EECS 151/251A

Discussion 6
03/16/2018

Announcements

e Homework 6 solutions posted
e Midterm 2 next Thursday in class slot with extra time (like Midterm 1)
e (Catch-up discussion next week?

Midterm coverage

You are responsible for material covered in homeworks, labs, discussions
Delay, wires, power, etc (lectures 9 - 12)

e Review Taehwan’s discussion (5) for summary and overview of topics
e Understand homework questions, answers, and concepts
e Midterm questions won'’t be as hard

Microprocessor design, instructions, logic elements (lectures 13 - 17)

Processor vocab + basics

ISA, ALU, Immediate, Byte, Half-word, Word

Instruction fetch, instruction decode, ALU op(eration), Memory op, Write back

Processor vocab + basics

Always at least:
datapath + controller + memory

Number of execution steps (stages)
is flexible. Typical RISC-V:

CLK
Reset
1. Instruction fetch
2. Instruction decode |
3. ALU op(eration)
4. Memory op
5. Write back

.......................................

Controller

Datapath

CLK
Il

-] -

N WE

Data
Memory
WD

ReadData

A RD

Instruction
Memory

Instr

External Memory

D

D 2007 Elsevier, Inc. All rights reserved

Data Hazards

Named after what should happen if nothing goes wrong:

Read-after-Write (RAW) R2 <- R1 + R3

Write-after-Read (WAR) "Rl <- R4 + RS
Write-after-Write (WAW) \
What about Read-after-read () ? R1 <- R2 + R3

R4 <- R1 + R2

R1 <- R2 + R3
R4 <- R5 + R6
R1 <- R6 + R7

Other hazards

Control

e \When branching, processor does not know what the next instruction will be
until some time later
e \What should it run next?

Structural

e \When things don't fit in places at the same time
e e.g.if memory writes take a long time and we can’t issue multiple
simultaneous requests

Question time

You are given the assembly code shown below, and it is run on a RISC-V processor with a typical
5 stage pipeline (instruction fetch — decode — execute — memory access — writeback).

aad x1, %2, %3
add x5, x4, xl1

(a) Explain what kind of hazard is present in the code above, and how many extra cycles are
introduced if the processor has no data-forwarding. Assume all state elements in the processor
are positive edge triggered.

There is a read-after-write data hazard present, involving the value written to the x1 register
by the first instruction. We can draw a pipeline diagram to analyze this situation:

Cycle |1 |2 |3 4 5 6 & |
Inst1 |IF | D |EX | M | WB
Inst 2 IF | D EX |EX |EX | M | WB

Since the result of the first instruction isn’t available to the next instruction until after it has

been written to the regfile (at the end of cycle 5), the second instruction has to stall until it
is available.

2 extra cycles are needed due to the data hazard.

(b) Assuming the register file is written on the positive edge of the clock, how many cycles would
the two instructions in total take? From the pipeline diagram above, it can be seen that 8
total cycles are required.

(¢) To improve the performance, forwarding is implemented such that the inputs to the ALU
can be pulled from the memory access stage. Now, how many extra cycles are caused by the
hazard? How would you modify the part of the datapath shown below for this to be possible?
Name any new control signals you have added.

CLK
|
SrcAE ZeroM WE
-’ ALUOUtM
o ~_| - A RDH }
N 0 SrcBE < Data
1 iaGaiek Memory
. r
WriteDatal ——— 1 wp
RtE _ .
1 ke 0 WriteRegE, , WriteRegM, ,
- 1/
= . <<2
SignimmE _ PCBranchM
PCPIlus4E

Now the data needed by instruction 2 is available in cycle 4 and can be forwarded immediately.

Cycle [1 |2 |3 [4 |5 |6 |7]8
Tnst1 |[IF |D |EX | M | WB
Tnst 2 IF|D |EX|M |WB

No extra cycles are caused by this hazard now.

We can modify the datapath by routing ALUOutM from the memory access stage to 2 muxes
that drive SrcAE and SrcBE. The muxes are controlled by one control signal each and if the
control signal is 1, ALUOutM is forwarded to the respective ALU inputs. We can call these
control signals ALUFwdA and ALUFwdB.

(d) Now consider this set of instructions:

1w x1, 0(x2)
add x5, x4, x1

Assuming an asynchronous read data memory, how many cycles will this set of instructions
take to execute? Identify any data hazards.

There is a data hazard concerning register x1 similar to part (a). As a result these instructions
will take 8 cycles to execute without any additional forwarding paths.

(e) If you could add another forwarding path from the output RD of the data memory, how many
cycles will these instructions take to execute? What could be a disadvantage of forwarding
from the output of the data memory versus from the pipeline register clocking RD?

We could again reduce the total cycles down to 6. However, directly feeding the output of the
data memory to the execute stage will likely yield a long ciritical path which could un-balance
the pipeline and negatively impact the max frequency of operation.

Next question

Imagine that you have a simple 3 stage in-order pipeline with the following stages:

1. Instruction fetch and decode
2. Execute

3. Write back

Registers are read in the first stage. and written to in the third stage.

add x0,x1.x2
sub x2,x3,x4
add x2,x3,x4
or x3.,%2.%0
and x4,x1,x0

xor x2,x1,x4
add x1,x2,x0

Assuming we can forward the result of an ALU operation from stage 3 to stage 2,
how many cycles does the block of code take to execute?

add x0,x1,x2

Cycle | IF | EX | WB |
sub x2,x3,x4 R e e
add x2,x3,x4 : e A
or x%3,%2,%0 A s BN e
and x4,x1,x0 0 = Jade)owel
9 O W O T T

xor x2,x1,x4
add Xi ’ X2 ’ XO 9 cycles

What is the CPI1?
9 cycles/7 instructions = 1.26 CPI

If the critical path is 1.2 ns, how long does the code take to execute?

1.279=10.8ns

Next question

You are to add a store with postincrement instruction to a 5-stage RISC-V processor pipeline. The
instruction swinc updates the index register to point to the next memory word after completing
the store. swinc rt, imm(rs) is equivalent to the following two instructions:

sw rt, imm(rs)
addi rs, rs, 4

(a) How would you modify the following datapath to accomodate this instruction? Try to add
as little hardware as possible.

: CLx
: +ALUO.‘W
CAK CLK i
CLK _t
v | |2t WE
+ PinstD 3 H
- A RO A Plavowm], on H ! [Rredaen
Instruction | !
i Data
! | wesanaan | Memory
: wD
i WritsRef, . | [eraregh, i | wreregnr,
15l ReE o ' — i
s SignmmE
' ' <<2 i
i Sign Bxtend N I T
PPy : PCPmAD ' PCPuBAE
L ol L) £l

ResdtW

Fetch Decode Execute Memory Writeback

Since the main ALU is busy with calculating the store address (imm + rs), it can’t be used for
adding 4 to rs. However, the adder that normally computes the jump/branch address in the
same stage is free during this instruction. Therefore, we can reuse that adder to implement
this instruction by adding a mux to its input which is fed with the argument A of the ALU.
We also need to modify the datapath to pass the output of that adder all the way through
the pipeline, and add a mux to select it as ResultW during writeback.

(b) The following assembly program uses the new instruction; what hazard do you see? Modify
the datapath you created in part (a) to eliminiate the stalls introduced.

swinc x3, 0x10(x2)
add x8, x2, x5

There is a data hazard from the first instruction writing x2 to the second instruction using
x2 in the execute stage. To resolve this hazard, we need to add another forwarding path from
the output of the pipeline register that holds the branch/jump adder’s result to each of the
ALU’s inputs through a mux.

References

Digital Design and Computer Architecture, David M. Harris & Sarah L. Harris
Discussions from EECS151/251A Fall 2017, George Alexandrov
Homeworks from EECS151/251A Fall 2016, Spring 2017, Fall 2017
Wikipedia

