
EECS 151/251A
Discussion 2

02/02/2018



● LUT as a MUX
● Boolean Algebra
● Timing
● FSM

Agenda



LUT as a MUX
● What is a LUT?
● What is a MUX?
● How can you use a LUT as a MUX?
● Biggest MUX in a 5-LUT? 6-LUT?

LUT

M
U

X

S

I0

I1

Look-up table



Output

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

Output

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Outputs:

If lsb is sel; output =

0
0
1
0
0
1
1
1

And repeated



Timing
4 things we care about (for now)

Propagation 
delay

Combination logic propagation delay (max) - after this, the output stably represents 
the function applied to the input
Combination logic contamination delay (min prop delay) - after this, the previous 
output is no longer valid

Flip flops: set up time: time to keep input stable BEFORE clock edge
Hold time: time to keep input stable AFTER clock edge
Clock-to-Q: time until output of flip flop



Boolean Algebra
Basics

De Morgan’s laws

~(AB) = ~A OR ~B
~A.~B = ?

A.B A AND B 1.1 = ?
1.0 = ?

A + B A OR B 0 + 0 = ?
1 + 0 = ?
1 + 1 = ?

A + A = ?
A + 0 = ?

A.A = ?
A.0 = ?

Not a coincidence that the notation suggests behaviour in the manner we’re used to 
with integers.

1.1 = 1
1 + 0 = 1
1 + 1 = 2 but in a 

~(AB) = ~A OR ~B
~A.~B = ~~(~A.~B) = ~(A OR B)



Boolean Algebra
Basics

De Morgan’s laws

~(AB) = ~A OR ~B A NAND B = (NOT A) OR (NOT B))
~A.~B = ~(A OR B) (NOT A) AND (NOT B) = A NOR B

A.B A AND B 1.1 = 1
1.0 = 0

A + B A OR B 0 + 0 = 1
1 + 0 = 1
1 + 1 = 1 in F2/Z2/GF(2)

A + A = A
A + 0 = A

A.A = A
A.0 = 0

Not a coincidence that the notation suggests behaviour in the manner we’re used to 
with integers.

1.1 = 1
1 + 0 = 1
1 + 1 = 2 but in a 

~(AB) = ~A OR ~B
~A.~B = ~~(~A.~B) = ~(A OR B)



Truth Tables
● Quickly prove to you equivalence of expressions
● Canonically describe an expression (exhaustive proof)
● Require discipline and rigour
● Are your friend

If you ever get confused...



Simplification
X = ~A.~B + ~A.B + A.B

~(A + ~B) = ~A.B

X = ~(~(~(A + ~B) + (AB))(A + B));

~A.~B + ~A.B + A.B
= ~A.~B + ~A.B + A.B + ~A.B
= ~A(~B + B) + B(A + ~A)
= ~A(1) + B(1)
= ~A + B



De morgan’s laws:
~(AB) = ~A OR ~B
~A.~B = ~~(~A.~B) = ~(A OR B)

In this circuit

C OR D = ~~(C OR D) = ~(~C.~D) <- nand with inverters

I (for intermediate) 0 (the top one) AND I1 
I0.I1 = ~~(I0.I1)

I3 + E = ~(~(I3 + E)) = ~(~I3.~E) <- nand with inverters on inputs again
But if we do this step last, we see that the output just needs to be inverted anyway, so 
we can just turn the original and into a nand.

Think of the algebra you’re used to. How do you simplify and solve, or expand, or 
factor, to get it to look like something you want?

Don’t get hung up thinking through what it all means intuitively. It’ll probably slow you 
down. Just do it a few times.



M
U

X

S

I0

I1

Out F?

X?

Y?



Finite State Machines
Moore vs Mealy?

Examples?

Moore= outputs depend only on state
Mealy = outputs depend on state and other inputs

What are simple examples?
Traffic lights



References
● Homework 2, EECS 151/251A Spring 2017
● Wikipedia


