EECS 151/251A

Discussion 3
02/09/2018

Agenda

Announcements
FSM

Karnaugh Maps
CMOS logic

Announcements

e Midterm next Thursday

o O O

O

3 hour exam (though we don't expect you'll need the entire time)

In the lecture slot next Thursday with extra time; 5 pm - 8 pm

Closed book, but you are allowed one hand-written two-sided cheat sheet (8.5x11 inch)
Location to-be-decided

e [|'ll be away for two weeks

O

O O O O

Only an email away. Or an SMS. Or Piazza. Or Skype. It's 2018, ¢’'mon
Taehwan will attend Thursday FPGA labs
No one will staff Wednesday labs; | can be available in real-time on Slack
FPGA labs 3, 4 and 5 will be not need to be checked off until Friday, 2 March
Discussions will be moved temporarily so Taehwan can staff ‘em

m This is the last one before your first midterm

Warmup

1. Use blocking assignments to model combinational logic within an always
block (“="). Why?

2. Use non-blocking assignments to implement sequential logic (“<="). Why?

Do not mix blocking and non-blocking assignments in the same always block.

4. Do not make assignments to the same variable from more than one always

block.

W

Be rigorous and disciplined to minimise unexpected results!

Finite State Machines

Moore vs Mealy?

Traffic lights!

North - South East - West

Figure 8.13 Six colored LEDs can represent a set of traffic lights

Traffic Light FSM

Table 8.2 Traffic Light States

State North - South | East - West Delay (sec.)
0 Green Red 5
1 Yellow Red 1
2 Red Red 1
3 Red Green 5
4 Red Yellow 1
5 Red Red 1

Traffic Light FSM

count <15

ot <3 count <3

count <3

count <15

Figure 8.14 State diagram for controlling traffic lights

FSM design steps

5 oo o

3. Whrie-down-symbetie state transition table [kind of]

4. Assign encodings (bit patterns) to symbolic states

5. Code as Verilog behavioral description.. (Or just skip from 1 to 4+5...)

Listing 8.6 traffic.v

// Example 62a: traffic lights
module traffic (

input wire clk ,

input wire clr

output reg [5: 0] lights

) r

reg[2:0] state;

reg([3:0] count;

parameter SO0 = 3'b000, S1 =3'b001, S2 = 3'b010, // states
53 = 3"b011, S4 = 30100, S5 = 3"b101;
parameter SECS = 4'b1111, SEC1 = 4'b0011; // delays

always (@ (posedge clk or posedge clr)

begin
1f (clr == 1)
begin
state <= S0;
count <= 0;
end
else

case (state)

always (@ (posedge clk or
begin
if (clr == 1)
begin
state <=
count <=

o W

end
else
case (state)

posedge clr)

case (state)

SO0: if (count < SEC5)
begin
state <= 50;
count <= count + 1;
end
else
begin
state <= 51;
count <= 0;
end
S1l: if (count < SEC1)
begin
state <= S1;
count <= count + 1;
end
else
begin
state <= S2;
count <= 0;
end
S2: if(count < SEC1)

begin

state <= 82;

count <= count + 1;
end

else

begin

always (@ (*)
begin
case (state)
S0r lights = 6'B100001;
Sl: lights 5'b100010;
523 lights 6T BLO0LI00
S3: laghts = 6'B001100;
542 .lights = 675010100 ;
S5: lights = 8TH100100;
default lights = 6'b100001;
endcase
end
endmodule

Waiting for a green at night on empty streets

What about a sensor for cars waiting in each direction?

Copyright 2007 © Elsevier

Karnaugh Maps

AB

00 01 11 10

CD

00

01

11

10

Copyright 2007 © Elsevier

Karnaugh Maps

AB

00 01 11 10

CD

00

01

11

10

Copyright 2007 © Elsevier

Karnaugh Maps

AB

00 01 11 10

CD

00

01

11

10

Copyright 2007 © Elsevier

Karnaugh Maps

OﬁAI -— o
—
\
| B o o o N
)
o
O
7 N =)
—
o
Y
o
m ~— (@] — — m
A S -]
Q n
=~ 8 & T ¢
~— —
Q
> 0O
>Nt o d4 4 o — A" o000 oo o
Qo+ o« o o O H O HA O O
Olo o 14 o — oo AdAdo o
Moo o o — OO OO -
oo o oo o L e B R e B R I

More Karnaugh Maps

(@]
h
b v
-
-
o
o
o
(AR}
= 8 & T ¢
- -
Q
> O
PN O H O X o bl B S B
Qoo a0 10«0 o — O O -
Qoo+ 00140 O — O O d -
MO O OO A OO O o
L(fOOODOOO OO O A — o o

AB

00 01 11 10

CD

00

01

11

10

C D|Y

B

\
o | — - X X
—
¥ .
O
—| | X > > P *
L Q
|0
+
I
>
\\u
m - (] - -~
AR 7
=~ 8 & T 2
% - b
Q
> O
>l O A O — — Bt aa % be
Qo+ 0 40 o) O — O o
o o o O - o O — 1
e o g e e o B e O —
IO OO OO O o — —

CMOS logic

nMOS + pMOS

e Several conceptual inversions happening
o n-type vs p-type channels
o gate-to-source voltage vs threshold
o afew different symbols
e For the same +ve source voltage, V,
o nMOS: logic 1 (near V), the transistor is ON
o pMOS: logic 0 (near V), the transistor is ON
e Drawn to show logic inversion
Note the bubble

Abstracts physical operation

How do you build a three-input NOR gate?

A B Out B _Gl

1] 0 1

2 . “ A —qf OUT = A+ B
1 0 L]

o
L
L
w
. -
T

Truth Table of a 2 input NOR Zate

How do you build a three-input NOR gate?

]
A 3
B oj
: .,
04

Transmission gates

Logic gates:

NMOS passes 1s poorly; pMOS passes Os poorly

1
e

IN

Transmission gates:

In general,

Bi-directional, useful for simplifying circuits

NMOS (bottom): pass zeros
pMOS (top): pass ones

W

{'7_

W

1t

il

1t
0

Qu’est-ce que c’est?

References

e http://www.lbebooks.com/downloads/exportal/verilog_basys_example62-traffi
clights.pdf

e Digital Design and Computer Architecture, David M. Harris & Sarah L. Harris

e Maxim Integrated,
https://www.maximintegrated.com/en/app-notes/index.mvp/id/4243

e Wikipedia

http://www.lbebooks.com/downloads/exportal/verilog_basys_example62-trafficlights.pdf
http://www.lbebooks.com/downloads/exportal/verilog_basys_example62-trafficlights.pdf

