Kestrel Project:
FPGA Design

ELECTRICAL ENGINEERING & COMPUTER SCIENCES

So Why This Lecture?

EECS 151 Spring 18

- We have a slot for a "real world" design example...
* So lets go with a design that | am actually developing...

» This Is also a forcing function

* Before | start coding in earnest | want to know what I'll be building:
Design first, then code.

 How to test this stuff for the exam...
e |dea: Look at the skills I've used from this class.

ELECTRICAL ENGINEERING & C:()P\-'IPlfTI"’.R SCIENCES

Real World Design Exercise:
Kestrel Functionality

EECS 151 Spring 18

Objective: low(ish) cost & compact vision-based
autonomy for small UAVs

 Zyng XCZ7010 or 7020
* Single 1/2 GB, 16b, 800 MHz data-rate DDR3 DRAM

* Two Raspberry Pi-0 interfaces to OmniVision OV5647 cameras:

- Two data lane MIPI CSI-2 serial data transfer,

« 2592x1944x15 frames per second (SXGA),
1920x1080x30 frames per second (1080p)

- Wide variety of lens options including wide angle and "no IR cut" (aka,
'see into the near IR on the red channel’)

 SD card, WiFi, Bluetooth
 GPS + two accelerometer/gyros (one with compass)
* 4 serial wires to control arbitrary RC equipment

- Board status: Out for fabrication...

Berkeley EE ‘I NeB22 - = ==

ELECTRICAL ENGINEERING & COMPUTER SCIENCES Q B . A - et o

1 VCC3V3

: 2 Ne‘tBZ 9

5

Major Constraints

EECS 151 Spring 18 Wawrzynek and Weaver

» Low Cost:
« ~$200-300 bill of materials cost in respectable volume

» Very compact & light:
 30.5mm x 30.5mm mounting form
e 35mm width
 Small size necessarily means light weight

» Drift behind as much existing work as possible:

» Xilinx FPGA: Rich IP core library
* Pynq: Full Linux stack w tight integration options to programmable logic

 Racing drones: Low cost & incredibly agile micro UAVs including 45m endurance fixed
wings and 100 mph quad copters

- Plus highly optimized PID-based control systems and code for low level flight control
Berkeley EEC 4

Things that don't concern

EECS 151 Spring 18

- Power Consumption & Power Efficiency

« Amdahl's law corollary: You don't need to optimize something when
something else is already huge.
Drone motors can be drawing 10+A at 6-24V...
And quadcopters have 4 of them!

Even a high endurance, low cost fixed wing micro UAV is cruising at SA@8V->40W

+ "Deep Learning” Al-based vision processing

* |I'm highly skeptical of the entire field

| have a huge bias towards systems that are at least theoretically understandable
A neural network is really an (expensive) memory

ELECTRICAL ENGINEERING & C..()T\-'IPlITI"'.R SCIENCES

Design synthesizes many ideas
From This Class and Others...

EECS 151 Spring 18 Wawrzynek and Weaver

- Awareness of memory latency & bandwidth
 Want good caching for software, optimized behavior for DRAM

- Design hardware to support software, and software to support hardware

* Have a vision of both in my head as | go through the design process

| want to map out as much of the design as possible in advance:
Part of the point of these slides is to make the outline concrete

 Was constrained on platform choice right from the start: This is as much compute & flexibility as |
could fit within size/cost constraints.

- Know what fabrics are good for what:

 FPGA is good at massively parallel operations, optimized for throughput
* Linux software stack is highly flexible, huge software stack, but poor hard-real-time options

» Separate processors are still flexible, really good for hard-real-time (no OS): 32 kHz update loops

for low level flight controls
Berkeley EEC - ¢

The Host Processors:
"Mission Planning’

EECS 151 Spring 18 Wawrzynek and Weaver

» Running a full Linux stack

* For ease of development and maximum flexibility, network communication, lots of storage
including SSD, etc etc etc...

* Xilinx provides a good one, complete with python API
But in the end | may want to take the underlying C APl and create a golang interface

- Has access to a high level view of the current state of all sensors
* Provided by the programmable logic directly into memory

- Has high level API to direct actuators
* Servo channel sending

* But Linux sucks for "hard" real-time activities

* EG, every 60ms do X

* Programmable logic will handle all logic that must be synchronized to an external clock
Berkeley EEC - 7

FPGA Design Components:
Multiple Objectives

EECS 151 Spring 18

» Generic glue functions

* Interfacing to multiple 1/O functions

The hobby RC community uses somewhat silly pulse-length-encoding signals & some
slightly bonkers serial protocols

Alternative for a processor would be to "bit bang" a general-purpose |/O line

- Realtime Video Preprocessing
 Would otherwise use an obscene amount of DRAM bandwidth

- Realtime coprocessing

* Ensures high response time despite the host processors running a full Linux
processor stack by using coprocessors

ELECTRICAL ENGINEERING & C..()T\-'IPlfTI?R SCIENCES

FPGA Clocking

EECS 151 Spring 18 Wawrzynek and Weaver

- Can derive 4 FPGA clocks from the 50 MHz input clock

* Which is 20x in the internal PLL to 1 GHz
e Processor core runs at 500 MHz in 6:2:1 mode

« Use some common derived clocks

e 200 MHz:
Fast computation clock for highly pipelined stuff

e 100 MHZz:

Per-pixel computation clock for camera input: Exceeds pixel clock of the cameras
(barely)

e 25 MHz:

- Slow logic clock & pixel clock for grayscale computations
Berkeley EE(- ;

FPGA/Processor Interfacing:
AXI interfaces

EECS 151 Spring 18 Wawrzynek and Weaver

A nice bone-simple protocol:

* Master: Read X bytes starting at this address
 Master: Write X bytes starting at this address

- 2X AXI high-speed slaves to the memory ports
* Enables burst-writes from FPGA logic

- 1x AXI high-speed slave that is cache-coherent with the CPU

e Critical: Allows much lower latency communication between CPUs and FPGA by passing data through
the caches rather than DRAM

e There is a bug: If bursting full cache-lines you have to write the whole line: no masking

« 2xX AXlI GP masters

* Only singleton reads/writes rather than bursts

* But easy interface for controlling features in the programmable logic from the CPU
Berkeley EEC - 0

FPGA's "Glue” functionality

EECS 151 Spring 18 Wawrzynek and Weaver

- Both the 4 output lines and the inputs from the GPS &

accelerometers pass through the FPGA
 Each is fully independent so they all can be controlled independently and in parallel

- They all speak slightly different protocols

* There are hard macros available on the processor core for 1I2C etc but there are
enough other things hanging off that it isn't always available

 And if the hard macro is usable, it can be routed through the programmable logic's
pins anyway

- So the FPGA's #1 role is to act as glue:

» Stitching together the problem of interfacing with all the other specialized components

* Not just getting the data but supporting initial filtering of data

Unique Glue #1:
Futaba SBUS

EECS 151 Spring 18 Wawrzynek and Weaver

- SBus is a serial protocol used for communicating with
servos and controllers

 Some radio receivers can be in master/slave mode: pass through an SBus
signal when they don't have contact with their own transmitter

* This enables safety override:
Use a conventional hobby remote control... Turn it on and can take over from
the drone's operations
- Enables setting the state on 16 11-bit servo "channels”

* Traditionally, SBus sources just repeatedly send on regular intervals...
 But | want to offload the task from the host processor

ELECTRICAL ENGINEERING & C..()T\-'IPlfTI?R SCIENCES

SBus Funkayyyyness...

EECS 151 Spring 18 Wawrzynek and Weaver

» |t is pretty much simple RS232 serial at a 100 kHz clock
« 1 start bit, 8 data bits, 1 parity bit, 2 stop bits, sent with MSB first

- Message is 25 bytes total
* 1 start byte
o 22 data bytes
* 1 flag bytes
* 1 stop byte

- But the welrdnesses:

* Qutput is logic-inverted: Some standard processor UARTs can't handle it

* Forced to interleave the 16 words across the 22 bytes in a weird byte-order form
Berkeley EEC - 3

SBus Sender:
16 registers...

EECS 151 Spring 18 Wawrzynek and Weaver

- There will be 32, 11b registers built using two simple-dual-port LUT-based

SRAM cells

 Need to be able to mix bits from different registers in the protocol, but still just 16 LUTs using 32x6 SDP
mode

Control logic to use a single SDP RAM bank would be nearly as much, plus just a right PitA

* Only using the first 18 locations however

0-15 servos

16 flags

17 commands to the sender logic

Just write at 32b and ignore upper bits

- These will be writeable from the processor
* Part of the AXI-GP slave system

» Processor can then just update a value to change the servo settings

* No further processor attention needed
Berkeley EEC - 4

SBus Sending

EECS 151 Spring 18 Wawrzynek and Weaver

- Simple, counter-based state machine
e Just run on a 100 kHz clock

Don't worry about the processor writing to the reg-file, it will be at the internal logic clock rate
instead...

Plus things are highly likely not to change much anyway

- Select between the start byte, the right selections from the RAMSs,
or the stop byte

* While writing the stop byte also reread the status register

- Standard UART shift-register sending

» With an optional bit to disable inverting:
Some downstream devices require you to invert the otherwise inverted SBus signal. w

ELECTRICAL ENGINEERING & C:()P\-'IPlfTI"’.R SCIENCES

Glue #2:
DShot-600

EECS 151 Spring 18 Wawrzynek and Weaver

- Standard motor control is "pulse-width modulated”

* How long is a signal up for...
e Has issues with drift, etc...

- But the electronics used by these motor controllers are already optimized around

decoding pulse-width signals...
 So a kludge: a 16b serial message (11b data, 1b telemetry request, 4b CRC) encoded with pulse width modulation

- No sending: low voltage continuous

- Sending data: 1.67 ps bit clock

* 0.625 us high/1.045 us low -> 0
 1.250 ps high/0.420 pus low -> 1

. 100 MHz -> .01 us

* So just count off the 100 MHz clock to determine shift points and sending values
 Repeatedly send the contents of a register written by the processor

ELECTRICAL ENGINEERING & C()T\-‘IP[ITI"‘.R SCIENCES

For Both:
Offload repeated bit-banging/sending loops...

EECS 151 Spring 18 Wawrzynek and Weaver

- Low level flight control systems expect these signals to be
repeatedly resent
 But |l don't want the processor to have to do a thing

- So the glue is two purposes

* Translating the funkinesses
* Offloading the need for any real-time operation for sending updates

ELECTRICAL ENGINEERING & C:()P\-'IPlfTI"’.R SCIENCES

Glue #3: Gyro polling & integration

EECS 151 Spring 18 Wawrzynek and Weaver

- The two gyroscopes are designed to be polled at regular intervals

* And then you want to do some noise filtering to remove various noise sources and
create a coherent reference for probable location & acceleration

- Similar for the GPS

* Albelt at a slower polling rate

- All have interface pins routed through the programmable logic

- Probably will use a soft core for this (more later)

* But output to the cache coherent interface so this data is always available for the
processor in a known memory location:
High level mission planning can always know where it is based on fusion of the 3 sets

of location sensors
Berkeley EEC © 8

But the big thing: Video Data...

EECS 151 Spring 18 Wawrzynek and Weaver

- 1080p: 1920x1080 at 30 fps, 10b per pixel
* Pixel clock rate of 68 MHz

« SXGA: 2592x1944 at 15 fps
 Pixel clock rate of 80 MHz

* Theoretical DRAM: 2B wide, 800 MHz data clock

* 1600 GB/s...

 One camera, reading/writing 16b pixels (for alignment): 125 MB/s
Could probably do if | really really wanted to, but it would be painful and probably starve the host of
DRAM access, since 2 cameras being written & read is 500 MB/s...

And we all know its practically impossible to really use full memory bandwidth unless it is really good
at being streamed in the analysis

* So Instead image processing must focus on single frame analysis

Video Pixels

EECS 151 Spring 18 Wawrzynek and Weaver

n
o
[-
=
-
w

- Alternates between B/G and G/R scanlines eres 3583
* Scanlines are horizontal sequences of pixels: 2%@ IEEE %E@:E! dummy
The camera sequentially sends each pixel in a line, and 3 ERER HHER - EREE
then moves onto the next scanline > QRGE QEEE GEEE
* 10b of data for each pixel j OB G | ot
| _ leEEe B Adge AR
- 1080p mode is a full pixel subset of the 1525 Giiel GiHEE - GE
2592x1944 mode 1825 BARE - HEEE - EEaE dumm
. . 1858 GAEE GHEE GHE y
* Only going to operate in these modes because these FAAL AANE AARY
offer the highest resolution while still allowing fast sy activ
feedback in the computer (15Hz or 30Hz)

* Probably going to just stick with 1080p: XSGA mode
has more "peripheral vision", but doesn't help in the

central area of focus
Berkeley EEC © 20

Image Processing lask #1:
Image Windowing

EECS 151 Spring 18 Wawrzynek and Weaver

» | can't effectively write whole video frame into memory

* And have a lot of leftover memory bandwidth to do any other cool stuft...

* Especially if you think programmable logic is annoyed by DRAM latency,
processors can't do it nearly as well...

So shoving it into the DRAM really doesn't solve the problem anyway!

« But | can establish an "area of focus"

* AXI-GP request: "l want an X by Y window from this camera with this
downscaling to this aligned memory location”

* As the scan-line comes in, matching pixels are first batched and then written
to the cache coherent interface

- So writes end up in the caches if the memory is being accessed
Berkeley EEC - 2

Window of Focus model...

EECS 151 Spring 18

- Allows mission planning logic to "scan the sky"
* | ook around for areas of interest and perform more substantial calculations

- Only limitation: You don't know what you aren't looking at...
* But then again, you'll get the next frame 1/30th of a second later...

- But it allows me to greatly reduce the memory bandwidth:
A 256x256 window is 128kB (10b->16b for word alignment), and even if I'm
double-buffering I'll never miss in L2 (which is 512kB)!

Even on a 500 MHz ARM, the miss penalty to DRAM is huge compared with the hit
time for L2

And cache associativity is high enough that conflict misses won't kill me either

ELECTRICAL ENGINEERING & CL()I\-‘IP[ITI?R SCIENCES

Concurrent Access?!?

EECS 151 Spring 18 Wawrzynek and Weaver
« Option 1
* Window is always writing to one of two buffers
* Mission planning software just accepts that the buffer contents can change while it works

+ Option 2:
* Mission planning software notifies hardware of "buffer change": one of the two buffers needs to be
switch
Hardware switches the buffer it is not currently writing

* Software requests acknowledgement from hardware
Hardware tells software what buffers it is now using

o Software now knows which frame won't be modified while it works

» WIll use option 2:

* (Concurrency is already a PitA: Being able to say 'no, there is but one owner' makes the process

vastly simpler
Berkeley EE(- 23

Image Processing lask #2:
Edge Detection

EECS 151 Spring 18

* S0 many subsequent analyses...

* TJarget selection and identification
* QOptical flow to look for obstacles
* Just knowing an area is "interesting"

» All can benefit from looking at edges rather than objects
* Plus edges require much less data to store: 1b per pixel

- And can be done with grayscale

* Which reduces the pixel clock and count by 75% right from the start
 So 1080p images become 64kB bitmaps!

Berkeley EEC © 24

Eage Detection Flow...

EECS 151 Spring 18 Wawrzynek and Weaver

- Incoming Image, convert 4 pixels to grayscale:
 Runs at the 100 MHz clock, the rest runs at the synchronized 25 MHz clock

- Gaussian filter
* For each grayscale pixel, do a 5x5 Gaussian filter to eliminate high frequency noise

- Gradient Edge Detection

* For each pixel in each of 4 directions, get the gradient. High gradient->edge

- Edge thinning & thresholding

* For each pixel, if its gradient is the greatest, add in the other gradients. If it is above the threshold,
mark the edge.

» Net result requires 4 passes over the entire image...
* But only need to look at a small window within the image

 This is a hacked-up version of Canny's edge detection algorithm

Image Processing Pipeline:
Scanline Buffer...

EECS 151 Spring 18 Wawrzynek and Weaver
 Allows evaluating both the current incoming pixel and the same position in the previous
scanline

* Register the pixels to have the previous pixels within the scanlines

- A single 18-bit channel for a 1920b scanline can be buffered in a single 36kb BlockRAM

 Read Addr = Write Addr - 1920: Gives the corresponding pixel from the previous scan-line

« Other channels of note:

* 18b, 960 -> 18kb BlockRAM
* 18Db, 2592 -> 2x36kb BlockRAM, 18b, 1296 -> 36kb BlockRAM, 9b, 1296 -> 18kb BlockRAM

 Very simple control logic

* If byte available to write:
Write byte, increment both counters, assert byte available to read

- Chain multiple together for larger vertical windows
* Now can examine an even larger window

Berkeley EEC © 2%

Grayscale Conversion...

EECS 151 Spring 18 Wawrzynek and Weaver

» Incoming pixels:
e B/G/B/G/B/G
e G/R/G/R/G/R

- Scanline buffer for grayscale conversion:

* Register 1 input & 1 output to get a 2x2 moving window
* Only compute every other pixel on the odd # scan-lines

 Fixed-point luminosity grayscale conversion:

* 03" R+0.295"G1+0.295"G2+0.11*B

Use fixed-point approximations to actually implement
Notice green is more important for total intensity: matches human perception

 But we can go from 10 bits to 16 bits in the process since 10 is already 1b too many for the BlockRAMSs

* Also serves to radically reduce the pixel rate

* Now it is 1/4 the pixels and 1920x1080 becomes 960x540, 2592x1944 becomes 1296x972

* Drops the pixel clock by 75%: Everything downstream can now use the 25 MHz clock!

- Could even possibly contemplate saving to DRAM: 31 MB/s/camera, 1TMB images at 960x540
Berkeley EEC © 27

Handling the edges of the frame...

EECS 151 Spring 18

- Option 1: Don't bother...

* For 5x5 analyses, each pass adds corruption to 2 pixels worth at the edge:
With 3 passes we corrupt a 6 pixel border

- Option 2: Special case the edges...
* Just repeat the same pixel that is on the edge itself

- Going to go with the latter

* Since this is now operating on grayscale at 25 MHz, the additional muxes are
eh, who cares.

Berkeley EEC 28

(Gaussian Blur

EECS 151 Spring 18

- A standard image filter designed to remove
high-frequency noise

* Since most camera noise appears on just one or two
pixels, a little blurring goes a long way

- For each pixel in a 5x5 grid
 Multiply it by the constant weight

- Sum all the pixels
- Divide by the constant to normalize things

- Available parallelism: Obscene

25 MACs per pixel, and computation is per-pixel

Independent, too
Berkeley EE(-

Wawrzynek and Weaver

4 | 7 | 4 | 1
16| 26| 16| 4
26 | 41| 26| 7
16| 26| 16| 4
4 | 7| 4 | 1

29

The Multiplication & Summation...

EECS 151 Spring 18

» |ts just an adder tree
e x1, x4, x16 -> shift
* X7 -> shift and subtract (X << 3 - X)
e X206, x41 -> shifts and 3 adds

* And then just add everything up in a tree

« S016+2*4 +5*3 =39 adders

* |ncrease of bit width for the output is 9 bits wider than the input
 And tree structure -> 6 adders deep and even better critical path

« Pure feed forward

* So can pipeline it trivially if needed, but its at the 25 MHz clock anyway so...

The Division In Hardware

EECS 151 Spring 18

- 1/273 is the same as multiply by 0.00366300366...

* But floating point multiply sucks...

- Use an online IEEE floating-point mapping tool, find out...

* (Can represent (in binary) as 1.111000001111 * 2-9
With a trivial error

* (Can also thus represent (in binary) as 1111000001111 * 2-21

» Thus this becomes a multiplication by a 13 bit constant

followed by a constant right shift of 21 bits

e So 8 adders

* But right-shift by 13 instead to create an 18b range output

GGradient Detection...

EECS 151 Spring 18 Wawrzynek and Weaver

- Want to look for the maximum gradient in all 4 main directions
* Horizontal, vertical, two diagonals

- Gradient calculated by selecting the maximum pixel in the line
of 5

* |f on left, subtract min of center and two on the right
* |f on the right, subtract min of center and two on the left
* |f center, subtract min of other 4

» Store 4 separate gradients, one for each direction
* Truncate to 9 bit values

» QOutput goes from 18b to 36b

Berkeley EEC & ey

Thinning and Thresholding...

EECS 151 Spring 18 Wawrzynek and Weaver

 For each cardinal direction

* |If not the maximum gradient, not an edge in this direction

* |f is the maximum gradient, sum up all gradients on this direction
If sum(gradients) > threshold: pixel is an edge

- Pixel is an edge Iif it is an edge on any cardinal direction

* Reduces image to a single-bit value: 960x540 image -> 64 kB

But pad the output a bit, so that a scan-line occupies an 8-word alignment:
Makes accessing arbitrary lines easier and keeps things staggered just enough to prevent conflict misses

- Write resulting image into main memory

* 064 kB still big for BlockRAM but no longer an issue with memory bandwidth for shoving into
the DRAM

* Also small enough to buffer a second worth of frames, not just a single frame
Berkeley EEC © 33

Memory Budget for a Camera Channel Edge
Deteotlon at 1080p

. 1 36kb BlockRAM for the grayscale conversion

- 4 18kb BlockRAMSs for the Gaussian Blur input

- 4 18kb BlockRAMSs for the Edge Detection input

- 8 18kb BlockRAMSs for the Thinning & Thresholding

» S0 this becomes 9 36kb BlockRAMs
 Have either 70 or 120 depending on the part

Berkeley EEC © 34

Optical Flow...

EECS 151 Spring 18 Wawrzynek and Weaver

» Given two images taken in different positions

 Find regions that correspond between the two images but represent
transformations in scale & position

» For such regions: find direction & magnitude of the necessary
transformations

- Then with some trigonometry based on the the direction & magnitude of

the scalings and knowledge of the two positions...

 (Can know how far each region is away from the camera
Let the host processor do this: its way easier with floating point

» This is a significant component of how humans work for longer distances

» Stereo vision is really only good at distinguishing things up close
Berkeley EEC - 35

Optical Flow Cheats For This Application...

EECS 151 Spring 18 Wawrzynek and Weaver

- Assume we are doing optical-flow on a forward mounted camera...

* Limits most displacement to the horizontal direction, and objects get bigger

* So although optical flow clearly requires looking at a significant X by Y window between the
two images...

We should bias our search space for horizontal displacements

- And we can do multiple frames at the same time:

* Take the current frame as the reference and do optical flow comparison with targets of the last
frame, frame-15, frame-29

The last frame is very low error for even close-in stuff: very low displacement
The -29 frame is high error but good for far away stuff: large displacement

» Can also possibly use this to detect moving objects
* They will stand out as different on the optical flow: moving "odd" compared to everything else

Berkeley EEC © 3

Optical Flow Line Buffer...

EECS 151 Spring 18 Wawrzynek and Weaver

- Can't do a standard line-buffer approach
 Need to compare a segment of the reference image with a larger hunk of the target
Image

» Instead need to do a "load and read"” approach
 Load the area under examination, then repeatedly read it out

- Pad a 960 pixel line to 1024 (makes addressing easier)
 18kb BlockRam: can hold 16 lines and read out 16b at a time

» Probably want to run at the 100 MHz clock

 [For each 32x4 window of the reference frame, see where in a 64x16 window of the
output is the best match of the pattern and determine the scaling & transformation

Overlap the 32x4 regions however and only record the center 4x4 value
Berkeley EEC - 57

Comparisons...

EECS 151 Spring 18

- With no edges...

 (Can't compute, ah well

- With just a single clean edge...

* (Can only get displacement, not scaling
* And select the one closest to the origin that matches the basic shape

- With 2+ edges

* (Can get displacement & scaling

* Yes, this requires a lot of comparisons!

* But there are tons of parallelization opportunities
Berkeley EE(- 38

Parallelization Opportunities

EECS 151 Spring 18 Wawrzynek and Weaver

- Each comparison is, itself, done in parallel for all bits in the reference image

* Each pixel in the target compared against its corresponding pixel + 3 surrounding in the reference

Output is 2-bit, not 1-bit
Bits selected for biasing towards the object being bigger in the reference frame

* All comparisons are summed to create a target confidence
Confidence is biased by how far from the center it is & # of edge pixels in reference

* Also comparing against upsampled & downsampled reference for scaling measurement

- Compare against multiple source windows simultaneously

* Natural breakdown: Compare with all windows in a vertical slice
* Then each clock cycle, shift each bit by 1
* Does require a lot of registers & comparisons, but we knew that coming in!

- Keep a running total of "best match”
 And then when completed, we have it...

- And then compare with multiple frames at the same time...

 If the resources allow it
Berkeley EE 39

Final Component:
Slave Coprocessors

EECS 151 Spring 18 Wawrzynek and Weaver

- The race-drone community has some nice low-level flight control software

* Designed to run on ~70-150 MHz 3-stage pipeline ARM cores with single-precision FPU
* Basically performance-equivalent to a Xilinx Microblaze soft-core

- Initial deployment will use external flight controller board...

* But will eventually want to migrate that functionality onto the FPGA itself:
Why spend an extra $50/drone on a separate FC when the board already has 2 independent
gyros and all the other stuff needed?

» Second slave coprocessor to do input filtering on GPS/gyros

* |ts a continuous, real-time task
So don't want it on the host processor

* But its complex, branchy, coded in C, and uses floating point
So can't directly implement on the FPGA fabric directly

Berkeley EEC © 40

