35mm width

• Small size necessarily means light weight

• Drift behind as much existing work as possible:

• Xilinx FPGA: Rich IP core library

• Pynq: Full Linux stack w tight integration options to programmable logic

• Racing drones: Low cost & incredibly agile micro UAVs including 45m endurance fixed

wings and 100 mph quad copters

• Plus highly optimized PID-based control systems and code for low level flight control

 4

EECS 151 Spring 18 Wawrzynek and Weaver

Things that don't concern

• Power Consumption & Power Efficiency

• Amdahl's law corollary: You don't need to optimize something when

something else is already huge. 
Drone motors can be drawing 10+A at 6-24V... 
And quadcopters have 4 of them!

• Even a high endurance, low cost fixed wing micro UAV is cruising at 5A@8V->40W

• "Deep Learning" AI-based vision processing

• I'm highly skeptical of the entire field

• I have a huge bias towards systems that are at least theoretically understandable

• A neural network is really an (expensive) memory

 5

EECS 151 Spring 18 Wawrzynek and Weaver

Design synthesizes many ideas 
From This Class and Others...
• Awareness of memory latency & bandwidth

• Want good caching for software, optimized behavior for DRAM

• Design hardware to support software, and software to support hardware

• Have a vision of both in my head as I go through the design process

• I want to map out as much of the design as possible in advance: 

Part of the point of these slides is to make the outline concrete

• Was constrained on platform choice right from the start: This is as much compute & flexibility as I

could fit within size/cost constraints.

• Know what fabrics are good for what:

• FPGA is good at massively parallel operations, optimized for throughput

• Linux software stack is highly flexible, huge software stack, but poor hard-real-time options

• Separate processors are still flexible, really good for hard-real-time (no OS): 32 kHz update loops

for low level flight controls
 6

EECS 151 Spring 18 Wawrzynek and Weaver

The Host Processors: 
"Mission Planning"
• Running a full Linux stack

• For ease of development and maximum flexibility, network communication, lots of storage

including SSD, etc etc etc...

• Xilinx provides a good one, complete with python API

• But in the end I may want to take the underlying C API and create a golang interface

• Has access to a high level view of the current state of all sensors

• Provided by the programmable logic directly into memory

• Has high level API to direct actuators

• Servo channel sending

• But Linux sucks for "hard" real-time activities

• EG, every 60ms do X

• Programmable logic will handle all logic that must be synchronized to an external clock

 7

EECS 151 Spring 18 Wawrzynek and Weaver

FPGA Design Components: 
Multiple Objectives
• Generic glue functions

• Interfacing to multiple I/O functions

• The hobby RC community uses somewhat silly pulse-length-encoding signals & some

slightly bonkers serial protocols

• Alternative for a processor would be to "bit bang" a general-purpose I/O line

• Realtime Video Preprocessing

• Would otherwise use an obscene amount of DRAM bandwidth

• Realtime coprocessing

• Ensures high response time despite the host processors running a full Linux

processor stack by using coprocessors
 8

EECS 151 Spring 18 Wawrzynek and Weaver

FPGA Clocking

• Can derive 4 FPGA clocks from the 50 MHz input clock

• Which is 20x in the internal PLL to 1 GHz

• Processor core runs at 500 MHz in 6:2:1 mode

• Use some common derived clocks

• 200 MHz:

• Fast computation clock for highly pipelined stuff

• 100 MHz:

• Per-pixel computation clock for camera input: Exceeds pixel clock of the cameras

(barely)

• 25 MHz:

• Slow logic clock & pixel clock for grayscale computations

 9

EECS 151 Spring 18 Wawrzynek and Weaver

FPGA/Processor Interfacing: 
AXI interfaces
• A nice bone-simple protocol:

• Master: Read X bytes starting at this address

• Master: Write X bytes starting at this address

• 2x AXI high-speed slaves to the memory ports

• Enables burst-writes from FPGA logic

• 1x AXI high-speed slave that is cache-coherent with the CPU

• Critical: Allows much lower latency communication between CPUs and FPGA by passing data through

the caches rather than DRAM

• There is a bug: If bursting full cache-lines you have to write the whole line: no masking

• 2x AXI_GP masters

• Only singleton reads/writes rather than bursts

• But easy interface for controlling features in the programmable logic from the CPU

 10

EECS 151 Spring 18 Wawrzynek and Weaver

FPGA's "Glue" functionality

• Both the 4 output lines and the inputs from the GPS &
accelerometers pass through the FPGA

• Each is fully independent so they all can be controlled independently and in parallel

• They all speak slightly different protocols

• There are hard macros available on the processor core for I2C etc but there are

enough other things hanging off that it isn't always available

• And if the hard macro is usable, it can be routed through the programmable logic's

pins anyway

• So the FPGA's #1 role is to act as glue:

• Stitching together the problem of interfacing with all the other specialized components

• Not just getting the data but supporting initial filtering of data

 11

EECS 151 Spring 18 Wawrzynek and Weaver

Unique Glue #1: 
Futaba SBUS
• SBus is a serial protocol used for communicating with

servos and controllers

• Some radio receivers can be in master/slave mode: pass through an SBus

signal when they don't have contact with their own transmitter

• This enables safety override: 

Use a conventional hobby remote control... Turn it on and can take over from
the drone's operations

• Enables setting the state on 16 11-bit servo "channels"

• Traditionally, SBus sources just repeatedly send on regular intervals...

• But I want to offload the task from the host processor

 12

EECS 151 Spring 18 Wawrzynek and Weaver

SBus Funkayyyyness...

• It is pretty much simple RS232 serial at a 100 kHz clock

• 1 start bit, 8 data bits, 1 parity bit, 2 stop bits, sent with MSB first

• Message is 25 bytes total

• 1 start byte

• 22 data bytes

• 1 flag bytes

• 1 stop byte

• But the weirdnesses:

• Output is logic-inverted: Some standard processor UARTs can't handle it

• Forced to interleave the 16 words across the 22 bytes in a weird byte-order form

 13

EECS 151 Spring 18 Wawrzynek and Weaver

SBus Sender: 
16 registers...
• There will be 32, 11b registers built using two simple-dual-port LUT-based

SRAM cells

• Need to be able to mix bits from different registers in the protocol, but still just 16 LUTs using 32x6 SDP

mode

• Control logic to use a single SDP RAM bank would be nearly as much, plus just a right PitA

• Only using the first 18 locations however

• 0-15 servos

• 16 flags

• 17 commands to the sender logic

• Just write at 32b and ignore upper bits

• These will be writeable from the processor

• Part of the AXI-GP slave system

• Processor can then just update a value to change the servo settings

• No further processor attention needed

 14

EECS 151 Spring 18 Wawrzynek and Weaver

SBus Sending

• Simple, counter-based state machine

• Just run on a 100 kHz clock

• Don't worry about the processor writing to the reg-file, it will be at the internal logic clock rate

instead...

• Plus things are highly likely not to change much anyway

• Select between the start byte, the right selections from the RAMs,
or the stop byte

• While writing the stop byte also reread the status register

• Standard UART shift-register sending

• With an optional bit to disable inverting: 

Some downstream devices require you to invert the otherwise inverted SBus signal. !

 15

EECS 151 Spring 18 Wawrzynek and Weaver

Glue #2: 
DShot-600
• Standard motor control is "pulse-width modulated"

• How long is a signal up for...

• Has issues with drift, etc...

• But the electronics used by these motor controllers are already optimized around
decoding pulse-width signals...

• So a kludge: a 16b serial message (11b data, 1b telemetry request, 4b CRC) encoded with pulse width modulation

• No sending: low voltage continuous

• Sending data: 1.67 μs bit clock

• 0.625 μs high/1.045 μs low -> 0

• 1.250 μs high/0.420 μs low -> 1

• 100 MHz -> .01 μs

• So just count off the 100 MHz clock to determine shift points and sending values

• Repeatedly send the contents of a register written by the processor

 16

EECS 151 Spring 18 Wawrzynek and Weaver

For Both: 
Offload repeated bit-banging/sending loops...
• Low level flight control systems expect these signals to be

repeatedly resent

• But I don't want the processor to have to do a thing

• So the glue is two purposes

• Translating the funkinesses

• Offloading the need for any real-time operation for sending updates

 17

EECS 151 Spring 18 Wawrzynek and Weaver

Glue #3: Gyro polling & integration

• The two gyroscopes are designed to be polled at regular intervals

• And then you want to do some noise filtering to remove various noise sources and

create a coherent reference for probable location & acceleration

• Similar for the GPS

• Albeit at a slower polling rate

• All have interface pins routed through the programmable logic

• Probably will use a soft core for this (more later)

• But output to the cache coherent interface so this data is always available for the

processor in a known memory location: 
High level mission planning can always know where it is based on fusion of the 3 sets
of location sensors

 18

EECS 151 Spring 18 Wawrzynek and Weaver

But the big thing: Video Data...

• 1080p: 1920x1080 at 30 fps, 10b per pixel

• Pixel clock rate of 68 MHz

• SXGA: 2592x1944 at 15 fps

• Pixel clock rate of 80 MHz

• Theoretical DRAM: 2B wide, 800 MHz data clock

• 1600 GB/s...

• One camera, reading/writing 16b pixels (for alignment): 125 MB/s

• Could probably do if I really really wanted to, but it would be painful and probably starve the host of

DRAM access, since 2 cameras being written & read is 500 MB/s...

• And we all know its practically impossible to really use full memory bandwidth unless it is really good

at being streamed in the analysis

• So instead image processing must focus on single frame analysis
 19

EECS 151 Spring 18 Wawrzynek and Weaver

Video Pixels

• Alternates between B/G and G/R scanlines

• Scanlines are horizontal sequences of pixels:  

The camera sequentially sends each pixel in a line, and
then moves onto the next scanline

• 10b of data for each pixel

• 1080p mode is a full pixel subset of the
2592x1944 mode

• Only going to operate in these modes because these

offer the highest resolution while still allowing fast
feedback in the computer (15Hz or 30Hz)

• Probably going to just stick with 1080p: XSGA mode
has more "peripheral vision", but doesn't help in the
central area of focus

 20

EECS 151 Spring 18 Wawrzynek and Weaver

Image Processing Task #1: 
Image Windowing
• I can't effectively write whole video frame into memory

• And have a lot of leftover memory bandwidth to do any other cool stuff...

• Especially if you think programmable logic is annoyed by DRAM latency,

processors can't do it nearly as well...

• So shoving it into the DRAM really doesn't solve the problem anyway!

• But I can establish an "area of focus"

• AXI-GP request: "I want an X by Y window from this camera with this

downscaling to this aligned memory location"

• As the scan-line comes in, matching pixels are first batched and then written

to the cache coherent interface

• So writes end up in the caches if the memory is being accessed

 21

EECS 151 Spring 18 Wawrzynek and Weaver

Window of Focus model...

• Allows mission planning logic to "scan the sky"

• Look around for areas of interest and perform more substantial calculations

• Only limitation: You don't know what you aren't looking at...

• But then again, you'll get the next frame 1/30th of a second later...

• But it allows me to greatly reduce the memory bandwidth:

• A 256x256 window is 128kB (10b->16b for word alignment), and even if I'm

double-buffering I'll never miss in L2 (which is 512kB)!

• Even on a 500 MHz ARM, the miss penalty to DRAM is huge compared with the hit

time for L2

• And cache associativity is high enough that conflict misses won't kill me either

 22

EECS 151 Spring 18 Wawrzynek and Weaver

Concurrent Access?!?

• Option 1:

• Window is always writing to one of two buffers

• Mission planning software just accepts that the buffer contents can change while it works

• Option 2:

• Mission planning software notifies hardware of "buffer change": one of the two buffers needs to be

switch

• Hardware switches the buffer it is not currently writing

• Software requests acknowledgement from hardware

• Hardware tells software what buffers it is now using

• Software now knows which frame won't be modified while it works

• Will use option 2:

• Concurrency is already a PitA: Being able to say 'no, there is but one owner' makes the process

vastly simpler
 23

EECS 151 Spring 18 Wawrzynek and Weaver

Image Processing Task #2: 
Edge Detection
• So many subsequent analyses...

• Target selection and identification

• Optical flow to look for obstacles

• Just knowing an area is "interesting"

• All can benefit from looking at edges rather than objects

• Plus edges require much less data to store: 1b per pixel

• And can be done with grayscale

• Which reduces the pixel clock and count by 75% right from the start

• So 1080p images become 64kB bitmaps!

 24

EECS 151 Spring 18 Wawrzynek and Weaver

Edge Detection Flow...

• Incoming Image, convert 4 pixels to grayscale:

• Runs at the 100 MHz clock, the rest runs at the synchronized 25 MHz clock

• Gaussian filter

• For each grayscale pixel, do a 5x5 Gaussian filter to eliminate high frequency noise

• Gradient Edge Detection

• For each pixel in each of 4 directions, get the gradient. High gradient->edge

• Edge thinning & thresholding

• For each pixel, if its gradient is the greatest, add in the other gradients. If it is above the threshold,

mark the edge.

• Net result requires 4 passes over the entire image...

• But only need to look at a small window within the image

• This is a hacked-up version of Canny's edge detection algorithm
 25

EECS 151 Spring 18 Wawrzynek and Weaver

Image Processing Pipeline: 
Scanline Buffer...
• Allows evaluating both the current incoming pixel and the same position in the previous

scanline

• Register the pixels to have the previous pixels within the scanlines

• A single 18-bit channel for a 1920b scanline can be buffered in a single 36kb BlockRAM

• Read Addr = Write Addr - 1920: Gives the corresponding pixel from the previous scan-line

• Other channels of note:

• 18b, 960 -> 18kb BlockRAM

• 18b, 2592 -> 2x36kb BlockRAM, 18b, 1296 -> 36kb BlockRAM, 9b, 1296 -> 18kb BlockRAM

• Very simple control logic

• If byte available to write: 

Write byte, increment both counters, assert byte available to read

• Chain multiple together for larger vertical windows

• Now can examine an even larger window

 26

EECS 151 Spring 18 Wawrzynek and Weaver

Grayscale Conversion...

• Incoming pixels:

• B/G/B/G/B/G

• G/R/G/R/G/R

• Scanline buffer for grayscale conversion:

• Register 1 input & 1 output to get a 2x2 moving window

• Only compute every other pixel on the odd # scan-lines

• Fixed-point luminosity grayscale conversion:

• 0.3 * R + 0.295 * G1 + 0.295 * G2 + 0.11 * B

• Use fixed-point approximations to actually implement

• Notice green is more important for total intensity: matches human perception

• But we can go from 10 bits to 16 bits in the process since 10 is already 1b too many for the BlockRAMs

• Also serves to radically reduce the pixel rate

• Now it is 1/4 the pixels and 1920x1080 becomes 960x540, 2592x1944 becomes 1296x972

• Drops the pixel clock by 75%: Everything downstream can now use the 25 MHz clock!

• Could even possibly contemplate saving to DRAM: 31 MB/s/camera, 1MB images at 960x540
 27

EECS 151 Spring 18 Wawrzynek and Weaver

Handling the edges of the frame...

• Option 1: Don't bother...

• For 5x5 analyses, each pass adds corruption to 2 pixels worth at the edge: 

With 3 passes we corrupt a 6 pixel border

• Option 2: Special case the edges...

• Just repeat the same pixel that is on the edge itself

• Going to go with the latter

• Since this is now operating on grayscale at 25 MHz, the additional muxes are

eh, who cares.

 28

EECS 151 Spring 18 Wawrzynek and Weaver

Gaussian Blur

• A standard image filter designed to remove
high-frequency noise

• Since most camera noise appears on just one or two

pixels, a little blurring goes a long way

• For each pixel in a 5x5 grid

• Multiply it by the constant weight

• Sum all the pixels

• Divide by the constant to normalize things

• Available parallelism: Obscene

• 25 MACs per pixel, and computation is per-pixel

independent, too
 29

EECS 151 Spring 18 Wawrzynek and Weaver

The Multiplication & Summation...

• Its just an adder tree

• x1, x4, x16 -> shift

• x7 -> shift and subtract (X << 3 - X)

• x26, x41 -> shifts and 3 adds

• And then just add everything up in a tree

• So 16 + 2 * 4 + 5 * 3 = 39 adders

• Increase of bit width for the output is 9 bits wider than the input

• And tree structure -> 6 adders deep and even better critical path

• Pure feed forward

• So can pipeline it trivially if needed, but its at the 25 MHz clock anyway so...

 30

EECS 151 Spring 18 Wawrzynek and Weaver

The Division in Hardware

• 1/273 is the same as multiply by 0.00366300366...

• But floating point multiply sucks...

• Use an online IEEE floating-point mapping tool, find out...

• Can represent (in binary) as 1.111000001111 * 2-9

• With a trivial error

• Can also thus represent (in binary) as 1111000001111 * 2-21

• Thus this becomes a multiplication by a 13 bit constant
followed by a constant right shift of 21 bits

• So 8 adders

• But right-shift by 13 instead to create an 18b range output

 31

EECS 151 Spring 18 Wawrzynek and Weaver

Gradient Detection...

• Want to look for the maximum gradient in all 4 main directions

• Horizontal, vertical, two diagonals

• Gradient calculated by selecting the maximum pixel in the line
of 5

• If on left, subtract min of center and two on the right

• If on the right, subtract min of center and two on the left

• If center, subtract min of other 4

• Store 4 separate gradients, one for each direction

• Truncate to 9 bit values

• Output goes from 18b to 36b
 32

EECS 151 Spring 18 Wawrzynek and Weaver

Thinning and Thresholding...

• For each cardinal direction

• If not the maximum gradient, not an edge in this direction

• If is the maximum gradient, sum up all gradients on this direction

• If sum(gradients) > threshold: pixel is an edge

• Pixel is an edge if it is an edge on any cardinal direction

• Reduces image to a single-bit value: 960x540 image -> 64 kB

• But pad the output a bit, so that a scan-line occupies an 8-word alignment: 

Makes accessing arbitrary lines easier and keeps things staggered just enough to prevent conflict misses

• Write resulting image into main memory

• 64 kB still big for BlockRAM but no longer an issue with memory bandwidth for shoving into

the DRAM

• Also small enough to buffer a second worth of frames, not just a single frame

 33

EECS 151 Spring 18 Wawrzynek and Weaver

Memory Budget for a Camera Channel Edge
Detection at 1080p
• 1 36kb BlockRAM for the grayscale conversion

• 4 18kb BlockRAMs for the Gaussian Blur input

• 4 18kb BlockRAMs for the Edge Detection input

• 8 18kb BlockRAMs for the Thinning & Thresholding

• So this becomes 9 36kb BlockRAMs

• Have either 70 or 120 depending on the part

 34

EECS 151 Spring 18 Wawrzynek and Weaver

Optical Flow...

• Given two images taken in different positions

• Find regions that correspond between the two images but represent

transformations in scale & position

• For such regions: find direction & magnitude of the necessary

transformations

• Then with some trigonometry based on the the direction & magnitude of

the scalings and knowledge of the two positions...

• Can know how far each region is away from the camera

• Let the host processor do this: its way easier with floating point

• This is a significant component of how humans work for longer distances

• Stereo vision is really only good at distinguishing things up close

 35

EECS 151 Spring 18 Wawrzynek and Weaver

Optical Flow Cheats For This Application...

• Assume we are doing optical-flow on a forward mounted camera...

• Limits most displacement to the horizontal direction, and objects get bigger

• So although optical flow clearly requires looking at a significant X by Y window between the

two images...

• We should bias our search space for horizontal displacements

• And we can do multiple frames at the same time:

• Take the current frame as the reference and do optical flow comparison with targets of the last

frame, frame-15, frame-29

• The last frame is very low error for even close-in stuff: very low displacement

• The -29 frame is high error but good for far away stuff: large displacement

• Can also possibly use this to detect moving objects

• They will stand out as different on the optical flow: moving "odd" compared to everything else

 36

EECS 151 Spring 18 Wawrzynek and Weaver

Optical Flow Line Buffer...

• Can't do a standard line-buffer approach

• Need to compare a segment of the reference image with a larger hunk of the target

image

• Instead need to do a "load and read" approach

• Load the area under examination, then repeatedly read it out

• Pad a 960 pixel line to 1024 (makes addressing easier)

• 18kb BlockRam: can hold 16 lines and read out 16b at a time

• Probably want to run at the 100 MHz clock

• For each 32x4 window of the reference frame, see where in a 64x16 window of the

output is the best match of the pattern and determine the scaling & transformation

• Overlap the 32x4 regions however and only record the center 4x4 value

 37

EECS 151 Spring 18 Wawrzynek and Weaver

Comparisons...

• With no edges...

• Can't compute, ah well

• With just a single clean edge...

• Can only get displacement, not scaling

• And select the one closest to the origin that matches the basic shape

• With 2+ edges

• Can get displacement & scaling

• Yes, this requires a lot of comparisons!

• But there are tons of parallelization opportunities

 38

EECS 151 Spring 18 Wawrzynek and Weaver

Parallelization Opportunities

• Each comparison is, itself, done in parallel for all bits in the reference image

• Each pixel in the target compared against its corresponding pixel + 3 surrounding in the reference

• Output is 2-bit, not 1-bit 
Bits selected for biasing towards the object being bigger in the reference frame

• All comparisons are summed to create a target confidence

• Confidence is biased by how far from the center it is & # of edge pixels in reference

• Also comparing against upsampled & downsampled reference for scaling measurement

• Compare against multiple source windows simultaneously

• Natural breakdown: Compare with all windows in a vertical slice

• Then each clock cycle, shift each bit by 1

• Does require a lot of registers & comparisons, but we knew that coming in!

• Keep a running total of "best match"

• And then when completed, we have it...

• And then compare with multiple frames at the same time...

• If the resources allow it

 39

EECS 151 Spring 18 Wawrzynek and Weaver

Final Component: 
Slave Coprocessors
• The race-drone community has some nice low-level flight control software

• Designed to run on ~70-150 MHz 3-stage pipeline ARM cores with single-precision FPU

• Basically performance-equivalent to a Xilinx Microblaze soft-core

• Initial deployment will use external flight controller board...

• But will eventually want to migrate that functionality onto the FPGA itself: 

Why spend an extra $50/drone on a separate FC when the board already has 2 independent
gyros and all the other stuff needed?

• Second slave coprocessor to do input filtering on GPS/gyros

• Its a continuous, real-time task

• So don't want it on the host processor

• But its complex, branchy, coded in C, and uses floating point

• So can't directly implement on the FPGA fabric directly

 40

