
Discovery Visual
Environment User Guide
G-2012.09
September 2012

Comments?
E-mail your comments about this manual to:
vcs_support@synopsys.com.

mailto:vcs_support@synopsys.com

ii

Copyright Notice and Proprietary Information
Copyright © 2012 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AEON, AMPS, Astro, Behavior Extracting Synthesis Technology, Cadabra, CATS, Certify, CHIPit, CoMET,
Confirma, CODE V, Design Compiler, DesignWare, EMBED-IT!, Formality, Galaxy Custom Designer, Global
Synthesis, HAPS, HapsTrak, HDL Analyst, HSIM, HSPICE, Identify, Leda, LightTools, MAST, METeor, ModelTools,
NanoSim, NOVeA, OpenVera, ORA, PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL,
SNUG, SolvNet, Sonic Focus, STAR Memory System, Syndicated, Synplicity, the Synplicity logo, Synplify, Synplify
Pro, Synthesis Constraints Optimization Environment, TetraMAX, UMRBus, VCS, Vera, and YIELDirector are
registered trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, ARC, ASAP, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia, Columbia-CE, Cosmos,
CosmosLE, CosmosScope, CRITIC, CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon Access, Discovery, Eclypse, Encore,
EPIC, Galaxy, HANEX, HDL Compiler, Hercules, Hierarchical Optimization Technology, High-performance ASIC
Prototyping System, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Intelli, Jupiter, Jupiter-DP, JupiterXT,
JupiterXT-ASIC, Liberty, Libra-Passport, Library Compiler, Macro-PLUS, Magellan, Mars, Mars-Rail, Mars-Xtalk,
Milkyway, ModelSource, Module Compiler, MultiPoint, ORAengineering, Physical Analyst, Planet, Planet-PL, Polaris,
Power Compiler, Raphael, RippledMixer, Saturn, Scirocco, Scirocco-i, SiWare, Star-RCXT, Star-SimXT, StarRC,
System Compiler, System Designer, Taurus, TotalRecall, TSUPREM-4, VCSi, VHDL Compiler, VMC, and Worksheet
Buffer are trademarks of Synopsys, Inc.

Service Marks (sm)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

 iii

Contents

Contents

1. Getting Started . 1-1

Overview . 1-2

Enabling Debugging . 1-3

Debug Options. 1-3

Required Files . 1-4

Invoking DVE. 1-5

64-bit Mode . 1-6

Interactive Mode . 1-6

Starting an Interactive Session from the DVE GUI. 1-7

Post-Process Mode . 1-11

Using the -vpd command . 1-11

Loading the Design Database File in the DVE GUI 1-11

Using Session File . 1-13

Using the -session command . 1-13

Loading a Session File in the DVE GUI 1-13

Using Tcl Scripts . 1-14

Passing DVE Arguments from Simulator Runtime Command Line 1-
14

Saving a Session or Layout. 1-16

iv

Contents

Saving the Current View . 1-18

Restoring a Saved Simulation . 1-20

Closing a Database . 1-22

Exiting DVE . 1-22

DVE Log Files . 1-22

DVE Licensing Queuing . 1-23

DVE Setup Files . 1-24

Managing User Setup Files . 1-26

Usage. 1-26

Typical Symbols Used in DVE. 1-28

Special Symbols Used in DVE. 1-29

Low Power Symbols Used in DVE. 1-30

2. Using the Graphical User Interface . 2-1

Overview of DVE Window Configuration. 2-2

Creating a Window Title for All Views and Panes 2-6

Managing DVE Panes and Views . 2-8

Managing Target Views . 2-9

Maximizing View . 2-11

Docking and Undocking Views and Panes 2-13

Dragging and Dropping Docked Windows 2-13

The Console Pane. 2-14

The Watch Pane . 2-15

The Memory View . 2-16

Setting Properties of Signal in Memory View. 2-16

C, C++, and SystemC Code . 2-19

 v

Contents

Using the Menu Bar and Toolbar. 2-20

Searching Signals or Scopes . 2-20

Mapping to the Location of the Source Files 2-22

Interactive Mode . 2-22

Use Model . 2-22

Post-process Mode . 2-23

Use Model . 2-23

Editing Preferences . 2-24

Using Context-Sensitive Menu . 2-24

3. Using the Hierarchy and Data Panes . 3-1

The Hierarchy Pane . 3-2

Scope Types and Icons . 3-3

Filtering the objects in the Hierarchy Pane. 3-5

Navigating Open Designs . 3-5

Expanding and Collapsing the Scope . 3-6

Rearranging Columns in the Hierarchy Pane 3-6

Populating Other Views and Panes . 3-7

Displaying Variables in the Data Pane 3-7

Dragging and Dropping Scopes . 3-7

Dumping Signal Values . 3-9

Moving Up or Down in the Hierarchy Pane 3-10

The Data Pane . 3-16

Viewing Signals and Values. 3-17

Filtering the Signals . 3-18

Forcing Signal Values . 3-19

Viewing Interfaces as Ports . 3-23

Viewing $unit Signals. 3-26

vi

Contents

Debugging Partially Encrypted Source Code. 3-28

4. Using the Source View . 4-1

Loading Source Code . 4-2

Loading a Source View from the Hierarchy Pane 4-2

Loading a Source View from the Assertion View 4-3

Displaying Source Code from a File . 4-4

Using the Mouse in the Source View. 4-5

Working with the Source Code . 4-6

Expanding and Collapsing Source Code View 4-6

Displaying Include File as Hyperlink . 4-6

Example . 4-6

Editing Source Code . 4-10

Selecting and Copying Text to the Clipboard. 4-11

Color-coding the Source File . 4-11

Setting Desired Color for Inactive 'ifdef `else Code in DVE 4-13

Usage Example . 4-14

Navigating the Design from the Source View 4-17

Navigating Code in Interactive Simulation. 4-18

Setting Breakpoints in Interactive Simulation 4-18

Managing Breakpoints . 4-20

Setting Breakpoints in a Class Object 4-24

Creating Conditional Breakpoints. 4-27

Debugging During Initialization of SystemVerilog Static Functions and
Tasks . 4-32

Enabling Static Debug in DVE . 4-32

Debugging Static Code. 4-33

Features Disabled in Initialization Phase 4-35

 vii

Contents

Annotating Values . 4-37

5. Using Wave View . 5-1

Viewing Waveform Information . 5-2

Viewing a Waveform . 5-2

Viewing Nanosim Analog Signals . 5-4

Setting the Simulation Time . 5-5

Using the Signal Pane. 5-5

Expanding Verilog Vectors, Integers, Time, and Real Numbers 5-7

Adding Signal Dividers. 5-8

Renaming Signals . 5-8

Renaming Signal Groups. 5-12

Undo and Redo Operation for Signals . 5-12

Creating Multiple Groups when Adding Multiple Scopes 5-15

Creating Nested Signal Groups . 5-15

Creating Nested Signal Groups in the Wave View 5-16

Creating Nested Signal Groups in the List View 5-21

Using Signal Group Manager to Create Nested Signal Groups 5-
22

Deleting Signal Group . 5-24

Customizing Duplicate Signal Display . 5-24

Overlapping Analog Signals . 5-25

Using User-defined Radices . 5-26

Comparing Signals, Scopes, and Groups 5-28

Creating a Bus . 5-31

Modifying Bus Components . 5-33

Viewing Bus Values . 5-35

Creating an Expression or a Counter. 5-35

Limitations . 5-39

viii

Contents

Using the Wave View . 5-40

Customizing Waveforms Display . 5-41

Displaying Grid in Wave View . 5-45

Example . 5-46

Setting Grid Properties . 5-46

Cursors and Markers . 5-54

Using Cursors. 5-54

Creating Markers . 5-55

Extracting State Name . 5-58

Example . 5-59

Limitations . 5-61

Zooming In and Out . 5-62

Drag Zooming . 5-62

Visualizing X at all Zoom Levels . 5-63

Expanding and Contracting Wave Signals. 5-63

Searching Value or Edge of Signal . 5-64

Shifting Signals . 5-65

Printing Waveform . 5-66

Viewing PLI, UCLI, and DVE Forces in Wave View 5-68

6. Using the List View . 6-1

The List View. 6-2

Viewing Simulation Data . 6-3

Using Markers . 6-3

Setting Signal Properties . 6-4

Comparing Signals. 6-5

Saving a List Format . 6-6

 ix

Contents

7. Using Schematics . 7-1

Overview . 7-2

Viewing Schematic . 7-2

Opening a Design Schematic View . 7-3

Annotating Values . 7-5

Making Modules as Black-Box. 7-5

Mapping Symbols in Schematic. 7-6

Generating .db or .sdb Files . 7-10

Opening a Path Schematic View. 7-10

Displaying Connections in a Path Schematic 7-12

Compressing Buffer and Inverter in Schematic 7-14

Following a Signal Across Boundaries. 7-18

Finding Signals in Schematic and Path Schematic View 7-20

Highlighting Signals . 7-20

Searching for Signals. 7-21

Showing Value Annotation . 7-21

Selecting and Deleting All Objects from Path Schematic View . 7-23

Back Tracing . 7-24

Example. 7-25

Setting the Back Trace Properties . 7-30

Printing Schematics. 7-33

Schematic Visualization of RTL Designs. 7-35

Schematic Symbols . 7-39

Design Analysis for RTL Symbol Creation 7-39

Default Symbol for a Process. 7-41

Flip-Flop Schematic Symbols. 7-43

Simple Logic Schematic Symbols . 7-44

Enabling and Disabling RTL Visualization 7-45

x

Contents

Schematic Visualization of RTL Design Limitations. 7-46

8. Using Smartlog . 8-1

Use Model . 8-2

Compile Flow . 8-2

Post-processing Debug Flow . 8-3

Viewing Smartlog Data in the Console Pane 8-3

Right-click Menu Options in Smartlog 8-4

Opening Log File . 8-8

Usage Example . 8-9

Post-processing Mode . 8-12

Interactive Mode. 8-13

9. Tracing Drivers and Loads . 9-1

The Driver Pane . 9-1

Supported Functionality . 9-3

Unsupported Functionality . 9-3

Tracing Drivers and Loads . 9-3

Active Drivers . 9-5

Enabling Active Drivers . 9-6

Usage Example . 9-8

Visualizing Driving Signals. 9-9

Highlighting Driving Signals in Path Schematic View. 9-12

Tracing Signal Values over Combinational Logic. 9-13

Incremental Active-driver Tracing in Driver Pane. 9-16

Viewing Intermediate Drivers . 9-20

Visualizing the Path Between Driver and Traced Signal 9-21

Multicycle Support for Value Tracing . 9-23

 xi

Contents

Specifying Maximum Clock Cycles to Trace Value Change . 9-25

Active Drivers Support for PLI, UCLI, and DVE Forces 9-27

Active Driver Limitations . 9-33

10. Using the Assertion Pane . 10-1

Compiling SystemVerilog Assertions. 10-1

Displaying Assertions . 10-2

Viewing Assertion in the Wave View . 10-4

Displaying Cover Properties . 10-6

Debugging SystemVerilog Immediate and Concurrent Assertions . 10-7

Usage Model . 10-8

11. Using the Testbench Debugger . 11-1

Overview . 11-2

Enabling Testbench for Debugging . 11-3

Invoking the Testbench Debugger GUI . 11-3

Testbench Debugger Panes . 11-4

Stack Pane . 11-5

Local Pane . 11-8

Watch Pane . 11-8

Class Browser . 11-
10

Usage Model . 11-
10

Dynamic Object Browser . 11-
17

Object Browser Example . 11-
17

xii

Contents

Object Hierarchy Browser . 11-
18

Viewing Memory Size of Objects in Object Hierarchy Browser 11-
23

Using Object Hierarchy Browser Filters 11-
27

Viewing Objects in the Class Pane 11-
34

Viewing Object Instance Information in the Member Pane . 11-
37

Viewing Reference Path of an Object Instance 11-
38

Searching for Dynamic Objects in the Local Pane 11-
41

Adding Reference Paths to the Watch Pane 11-
42

Renaming Object Name in the Watch Pane. 11-
43

Debugging VHDL Subprogram . 11-
44

Example . 11-
44

Usage Model . 11-
47

Limitations . 11-
48

Viewing Virtual Interface Object in DVE. 11-
48

Testbench Debug . 11-
50

 xiii

Contents

Viewing Object Identifier Values . 11-
51

Viewing Object Identifier Values in DVE. 11-
51

Viewing Object Identifier Values Using UCLI Commands . . 11-
53

Viewing Object Identifier Values in Local Pane 11-
53

Viewing Object Identifier Values in Watch Pane. 11-
54

Viewing Object Identifier Example . 11-
57

Creating Object Identifier Breakpoints . 11-
58

Creating Object Breakpoints Using UCLI Commands 11-
58

Creating Object Breakpoints Using DVE Breakpoints Dialog 11-
59

Creating Breakpoints at the End of a Method 11-
62

Parameterized Class Support . 11-
64

Avoiding Stepping into VMM/UVM/OVM Code 11-
65

Changing Dynamic Variable Values in DVE. 11-
66

Filtering Variables in Local Pane . 11-
68

Filtering Objects in Stack Pane . 11-
68

xiv

Contents

Viewing the Class in Class Browser from Source View and Member
Pane . 11-
69

Viewing VMM/UVM Documentation. 11-
72

Viewing Struct Variables in the Local Pane 11-
73

Struct Variables Example . 11-
74

Viewing the .size of Dynamic Arrays in Local Pane. 11-
75

Dynamic Arrays Example . 11-
76

Debugging Threads. 11-
78

Thread Debugging Example . 11-
78

Viewing Status of a Thread in the Stack Pane 11-
79

Searching a Thread in the Stack Pane. 11-
82

Using Object ID Column in the Threads Only Display View. 11-
84

Filtering Unnamed Scopes in the Active Call Stack View 11-
85

Support for Thread-Specific Breakpoints in the Stack Pane . . . 11-
89

Viewing the Console Pane Thread in the Stack Pane 11-
91

 xv

Contents

Configuring the Background Color of a Stack Frame in the Stack Pane
and Class Pane . 11-
92

Debugging UVM Testbench Designs. 11-
96

UVM Testbench Design Debug Example. 11-
97

UVM Resource Browser . 11-
98

Viewing the UVM Resource Browser 11-
98

Using the Resource View . 11-
100

Using the Resource History View. 11-
104

Right-click Menu Options in the Resource View 11-
106

Right-click Menu Options in the Resource History View . . . 11-
107

UVM Factory View . 11-
107

Right-click Menu Options in UVM Factory View. 11-
110

UVM Phase View. 11-
111

UVM Phase Breakpoints . 11-
116

Simulation Arguments Dialog Box . 11-
120

Filtering Variables in the Watch Pane . 11-
121

xvi

Contents

12. Debugging Transactions . 12-123

Introduction . 12-
123

Transaction Debug. 12-
124

Using $vcdplusmsglog 12-
139

Viewing Streams and Transaction Relations 12-
152

SystemVerilog String Variables dump using $vcdplustblog() and
$vcdplusmsglog() . 12-
158

Editing Transaction Debug Preferences. 12-
160

Using tblog and msglog in DVE Command Prompt 12-
162

Transaction Debug in SystemC Designs 12-
166

Viewing NTB-OV Variables using tblog/msglog 12-
192

13. Using the C, C++, and SystemC Debugger 13-1

Getting Started . 13-2

Using a Specific gdb Version . 13-2

Attaching the C-Source Debugger in DVE. 13-2

Detaching the C-source Debugger. 13-4

Displaying C Source Files in the Source View. 13-4

Commands Supported by the C Debugger 13-5

 xvii

Contents

Changing Values of SystemC and Local C Objects with
synopsys::change . 13-
12

Changing SystemC Objects . 13-
12

Changing Local C Variables . 13-
14

Using Breakpoints . 13-
16

Set a Breakpoint from the Breakpoints Dialog Box 13-
16

Control Line Breakpoints in the Source view 13-
16

Set a Breakpoint from the Command Line 13-
17

Deleting a Line Breakpoint. 13-
18

Stepping Through C-source Code . 13-
19

Stepping within C Sources . 13-
19

Cross-stepping between HDL and C Code 13-
19

Cross-stepping in and out of Verilog PLI Functions 13-
20

Cross-Stepping in and out of VhPI Functions. 13-
21

Cross-stepping from C into HDL . 13-
22

Cross-Stepping in and out of SystemC Processes. 13-
23

xviii

Contents

Direct gdb Commands . 13-
24

Add Directories to Search for Source Files 13-
25

 Common Design Hierarchy . 13-
26

Post-processing Debug Flow. 13-
30

Interaction with the Simulator . 13-
33

Prompt Indicates Current Domain . 13-
33

Commands affecting the C domain:. 13-
33

Combined Error Message . 13-
34

Update of Time, Scope, and Traces . 13-
34

Configuring CBug . 13-
35

Startup Mode . 13-
35

Attach Mode. 13-
36

cbug::config add_sc_source_info auto|always|explicit 13-
36

VPD Dumping for SC_FIFO Channels . 13-
37

FIFO objects that can be Dumped or Printed 13-
37

 xix

Contents

Displaying Data in SC_FIFO . 13-
37

Configuring Dumping of a FIFO. 13-
38

Configuring with UCLI . 13-
39

Configuring with DVE . 13-
40

Configuring from SystemC Source Code 13-
40

Support for Data Types . 13-
41

Native ANSI and SystemC types . 13-
41

User-defined Types . 13-
42

Change Bars in Waveform. 13-
42

UCLI 'get' Command . 13-
42

Speed Impact . 13-
43

Supported platforms . 13-
43

Using SYSTEMC_OVERRIDE. 13-
44

Example: A Simple Timer . 13-
46

Viewing SystemC Source and OSCI Names in DVE. 13-
51

xx

Contents

Use Model . 13-
51

Source and OSCI Names . 13-
53

Displaying Source and OSCI Names in DVE. 13-
53

Limitations . 13-
56

Using CBug to Display Instance Name of Target Instance in TLM-2.0 13-
57

Limitations of Displaying Instance Name of Target Instance in TLM-2.0
13-59

CBug Stepping Improvements. 13-
59

Using Step-out Feature . 13-
59

Automatic Step-through for SystemC . 13-
60

Enabling and Disabling Step-through Feature 13-
61

Recovering from Error Conditions . 13-
61

14. Debugging Constraints . 14-1

Enabling Constraint Solver for Debugging. 14-3

Invoking the Constraint Solver Debugger GUI. 14-4

Debugging Constraint-Related Problems 14-4

Breaking Execution at a Randomize Call 14-4

Creating Solver Conditional Breakpoint at Randomize Calls 14-8

 xxi

Contents

Analyzing a Randomization Call. 14-
18

Constraint Browsing in Class Hierarchy Browser 14-
19

Browsing Objects in Local Pane . 14-
23

Using the Constraints Dialog . 14-
25

Using the Solver Pane . 14-
25

Using the Relation Pane. 14-
31

Inconsistent Constraints. 14-
34

Debugging Constraints Example . 14-
36

Changing Radix Type of a Variable or Constraint Expression in
Constraints Dialog Box . 14-
41

Supported Radix Types . 14-
41

Using Constraints Dialog Box to Change the Radix Type of a
Variable or Constraint Expression . 14-
41

Using Tcl Command to Change the Radix Type of a Variable or
Constraint Expression . 14-
46

Drag-and-Drop Support for Constraints Debug 14-
47

Drag-and-Drop Support in Constraints Dialog Box 14-
47

xxii

Contents

Drag-and-Drop Items from Class Browser and Member Pane to
Breakpoint Dialog Box . 14-
51

Viewing Object ID Information of a Class in Solver Pane 14-
53

Cross Probing . 14-
54

Cross Probing to Local Pane . 14-
54

Cross Probing to Class Browser from Randomize Call 14-
55

Extracting Test Case . 14-
56

Extracting Test Cases from DVE . 14-
56

Extracting Test Cases Using UCLI Command 14-
59

Controlling rand_mode/constraint_mode and Randomization from
UCLI/DVE . 14-
59

Controlling rand_mode/constraint_mode from UCLI 14-
60

Controlling rand_mode/constraint_mode from DVE. 14-
62

Rerandomization from DVE/UCLI . 14-
66

Constraints Debug Limitations . 14-
73

 xxiii

Contents

15. Debugging Macros in DVE . 15-75

Enabling Macro Debug . 15-
76

Expanding and Collapsing the Macro Content. 15-
76

Viewing Signal Value Annotations in the Macro Content 15-
77

Viewing the Macro Content in a Tooltip 15-
77

Viewing the Definition of a Macro in the Source Code. 15-
77

Viewing Text Indentation in Expanded Macro and Tooltip 15-
78

Changing Background Color of Line Attribute Area for Expanded
Macros . 15-
80

Examples . 15-
82

Usage Example . 15-
86

Setting Breakpoints in the Macro Content 15-
89

Creating Breakpoints in the Macro Content Using Breakpoints
Dialog . 15-
92

Setting Breakpoint in the Macro Content Using DVE Tcl Command
15-94

Stepping In and Out of Macros . 15-
94

Tracing Drivers and Loads Inside Macro Content 15-
97

xxiv

Contents

Macro Expansion Location. 15-
98

Nested Macro Support . 15-
99

Macro Debugging Limitations . 15-
99

16. DVE Interactive Rewind . 16-101

Interactive Rewind Vs Save and Restore 16-
102

Usage Model . 16-
103

Limitations . 16-
108

Menu Bar Options . A-2

File Menu . A-2

Edit Menu. A-4

View Menu . A-7

Simulator Menu . A-11

Signal Menu. A-14

Scope Menu. A-17

Trace Menu . A-19

Window Menu . A-21

Help Menu . A-23

Testbench Debugger Menu Options . A-23

View Menu . A-24

. .
Signal Menu . A-24

Simulator Menu . A-24

Window Menu. A-25

 xxv

Contents

User-Defined Menu . A-25

Editing Preferences . A-26

Global Options . A-27

Assertion Debug Options. A-28

Data Pane Options. A-29

Design Debug Options. A-29

Driver Pane Options . A-31

Hierarchy Pane Options. A-31

List View Options . A-32

Memory View Options . A-32

Schematic View Options . A-33

Simulator Options . A-35

Source View Options . A-35

Testbench/CBug Options . A-37

Transaction Debug Options . A-38

Wave View Options . A-40

Toolbar Reference . A-41

File . A-41

Edit. A-42

Zoom/Zoom and Pan History . A-44

Scope. A-45

Trace . A-46

Window . A-46

Back Trace. A-48

Interactive Rewind . A-49

Signal . A-49

Simulator . A-51

Time Operations . A-52

Grid . A-53

xxvi

Contents

Testbench GUI Simulator Toolbar Options. A-53

Customizing the DVE Toolbar . A-54

Adding a New Toolbar . A-54

Adding Items to a Toolbar. A-54

Deleting an Existing Toolbar. A-55

Deleting an Item in a Toolbar . A-55

Using the Context-Sensitive Menu . A-56

Hierarchy Pane CSM . A-57

Data Pane CSM . A-58

Source View CSM . A-60

Schematic View CSM . A-62

Wave View CSM . A-63

Signal Pane CSM . A-64

List View CSM . A-66

Driver Pane CSM. A-66

Watch Pane CSM . A-67

Memory View CSM . A-67

Assertion Pane CSM . A-67

Keyboard Shortcuts . A-68

File Command Shortcuts . A-69

Edit Command Shortcuts . A-69

View Command Shortcuts . A-70

Simulator Command Shortcuts . A-70

Signal Command Shortcuts . A-71

Scope Command Shortcuts . A-71

Trace Command Shortcuts . A-71

Help Command Shortcuts . A-72

Window Command Shortcuts . A-72

Tcl GUI Commands Shortcuts . A-72

 xxvii

Contents

Using the Command Line . A-73

1-1

Getting Started

1
Getting Started 1

This chapter provides an introduction to Discovery Visual
Environment (DVE) and walks you through the basic steps of using
DVE. This chapter includes the following topics:

• “Overview” on page 2

• “Enabling Debugging” on page 3

• “Invoking DVE” on page 5

• “Passing DVE Arguments from Simulator Runtime Command
Line” on page 14

• “Closing a Database” on page 22

• “Exiting DVE” on page 22

• “DVE Log Files” on page 22

• “DVE Licensing Queuing” on page 23

1-2

Getting Started

• “DVE Setup Files” on page 24

• “Typical Symbols Used in DVE” on page 28

• “DVE Command-line Reference” on page 32

Overview

DVE is an interactive Graphical User Interface (GUI) that you can
use for debugging your SystemVerilog, VHDL, Verilog, and SystemC
designs. You can drag-and-drop your signals in various views or use
the menu options to view the signal source, trace drivers, compare
waveforms, and view schematics.

You must setup VCS to work on DVE. For more information about
obtaining license information and setting up VCS HOME, see the
VCS User Guide.

You must use the same version of VCS and DVE to ensure problem-
free debugging of your simulation. You can check the DVE version
using:

• The dve -v command-line option.

• The gui_get_version command.

• The About option from Help menu (Help > About).

1-3

Getting Started

Enabling Debugging

This section describes how to enable debugging options for your
simulation.

Note:
If you run DVE in a directory where you do not have write privileges
for files, a warning message appears to indicate that DVE is
unable to write files.

Debug Options

-debug_pp

Gives best performance with the ability to generate the VPD/VCD
file for post-process debug. It is the recommended option for post-
process debug.

It enables read/write access and callbacks to design nets, memory
callback, assertion debug, VCS DKI, and VPI routine usage. You
can also run interactive simulation when the design is compiled
with this option, but certain capabilities are not enabled. It does
not provide force net and reg capabilities. Set value and time
breakpoints are permissible, but line breakpoints cannot be set.

-debug

Gives average performance and debug visibility/control i.e more
visibility/control than –debug_pp and better performance than –
debug_all. It provides force net and reg capabilities in addition
to all capabilities of the –debug_pp option. Similar to the –
debug_pp option, with the –debug option also you can set value
and time breakpoints, but not line breakpoints.

1-4

Getting Started

-debug_all

Gives the most visibility/control and you can use this option
typically for debugging with interactive simulation. This option
provides the same capabilities as the –debug option, in addition
it adds simulation line stepping and allows you to track the
simulation line-by-line and setting breakpoints within the source
code. With this option, you can set all types of breakpoints (line,
time, value, event etc).

Required Files

The input files required to enable the debug functionality of DVE are:

• VPD file — VPD files (design database files) are platform-
independent, versioned files into which you can dump the
selected signals during simulation. DVE gets hierarchy, value
change, and some assertion information from these files. You can
perform debugging in post-process mode using a VPD file.

However, VPD files are not guaranteed to contain the entire
design hierarchy because you can selectively choose subsets of
the design to be dumped to the VPD file.

For all DVE functionality to be available while debugging, it is
essential that the VCS version used to generate the VPD, and the
DVE version used to view the VPD, are identical.

• OVA library — DVE uses this library for advanced assertion
debugging. This library is produced when a design contains OVA,
SVA, or PSL assertions and the correct VCS compile options are
used. The library is platform dependent.

1-5

Getting Started

• Coverage databases — In DVE, you should specify coverage
databases to display coverage information. If coverage databases
for different types of coverage exist, DVE automatically opens
them.

You can open the coverage database simv.vdb that contains:

- Code coverage data.

- Functional (OV and SV testbench and assertions) coverage
data..

Invoking DVE

You can invoke DVE:

• Without any arguments

• In 64-bit mode

• In interactive mode

• In post-process mode

• Using session file

• Using Tcl scripts

To invoke an empty DVE top-level window with no arguments, use
the following command:

% dve

From this point, DVE usage can be post-process or interactive.

1-6

Getting Started

64-bit Mode

To invoke DVE in 64-bit mode, use the following command:

% dve -full64

To use the -full64 option, you must download and install the 64-
bit VCS binaries. By default, DVE is invoked in 32-bit mode.

Interactive Mode

In addition to loading the design database files for post-processing,
you can also setup and run a simulation interactively in real-time
using a compiled Verilog, VHDL, or mixed design.

You can use the following commands to invoke DVE interactively.

• % simv -ucli

Runs VCS/VCS MX for UCLI debugging. The DVE GUI is not
displayed.

• % simv -gui

Opens DVE with simv attached to simulator at time 0.

• % vcs -gui -R

Compiles and builds simv, then opens DVE with simv attached to
the simulator at time 0.

• % dve -toolexe name -toolargs simulator args

1-7

Getting Started

Invokes DVE, connects executable (name) to the simulator, and
runs it with the arguments specified in args.

Starting an Interactive Session from the DVE GUI

You can rebuild the simulation in DVE either using the VCS script or
using your own custom script.

Note:
The Rebuild and Start option is not supported in MX designs and
is recommended only for pure Verilog designs.

To start an interactive session from the DVE GUI

1. Invoke DVE using the following command:

%dve

2. From the Simulator menu, select Setup.

1-8

Getting Started

The Simulation Setup dialog box appears.

3. Click the Simulation Options tab and select the following options,
as appropriate:

- Simulator Executable — Specifies the name of a simulator
executable. Click the Browse button to locate one.

- Simulator arguments — Identifies the simulator arguments.

- Interactive VPD file — Specifies the name of the VPD file. Click
the Browse button to select an existing file that will be written
during this interactive session.

- Current directory — Specifies the full path of the simulator
executable. Click the Browse button to select the path in the
current directory.

1-9

Getting Started

- Capture delta cycle values — Captures the delta cycle
values.

- Periodic Waveform Update — Allows you to enable the
waveform update and set the update interval.

4. Click the Build Options tab and select the following options, as
appropriate:

- Use script generated by VCS — Uses the VCS script to rebuild
the simulation.

- Custom command — Uses your custom script. Enter the
custom command in the text area.

- Run command in directory — Specifies the directory name in
which you run the custom script. You can browse and select
the desired directory.

5. Click the Restart Options tab and select the following options,
as appropriate.

1-10

Getting Started

- Restore breakpoints — Restores the breakpoints during
simulation restart.

- Reissue dump commands — Reissues the dump commands
while restarting the simulation.

- Reissue force commands — Reissues the force commands
while restarting the simulation.

6. Select an action in the Action on OK list box to specify the
action (none, start/restart, rebuild and start) that you want
DVE to take when you click the OK button.

7. Click one of the following:

OK to apply your specification.

Cancel to close and not apply the specification.

Tips to view the steps to perform in this dialog box.

1-11

Getting Started

The simulation is started or restarted per your selection. You can
use the Simulator menu or the toolbar commands to further
control the simulation.

Post-Process Mode

There are two ways to invoke DVE in post-process mode:

• Using the -vpd command

• Loading the design database in the DVE GUI

Using the -vpd command

The -vpd command invokes DVE, reads and loads the specified
design database file, and opens the top-level scope for that design.

Syntax:

dve -vpd [filename]

Loading the Design Database File in the DVE GUI

You can load and display any number of design database files for
post-processing.

To load a design database file

1. Select File > Open Database.

1-12

Getting Started

The Open Database dialog box appears.

2. Browse and select the name of the design database file or enter
the name of the file you want to open in the File name field.

3. Enter a designator for your design in the Designator field or select
the default (V1).

4. Enter a time range in the Time range field.

The default range is the full time range for which the design
database is dumped.

5. Click Open.

The design database file is loaded.

Note:
You need the .sim files to do post-process debug for VHDL and
also to get statement-level drivers. Make sure to copy simv,
.daidir and any other .sim files if you relocate your design.

1-13

Getting Started

Using Session File

There are two ways to invoke DVE from a session file:

• Using the -session command.

• Loading a session file in the DVE GUI.

For more information about how to save a session, see the section
entitled “Passing DVE Arguments from Simulator Runtime
Command Line” on page 14.

Using the -session command

The -session command invokes DVE with the design database
file, test.vpd, and applies settings from the session file,
mysession.tcl

Syntax:

% dve -vpd test.vpd -session mysession.tcl

Loading a Session File in the DVE GUI

To load a session file in the DVE GUI

1. Open DVE.

2. Select File > Load Session.

The Load Session dialog box appears.

3. Browse to the session and select it from the list of saved session
Tcl files.

1-14

Getting Started

4. Click Load.

Using Tcl Scripts

You can use the following Tcl commands to invoke DVE.

dve -cmd [tcl_cmd]

Invokes DVE and executes the Tcl command enclosed in
quotation marks. You can specify multiple commands separated
by semicolons.

dve -script [tcl_file]

Invokes DVE and reads the Tcl script specified as argument.

dve -session [tcl_file]

Invokes DVE and reads the session file. If the -session and
-script options are combined, the session is read first and then
the script.

Passing DVE Arguments from Simulator Runtime
Command Line

You can pass DVE arguments from the simv command line using the
-dve_opt option. Instead of using the DVE options manually, you
can automate the actions and pass custom Tcl scripts using the
-dve_opt option in the simv command line.

You must precede each DVE argument by -dve_opt. In cases
where the argument requires an additional option, the = sign should
be used.

1-15

Getting Started

The following examples show the usage of -dve_opt.

• To print version and to log off, the DVE command is:

dve -v -nolog

The runtime command with -dve_opt is:

simv -gui -dve_opt –script=myscript.tcl –dve_opt –nolog

• To specify a session file, the DVE command is:

dve -session=mySession.tcl

The runtime command with -dve_opt is:

simv -gui -dve_opt -session=mySession.tcl

• To use the -cmd argument to print “Hello World”, the DVE
command is:

dve -cmd='puts "hello world"'

The runtime command with -dve_opt is:

simv -gui -dve_opt -cmd='puts "hello world"'

The following commands cannot be passed directly to DVE, as
arguments, from the simv command-line:

• -vpd — This command is not processed since the simulator
already uses inter.svpd of file specified by -vpd_file, so -vpd
is not supported.

• -toolexe, -toolargs — These command are automatically
produced by simv.

• -servermode — This command is not applicable for simv.

1-16

Getting Started

• -full64 — This command is not supported, because when simv
is generated using -full64, DVE will be in 64-bit mode by
default.

• -dbdir — This command is not supported, because it is not
used in interactive mode.

• -ucli — This command is not supported.

Saving a Session or Layout

You can save the current state of DVE, that is session data, display
layout, and design database path options, using the Save Sessions
dialog box. The options that you select in the Save Session dialog
box is restored after you restart DVE.

To save a session

1. Select File > Save Session.

1-17

Getting Started

The Save Session dialog box appears.

2. Enter a file name in the File name field or browse for the file in
your directory.

3. Select a file type in the File type list box.

4. Select the Save open database information option if you want
to save the database information to the session file.

5. Select any of the following path option from the options specified
under Save window option:

- Relative Path — (default) Specifies path for opened design
databases (relative to the directory where the session file is
stored) or interactive design. If you move the directory, the
session file will still work.

1-18

Getting Started

- Full path — Specifies fully qualified path or absolute path for
opened design databases or interactive design. This allows you
to reload the session file from any location, but if you move the
simulation directory, the session file may no longer work.

6. Select any of the following window option from the options
specified under Save global definitions:

- All windows — Saves all contents in the current DVE session.

- Toplevel window — Saves the content of only the top-level
window and the contained views and panes.

- Single view — Saves the contents of only a single view.

- Only global definitions — Saves the data types selected in the
Save global definitions field. This option does not save any
view. For example, you can create a session file that only
contains the expressions you have defined.

Enables the Save global definitions options. Select the data
types you want to include in the session file.

7. Click Save to save the session or Cancel to close the dialog box.

8. Click Tips to view details about the options and fields in the Save
Session dialog box.

Saving the Current View

You can save your desired view instead of saving the entire session
in DVE using the Save Current View option. The Save Current
View option does not save any database related information and
saves only the current view.

1-19

Getting Started

The Save Current View option is not enabled for all the views and
is disabled for the views that are not supported.

To save the current view

1. Select a view in DVE that you want to save.

2. From the File menu, select Save Current View.

The Save Session dialog box appears.

3. Enter the file name in the File Name field and click Save.

Your current view is saved.

To load the saved view

1. In DVE, select File > Load Session.

The Load Session dialog box opens.

1-20

Getting Started

2. Select the Tcl file in which you have saved your DVE view and
click Load.

The view is loaded in DVE.

Restoring a Saved Simulation

When restoring a saved simulation, use the same technology or flow
to restore that you used to save the checkpoint. For example:

• Save using UCLI commands and restore using UCLI commands.

1-21

Getting Started

• Save in DVE and restore in DVE.

• Save using SCL commands and restore using SCL commands.

• Save using CLI commands and restore using CLI commands.

Do not mix the technologies for saving and restoring, for example:

• Save using UCLI commands and restore using SCL commands.

• Save in DVE and restore with UCLI commands.

• Save using UCLI commands and restore using DVE.

• Save using CLI commands and restore using UCLI commands.

You must close all external applications, that communicates with
VCS/VCS MX using the VHPI or PLI, before you save and reopen a
simulation.

Note:
For more information about restrictions of Save and Restore
commands, see the UCLI User Guide > Commands > Session
Management Commands > Restore.

1-22

Getting Started

Closing a Database

To close a currently open database

1. Select File > Close Database.

The Close Database dialog box appears.

2. Make sure the correct database is selected, then click OK.

DVE closes the display of the selected database in the Hierarchy
pane.

Exiting DVE

To exit DVE, select File > Exit.

DVE Log Files

DVE produces the following log files in the DVEfiles directory,
which gets created in the current working directory. These log files
are useful in the event of a problem.

• dve_gui.log — Contains all input and output to the console log.

• dve_history.log — Contains all commands that get executed
during the lifetime of a debug session; useful for capturing scripts
for replay.

1-23

Getting Started

DVE Licensing Queuing

License queuing options for DVE are as follows:

+vcs+lic+wait

Tells DVE to queue for a license if none is available. (Infinite time)

-licwait <minutes>

Tells DVE to queue for a license for specified <minutes> if none
is available. (User specified time)

Post-process mode license queuing examples:

% dve +vcs+lic+wait
Queues for the license until it is available.

% dve -licwait 20
Queues for 20 minutes if the license is not available.

Interactive mode license queuing example:

%./simv -gui -dve_opt +vcs+lic+wait

Queues for the license until it is available.

% ./simv -gui -dve_opt -licwait=1

Queues for 1 minute if the license is not available.

Examples with the UCLI flow:

%./simv -ucli +vcs+lic+wait
%./simv -ucli -licwait 1

1-24

Getting Started

DVE Setup Files

DVE sources the following files when invoked.

.synopsys_dve_ini.tcl

Saves the recent layout when you exit DVE.

.synopsys_dve_default_layout.tcl

Saves the default layout that you have selected from the menu
Window > Save Current Layout > To Default. When you invoke
DVE, this file is sourced and the layout is configured accordingly.

.synopsys_dve_prefs.tcl

Saves your preferences. This file is created automatically
whenever you change the preferences from the menu Edit >
Preferences.

.synopsys_dve_usersetup.tcl or

.synopsys_dve_gui_usersetup.tcl

The .synopsys_dve_usersetup.tcl file allows you to define
GUI customization, such as creating your own shortcuts or
additional menu. You create this file and it is sourced by DVE at
start-up from your VCS Home directory. If the
DVE_USERSETUP_PATH environment variable is set, the file
.synopsys_dve_usersetup.tcl is searched (and sourced)
in all the paths given in the environment variable.

1-25

Getting Started

If multiple paths are given, the paths are separated by ':'. For
example,

%setenv DVE_USERSETUP_PATH /u/user/somedir

%/u/user/somedir/.synopsys_dve_usersetup.tcl

%setenv DVE_USERSETUP_PATH /u/user/somedir:/x/y/z

%/u/user/somedir/.synopsys_dve_usersetup.tcl and
/x/y/z/.synopsys_dve_usersetup.tcl

The .synopsys_dve_gui_usersetup.tcl file contains your
changes that require the GUI to be available. This file is also
searched in your home directory, then in all the paths given in the
DVE_USERSETUP_PATH. This is done when the DVE GUI is
initialized.

For more information about how to create shortcut keys or hotkey,
see the section “Keyboard Shortcuts” in the chapter Menu Bar
and Toolbar Reference.

You can also customize your menu (see “Customizing the DVE
Toolbar” , or create user-defined menu and menu options (see
“User-Defined Menu”).

.synopsys_ucli_prefs.tcl

Stores your UCLI TCL procedures, which are sourced in
interactive mode, both in batch and GUI modes.

1-26

Getting Started

Managing User Setup Files

Use the DVE_USERSETUP_PATH environment variable to create
multiple user setup file.

During startup, DVE reads the .synopsys_dve_prefs.tcl,
.synopsys_dve_usersetup.tcl, and
.synopsys_dve_gui_usersetup.tcl files available in the
directories you specify in the DVE_USERSETUP_PATH variable.

You can copy the common group preference settings from
~/.synopsys_dve_prefs.tcl and put it in
.synopsys_dve_prefs.tcl, in a directory specified by
DVE_USERSETUP_PATH.

If you use the DVE_USERSETUP_PATH, you can share the common
setting, but your personal setting can still overwrite the common
setting.

Usage

% setenv DVE_USERSETUP_PATH "dir1:dir2:dir3"

DVE reads the file in the following order:

1. dir1/.synopsys_dve_usersetup.tcl

2. dir2/.synopsys_dve_usersetup.tcl

3. dir3/.synopsys_dve_usersetup.tcl

DVE displays a message when the files are read.

The previous file is overridden when the current file is read, hence
you need to set the priority.

1-27

Getting Started

Following is the order that DVE follows while reading the preferences
and setup files:

The $DVE_USERSETUP_PATH environment variable is used to
specify common setting for DVE, such as in a team or group.

1-28

Getting Started

The preference file in the home directory is used to specify specific
settings for each user. Therefore, you can use
$DVE_USERSETUP_PATH to specify the preference setting
(shared by a group) in the new.synopsys_dve_prefs.tcl file,
while using the setting related to GUI (like new menu or toolbar) in
the .synopsys_dve_usersetup.tcl file.

Typical Symbols Used in DVE

This chapter describes special symbols and Low Power Symbols
used in DVE under the following sections:

• “Special Symbols Used in DVE”

• “Low Power Symbols Used in DVE”

1-29

Getting Started

Special Symbols Used in DVE

Table 1-1 describes special symbols used in DVE.

Table 1-1 Special Symbols Used in DVE

Symbol Name of the
symbol

Description of symbol

Yellow
Triangle
Pointing
Down

Indicates the point at which the driver is forced. DVE
displays this symbol in Wave View.

Yellow
Triangle
Pointing Up

Indicates the point at which the driver is released. DVE
displays this symbol in Wave View.

Carat The carat symbol above a value “ ̂ <value> “ in the Value
column of the Wave View indicates that the value is
forced.

Asterisk An asterisk symbol above a value “ *<value> “ in the
Source View and Wave View indicates that the value is
truncated.

Three Dots Three dots followed by a value “ ...<value> “ in the Data
Pane indicates that the value is truncated.

1-30

Getting Started

Low Power Symbols Used in DVE

Table 1-2 describes Low Power Symbols used in DVE. For more
information on these symbols, see Debugging Low Power Designs
Using DVE section in the MVSIM Native Mode User Guide.

Yellow Dot Observed in a Wave View when multiple bits of a vector
variable/signal toggle within the same delta cycle.You must
enable delta cycle option to view this symbol in waveform.

Red Bar Highlights the X value in toggled waveform. By default it is
disabled. You can enable this using the Highlight X Values
right-click option. DVE displays this symbol in Wave View.

Green circle DVE displays this symbol in Driver Pane when the
contributor is completely analyzed and detected as an
active driving signal. This is usually the case when a driver
is in combinational logic or a flip-flop, and no limitation is
encountered.

Yellow circle DVE displays this symbol in Driver Pane when the
contributor time is accurate but it is unable to determine if
the signal really caused a value change of the traced signal.
This is usually the case when a driver is in combinational
logic, but DVE encounters some active driver limitations
(for example, a function call on RHS). Also, this icon is used
for contributors at time 0 in combinational logic and for the
first clock transition in flip-flops.

Red Circle DVE displays this symbol in Driver Pane when it is not able
to analyze the contributor. This happens when the driver is
not in RTL code (for example, in testbench code) or when
DVE encounters some active driver limitations.

Symbol Name of the
symbol

Description of symbol

1-31

Getting Started

Table 1-2 Low Power Symbols Used in DVE

Symbol Name of symbol Description of symbol

Power Domain
Indicates power domain state is NORMAL
(Power pane).

Indicates power domain state is CORRUPT
(Power pane).

Power Switch Power switch cell in Hierarchy pane and
Power switch defined in UPF in Power pane.

Isolation Cell/
Strategy

Isolation cell in Hierarchy pane and Isolation
strategy defined in UPF in Power pane.

Retention Strategy Retention strategy defined in UPF in Power
pane.

LevelShifter
Strategy

Level Shifter strategy defined in UPF in Power
pane.

Power Net Primary/Isolation/Retention power nets
defined in UPF (Data pane).

Ground Net Primary/Isolation/Retention ground nets
defined in UPF (Data pane).

Logic Control signals like save/restore/switch
control/isolation enable defined in UPF. Low
power Instrumented signals are also shown
with a red dot (Data pane).

Input Supply Port Input supply port defined in UPF for power
switch (Data pane).

Output Supply
Port

Output supply port defined in UPF for power
switch (Data pane).

1-32

Getting Started

DVE Command-line Reference

You can use the dve -help command at the VCS command-line to
view the options supported by DVE. Table 1-3 lists the options
supported by DVE.

Usage

unix> dve [-cmd <TCL command>] [-cov] [-dbdir <directory>]
[-full64] [-logdir <directory>] [-nolog] [-pathmap <file>]
[-replay <file>] [-script <file>] [-servermode] [-session
<file>] [-title <string>] [-toolexe <file> [-toolargs
<options>]] [-v] [-vpd <file>] [-viewlog <file>]

Table 1-3 Options Supported by DVE

Option Description

-cmd <TCL command> Run a TCL command in DVE console when DVE is
opened.

Example:
unix> dve -cmd “puts Hello”

-cov Invokes DVE Coverage GUI.

-dbdir <directory> Option to specify the simv.daidir directory path to DVE,
if simv.daidir is in a different location from that of VPD
path. This option should be used, even if simv.daidir
is renamed.
Example:
unix> dve –vpd <dump.vpd> -dbdir </user/
simv.daidir>

-full64 Run DVE in 64-bit mode.

-logdir <directory> Specify the directory where DVE log files should be saved.
By default, DVE files are stored in the ‘DVEfiles’ directory
in the present working directory.

-nolog Do not generate the ‘DVEfiles’ directory or any DVE logs,
while DVE is invoked.

1-33

Getting Started

-pathmap <file> Provides mapping to the new location of source files. For
more information, see “Mapping to the Location of the
Source Files” section.

-script <file> Source a TCL script. DVE stops running the script on first
error.

Example:
unix> dve –script <user_script.tcl>

-replay <file> As compared to –script, the -replay option will not
stop running the script on an error.

Example:
unix> dve -replay <user_script.tcl>

-servermode Run DVE in server mode. This option creates a server in
DVE for other tools to connect to it.This allows the tools to
monitor DVE activity and send commands to DVE.

Example:
unix> dve -servermode -vpd file_name.vpd
unix> cat .synopsys_dve_serverport.txt
{{machine_name} {port_number}}
unix> telnet machine_name port_number

For example, if you perform the following command, then
variable will be added in the Wave View.
add_wave <variable>
where, variable is the name of a variable with full
hierarchy.

gui_exit
Connection closed by foreign host.

-session <file> Option to load a DVE session file.

Example:
unix> dve -session <session_file>

Option Description

1-34

Getting Started

-title <string> Set title (a string to be displayed on a top-level DVE frame
caption).

-toolexe <file> [-
toolargs <options>]

Option to invoke DVE, load simulation executable
<file>, and pass simulation arguments.

Example:
unix> dve -toolexe simv -toolargs
"+UVM_TESTNAME=test1"

-v Print version information

-vpd <file> Opens VPD <file>

Example:
unix> dve –vpd vpd1 -vpd vpd2

-viewlog <file> Opens the given .log file generated using –sml option in
the DVE console. This option can be specified multiple
times to open multiple log files in separate console tabs.
For more information, see “Using Smartlog” .

Example:
unix> vcs –sml -l <comp.log>
unix> simv –sml -l <run.log>
unix> dve –viewlog <comp.log>
unix> dve –vpd vcdplus.vpd –viewlog <run.log>

Option Description

 2-1

Using the Graphical User Interface

2
Using the Graphical User Interface 1

This chapter describes the basic usage of the DVE GUI and
management of the windows, and includes the following topics:

• “Overview of DVE Window Configuration”

• “Managing DVE Panes and Views”

• “The Console Pane”

• “The Watch Pane”

• “The Console Pane”

• “The Memory View”

• “Using the Menu Bar and Toolbar”

• “Searching Signals or Scopes”

• “Mapping to the Location of the Source Files”

2-2

Using the Graphical User Interface

• “Editing Preferences”

• “Using Context-Sensitive Menu”

Overview of DVE Window Configuration

DVE window model is based on the concept of the TopLevel window.
A TopLevel window contains a frame, menus, toolbars, status bar,
and pane targets. Any number of TopLevel windows are possible,
however, at startup, the default is one.

A DVE TopLevel window is a frame, which DVE uses for displaying
design and debug data. The default DVE window displays the
TopLevel window with the Hierarchy pane on the left, Data pane next
to the Hierarchy pane, the Console pane at the bottom, and the
Source view occupying the remaining space on the right. Figure 2-1
shows the DVE TopLevel window.

 2-3

Using the Graphical User Interface

Figure 2-1 DVE Top-level Frame

The DVE GUI contains the following panes and views:

Menu Bar
Toolbar

Hierarchy Pane
Source view

Console Tabs

Console Pane

Simulation status and active

scope in simulation

Data Pane

Simulation time

Targets Views

Watch Pane

Scope linking

Scope navigator

2-4

Using the Graphical User Interface

• Hierarchy Pane — Displays the scope hierarchy of the design.
For more information about the tasks you can perform in the
Hierarchy pane, see the chapter “Using the Hierarchy and Data
Panes” on page 1.

• Data Pane — Displays the variables of the selected scopes of the
Hierarchy pane. For more information about the tasks you can
perform in the Data pane, see the chapter “Using the Hierarchy
and Data Panes” on page 1.

• Console Pane — Displays the simulation output and DVE
messages, also allows you to type in UCLI or DVE Tcl commands.
It also logs the commands executed in the History tab. For more
information about the Console pane, see the section entitled “The
Console Pane” on page 14.

• Watch Pane — Allows you to watch the current values of variables
added to the view. Watch pane appears only when you add
variables or signals to it for monitoring purposes. For more
information about the Console pane, see the section entitled “The
Watch Pane” on page 15.

• Source View — Displays the source code and supports source
code relative features, such as tracing driver or load, and setting
line breakpoints. For more information about the tasks you can
perform in the Source view, see the chapter “Using the Source
View” on page 1.

• Wave View — Allows you to dump the signals into a VPD file and
view the value changes over time. For more information about the
tasks you can perform in the Wave view, see the chapter “Using
Wave View” on page 1.

• List View — Provides a table view to display the values of signals
over time. For more information about the tasks you can perform
in the List view, see the chapter “Using the List View” on page 1.

 2-5

Using the Graphical User Interface

• Schematic View — Provides a module-based schematic to display
the connectivity of the object. For more information about the tasks
you can perform in the Schematic view, see the chapter “Using
Schematics” on page 1.

• Path Schematic View — Provides an expandable path schematic
to display the connectivity of the object. For more information
about the tasks you can perform in the Path Schematic view, see
the chapter “Using Schematics” on page 1.

• Memory View — Displays the value of multiple-dimension array
in a table. For more information about the tasks you can perform
in the Memory view, see the section entitled “The Memory View”
on page 16.

• Assertions View — Displays the summary of assertion results of
simulation including the success, failures, and the incomplete
ones. For more information about the Assertion view, see the
chapter “Using the Assertion Pane” on page 1.

• Stack Pane — Displays the current simulation testbench stack.
The Stack pane appears as a new tab beside Hierarchy pane
when the design contains testbench. For more information about
the Testbench GUI, see the chapter “Using the Testbench
Debugger” on page 1.

• Local Pane — Displays the variables of the selected frame in
Stack pane. The Stack pane appears when there is a testbench
in the design and is a part of the Testbench GUI. For more
information about the Testbench GUI, see the chapter “Using the
Testbench Debugger” on page 1.

2-6

Using the Graphical User Interface

• Coverage GUI — Provides a summary of the coverage statistics.
To invoke the DVE Coverage GUI, enter the dve command with
coverage command-line options, such as -cov. In the DVE
Coverage GUI, open the coverage database to view the coverage
statistics or reports in various views and tables. For more
information about the DVE Coverage GUI, see the chapter
Viewing Coverage Reports Using the DVE Coverage GUI in
the Coverage Technology User Guide.

Creating a Window Title for All Views and Panes

You can create a common title for all the views and panes in DVE.
This is useful if you open, say two designs in one DVE session, and
you want to know which view or pane belongs to which design.

To create a common title, set the following environment variable:

% setenv DVE_CASENAME <your_title>

Where,

<your_title> — Indicates the caption that you set for all the
TopLevel windows. This caption replaces the default "TopLevel"
caption to "your_title". You can use any text or path name as title. For
example, instead of specifying the title such as “mydesign”, you can
say /A/B/dir1/inter.vpd.

DVE_CASENAME — Adds <your_title> to the existing DVE
windows title.

This setting is applied when you restart/reload your session.

For example, consider that you want to change the windows title to
“mydesign”, after setting this environment variable, the TopLevel
windows will change as follows:

 2-7

Using the Graphical User Interface

DVE - TopLevel.1 - [Hier.1] to DVE - mydesign - TopLevel.1
- [Hier.1]

DVE - TopLevel.1 - [Data.1] to DVE - mydesign - TopLevel.1
- [Data.1]

DVE - TopLevel.1 - [Source.1 - top:design.v] to
DVE - mydesign - TopLevel.1 - [Source.1 - top:design.v]

DVE - TopLevel.1 - [Console.1 - DVE Console] to
DVE - mydesign - TopLevel.1 - [Console.1 - DVE Console]

Following illustrations show the titles before and after setting the
environment variable.

Example 2-1 Before setting the environment variable

2-8

Using the Graphical User Interface

Example 2-2 After setting the environment variable

Managing DVE Panes and Views

A TopLevel window is a frame that displays panes and views.

• A pane can be displayed once on each TopLevel window and it
serves a specific debug purpose. Examples of panes are
Hierarchy, Data, Watch, and the Console panes.

Panes can be docked on either side of a TopLevel window or
remain floating in an area in the frame not occupied by docked
panes (called the workspace).

 2-9

Using the Graphical User Interface

• A view can have multiple instances per TopLevel window.
Examples of views are Source, Wave, List, Memory, Schematic,
and Path Schematic.

DVE TopLevel window can contain any number of DVE views and
panes. You can choose to display data in one or many DVE windows
and panes by setting defaults, using the status bar window controls,
or docking and undocking windows as you work.

Managing Target Views

You can set target views to create panes either as TopLeveL window
or in the existing frame. At the bottom right corner of each TopLevel
window are target icons. The following table describes the icons in
the their target views.

Icons What it targets..

Source

New Source view in a new TopLevel
window.

2-10

Using the Graphical User Interface

Target icons can have the following two states:

• Targeted – Indicates that a new view will be created in the current
frame. This icon has a dart in it.

• Untargeted – Indicates a new TopLevel window will be created for
the chosen view. This target icon has no dart in it.

Schematic

New Schematic view in a new TopLevel
window.

 Path Schematic

New Path Schematic view in a new
TopLevel window.

Wave

New Wave view in a new TopLevel window.

List

New List view in a new TopLevel window.

Memory

New Memory view in a new TopLevel
window.

Check marks indicate that targeted windows are attached to the current
window.

No check exists in this targeted Wave view icon

 2-11

Using the Graphical User Interface

To open a pane in a new TopLevel window

1. Click the icon in the status bar to remove the check mark.

2. Click a corresponding window icon in the toolbar to open a window
of that type.

It will not be attached to the current window and will open in a new
TopLevel window.

Maximizing View

You can maximize the DVE pane or view and make it a full screen
view to have a larger area to work.

To maximize a pane or view

1. Select a pane or view.

2. Right-click and select Maximize View.

2-12

Using the Graphical User Interface

The selected pane or view is maximized to fit your screen as
shown in the following figures.

3. To restore or minimize the view, double-click on the view.

To maximize a pane or view in a new toplevel window

1. Select Edit > Preferences.

The Application Preferences dialog box opens.

2. In the Global category, select the “Window -> Maximize View”
will expand view in new top-level window option.

3. Double-click a pane or view that you want to maximize.

The pane or view maximizes to a new toplevel window.

 2-13

Using the Graphical User Interface

Docking and Undocking Views and Panes

You can use the Windows menu to dock and undock windows and
panes.

• Select Windows > Dock in New Row, then select the row position
in which to dock the currently active window.

• Select Windows > Dock in New Column, then select the column
position in which to dock the currently active window.

• Select Undock to detach the currently active window or pane.

To delete a window, click the X icon in the corner of the pane. This is
the same for all dockable windows.

Dark blue color of dock handle (dock handle is the train track that
connects to the X icon) indicates that this docked window is active.
This is the same for all dockable windows. An action must occur such
as a click to make the window active.

Dragging and Dropping Docked Windows

To drag and drop a docked window, click the dock handle and drag
and drop the window to a new dock location or to a non-docked
window.

2-14

Using the Graphical User Interface

Right-clicking on the dock handle invokes a small pop-up menu:

The Console Pane

Use the command line at the bottom of the DVE top-level window to
enter DVE and UCLI commands. Figure 2-2 shows the command
line where you enter commands. The results are displayed in the Log
tab above the command line. The History tab displays the list of all
commands or actions that you have taken while working in the GUI.

Figure 2-2 Command Line with the Log tab

To view the list of DVE commands, use the following command:

help -gui

Undock Undocks the active window.

Dock Left – Docks the selected window to the left wall of the TopLevel
window.
Right – Docks the selected window to the right wall of the TopLevel
window.
Top – Docks the selected window to the top wall of the TopLevel
window. Not recommended.
Bottom – Docks the selected window to the bottom wall of the
TopLevel window.

 2-15

Using the Graphical User Interface

To quickly view the UCLI commands and their usage, enter one of
the following commands at the DVE prompt:

help -ucli — Displays a list of UCLI commands and a short
description.

help -ucli [argument] — Displays a description and the
command syntax.

DVE provides log analysis (diagnostic information) for each line in
the log file. It provides the diagnostic information in a separate log file
known as a smartlog file. For more information, see “Using
Smartlog” .

The Watch Pane

Watch pane monitors the status of a specific signal, a group of
signals, or an object regardless of the active thread. You can drag
and drop the object or signal from the Hierarchy and Data panes into
the Watch pane to view its behavior.

The Watch pane displays the selected item, its value, type, and the
scope in which it belongs.

The Watch pane, by default, contains three tabs labeled Watch 1
through Watch 3. There is no limit to the number of tabs you can add.
Using the check box in the scope column, you can tie the variable to
a given thread throughout simulation or tie the variable to the
currently selected thread.

To open the Watch pane

1. Select an object or signal from the Hierarchy or Data pane.

2-16

Using the Graphical User Interface

2. Right-click and select Add to watches.

The Watch pane is displayed with the selected signals.

3. To add a Watch tab, go to the menu View > Watch > Add New
Page. You can also delete the watch tabs.

The Memory View

The Memory view displays the values of MDA in a tabular list. You
can add signals to the Memory view from the Data pane.

You can perform the following tasks in the Memory view:

• Add signals to Wave view

• Add signals to List view

• Create a group of signals to display in the current Wave view

• Edit the property of the signals to display in the Wave view

• Set Radix to display the signals values in the chosen notation

Setting Properties of Signal in Memory View

You can set the properties of signals to display the values in the
Wave view.

To set the property of the signal

1. Select an MDA from the Data pane.

2. Click the Signal menu and select Show Memory option.

 2-17

Using the Graphical User Interface

The Memory view appears with all the signals and its variables in
a tabular form.

3. Select a variable in the table, right-click and select Properties.

The Memory Properties dialog box appears and displays the
property of the MDA.

4. Select the following memory properties, as appropriate.

2-18

Using the Graphical User Interface

- Show — Specifies which elements to show for MDAs. For any
index, you can select <row> or <col> from the list box or enter
a number. The number should be a valid index for the
corresponding array dimension.

- Columns — Specifies how much table columns to use for
displaying the memory.

- Address — Specifies the formula for address computation
based on index.

- Start address — Specifies the start address of the memory.

- End address — Specifies the end address of the memory.

The array element will be displayed in the range specified in
the Start and End Address fields.

- Address radix — Specifies radix that will be used for displaying
addresses in the table.

5. Click the Tips << button to view more information about the fields.

6. Click OK.

The memory properties are saved.

 2-19

Using the Graphical User Interface

C, C++, and SystemC Code

The following steps outline the general flow for using UCLI to debug
VCS or VCS MX (Verilog, VHDL, and mixed) simulations containing
C, C++, and SystemC source code.

To start the C debugger

1. Compile your VCS or VCS MX with C, C++, or SystemC modules
as you normally would, making sure to compile all the C files you
want to debug.

For example, for a design with Verilog on top of a C or C++ module:

gcc -g [options] -c my_pli_code.c
vcs +vc -debug_all -P my_pli_code.tab my_pli_code.o

Or for a design with Verilog on top of a SystemC module:

syscan -cflags -g
syscan -cpp g++ -cflags "-g" my_module.cpp:my_module
vcs -cpp g++ -sysc -debug_all top.v

Note:
You must use -debug or -debug_all to enable debugging.

2. Open the simulation in DVE using the following command:

simv -gui

3. Select Simulator > C/C++ Debugger to start the C debugger.

2-20

Using the Graphical User Interface

Using the Menu Bar and Toolbar

The menu bar and toolbar allow you to perform standard simulation
analysis tasks, such as opening and closing a database, moving the
waveform to display different simulation times, or viewing HDL
source code. For more information about the menu bar and toolbar
options, see the Appendix A, "Menu Bar and Toolbar Reference"

Searching Signals or Scopes

To search scopes and signals

1. Click the Search for Signals/Instances icon on the toolbar.

The Search for Signals/Instances dialog box appears.

 2-21

Using the Graphical User Interface

2. Enter the search criteria as described in the following table:

3. Click Search.

All the signals matching the specified criteria are displayed in the
Results text area.

4. Enter the text string to filter items or select the filter type from the
pull-down menu.

5. Click Save.

The results are saved as a text file.

Field Name Description

Search for: Specifies the signal name that you want to
search.

Match case: Searches specific to the specified text
case. For example, if you enter disp as
the signal name in the "Search for:" text
box, and you select this check box, DVE
would search only those signals that
match the case disp.

Match whole word only: Searches the signals containing the whole
word. For example, if you enter clk
reset in the "Search for:" text box, and
select this check box, you will not find
signals clk or reset.

Use: Finds a signal using wildcard or Regular
Expression.

Signal type: Identifies signal, instances, scope,
modules, or entities.

In design: Specifies the design in which you want to
search.

Within the scope: Specifies the scope in which you want to
search.

2-22

Using the Graphical User Interface

Mapping to the Location of the Source Files

DVE uses source file location for "Show source" query, schematic,
and driver tracing operations. The default directory for the source
files is the one they were in when last compiled.

If source files are moved to a new location, use the -pathmap
runtime option to provide mapping to the new location of source files.
You can pass this option to simv or DVE as follows:

-pathmap <mapfile>

Where, <mapfile> is the path map file which contains the mapping
related information. Following is the syntax of <mapfile>:

<Full_Path_To_Old_Location> : <Full_Path_to_New_Location>

Interactive Mode

To run the simulator after the design is moved to a new location,
create a path map file <mapfile> to relink the design directory. The
simulator provides resolved path for every source file from the map
file. DVE locates source file, and VPD file records the resolved path
for file information.

Use Model

Perform the below steps to create a mapping from your current view
to the new location where the source files are moved:

1. Create the <mapfile> to specify information related to mapping
from the old directory to the new directory.

 2-23

Using the Graphical User Interface

2. Start simulator with -pathmap <mapfile> option to load the
path map file.

%simv -gui -pathmap <mapfile>

Post-process Mode

To debug VPD file generated before the design is moved, use path
mapping mechanism to locate the source files.

Use Model

Use either of the following two ways to create a mapping from the
current view to the new location where the source files are moved:

1. Use -pathmap <mapfile> to load map file. For example:
%dve –vpd vpdfile –pathmap mapfile

2. Use gui_pathmap to load map file dynamically:

a. Start DVE.

b. Open VPD file.

c. Run gui_pathmap –add mapfile on the DVE command-
 line to load map file.

Note:
- If there are path maps added by both gui_pathmap –add

and <mapfile>, then path map rules loaded from
<mapfile> will be used first.

- Use single <mapfile> for providing mapping information
 for all the source files.

2-24

Using the Graphical User Interface

- Mapping can be done for a directory or an individual file.

Editing Preferences

You can edit preferences to customize the display of DVE views and
panes. For more information about the preferences option for all the
panes and views in DVE, see the section entitled, “Editing
Preferences” on page 26.

Using Context-Sensitive Menu

You can perform several actions using the context-sensitive menu
(CSM) in all the DVE panes and views. For details about CSM of
each pane or view, see the section entitled, “Using the Context-
Sensitive Menu” on page 56.

3-1

Using the Hierarchy and Data Panes

3
Using the Hierarchy and Data Panes 1

This chapter describes using the DVE Hierarchy and Data panes to:

• Display the static design structure in a tree view.

• Navigate the design to view results in other DVE windows and
panes.

• Display signal data.

This chapter includes the following sections:

• “The Hierarchy Pane” on page 2

• “The Data Pane” on page 16

3-2

Using the Hierarchy and Data Panes

The Hierarchy Pane

The Hierarchy pane, shown in Figure 3-1, is a tree view composed
of the following:

• Hierarchy and Type columns.

- The Hierarchy column displays the static instance tree. The
names in the instance tree are in the instance name (definition
name) format. Top modules (or scopes) are at the top-level of
the tree.

- The Type column displays the type of hierarchical object.

• A drop-down list box on the left, which is the design selection list,
and contains a list of currently open designs with the current
design at the top.

• A drop-down list box on the right is for filtering object types.

• A text box in the middle to input text string for searching objects.

• At the bottom of the Hierarchy pane, you can view the Scope
Navigator and the Scope Linking box, when you select the Scope
Navigator check box from the CSM. The Scope Navigator displays
the path traversed by you with the scope and the Scope Linking
box allows you to specify the scope linking.

3-3

Using the Hierarchy and Data Panes

Figure 3-1 Hierarchy Pane

Scope Types and Icons

There are various scope types in the Hierarchy pane. Each scope
type is represented by a specific icon. The following table provides
an overview of the scope types and their corresponding icons.

Scopes

Object
definition
name (in
parentheses)

Current design name

Lists all open design
names Filter Type

Specify scope linking

Text box to filter items

navigation path of scope

3-4

Using the Hierarchy and Data Panes

Table 3-1 Scope Types

Scope Type Icon

Tasks (Verilog)

Functions

Named Blocks (Verilog)

Packages (Verilog)

SV Unit Packages

Class Definition

Interfaces (Verilog)

Packages (VHDL)

Blocks (VHDL)

Processes (VHDL/SystemC/Unnamed)

Leaf VHDL Cells

Leaf Verilog Cells

Leaf SystemC Cells

OVA Unit

All

3-5

Using the Hierarchy and Data Panes

Filtering the objects in the Hierarchy Pane

You can filter object types such as Tasks, Functions, Blocks,
Packages, Processes, Interfaces, and Unnamed Processes in the
Hierarchy pane based on the object/scopes types mentioned in the
table Table 3-1.

To filter the data based on scope types, click the Type filter list and
select or clear the desired object types.

You can also use the Text search box to filter objects. You can either
use regular expressions or wildcard (*) character to search for
objects.

Navigating Open Designs

In DVE, more than one design can be open, but only one of them can
be active at any point of time. This active design is the "current
design".

Designs are identified by designator strings, so that in cases where
objects from more than one design are allowed (for example, in the
Wave view), it is possible to relate object names to their designs. By
default, the designators are V1, V2, V3, and so on.

For example, if a design A contains an object called top.a and
design B also contains an object called top.a, these objects would
be shown as V1:top.a and V2:top.a, by default. You can also
choose your own design designators from the Open Database dialog
box.

You can open many VPD files, but you can open only one interactive
session. The designator for the interactive session is simv.

3-6

Using the Hierarchy and Data Panes

Expanding and Collapsing the Scope

If the scope has subscopes, a plus sign (+) appears to the left of the
scope.

To expand and collapse the scope

1. In the Hierarchy pane, click the plus sign (+) beside the scope
name.

All the subscopes are displayed.

2. Click the minus sign (-) .

The expanded child scopes collapse.

Rearranging Columns in the Hierarchy Pane

You can sort the Hierarchy column or rearrange the order in which
the column headings appear in the Hierarchy pane.

To rearrange and sort the columns in the Hierarchy pane

1. Click and hold the left mouse button on the column heading.

2. Drag the column to the desired location and release the mouse
button.

The column moves to the desired location in the Hierarchy pane.

3. Click the arrow in the column heading.

The scopes are sorted in alphabetical order.

3-7

Using the Hierarchy and Data Panes

Figure 3-2 Moving a Column Heading

Populating Other Views and Panes

Use the Hierarchy pane to view data in other DVE windows and
panes.

Displaying Variables in the Data Pane

To display variables in the Data pane, select an object in the
Hierarchy pane.

Dragging and Dropping Scopes

You can drag and drop a selected object into any other DVE pane or
window (such as the Source view, the Wave view, and the List view).

The following points should be noted while dragging the objects in
various panes:

• Dropping a scope into the Source view displays the definition of
that object in the Source view and selects the definition line.

3-8

Using the Hierarchy and Data Panes

• Dropping a scope into the Data pane causes the scope to be
selected in the Hierarchy pane and displays the scope variables
in the Data pane.

• Dropping a scope into the Wave view adds all the scopes signals
to a new group or puts them under the insertion bar of the wave
signal list.

• Dropping a scope into the Schematic view displays the design
schematic for that scope.

• Dropping a scope into the Path Schematic view has no useful
results.

• Dropping a scope into the Memory view is not allowed.

• Dropping a scope into the List view displays the simulation results
in a tabular format.

• Dropping a scope into a text area, such as the DVE command
line, drops the full hierarchical text. However, one exception is to
drop a scope in the Find Dialog text entry area (either dialog or
toolbar area). In this special case, just the leaf string is dropped.
For example, dropping "top.c.b.a" results in just "a" in the Find
text area.

If you select more than one hierarchy object (you can do this by
pressing the Control key and clicking the mouse button), the object
closest to the linear top of the list is dropped. For example:

top
 top.a
 top.a.b
 top.b
 top.b.b

In this example, if you select, drag, and drop both top.a.b and
top.b into a text area, DVE drops only top.a.b.

3-9

Using the Hierarchy and Data Panes

Dumping Signal Values

To dump signal values

1. Select the scope in the Hierarchy pane, right-click and select Add
Dump.

or

Select Simulator > Add Dump.

The Dump Values dialog box appears.

2. Select the Scope/Signal that is to be dumped.

3. Select the Depth to specify the level in the hierarchy for which the
objects are to be dumped. The default depth is All.

4. Select Aggregates to dump all complex data types.

5. Select the Close this dialog when dump completes check box
to close the database after dumping is completed.

6. Click Dump.

The values are dumped recursively to a VPD file.

3-10

Using the Hierarchy and Data Panes

Moving Up or Down in the Hierarchy Pane

In designs with multiple scopes, when you have expanded the
scopes to view the full hierarchy, it is time consuming to scroll up and
down to find the desired scope. In case you have the same instance
in many scopes, while searching for the desired instance, you might
look into the wrong scope.

With this feature, you can limit the display of scopes in the
Hierarchy pane to view only the desired scope.

Example

The following example contains multiple scopes.

test.v

`define fadd_s fadd_primgates_1
`define fadd_b fadd_pblock_arith
module fadd_pblock_arith (co, sum, a, b, ci);
 output co, sum;
 reg co, sum;
 input a, b, ci;

 wire [1:0] isum = a + b + ci;

 always @(isum)
 begin
 co = isum[1];
 sum = isum[0];
 end

endmodule

module fadd_primgates_1 (co, sum, a, b, ci);
 output co, sum;
 input a, b, ci;

3-11

Using the Hierarchy and Data Panes

 wire axorb, aandb, aandci,
 bandci;

 xor g1 (axorb, a, b);
 xor #1 g2 (sum, axorb, ci);

 and g3 (aandb, a, b),
 g4 (aandci, a, ci);

 and g5 (bandci, b, ci);

 or #1 g6 (co, aandb, aandci, bandci);

endmodule

module add4_bsBS (co, sum, a, b, ci);
 output co;
 output [3:0] sum;

 input [3:0] a, b;
 input ci;

 wand [2:0] icar;

 `fadd_b m0 (icar[0], sum[0], a[0], b[0], ci);
 `fadd_s m1 (icar[1], sum[1], a[1], b[1], icar[0]);
 `fadd_b m2 (icar[2], sum[2], a[2], b[2], icar[1]);
 `fadd_s m3 (co, sum[3], a[3], b[3], icar[2]);

endmodule
module test_add4;
 reg [3:0] a, b;
 reg ci;

 wire [3:0] sum;

 add4_bsBS m0 (yY, sum, a, b, ci);

 initial
 begin : stim
 integer i;

3-12

Using the Hierarchy and Data Panes

 a = 0; b = 0; ci = 0;

 forever
 begin

 repeat (100)
 #10 {a, b, ci} = $random;

 #10
 $finish;

 end
 end
endmodule

To compile this example, use the following commands:

vcs -debug_all test.v

To move up and down in the Hierarchy Pane

1. Run the design and load it in DVE.

3-13

Using the Hierarchy and Data Panes

2. Select your desired scope or module in the Hierarchy pane, right-
click and select Move Down.

3-14

Using the Hierarchy and Data Panes

The hierarchy descends to the selected scope. The scope or
module name is appended with a “[..]” sign and an upward arrow
key can be seen. The Move Up option gets enabled.

Upward
Arrow key

3-15

Using the Hierarchy and Data Panes

3. Select the descended scope, right-click and select Move Up.

The control moves one level up in the hierarchy.

4. Type “/” in the Scope Navigator or right-click and select Show Full
Hierarchy to see the full hierarchy.

3-16

Using the Hierarchy and Data Panes

You can also press CTRL + double-click to descend or ascend in
the hierarchy, or view the full hierarchy.

You can use the text filter and type filter in the Hierarchy pane to
filter the flat hierarchy. Text filter only works for the current level
of hierarchy; it is reset when you go down into a new scope, while
it remains if you ascend in the hierarchy.

The Data Pane

The Data pane displays the signals and values of the corresponding
scope that you select in the Hierarchy pane. You can view the signal
data either in Detail mode or List mode.

Figure 3-3 Data pane

Similar to the tasks that you perform in the Hierarchy pane, you can
also perform in the Data pane, such as:

• View Signals and their values

Filter type list

Text area to input the search string

Views: Detail
 and List

Signals

3-17

Using the Hierarchy and Data Panes

• Filter the signals

• Rearrange the columns

• Dump Signals

• Add signals to the views or panes, such as Wave view or Watch
pane,

Viewing Signals and Values

To view signals and their values in the Data pane

1. Click the arrow next to the object in the Data pane.

The values at the current simulation time of the selected scope
are displayed. You can also click the Annotate Values

icon on the toolbar to view the signal values.

2. Click the arrow in the Variable column.

The signals get sorted in ascending, descending, and by
declarations order.

3. Click the down arrow to display the type filtering pull-down menu.

4. Select or clear the check boxes against each filter type.

The signals are filtered based on your selection.

5. Select a signal in the Data pane, then select Source > Show
Source.

3-18

Using the Hierarchy and Data Panes

The source code of the selected signal is displayed in the Source
view.

Filtering the Signals

You can filter the signals based on their types in the Data pane. To
filter the signals based on their types, click the Filter type list and
select or clear the desired signal types.

You can also filter the signals based on the text string. For example,
type the search string in the form of regular expressions or wildcards
(*) in the Text box to filter the signals.

Following are the available filter types:

Filter type list

Wildcard is used as search string

3-19

Using the Hierarchy and Data Panes

Forcing Signal Values

You can force single or multiple signals to a certain values (say 0/1/
X) and also release the forces on those signals without opening the
Force Values dialog box. You can create force as clock signals in the
Force Values dialog box.

To force signal values without opening the Force Values dialog
box

1. Select one signal or multiple signals in the Data pane.

2. Right-click and select Force Value.

3. Select one of the following options from the Force Value sub-
menu:

- Force to 0 — Forces the value of signal to zero.

- Force to 1 — Forces the value of signal to 1.

- Force to X — Forces the value of signal to X.

3-20

Using the Hierarchy and Data Panes

- Force Release — Releases the forces from the selected
signals.

- Other Force — Opens the Add Force dialog box.

For example, if you want to force the value zero, select the Force
to 0 option. The signal values are changed to zero.

To force signal values from the Force Values dialog box

1. Select Set Force from the Force Values submenu, as specified
in the previous procedure.

3-21

Using the Hierarchy and Data Panes

The Force Values dialog box appears with all the signals listed in
the Signals list box.

2. (Optional) Select a signal from the Signals list box and click
Remove.

The signal is removed.

3. Enter appropriate values in the following tabs:

- Simple tab — Enter the forced value in the Value: field and
select the At time: and Release time: to set the time (with time
unit) when the forced value takes effect or is released. These
two fields only accept numbers (digit + “.”) and time units. The
drive option is not available for non-VHDL signals.

3-22

Using the Hierarchy and Data Panes

- Clock tab — Specify the start value and the end value of the
clock. Set the Period or the Frequency to specify the clock
period. If the frequency is used, the clock period equals “1s/
frequency”.

The duty cycle is 50% by default; you can select any value from
the list. The clock waveform displays the start value, end value,
period, and the duty cycle as you select the values in various
fields.

3-23

Using the Hierarchy and Data Panes

- Advanced tab — Use the Time-Value pair table to enter the
value and time to generate more complex force values.

4. At any point, click the Tips>> button to view descriptions of all the
fields.

5. Click Add Force.

The values are forced onto the selected signals.

Viewing Interfaces as Ports

You can view Interface/Modport in the Data pane when it is passed
as port. You need to select the module name in the Hierarchy pane
to view the port in the Data pane. You can add the interface/modport
port to the Wave view, List View, or Watch view.

3-24

Using the Hierarchy and Data Panes

To view the interface port in Data pane

1. Load the database in DVE.

The module is displayed in the Hierarchy pane.

2. Select the module.

The interface/modport and its type is displayed in the Data pane.
The tooltip shows the interface/modport used.

3. Click the “+” button under the Variable column in the Data pane
to expand the interface/modport port.

The signals under the interface/modport port are displayed. You
can also sort the signals by declaration.

4. Right-click the interface/modport port in the Data pane and select
Show Source.

3-25

Using the Hierarchy and Data Panes

The source of interface/modport is shown in the Source view. You
can also drag and drop the interface/modport from the Data pane
to the Source view.

5. Use the Text filter or Type filter drop-down and select the Interface/
Modport port filter to filter the signals.

6. Select the interface/modport port in the Data pane and select
Signal > Show Definition from the menu or right-click the signal
and select Show Definition.

The definition is shown in the Hierarchy pane, signals of interface/
modport port in the Data pane, and the definition location is shown
in the Source view. You can also drag and drop the interface/
modport port from the Data pane to the Wave view.

7. Select the interface/modport port in the Data pane, right-click and
select Show Schematic or Show Path Schematic.

The schematic or path schematic is shown. You can also trace

drivers or loads for the interface signals.

Note:
• Interface array port is not displayed in the Data pane.

3-26

Using the Hierarchy and Data Panes

• Follow signal does not work for interface port and signals of
interface port.

• Modport clocking port is not shown in the Data pane.

Viewing $unit Signals

$unit is the name of the scope that encompasses a compilation unit.
Its purpose is to allow the unambiguous reference to declarations in
the compilation unit scope. This is done through the same class
scope resolution operator used to access package items. For more
information about compilation units, see the chapter “Hierarchy” in
the IEEE P1800 SystemVerilog LRM.

You can view the $unit signals in the Data pane.

To view the $unit signals

1. Load the design in DVE.

The design appears in the Hierarchy pane.

2. Select a scope in the Hierarchy pane.

The $unit folder is visible in the Data pane with the Type field $unit.

3. Expand the $unit folder.

3-27

Using the Hierarchy and Data Panes

The signals under the $unit folder are visible.

4. Filter or sort the signals under the $unit folder, if required.

5. Add and view the $unit signals in Waveform, Watch, and List
window, as required.

Note:
• $unit is not visible in the Hierarchy pane because it is not a global

scope.

• The task, function, class definition defined in $unit are not visible
in the hierarchy pane or data pane. You can view the task, function,
or class if you put them in a global package.

• Drivers or loads, schematic, path schematic, or back trace
schematic are not supported for $unit signals.

3-28

Using the Hierarchy and Data Panes

Debugging Partially Encrypted Source Code

You can debug the partially encrypted source code using the
+object_protect option. In the following example of ‘protect and
‘endprotect, when in full protect, both the objects ‘r’ and ‘l’ are not
visible for any debug operations like VPI, VPD etc. But in partial
protect, the object ‘r’ gets debug visibility and the object ‘I’ is invisible
and you can’t access it.

test.sv

module m ();

wire r;
assign r = 1’b0;

`protect
logic l;
assign l = 1’b1;
`endprotect

initial #10 $finish();

endmodule

To compile this example code, use the following commands:

vcs test.sv -sverilog +protect +object_protect
vcs -sverilog -debug_all test.svp
simv -gui &

3-29

Using the Hierarchy and Data Panes

The following illustration display the variable ‘r’ in the Data pane.

 4-1

Using the Source View

4
Using the Source View 1

The Source view displays the HDL, any foreign language (C, C++,
SystemC or OV) or assertion source code of your design. You can
open as many Source views as you need to perform your analysis
by selecting Window > New > View > Source View. You can also
set the number of Source views that DVE should display in the
TopLevel window.

This chapter includes the following topics:

• “Loading Source Code” on page 2

• “Using the Mouse in the Source View” on page 5

• “Working with the Source Code” on page 6

• “Navigating the Design from the Source View” on page 17

• “Navigating Code in Interactive Simulation” on page 18

 4-2

Using the Source View

• “Setting Breakpoints in Interactive Simulation” on page 18

• “Annotating Values” on page 37

Loading Source Code

This section includes the following topics:

• “Loading a Source View from the Hierarchy Pane”

• “Loading a Source View from the Assertion View”

• “Displaying Source Code from a File”

Loading a Source View from the Hierarchy Pane

Ensure that a database is currently loaded in the Hierarchy pane.

To load the Source view from the Hierarchy pane

1. In the Hierarchy pane, perform one of the following:

- Select a scope, then select the menu Scope > Show Source.

- Select a scope, right-click and then select Show Source.

- Double-click on a scope icon.

- Drag and drop scope from the Hierarchy pane to the Source
view.

The Source view loads the data corresponding to the selected
scope.

 4-3

Using the Source View

Figure 4-1 Loading the Source View

Loading a Source View from the Assertion View

If your design contains assertions, the Assertion view loads results
when you open the simulation database.

Note:
The Assertion view is not loaded by default, but you can choose
to open the Assertion view automatically by selecting the
Automatically open assertion window option in the Application
Preferences dialog box.

To load assertion code into a Source view via the Assertion
view

• Select an assertion in either tab, then select Scope > Show
Source.

Hierarchy pane
Corresponding data in the
Source view

 4-4

Using the Source View

• In the Assertion Summary tab or the Assertions tab, double-click
the variable or assertion you want to display in the Source view.

• In the Assertion Summary tab or the Assertion tab, drag and drop
the item to the Source view.

• Select File > Open File, then select an assertion file.

DVE loads and displays the source file.

Displaying Source Code from a File

You can open a source file in the existing Source view, or you can
open a new window.

To display the source code from a file

1. Select File > Open File.

The Open Source File dialog box appears.

2. Select the name of the design file you want to display from the
browser, and then click Open.

DVE loads and displays the selected source file.

 4-5

Using the Source View

Using the Mouse in the Source View

The following table describes the different mouse actions in the
Source view:

Mouse Action Command Operations

Left-click Clears the current selection and selects a signal or
an instance.

Drag-left Selects area for multiple selection.

Click on the line number Selects the whole line.

Double-click on a signal name Traces the signal's drivers.

Double-click on an instance Pushes down into the instance's definition module.

Double-click on a module
name

Displays the upper hierarchy and locates the
module's instantiation.

Double-click on an
architecture

Jumps to the entity definition of selected
enity_name or jumps to an instance definition of
the entity.

Double-click on an entity (after
double-clicking on an
architecture)

Jumps to the architecture that was previously
double-clicked.

Right-click on a signal name or
anywhere in the Source view

Displays a CSM or Source view menu.

 Position the mouse cursor on
any signal name.

Displays ToolTip with the current value.

 4-6

Using the Source View

Working with the Source Code

This section describes how to use the Source view to examine the
source code while debugging it. It allows you to expand and collapse
required portions of the code, display line attributes for specific lines,
and edit the source code using a text editor.

Expanding and Collapsing Source Code View

To expand or collapse the source code view

1. Click in the Line Attribute area, or right-click and select
Expand Source to view code that is folded.

2. Click in the Line Attribute area, or right-click and select
Collapse Source to hide code.

Displaying Include File as Hyperlink

The include file in your design is now shown as a hyperlink in the
DVE Source view. You can click the hyperlink to view the include file
separately in the same Source view. The hyperlink display is enabled
by default when you load your design in DVE.

However, you can choose to view the collapsed view using a
preference option Enable ‘include file expansion in source code.

Example

The following example code top.v contains two include files.

 4-7

Using the Source View

top.v

`include "mynand.v"
`include "mynor.v"
module top;
wire na,nb,ny,nra,nrb,nry;
norgate nor1(.nra(nra),.nrb(nrb),.nry(nry));
nandgate nand1(.na(na),.nb(nb),.ny(ny));
endmodule

mynand.v

`include "myand.v"
module nandgate (na,nb,ny);
input na,nb;
output ny;
wire a_r,b_r;
andgate and1(.a(na),.b(nb),.y(a_r));
assign ny=!(a_r);
endmodule

mynor.v

`include "myor.v"
module norgate (nra,nrb,nry);
input nra,nrb;
output nry;
wire a_r;
orgate or1(.a(nra),.b(nrb),.y(a_r));
assign nry=!(a_r);
endmodule

myor.v

`include "myand.v"
module nandgate (na,nb,ny);
input na,nb;
output ny;
wire a_r,b_r;

 4-8

Using the Source View

andgate and1(.a(na),.b(nb),.y(a_r));
assign ny=!(a_r);

myand.v

module andgate (a,b,y);
input a,b;
output y;

assign y=a&b;
endmodule

Steps to compile the example code

% vcs -debug_all top.v +incdir+./
% ./simv -gui&

To view the include file as a hyperlink

1. Compile the design file and open in DVE.

The design is loaded in DVE.

2. Select the scope in the Hierarchy pane.

The source file is displayed in the Source view with the include
files as hyperlinks.

3. Click any of the hyperlinks, say mynor.v, in the Source view.

 4-9

Using the Source View

The include file is displayed in the Source view.

4. From the Scope menu, use the Back or Forward options to move
back or forward in the source code.

To view the include file as expanded

1. Select Edit > Preferences.

The Applications Preferences dialog box opens.

2. Click the Source View category and select the check box Enable
‘include file expansion in source code.

 4-10

Using the Source View

The hyperlinks in the include files are removed and you can
expand the files in the Source view.

Editing Source Code

To edit source code

1. Select the text editor by setting the $EDITOR environment
variable.

%>setenv EDITOR vi [OR]

2. Select Edit > Preferences, select Source view, choose the editor
you prefer and save from the editor pull-down menu.

The default editor is Vi.

3. In the source code area, right-click and select Edit Source or Edit
Parent to open the source code in the default editor and edit the
same.

 4-11

Using the Source View

Selecting and Copying Text to the Clipboard

You can select some or all text displayed in a Source view, and copy
it to your clipboard.

To select all text or copy text in a Source view

1. Drag your mouse across the text to select a portion of text in the
Source view.

DVE highlights the selected text.

2. Right-click and select Copy from the CSM.

You can paste this text in any text area or in the source editor.

Color-coding the Source File

You can set the background color and distinguish the active and
inactive scopes in the DVE Source view. For an inactive scope, the
annotations are not displayed.

The scopes in the Source view can be distinguished as follows:

• Active scope — Default background color is white, color is
configurable.

• Inactive scope — Default background color is gray, color is
configurable.

 4-12

Using the Source View

The code that is conditionally compiled is highlighted. The
uncompiled code is shown in plain text without any syntax
highlighting, as an inactive scope. For example,

In this example, since LOUD is not defined at compile time, it is not
color-coded.

You can select the background color for the active and inactive
scopes from the Application Preferences dialog box.

To set preferences for background color of the scope

1. Select Edit > Preferences.

The Application Preferences dialog box opens.

2. Select Source Color under the Source view category.

The options are displayed in the right pane.

3. Select the colors for the active and inactive scopes from the
options Background for active scope and Background for
inactive scope.

The active and inactive scopes are shown in the chosen color in
the Source view.

 4-13

Using the Source View

Note:
- Color-coding is not supported for dynamic scopes.

- If you select signals defined in the inactive scopes to perform
some operation, such as “Add to Waves”, a dialog box lists all
the scopes. You can select one or multiple scopes to perform
the operation on the signals.

Setting Desired Color for Inactive 'ifdef `else Code in
DVE

You can set the desired color for inactive 'ifdef `else code. The
default color of this code is light gray, as shown in Figure 4-2.

Inactive
 Scope

Active
Scope

 4-14

Using the Source View

Usage Example

Consider the following example testcase test.v:

`define path top
module top;

 reg in1 , in2,clk;
 wire out1, out2, out3;
 wire macro_w;

 and1 inst (in1, in2, clk, out1);

 initial
 begin
 clk = 0;
 `ifdef OPP
 in1 = 0;
 in2 = 0;
 #5 in2 = 1;
 #5 in1 = 1;
 in2 = 0;
 in1 = 0;
 `else
 in1 = 1;
 in2 = 1;
 #5 in2 = 0;
 #5 in1 = 0;
 in2 = 1;
 in1 = 1;
 `endif
 #25;
 in2 = 1;
 #5;
 $finish;
 end
endmodule

module and1(input a,b,c,output d);
 and as(a,b,c,d);
endmodule

 4-15

Using the Source View

Compile the test.v example:

% vcs -debug_all test.v

Invoke the DVE GUI:

% ./simv -gui&

Figure 4-2 Default color of inactive 'ifdef `else code

To change the color of inactive 'ifdef `else code:

1. Select Edit > Preferences.

The Applications Preferences dialog box appears.

2. In the Source View > Source Colors category, click the Inactive
Code drop-down, as shown in Figure 4-3.

 4-16

Using the Source View

3. Select a color from the color palette and click Apply.

4. Click OK.

Figure 4-3 Selecting a color from the color palette

For example, if you select green color from the palette, then the color
of the inactive 'ifdef `else code changes to green, as shown in
Figure 4-4.

 4-17

Using the Source View

Figure 4-4 Changing the color of inactive 'ifdef `else code

Navigating the Design from the Source View

Use the Source view to navigate through the design and view results
in other DVE windows by dragging and dropping signals, scopes,
and objects.

To navigate the design from the Source view

1. Select the required object, signal or scope, in the Source view.

The text is highlighted.

2. Right-click and add to the desired view from the CSM.

You can view the object from the source code in the Wave view,
List view, add to Groups, or add to the Watch pane.

 4-18

Using the Source View

Navigating Code in Interactive Simulation

Use the line attribute area to control line breakpoints when running
interactive simulation. To display line attributes, right-click in the line
attribute area, then select Line Number.

When you run a simulation interactively, the line where the
simulation stopped is marked by a yellow arrow in the Source view.
However, you can search and review any code in the design during
a pause in the simulation. You can return to the line where the
simulation paused by clicking the yellow arrow at the bottom of the
Source view as shown in the following illustration.

Figure 4-5 Navigating an interactive simulation

Setting Breakpoints in Interactive Simulation

You can set breakpoints to stop the simulation. Note the following
points regarding breakpoints:

Simulation
stopped at line 67.

Click to return to
line where
simulation paused.

Line Attribute Area Breakpoint Enabled

 4-19

Using the Source View

• Line breakpoints execute each time a specified line is reached
during simulation (see the section Displaying Line Attributes and
Managing Breakpoints from the dialog box for more information)
about line breakpoints. You can also specify an instance to have
the tool stop only at the line in the specified instance.

• Time breakpoints stop at a specified absolute or relative time in
the simulation.

• Signal breakpoints trigger when a specified signal rises, falls, or
changes.

• Assertion breakpoints stop at a specified assertion event.

• Task/Function breakpoints stop at the specified task or function.

To set and delete a breakpoint from the CSM

1. Click in the line attributes area of the Source view next to an
executable line.

A solid red circle indicates that a line breakpoint is set.

Note:
A line breakpoint can only be set on an executable line. If a line
is not executable, no breakpoint will be set when you click next
to it.

OR

Right-click in the attributes area of the Source view, then select
Set Breakpoint.

A plus sign (+) appears when you set more than one breakpoint
on one executable line.

2. Select the solid red breakpoint circle to disable it.

 4-20

Using the Source View

The solid red circle changes to an empty red circle.

3. Right-click on an enabled or disabled breakpoint, then select
Delete Breakpoint or Delete All Breakpoints.

The red circle disappears indicating that the breakpoint is deleted.
You can also delete a breakpoint by double-clicking on the solid
red circle/clicking the empty red circle.

The following table describes the breakpoint icons:

Managing Breakpoints

You can manage all types of breakpoints in an interactive simulation
from the Breakpoints dialog box.

To create or update breakpoints using the Breakpoints dialog
box

1. Select a line in the Source view line attribute area, right-click and
select Properties.

Breakpoint Icon Description

Denotes a line breakpoint was
set on this line, and it is enabled.

Denotes a line breakpoint that
was set more than once on the
same line, and it is enabled.

Appears when you disable one
breakpoint on an executable
line.

Denotes a disabled line
breakpoint.

 4-21

Using the Source View

To create a class object breakpoint for a task or function, select
one method in the Hierarchy pane or Stack pane and then right-
click and select Set Breakpoint.

The Breakpoints dialog box appears.

2. Click Define to display the breakpoint creation tabs.

3. Select the Line tab and enter the following information:

- Break in file — Enter the file name or browse to the file where
you want to create the breakpoint.

- At line — Enter the line number for the breakpoint.

 4-22

Using the Source View

- Break in instance — Enter the instance where the breakpoint
will fire.

4. Select the Time tab and enter the following information:

- Select Absolute or Relative time reference, then enter the time
to set the breakpoint.

5. Select the Signal tab and enter the following information:

- Enter the desired signal in the Break on signal text.

- Select Any, Rising, or Falling Edge to define the breakpoint
event.

6. Select the Assertion tab and enter the following information:

- Enter the full path to the Assert in the Break on Assertion text
field.

- Select an event type to trigger the breakpoint from any, start,
end, failure, or success.

7. Select the Task/Function tab and enter the following information:

- Enter the full path to the task or function in the Break in Task/
Function field.

8. (Optional) Enter a condition for VHDL objects to be met for the
breakpoint to fire.

Note:
Condition is not supported for Verilog objects.

9. Enter the class object in the Class Object field if you want to
create a breakpoint for a class object.

10. Select the frequency. Select Once if you want to fire the breakpoint
once, else select Repeat.

 4-23

Using the Source View

11. Provide a name for the breakpoint in the Name field.

12. Define Tcl commands to execute when breakpoint triggers in the
Command field.

13. Enter the skip time before stopping in the Skip field. Select the
Continue check box to prevent breakpoint to stop. Selecting the
Quiet check box will not print any error message when breakpoint
triggers.

14. Click Create.

The breakpoint is created and appears in the Breakpoint list box.

15. Select a breakpoint by clicking on it from the Breakpoint list box
and click Save.

The Save Breakpoint dialog box appears.

16. Provide a file name in the File Name field and click Save.

The breakpoint is saved in the file with a .tcl extension. Repeat
the steps to save more breakpoints.

17. Select the breakpoint from the Breakpoint list box, change the
settings and click Update.

The breakpoint is updated.

To load the breakpoints

1. In the Source view line attribute area, right-click and select
Properties.

The Breakpoints dialog box appears.

2. Click Load.

The Load Breakpoints dialog box appears.

 4-24

Using the Source View

3. Select the tcl file in which the breakpoints are saved and click
Open.

The breakpoints are loaded in DVE and you can view the red
circles against the line that has the breakpoint in the Source view.
Loading breakpoint doesn’t replace the existing breakpoints,
rather it adds the breakpoint from the file in the existing list.

Setting Breakpoints in a Class Object

You can now set breakpoints in the individual class objects without
modifying the contents of the class. Use any of the following
methods to set breakpoint on a class object:

• Specifying the breakpoint using -object UCLI command.

• Specifying the breakpoint in the DVE Breakpoint dialog box.

The breakpoints set on the class objects are not stored in the DVE
Session file.

Note:
Usage of -object with System-C code is not supported.

Example
program p;

class A;

int id;
task my_method();

$display("Inside A::my_method(%0d)",id);
endtask
function new (int i);

id = i;
endfunction

 4-25

Using the Source View

endclass

initial
begin

A c0, c1; // First create all our objects
c0 = new(0); // id = 0

 c1 = new(1); // id = 1
$stop; // When stopped here, enter these commands:

// stop -file obp_doc.v -line 6 -object c1
// (stops in method of c1 only, not c0)
// Now call all the objects' method to test if
//the simulation stops

c0.my_method();
$display("BP 1 should trigger after next stmt");
c1.my_method();

end

endprogram

The following figures show how the breakpoint is triggered. First at
$stop and then after entering the UCLI command and running:

stop -file obp_doc.v -line 6 -object c1

 4-26

Using the Source View

Figure 4-6 Class Object Breakpoint Set

Figure 4-7 Class Object Breakpoint Hit

 4-27

Using the Source View

Creating Conditional Breakpoints

You can use the –condition <expression> option (see Table 4-
1) or the DVE Breakpoints dialog box (see Figure 4-8), to create
conditional breakpoint.

Table 4-1 Command to create conditional breakpoint

Figure 4-8 Creating conditional breakpoint using DVE Breakpoints dialog

Using Object IDs in Conditional Expression

You can specify object IDs in conditional expression. DVE displays a
unique object ID for every class instance in the following format:

<classname>@<instance number>

Where,

• <classname> is the name of a class.

UCLI Command Description

stop -file <file> -line <lineno>
–condition <expression>

Stops the execution at the specified
conditional expression.

 4-28

Using the Source View

• <instance number> is the instance number of <classname>.
Instance number is an unsigned number.

For more information on Object ID, refer to “Viewing Object Identifier
Values” section.

Key points to note:

• You can use Object ID in the conditional expressions only in Line
and Task/Function breakpoints.

• To set conditional breakpoint in combination with the -line
option, you must compile your designs with –debug_all.

A simple class object will look like C @1. However, the object ID will
have special characters like “::”, “#”, or “$”, in case of scenarios
involving nested classes, parameterized classes, packages and so
on. Hence these ObjectID names must be treated as escaped
identifiers. You should use a preceding back slash (\) and terminate
the <class_name> with a white space followed by
@<unsigned_number>, as shown below, while using these object
IDs in the stop command or Breakpoints dialog.

\<package_name>::<class_name> @<unsigned_number>

Examples:

\C @1 // object ID of a simple class object

\C1::C2 @2 //object ID of a nested class

\Base#(2) @1 // object ID of a parameterized class

Class Defined within a Package

 4-29

Using the Source View

Following is the syntax of object ID, if a class is defined within a
package:

\<package_name>::<class_name> @<unsigned_number>

Example:

stop -file dynamic.sv -line 19 -condition {inst
==\pkg::C @1}

Note:
The following operators are supported with Object IDs:

==,!=, =, >=, <=

Arithmetic operators are not supported.

Usage Example

Example 4-1 illustrates the usage of Object IDs in conditional
expression.

Example 4-1 Using Object IDs in Conditional Expression

top.sv

package pkg;
class Base#(int size=5);
 bit [size:0] a;
 task disp();
 $display("Package:Size of the vector a is $d",$size(a));
 endtask
endclass

class C1;
 class C2;
 function foo;
 $display("Package Nested class");

 4-30

Using the Source View

 endfunction
 endclass
 C2 c2 = new();
endclass

class C;
 int a=1;
 task main(int x = 0);
 begin
 $display("Package:Message");
 end
 endtask
endclass
endpackage // pkg

program class_scenario;

import pkg::*;
 pkg::C1 pkg_c1 = new();
 pkg::C1::C2 pkg_cc2=new();
 pkg::C pkg_inst = new;
 pkg::Base#(5) pkg_B3=new();

 initial
 begin //: A1
 pkg_inst.a=9;
 pkg_inst.main();
 pkg_c1.c2.foo();
 pkg_cc2.foo();
 pkg_B3.disp();
 #1 $finish;
 end // : A1
endprogram

Compile the top.sv example shown in Example 4-1:

% vcs –debug_all –sverilog top.sv

Invoke the DVE GUI:

 4-31

Using the Source View

% simv -gui&

Enter the following commands in the DVE command-line:

dve>stop -line 23 -file top.sv -cond {pkg_inst==\pkg::C @1}
dve>run

Or,

Set the conditional breakpoint using Breakpoints dialog, as shown in
Figure 4-9.

Figure 4-9 Specifying an expression in the Condition field

The simulation stops at line 23, as shown in Figure 4-10.

 4-32

Using the Source View

Figure 4-10 Breakpoint hit at a specified condition

Debugging During Initialization of SystemVerilog Static
Functions and Tasks

Enabling Static Debug in DVE

You can use one of the following three methods to enable static
debug in DVE:

• Using the simv –ucli=init –gui command

• Set environment variable ENABLE_SVINIT_DEBUG and start
DVE using the simv -gui command

• Loading simv using the Simulation Setup dialog, as shown in the
following figure:

 4-33

Using the Source View

Figure 4-11 Loading simv Using Simulation Setup Dialog

Debugging Static Code

Consider the following example code:

test.sv

module top ();
reg a;
class bp;
 static int a = do_int();
 static function int do_int();
 $display("TOTOT");
 return 3;
 endfunction
 endclass : bp
 bp my_bp=new;
 initial
 begin
 a = 1;

 4-34

Using the Source View

 #10 $display("End %d....",my_bp.a);
 end
endmodule

Perform the following steps to debug static code:

1. Compile test.sv

% vcs -sverilog -debug_all test.sv

2. Invoke the DVE GUI

% simv -ucli=init -gui

3. Set breakpoint in static function, as shown in the following figure,
to debug the code:

Figure 4-12 Debugging Static Code

4. Run the simulation. The simulator stops at the breakpoint, as
shown in the following figure:

 4-35

Using the Source View

Figure 4-13 Debugging Static Code

The DVE prompt (dve>)remains unchanged. You can use the
following tcl command to check whether simulation is in init phase
(static debug). It will return 1 if simulation is in init phase.

gui_check_init_debug_state

Features Disabled in Initialization Phase

All features that are not supported in UCLI during initialization phase
(see “Debugging During Initialization of SystemVerilog Static
Functions and Tasks” section in UCLI User Guide) are also not
supported in DVE. Menu items for the following operations in DVE
are disabled in initialization phase:

• Add signals/scopes into waveform/list window

• Dump

• Force

• Interactive Rewind

• save/restore

 4-36

Using the Source View

• C/C++ Debugging

Note:
You can execute run 0, run -nba, or run -delta to step out
of static debug. Once the simulation steps out of the init phase
(static debug), all the above mentioned features are enabled.

 4-37

Using the Source View

Annotating Values

To enable value annotation for variables or signals in the
Source view

1. Click the Annotate Values Icon in the toolbar.

2. Select Scope > Annotate Values.

3. In the Source view, right-click and select Annotate Values.

The annotated values are displayed in the Source view.

If there is not enough space to show the values, the value is shown
as * (asterisk character). You can see the exact value when you
hover your mouse on the variable.

5-1

Using Wave View

5
Using Wave View 1

The Wave view displays waveforms for signals, traced assertions,
and signal comparison.

This chapter includes the following topics:

• “Viewing Waveform Information”

• “Using the Signal Pane”

• “Using the Wave View”

• “Viewing PLI, UCLI, and DVE Forces in Wave View”

For information about using the Wave view to view and debug
assertions, see Using the Assertion Pane.

5-2

Using Wave View

Viewing Waveform Information

To view waveform information in the Wave view, set the target
window and choose the waveform you want to view. You can
customize how DVE displays the waveform by changing the settings
in the Wave view.

Viewing a Waveform

To view waveform information for signals in the Wave view

1. Select a scope or object from the Hierarchy pane, Data pane,
Source view, List view, Schematic view, or Assertion view.

5-3

Using Wave View

2. Click the Add to Waves icon in the toolbar .

The selected signal is added to the recently used Wave view if it
exists, else it is added to a new view.

You can also select a signal and use the CSM to add it to either
a new Wave view or a recently used Wave view.

Signal Pane
Wave View

5-4

Using Wave View

Viewing Nanosim Analog Signals

DVE supports display of Nanosim signals dumped to a VPD file. The
Wave view displays the signals with units and resolution appended
to the values. Figure 5-1 shows the Wave view display of Nanosim
data.

Figure 5-1 Displaying Nanosim Signals from a VPD File

For information about dumping and debugging Nanosim signals, see
the Discovery AMS: NanoSim-VCS User Guide and the Discovery
AMS: NanoSim-VCS-MX User Guide.

Data type

 Analog unit

 Vertical scale

5-5

Using Wave View

Setting the Simulation Time

To set the simulation time display in the waveform

1. Select View > Go To Time.

The Go To Time dialog box appears.

2. Enter a value and click Apply or OK.

The waveform display moves to the specified simulation time. The
corresponding values will also be visible in the Source view and
List view.

Using the Signal Pane

The Signal pane displays signals in groups:

• Scalar signals have their value displayed in binary radix.

• Vector signals have their values displayed in hexadecimal radix.

• Integers, real numbers, and times are displayed in the floating
point radix.

• Signed numbers are displayed in 2’s compliment.

5-6

Using Wave View

The Signal pane consists of:

• Name column — Displays signal names and their groups.

• Value column — Displays the value of signals at the simulation
time selected by the C1 cursor (which is also the value in the
TopLevel Window Time field).

• Filter text area — Allows you to input a string to filter items. You
can use wildcard as your search string.

• Group filter drop-down — Displays the group name to filter the
signals based on their group.

• Filter type drop-down — Displays the signals types to filter the
signals. You can select or clear the checkbox beside each signal
type to filter them.

See Figure 5-2 for an example of the Signal pane.

5-7

Using Wave View

Figure 5-2 The Signal Pane

Expanding Verilog Vectors, Integers, Time, and Real
Numbers

To expand the Vector signals to their individual bits, click the plus
icon to the left of the signal name.

After you expand the display, each bit is added to the Signal pane
and waveforms for these bits are added to the Wave view.

DVE represents integers in 32 bits, so you can expand an integer in
the Signal pane to display separate waveforms for each of these bits.
Similarly, DVE represents the time data type with 64 bits, and you
can expand a time to display a waveform for each of these 64 bits.

You cannot expand a real data type.

Name of signal
group

signals type

GroupFilter Type
 drop-down drop-down

Filter text area
to input strings

5-8

Using Wave View

You can also expand assertions. Upon expanding an assertion, its
children will include the assertion clock and the signals and events
(or sequences and properties for SVA) that make up the assertion.

Adding Signal Dividers

A divider, inserted into a Signal Group, displays in every instance of
that signal group when opened in Wave views. Dividers are saved in
the session TCL file and are restored when the session is opened.

To separate signals in the Wave view, click Signal > Insert Divider.
Dividers are added between signals.

There is no limit to number of dividers you can add between signals.

Renaming Signals

You can change the name of the signal and its bit range in the Wave
view. This is useful when you want to give unique names to each
signal so they can be efficiently compared with other signals or
modified versions (using expressions) of the same signal.

Note the following guidelines while renaming the signals:

• The new name should be composed of a sequence of letters,
digits, and underscore characters.

• Renaming only affects the current item (not all items of the same
signal in the Wave view).

5-9

Using Wave View

• The alias name (new signal name) does not support Tcl
commands. The Tcl log uses the original signal name; therefore,
you should use the original name to access a signal using a Tcl
command.

• The new signal name is displayed only in the Wave view.

• All types of signals (Verilog/VHDL/SC/Analog and so on) are
supported. Expressions, bus, time shift, and compare objects are
not supported.

To rename the signal

1. Compile your design and open in DVE.

Select a scope or signal in the Hierarchy or Data pane, right-click
and select Add to Waves > New Wave view.

2. Click on a signal that you want to rename and type the name.

OR

Right-click on a signal, select Edit > Rename, and type a name.

3. Press Enter.

The signal is renamed. This way, you can only change the signal
name and not the range.

5-10

Using Wave View

To change the signal name and range

1. Select a signal in the Signal pane.

2. Right-click and select Properties.

Signal before rename

5-11

Using Wave View

The Signal Properties dialog box opens.

3. Type a name in the Display Name field and edit the range.

4. Click OK.

5-12

Using Wave View

The signal name and range are changed.

Renaming Signal Groups

To rename a signal group

1. Double-click the signal group in the Signal pane.

The signal group is selected.

2. Type a new name.

The signal group is renamed.

Undo and Redo Operation for Signals

You can undo (revert the operation) and redo (redo the reverted
operation) the following actions on the signal groups in the Wave
view:

• Adding signals to the signal group

• Deleting signals and signal groups from the Wave view

Signal name after rename

5-13

Using Wave View

• Reordering signals and signal groups in the Wave view

• Renaming signal groups in the Wave view

• Creating and deleting signal groups

For example, to undo and redo renaming of signal group in Wave
view:

1. Right-click on the signal group and select Edit > Rename, as
shown in the following figure:

For example, rename the signal group as Group10, as shown in
the following figure:

5-14

Using Wave View

2. Right-click on Group10 and select Edit > Undo Signal Group
Operation, as shown in the following figure, to undo the renaming
of signal group Group1.

3. Right-click on Group1 and select Edit > Redo Signal Group
Operation, as shown in the following figure, to redo the renaming
of signal group Group1 to Group10.

5-15

Using Wave View

Creating Multiple Groups when Adding Multiple Scopes

When you add the scopes to the waves, lists, or groups from the
Hierarchy pane, the signal groups will be created based on their
respective scopes.

If you select Display signal group exclusively in the Application
Preference dialog box and add multiple scopes to Wave view,
multiple groups will be created but only the last group will be
displayed.

Creating Nested Signal Groups

DVE allows you to create nested signal groups in the Wave View and
List View. That is, DVE allows a regular signal group to be part of
another signal group, as shown in Figure 5-3. You can create nested
signal groups by dragging and dropping one signal group to another,
or by using Signal Group Manager dialog box.

Figure 5-3 Nested Signal Groups

5-16

Using Wave View

Creating Nested Signal Groups in the Wave View

Consider Figure 5-4, which shows Wave View Signal Pane with
signal groups Group1 and Group2 at the same level of hierarchy.

Figure 5-4 Signal Groups in the Wave View Signal Pane

You can use one of the following methods to create nested signal
groups in Signal Pane:

• Dragging and dropping one signal group into another (for
example, Group2 into Group1).

• Using Signal Group Manager dialog box.

Key Points to Note
• If a group (for example, Group2) already exists in another group

(for example, Group1) that you want to drag and drop it into, then
the name of the Group2 will be modified to have a trailing
underscore and a serial number (Group2_<n>), as shown in
Figure 5-5. This applies for both Signal Group Manager dialog
box and drag and drop operation in Wave View Signal Pane.

5-17

Using Wave View

Figure 5-5 Dragging and Dropping Groups in the Wave View Signal Pane

• You can use Create Group right-click option in Wave View Signal
Pane to create subgroups within a group. The default group name
will be Group<index>, where Group is a common base name
with a serial number <index> appended to it, as shown in
Figure 5-6. This also applies to Signal Group Manager dialog box.
You can use Create Group button in Signal Group Manager
dialog box to create subgroups.

• A group can contain signals and subgroups. Signals and
subgroups within a group are displayed in an arbitrary order, as
shown in Figure 5-7.

5-18

Using Wave View

Figure 5-6 Creating Subgroups Within a Group in Wave View Signal Pane

Figure 5-7 Groups Displayed in an Arbitrary Order

The following points illustrate various drag and drop scenarios for
groups and signals:

5-19

Using Wave View

- Drag and drop Group3 before mem: Group3 will be placed as
a child of Group1_1 before mem.

- Drag and drop Group3 on Group1: Group3 will be placed as
first child of Group1.

- Drag and drop Group1_1 (with subgroup) on New Group:
Group1_1 will be placed as a top-level group.

- Drag and drop signal s2 before Group1_2: Signal s2 will be
placed after signal reset.

- Drag and drop signal s2 on Group1_2: Signal s2 will be placed
as first child of Group1_2.

• Group names does not support “|” character. This character will
be automatically converted to “_”.

• The Group Filter drop-down displays all signal groups (including
the nested ones) of the Wave View Signal Pane, as shown in
Figure 5-8. You can filter a group by unchecking the checkbox
next to it.

- If Recursive is selected, then checking or unchecking the
checkbox of a parent group affects all of its children (subgroups)
in a similar manner. For example, consider Figure 5-8. If you
uncheck Group1 checkbox in the Group Filter drop-down, then
Group1 and all of its subgroups will get filtered from the Wave
View Signal Pane, as shown in Figure 5-9.

- If you uncheck a parent group, but not its children (subgroups),
then DVE still displays the parent group in Signal Pane, but not
its signals

5-20

Using Wave View

Figure 5-8 Viewing Groups in Group Filter

5-21

Using Wave View

Figure 5-9 Using the Recursive Option

Creating Nested Signal Groups in the List View

List View displays nested signal groups in table format, as below.
You can use Signal Group Manager dialog box to organize signal
groups in the List View.

5-22

Using Wave View

Figure 5-10 Viewing Nested Signal Groups in the List View

Using Signal Group Manager to Create Nested Signal
Groups

You can use Signal Group Manager dialog box to organize signal
groups in Wave View and List View. This dialog box displays all top-
level groups and nested subgroups (see Figure 5-11), and allows
you to:

• Drag and drop one group into another

• Create new groups under a group.

• Delete a group.

• Rename a group by double-clicking on it.

Note:
Creating, deleting, moving, or renaming a group in Signal Group
Manager dialog box will have similar affect in Wave View and List
View, and vice versa.

5-23

Using Wave View

To open Signal Group Manager dialog box, select Signal > Signal
Group Manager.

Figure 5-11 Signal Group Manager Dialog Box

• You can use the Create Group button to create a new top-level
group or a subgroup for a selected group.

• You can use the Delete button to delete the selected group.

5-24

Using Wave View

Deleting Signal Group

When you delete a signal from the Wave view, it will be deleted
globally. If the same signal is present in few other views, and you
want to delete it, a warning message is displayed. You can either
select to delete or hide the signal.

Once you select to delete the signal, it would be deleted globally
from all views. If you select to hide the signal, it will be hidden in the
current view.

If the signal groups are deleted, save session will not have the
deleted signal groups. If you hide the signal, it will be hidden when
you are saving or reloading the session.

Customizing Duplicate Signal Display

When displaying duplicate signals, you can customize the display of
an instance of a signal without affecting the display of any duplicates.

To customize the signal display

1. Select a signal, then toggle Signal > Default Properties off.

2. Select Signal > Properties and make any changes to the signal
scheme or color.

Changes are made to the selected signal without affecting the
display of duplicate signals.

Note:
- If you do not toggle Default Properties off, the changes will

become the default and duplicate signal display will also
change.

5-25

Using Wave View

- If a signal group is in two Wave views, changing a signal will
change the signal in the other Wave view if it is the same
instance.

Overlapping Analog Signals

You can combine analog signal waveforms to visualize relationships
between signals.

To overlap analog signals, do any of the following steps:

1. Drag and drop one or several analog signals onto an analog
signal.

DVE creates a overlaying group as shown below:

2. Right-click the signal and select Analog Overlay from the menu.

The signals are overlapped.

3. Select a signal group with two or more analog signals, then right-
click and select Analog Overlay from the CSM.

DVE overlay all signals in the group.

5-26

Using Wave View

4. To restore the overlaid group back to a regular signal group, right-
click the signal and select Unoverlay from the CSM.

Using User-defined Radices

This section describes how to create, edit, import, and export user-
defined radices. You can define a custom mnemonic mapping from
values to strings for display in the Wave view.

To create, delete, import, and export a user-defined radix

1. Select Signal > Set Radix > User Defined > Edit.

The Edit User-defined Radix dialog box opens.

2. Click New, enter a radix name, then hit the Enter key on your
keyboard.

All buttons on the Edit User-defined Radix get enabled.

3. Click Add Row to activate a row for the user-defined radix and
perform the following steps:

5-27

Using Wave View

- Select the text and background colors for each row entry.

- Select the radix, click a cell in the Value and Display column,
then enter the values.

The radix is edited.

4. Select a row, then click Delete Row.

The row is deleted.

5. Select a radix from the Radix Table Name drop-down and click
the Delete button.

The radix is deleted.

6. Click Import, then browse and select the desired radix.

The radix is imported.

7. Click Export, select the radix, then enter a radix name.

The radix is exported.

8. Select the Apply user-defined radix to selected signal(s)
checkbox.

The user-defined radix is applied to the selected signal in the
Wave view.

9. Click OK or Apply to save the user-defined radix.

Note:
Regular expression (wildcard mode) is supported with user-
defined radix. For example, if you define a value ’VALUE’ to the
radix 2’b0* (where * is a wildcard character), all the radix whose
name starts with 2’b0 such as 2’b01, 2’b00, will get a value
’VALUE’.

5-28

Using Wave View

Currently, wildcard supports only '0' and '1'; doesn’t supports 'x'
and 'z'.

Comparing Signals, Scopes, and Groups

You can compare individual signals with the same bit numbers,
scopes (for comparing variable children), buses, or groups of signals
from one or two designs.

To view a comparison

1. Select one or two signals, signal groups, scopes, or buses from
the Signal pane of the Wave view.

2. Right-click and select Compare.

5-29

Using Wave View

The Waveform Compare dialog box opens.

3. Click Load Reference Signals/Scopes and select the text file
with the signals and scopes to reference.

Note:
If you are comparing two designs from root, then the reference
waveform region and test waveform region can be empty.

4. Click the More Options button.

The dialog box is expanded and additional options are displayed.

5-30

Using Wave View

5. In the Signal types and ignore options section, select the signal
types to compare and select ignore options.

For example, if you select Ignore X and if the reference signal
value is X, there is always a match, whatever the values of the
Test Signal.

6. Enter a Time Tolerance to filter out mismatch values that have
time ranges smaller than the tolerance range.

7. In the General section, select to compare recursively or to only
create signals with mismatches.

8. Enter mismatch settings for maximum mismatches per signal and
maximum total mismatches to report.

9. Click Apply to start the comparison and keep the dialog box open.

Or

Click OK to start the comparison and close the dialog box (you
can open it at any time from the Signal pane CSM).

Results are displayed in the current Wave view.

5-31

Using Wave View

Figure 5-12 Compared Signal Groups in the Wave View

10. Select a result in the Wave view, right-click and select Show
Compare Info.

The comparison results are displayed in the Waveform Compare
dialog box.

Figure 5-13 Waveform Compare Summary Report

You can change the options, then compare them again.

Creating a Bus

You can select few signals or components and group them to create
buses. You can then view the behavior of the bus in the Wave or List
view. You use the Bus Builder function to create and edit buses using

5-32

Using Wave View

the signals from the opened designs. You can drag and drop
components from the Hierarchy pane or Data pane to create buses.
You can edit the bus bit range by simply changing either the MSB
(most significant bit) or the LSB (least significant bit) of the bus.

After you create a bus, you can select the bus in the Bus/
Expressions dialog box and add it to the Wave or List view. By
default, it will reside in the highest level signal group common to its
components.

To create a bus

1. Select few signals in the Signal pane.

2. Right-click and select Set Bus.

The Bus/Expressions dialog box opens.

5-33

Using Wave View

3. Click the Define button.

The Bus/Expressions dialog box is expanded.

4. Enter a name for the new bus.

You can give any legal name to the buses for the language (for
example, Verilog or VHDL).

5. Enter a scope name to create the bus under a user-specified
scope.

6. (Optional) Add constant +1 or constant +0 signal to the bus using
the following icons:

 .

7. Click Create.

The bus is created. The bit range is shown from 0 to N, where N
is the number of components in the bus. Vectors and structures
are expanded to their bits. For example, if “top.risc.pc[3..0]” is
added to the list, it is added as four items.

Modifying Bus Components

You can edit an existing bus or modify the components and their
order in a new bus using the Bus Builder toolbar.

To modify bus components

1. Select the bus in the Wave view, then right-click and select Set
Bus.

5-34

Using Wave View

2. Select the components in the component list, then click the icon
in the Bus Builder toolbar (see below):

The components are deleted.

3. Select one or more components in the component list, then click
one of the following icons in the Bus Builder toolbar:

 or

The components are moved up or down in the list.

4. Select two or more components from the component list, then
click the following icon in the Bus Builder toolbar:

The order of components relative to each other is reversed.

5. Double-click the signal and edit the range.

For example, define a signal as a[0:7], change the bit range to
a[7:6], and click on create/update. A bus will be created/updated
with the selected 2 bits as a[7], a[6].

If you enter a wrong range, a warning message is displayed and
the text color of the signal becomes red. You need to enter the
correct format to save the bit range.

6. Select the signal and click the “+” icon to expand.

The signal is expanded in the same order as specified in the name.
For example, a[1:3] signal will expand to a[1],a[2],a[3].

You can perform all the toolbar operations on the expanded
signals.

5-35

Using Wave View

7. Click Update.

The bus is updated.

Viewing Bus Values

To view bus values in waveforms (with transitions on edges), position
the cursor on the waveform.

A ToolTip is shown at a transition displaying the transition values.

Creating an Expression or a Counter

You can create expression for signals in the Wave view to view the
value change when that expression occurs. You use the Expressions
tab in the Bus/Expressions dialog box to create and modify
expressions.

You can create counters to count the value transitions for expression
or signal. Counter is treated as a special expression and you can
create or update counter in the same way as you create an
expression in the Bus/Expression dialog box.

The counter is supported both in post-processing mode and
interactive mode. In interactive mode, with simulation going on, the
count result will be updated as other signals in the Wave view.

Example - test.v

module top;
reg clk,_clk;
dut INTER(clk,_clk);

initial begin
clk = 0;
forever #25 clk = ~clk;

5-36

Using Wave View

end
endmodule

module dut(clk, _clk);
 output _clk;
 input clk;

 not i2(_clk, clk);
endmodule

To compile the example code, use the following commands:

vcs -nc -debug_all -sverilog test.v
simv -gui &

To create an expression

1. Select a signal in the Wave view, right-click and select Set
Expressions.

The Bus/Expressions dialog box opens.

2. Enter a name for the expression.

3. Select an expression type.

4. Insert the operators into the expression.

5. Type the name of a reference scope in the Referenced Scope
field.

The Referenced Scope field specifies a scope from which the
signal names in the Expression are referenced. If the Expression
field includes full hierarchy name of the scope, the Referenced
Scope field is ignored. When the expression does not include the
full hierarchy name, DVE looks for all signals in the referenced
scope.

5-37

Using Wave View

If you select a signal in the Wave view, Source view, or Data pane
and then open the Expression dialog box, the referenced scope
is filled by default.

6. Click Create.

The expression is created.

5-38

Using Wave View

7. Select the expression and click the Add to Wave or Add to List
icons.

The expression is added in the Wave or List view. You can now
run the simulation and view the values of signal when the
expression occurs.

To create or update a counter

1. In the Bus/Expression dialog box, type a counter name in the
Name field.

For example, EXP:Expression1.

2. Select the checkbox Expression is used as a counter (counting
for non-zero results) to create a signal that represents the value
transitions of the expression.

The Counter Edge radio buttons get enabled.

3. Select any of the following Counter Edge as desired.

- Any Edge - Identifies any expression/signal. Whenever the
value of the expression/signal changes, counter signal counts
this transaction.

- Rising - (Default) Identifies the bit type signals. Whenever the
expression/signal changes from low to high, counter signal
counts the transaction.

- Falling - Identifies only the bit type signals. Whenever the
expression/signal changes from high to low, counter signal
counts the transaction.

4. Click Create.

5-39

Using Wave View

The newly created expression counter is displayed in the Bus/
Expressions dialog box. You can also see the count results in the
Wave view.

5. Drag and drop the counter in the Bus/Expression dialog box to
update it.

For example, you can update the counter edge from “Rising” to
“Any Value”.

6. Click the Update button.

The counter is updated. You can see the updated count results in
the Wave view.

Limitations

• Mixed design is not supported.

• SystemC designs are not supported.

• Usage of macro in scope is not supported.

• Complex SystemVerilog data types are not supported.

5-40

Using Wave View

Using the Wave View

The Wave view displays the value transitions of signals and
assertions.

Figure 5-14 The Wave View

Cursors and markers are explained in “Cursors and Markers” on
page 54.

Marker header area

Cursor
Upper timescale

Lower timescale

5-41

Using Wave View

The Wave view has an upper and a lower timescale. The upper
timescale displays the range of simulation times currently on display
in the Wave view. The lower timescale displays the range of
simulation times throughout the entire simulation.

Customizing Waveforms Display

To customize the display of waveforms

1. Select a signal in the Wave view and select Signal > Properties.

5-42

Using Wave View

The Signal Properties dialog box appears:

2. In the Waveform Style section, set a height and custom color for
the waveform.

3. Set the Style Scheme as follows:

5-43

Using Wave View

- For a scalar waveform, click the arrow and select from a scalar
scheme as shown below:

- For an analog waveform, click the arrow and select from a
vector scheme, an analog scheme, or an interpolated scheme
as shown below:

The default display is a vector scheme. Variant vector schemes
alter the color and the values are displayed.

- The analog option displays an analog waveform as a stairstep
scheme, that stays at the value until the next reported value
change.

5-44

Using Wave View

- The interpol option displays an analog waveform interpolated
between each reported value change.

Note:
You cannot represent same signal in different "Drawing Style
Scheme" (Digital and Analog).

4. If you are selecting the analog option in step 3, then set the
following properties:

- Set the Y range values as follows:

-Display the full range the data type can represent.

-Auto adjust the display to the minimum and maximum of
available values.

-Display a user-defined minimum and maximum range.

- Select a Custom Resolution.

- Select the Mark Samples check box and select the marker style
and size.

5-45

Using Wave View

- Select the Show Markers Only check box to draw the waveform
only with markers.

- Select Y-axis scaling from Linear, Log_10, or decibel (dB).

- Set the Axis display.

- Set the Controls as left or right.

5. Click OK to apply the settings and close the dialog box, Apply to
apply changes and keep the box open, or Cancel to close the
dialog box and disregard changes.

Displaying Grid in Wave View

You can display grid (regularly spaced vertical lines) in the Wave
view. The grid can be useful to measure the number of clock cycles
for a signal. DVE draws grid in a grid range that you specify for a
signal, and you can count and study the signal changes within the
grid range.

5-46

Using Wave View

Example

test.v

module top;
reg a;
wire #5 a_delay = a;
initial begin

#20 a = 1'b0;
#20 a = 1'b1;
#20 a = 1'b0;
#20 a = 1'b1;
#20 a = 1'b0;
#20 a = 1'b1;
#20 a = 1'b0;
#20 a = 1'b1;
#20 $finish;

end
endmodule

To compile this example code, use the following commands:

vcs test.v -debug_all -sverilog
simv -gui &

Setting Grid Properties

1. Select a signal from the Wave view.

2. From the View menu, select Grid Properties or click the Setting

Grid Properties in the Wave view icon on the toolbar.

5-47

Using Wave View

The Grid Properties dialog box appears.

3. Specify the grid properties as follows:

• Grid Range — Specifies the range for drawing the grid as
explained in the following cases:

5-48

Using Wave View

- Case1: Default. You can draw the grid between Begin and End,
that is from the start of the simulation to the end of simulation
time.

Caution!If you select the default option, for huge designs with
multiple signals and huge simulation time, waveform
drawing with grid can be slow.

5-49

Using Wave View

- Case 2: Assuming you have C2 marker, then you can click the
Get Time from C1/C2 to capture the time of C1 and C2 in the
Between and And fields automatically. If there is no C2, only
the time of C1 is displayed in the Between field and the
waveform is drawn from C1 to End.

5-50

Using Wave View

- Case 3: Assume you have C2 marker, then you can select any
combination of range from the Grid Range drop-down menu.

Grid between Begin and C2

Grid between C2 and End

Grid between C1 and End

5-51

Using Wave View

- Case4: You can also enter time in the Between and And fields.

Note:
You should click the Get time from C1/C2 button only for Case2.

• Grid Type — Creates any of the following types of grid depending
on the grid range that you select:

- Grid on Signals — Draws the grid on the signal edges or any
of the following mentioned criteria of the signals.

-Grid on every matches — Indicates that the grid is done for
every numbered match.

5-52

Using Wave View

-Signal List — Contains the list of selected signals in Wave
view, when you are setting the grid properties. You can click
the Get Selected Signals button to replace current signals
with selected signals in the Wave view.

- Grid on Cycle — The grid is drawn in the specified time range
with the cycle as interval. Enter the cycle time in the Cycle Time
field and the grid is drawn in the time interval from the range
specified in the Grid Range field.

5-53

Using Wave View

• Enable Grid Count — Adds the number of count to the grid in the
Wave view when the grid is shown, if selected.

• Show grid — Enables or disabled grid drawing. When you clear
the check box and click the OK button, the grid is removed from
the Wave view.

4. Click OK to apply the properties setting, and close the dialog.

Click Apply to apply the properties settings and not close the
dialog.

Click Cancel to abandon the changes, and close the dialog.

Click Tips to display the tips page on the right.

The grid is applied as per the set properties as follows:

Note:
• Grid is not supported in the Delta Cycle region.

• If you set the grid on numerous signals, the Waveform drawing
will be slow.

5-54

Using Wave View

Cursors and Markers

In the waveform display area, you can insert markers and cursors.

Using Cursors

To insert cursors

1. Click the mouse to place cursor C1 in the waveform display area.

The C1 cursors default position is at time 0.

2. Click somewhere in the waveform display area.

Cursor C1 moves to the new location.

3. Click the middle mouse button to place cursor C2 in the waveform
display area.

4. Middle-click somewhere in the waveform display area and cursor
C2 moves to this new location.

5. Place the mouse cursor on the round cursor handle in the cursor
area, hold down the left mouse button, and drag the cursor to the
desired location.

6. Click either the left or the middle mouse button in the waveform
or cursor area to move C1 or C2, respectively.

The interval between the two cursors is always displayed in the
marker header area.

5-55

Using Wave View

Figure 5-15 Graphical Display Cursors

In the Figure 5-7, the simulation time and the delta between the
reference cursor (C1) and cursor C2 is shown in the marker header
area.

Creating Markers

Markers differ from cursors in the way you insert and move them.
Like cursors, markers display the delta between the reference cursor
(C1) and the marker. The Markers dialog box allows you to create,
move, hide, delete markers, set the reference marker, and scroll the
graphical display until it reveals a marker.

5-56

Using Wave View

To create a marker

1. Right-click in the Wave view, and select Create Markers from the
CSM.

This inserts a dotted line on your mouse cursor in the graphical
display.

The dotted line tracks the mouse cursor as you move the mouse
in the waveform or marker header area.

2. Position the marker in the graphical display, then click to position
the marker.

5-57

Using Wave View

The marker annotation displays marker position and the delta
between the marker and cursor

As you insert markers, DVE names them M1, M2, M3 and so forth.

3. Right-click a signal and select Markers.

5-58

Using Wave View

The Markers dialog box appears:

4. Select the marker in the reference column.

The chosen marker is set as the reference marker.

5. Click the Tips button to expand the dialog box to display help for
the Markers dialog box.

Extracting State Name

When you assign the value of macro/parameter/constant to a signal,
you can see the state name of the macro/parameter/constant
instead of the values. This is useful as the string of FSM state is
easier to understand than the values.

To display the names of macro, parameter, or constant

1. Invoke DVE with your design in which you have defined
parameters, constants, or macros.

5-59

Using Wave View

2. Select the module in the Hierarchy pane.

The signals appear in the Data pane.

3. Select the signals in the Data pane, right-click and select Add to
Waves.

4. Right-click a signal in the Wave view and select Set Radix > State
Name.

The names of the parameters, macros, or constant are displayed
in the Waveform. You can select each signal and set state radix
to display the signals’ names instead of values.

To export the radix

1. Select a signal, right-click and select Set Radix > Export to
Radix.

The Edit User-Defined Radix dialog box appears. The Radix Table
Name is automatically filled with the signal name (format:
"STATE.<signal name>") and lists all the names of parameters,
macros, or constants.

2. Modify the existing radix, save it as user-defined, or export, as
desired.

The Export to Radix option is enabled only after setting the state
radix and when some relevant macro, parameter, or constant is
found.

Example

Following is an example of the module where parameters and
constants are defined and how their names appear in the Wave view.

5-60

Using Wave View

test.sv

`define AA 1
module modu;

int abc;
parameter bb = 2;
const int cc = 3;

initial begin
#10 abc = `AA;
#10 abc = bb;
#10 abc = cc;
#10 abc = 4;
end

initial #60 $finish;
endmodule

To compile this example code, use the following commands:

vcs test.sv -debug_all -sverilog
simv -gui &

5-61

Using Wave View

Figure 5-16 State Name

Limitations

• In Local pane, only values are shown, and not state names. State

Value of signals seen in the Wave view

Name of signals seen in the Wave view
after selecting the State Name radix

5-62

Using Wave View

name information is not available for the current time step in all
the views except Wave view and List view.

• In post-process debugging, state names of only macros and
parameters can be seen, constants are not supported yet.

• Values are not replaced if state value is an expression containing
macros/parameters/constant.

Zooming In and Out

You can zoom in to get a close-up view of your signal or zoom out to
view the signal at its original size.

To choose zoom settings

1. Right-click in the Wave view and select Zoom.

2. Select the zoom options as desired.

Note:
For more information about the zoom options, see the section
entitled, View Menu.

Drag Zooming

You can drag the zoom to view specific transitions in a selected
region of the timescale.

To drag zoom

1. Select any point in either of the timescales or in the waveform
display area.

5-63

Using Wave View

2. Hold down the left mouse button and drag the mouse to another
time in the timescale.

The selected region is highlighted in blue.

3. Release the mouse button.

The signal is zoomed to the selected timescale.

Visualizing X at all Zoom Levels

You can visualize the X value at all zoom levels.

To visualize X value

1. Select a signal in the Signal pane with many value changes.

2. Zoom out the signal until the waveforms are condensed to yellow
bar.

3. Right-click the signal and select Highlight X Values or select
Signal > Highlight X Values from the menu.

The waveform is refreshed in the Wave view and X values are
displayed as red color lines for all the zoom levels.

Expanding and Contracting Wave Signals

You can expand and contract the height of wave signals.

To expand and contract wave signals

1. Select View > Increase Row Height.

The signal is expanded.

5-64

Using Wave View

2. Select View > Decrease Row Height.

The signal is contracted.

You can also right-click, select Properties and use the Signal
Properties dialog box to increase or decrease row height.

Searching Value or Edge of Signal

When searching for values or edges of signals, only the values or
edges of the selected signals will be searched. If no signals are
selected, the values or edges of all the signals are searched.

To search for values or edge of signal

1. Select a signal in the Wave view.

2. Select the search constraint in the Selects Search Criteria list
box.

3. The following are the search criteria:

- Any Edge — Searches for any signal edge.

- Rising — Searches for signals with rising edge.

- Falling — Searches for signals with falling edge.

- Failure — Searches for assertion failure.

- Success — Searches for assertion success.

- Match — Searches for match in compare results.

- Mismatch — Searches for mismatch in compare results.

- X Value — Searches for any value that contains X value.

5-65

Using Wave View

- Value — Searches for specified signal value.

4. Enter the number of seeks in the Set Number of Seeks field.

5. If you select "Value" as the search criteria, then Value Search
dialog is displayed.

6. Enter the value of the signal to be searched and click OK.

7. Click the Search Forward and Search Backwards arrows in the
toolbar.

The C1 cursor moves from its current location to the next or
previous values as per the search criteria.

Shifting Signals

You shift a signal by creating a new signal based on a time shifted
signal.

To shift a signal

1. Select a signal in the Wave view.

2. Select Signal > Shift Time.

3. The Shift Signal dialog box appears..

5-66

Using Wave View

4. Enter the following information, as appropriate:

5. Time Offset — Specifies offset for shifting signals. A positive Time
Offset shifts the signal to the right. A negative number shifts the
signal to the left in the Wave view.

6. Signal Name(s) — Identifies the name of the selected signal. This
field appears dimmed.

7. New Name(s) — Sets new signal name (alias) for shifted signal.
This is only supported for a single signal. The signal displays with
the original signal name followed by the time offset. In the previous
figure, it is test1.risc.daata(7:0)->>10.

8. Keep original signal — Keeps the original signal, if selected.

Printing Waveform

You can print waveforms to a file or printer from an active Wave view
selecting time range and signals to print.

To print waveform

1. From an active Wave view, select File > Print.

5-67

Using Wave View

The Print Waveform dialog box opens.

2. Click the Setup button to set printing options.

The Setup Printer dialog box appears.

3. Select the following options in the Setup Printer dialog box, as
appropriate:

- Print destination — Select Print to printer or Print to file.

- Printer Settings — Select Print in color or grayscale.

- Paper format — Select paper format, landscape or file, and
paper size.

5-68

Using Wave View

- Options — Select from the available options, such as range and
number of copies etc.

4. Click OK.

The print options appear in the Print Waveform dialog box.

5. Select the print destination.

6. Select the Time range to save the waveform.

7. Select the image properties if you want to save the waveform as
image.

8. Select whether to print All, Displayed, or Selected signals.

9. Select the page margins.

10. Click OK.

The waveform is printed. You can use the Tips button to view
detail description of each of the options available in the Print
Waveform dialog box.

Viewing PLI, UCLI, and DVE Forces in Wave View

Force and release in PLI or UCLI will be represented in DVE
waveform, with special symbols. For more information, see “Active
Drivers Support for PLI, UCLI, and DVE Forces” .

6-1

Using the List View

6
Using the List View 1

You can display data in the List view in the same way as you display
in the Wave view. The List view displays simulation results in tabular
format. For Verilog, the List view displays nets and register variables.
For VHDL, it displays signals and process variables.

This chapter includes the following topics:

• “The List View”

• “Viewing Simulation Data”

• “Using Markers”

• “Setting Signal Properties”

• “Comparing Signals”

• “Saving a List Format”

6-2

Using the List View

The List View

The List view contains three panes:

• The Signal pane displays signal names as headers above the
simulation data.

• The Data pane displays simulation results in tabular format.

• The Time pane displays simulation time value.

Figure 6-1 The List view

You can do the following tasks in the List view:

Time Pane Signal pane Data Pane

Markers

6-3

Using the List View

• View simulation data

• Create and delete markers

• Set signal properties

• Associate signal with any database

• Compare signals

• Save signal values

Viewing Simulation Data

To view simulation data in the List view

1. Drag and drop scope or signal from any of the DVE panes or views.

2. Use the bottom scroll bar to move left and right and view signals
and their values.

3. Use the right scroll bar to move up and down through simulation
time.

4. Select a signal in the signal pane to highlight the signal values.

Using Markers

You can create markers in the List view to speed up navigation.

To create and delete markers

1. Select a time unit in the Time pane, right-click and select Markers.

The Markers.List dialog box opens.

6-4

Using the List View

2. Click New to create a new marker in the list table.

3. Select the Time cell for the new marker and enter the time at which
to set the marker.

4. Click Hidden if you don’t want to display the marker in the Data
pane, then click Return.

5. Repeat steps 2 to 4 to create more markers.

6. Select a marker in the Markers.List dialog box, then click Jump.

The selected marker is displayed in the Time pane.

7. Select a marker and click Delete in the Marker.List dialog box.

The marker is deleted from the list.

Setting Signal Properties

To customize signal display, you set signal properties for individual
signals.

To set the signal properties

1. Select a signal in the Signal pane.

2. Select Signal > Signal Properties.

The Signal Properties dialog box opens.

3. Enter the number of characters for the selected signal value
column width.

4. Select whether a signal value change triggers a new line of values
in the Data pane or not.

5. Click Apply to make the change and keep the dialog box open.

6-5

Using the List View

Or

Click OK to apply the changes and close the dialog box.

Comparing Signals

You can compare signals in the List view similar to the way you
compare signals in the Wave view.

To compare signals

1. Select signals on the Signal pane.

2. Right-click and select Compare.

The Waveform Compare dialog box opens.

3. Select the options, as appropriate.

4. Click OK.

6-6

Using the List View

The comparison results are displayed in the current List view.

For more information about the Waveform Compare dialog box, see
the topic “Comparing Signals, Scopes, and Groups” on page 28.

Saving a List Format

After you have customized the display in the List view, you can save
the format for future use.

To save the list format

1. Select File > Save Values.

The Dump Text List dialog box opens.

2. Select the format, tabular or event based.

6-7

Using the List View

The event based format will save the data on the basis of
simulation time value.

3. Enter a filename with a .tcl extension.

4. Select Save.

The list format is saved.

7-1

Using Schematics

7
Using Schematics 1

This chapter includes the following topics:

• “Overview”

• “Viewing Schematic”

• “Opening a Path Schematic View”

• “Finding Signals in Schematic and Path Schematic View”

• “Back Tracing”

• “Printing Schematics”

7-2

Using Schematics

Overview

Schematic views provide a compact, easy-to-read graphical
representation of a design. You can view a design, scope, signal, or
group of selected signals and select ports to expand connectivity in
relevant areas. You can explore the design behavior by analyzing the
annotated values for ports and nets.

There are two types of schematic views in DVE:

• Design - a design schematic shows the hierarchical contents of
the design or a selected instance and allows you to traverse the
hierarchy of the design.

• Path - a path schematic is a subset of the design schematic that
displays where signals cross hierarchy levels. Use the path
schematic to follow a signal through the hierarchy and display
portal logic (signal effects at ports).

Viewing Schematic

When viewing the schematic, use the scroll bars to move up and
down and left and right in the displayed graphics. You can also use
toolbar and menu commands to select parts of the design to zoom
in, copy, drag and drop into another DVE window, move one level up
to a parent or definition. You can also add signals from the
Schematic view to the Wave view, List view, or Source view.

When the Schematic view is opened, the libmdb.so file is created in
the /tmp directory by default. You can specify an alternate location
with the environment variable DVE_MDB_TMPDIR as follows:

7-3

Using Schematics

setenv DVE_MDB_TMPDIR <some directory>

where, <some directory> is the location where you want to
create the libmdb.so file.

To customize the schematic display

1. Set the maximum number of cells in the schematic.

2. Change the text style and size displayed on your schematic.

3. Change the visibility and colors of cells, hierarchical crossings,
nets, buses, ports, pins, and rippers.

Opening a Design Schematic View

To view a schematic of a design in DVE, you must generate VPD on
the same or similar platform with VCS using one of the following
debug compile options: -debug_pp, -debug, or -debug_all.

To open a design schematic

1. Select an instance from the Hierarchy pane, right-click and select
Show Schematic.

7-4

Using Schematics

The Schematic view displays the connectivity in the selected
instance.

You can also open the Schematic view in the following ways:

• From the CSM of Source view, Data pane, Memory view, Wave
view, and List view.

• From the menu Scope > Show Schematic.

Output

Input port Pin
Annotated Values

port

7-5

Using Schematics

Annotating Values

To view the annotated values of a signal, from the Scope menu,
select Annotate Values.

If you hold the cursor on a signal, a ToolTip identifies the signal as
shown in the diagram.

Making Modules as Black-Box

You can treat certain modules defined within the celldefined, uselib,
or -y/-v modules in the design as black-box cells. When you define
certain cell as black-box, you cannot view the schematic or path
schematic of that module that is the schematic will be hidden.

7-6

Using Schematics

To make modules as black-box

1. Select a module in the Hierarchy pane, right-click and select Show
Schematics.

The Schematic view displays the connectivity in the selected
module.

2. Select a module you want to treat as black-box.

3. From the Edit menu, select Preferences.

The Application Preferences dialog box appears.

4. In the Design Debug category, select the Treat modules defined
within ’cell defines as black box (library) cells or Treat
modules defined within ’uselibs or -y/-v as blackbox (library)
cells check boxes and click OK.

The selected module is now defined as black-box. When this
option is selected, all the cells which are declared under
`celldefine are considered as blackboxes in both the schematic
and path schematic windows.

The changes take effect the next time you generate the
schematics. When you click the black-box modules, the
schematics for the module is not shown and the control shifts to
the Source view.

Mapping Symbols in Schematic

Each installation of VCS comes with a default symbol DB file,
generic.sdb. The location of this file is $VCS_HOME/gui/dve/
libraries/syn/vcs.sdb.

7-7

Using Schematics

This file contains generic symbols with all Verilog standard logic gate
symbols. When DVE gets a cell-name in your design, it searches the
generic.sdb file for a matching symbol definition. If the match is
found, DVE retrieves symbol mapping information for this cell, or
else DVE displays the cell instance as a rectangle (default
representation).

Instead of using these default symbols, you can create your own
symbols according to their functionality in the design and store them
in the .db or .sdb file. This section explains how you can map your
own symbols from the .db or .sdb files in your Schematic view.

To use the symbols stored in .db or .sdb files

1. Run the design located in $VCS_HOME/doc/examples/
debug/schematic_symbol_mapping using the following
commands:

%comp.csh
%run.csh

2. Select the module in the Hierarchy pane in DVE, right-click and
select Show Schematics.

7-8

Using Schematics

You see the following schematic.

3. Enter the following command in the DVE Console pane to map
the .db or .sdb file:

gui_sch_set_symbol_libraries -files {*.db} -dirs {SYM}

The Schematic view changes as follows:

Note the orange
marked symbol (NAND gate)
that has changed.

7-9

Using Schematics

Alternate Ways of Mapping the .db/.sdb Files
• Specifying files and search paths:

gui_sch_set_symbol_libraries -dirs { $HOME/my_dbs/
remote/company/libs }
gui_sch_set_symbol_libraries -files { lib1.sdb lib2.sdb
lib3.db }

Here, the lib1.sdb, lib2.sdb and lib3.db files are used to display
the design, if these files are found either in ".", $HOME/my_dbs
or /remote/company/libs.

In addition, the commands also accepts the same convention as
the Design Compiler shell search_path and symbol_library
variables:

- if the name of the symbol files already contains a path, then this
name is searched only from the ".directory", the other searched
paths are ignored.

- names of .db or .sdb files can contain wildcard (globbing), which
means that * and ? are accepted in the name.

• Specifying multiple .sdb or .db files:

gui_sch_set_symbol_libraries -dirs { /depot/libs } -files
{ *.sdb *.db }

• Using a library file from a given directory even if another version
exists in other search path:

gui_sch_set_symbol_libraries -files { file1.db file2.db
$HOME/file3.db }

Where, file1 and file2 is searched in search_path; file3.db is
picked up from $HOME even if it exists in the search path.

7-10

Using Schematics

Note that two consecutive calls to
gui_sch_set_symbol_libraries -dirs or
gui_sch_set_symbol_libraries -files overrides the
setup (only the last call is used).

In order to make it permanent, you can add these
gui_sch_set_symbol_libraries command in the $HOME/
.synopsys_dve_usersetup.tcl file (or any .tcl script used
during initialization of DVE in the user environment.

Generating .db or .sdb Files

The *.db file or *.sdb is generated by the synthesis tool, Design
Compiler as follows:

dc_shell> read_lib my_lib.lib
dc_shell> write_lib my_lib.sdb

For more information about the Synthesis Tools suite, see SolvNet
at https://solvnet.synopsys.com.

Opening a Path Schematic View

A path schematic is a subset of the design schematic displaying
connections that cross hierarchical boundary.

To open a path schematic view

1. Open a design schematic view of an instance containing the
hierarchical crossings of interest.

2. When you have identified the instance to display, click on the
instance to select it.

7-11

Using Schematics

The color change indicates that it is selected.

Note:
You can also drag the selection cursor over multiple objects to
select multiple items.

3. Right-click and select Show Path Schematic or click the following
icon in the toolbar to view a path schematic in a new window:

The path schematic for the selection is displayed:

7-12

Using Schematics

Displaying Connections in a Path Schematic

With a path schematic displayed, you can add the logic fanin to, or
logic fanout from, specified objects in the schematic across specified
levels or the entire design.

To display connections

1. Select an object in the path schematic.

The change in color confirms the selection.

2. Select Scope > Add Fanin/Fanout.

7-13

Using Schematics

The Fanin/Fanout to Path Schematic dialog box opens.

3. Click Set Selected to add the selected objects to the list box.

You can optionally select more objects and use the Add Selected
button to add them to the list.

4. Set the other options, such as the number of logic levels to be
added and the Reuse Windows options.

5. Click OK.

7-14

Using Schematics

The schematic is updated with additional fanin or fanout logic.
You can also view the signal values.

Compressing Buffer and Inverter in Schematic

If there are different kinds of buffers or inverters in the design, you
can choose to compress and view them as one buffer/inverter in the
path schematics.

For example, instead of having five buffers (5 instance symbols with
wires between them), you can compress and have only one buffer in
the schematic. The compressed buffer is shown with // symbol in
the schematic. An odd number of inverters is shown with the /o/
symbol.

The buffer or inverter compression can be enabled from the
Application Preferences dialog box. You can view the compressed
buffers and inverters only in the next generated Schematic views.

7-15

Using Schematics

When compression is activated, tracing a fanin/fanout on a path, will
trace to the next cell, which is not a buffer or inverter. The
compression considers the hierarchy crossings. If the next level of
hierarchy has only one buffer or inverter, then it is also compressed.
For example,

In the netlist:

xxx_inst: INVxxx(...)

In the module:

module INVxxx (...)
not instname(...)

end module

--v--not--^--v--not--^--v--not--^--v--not--^--

will be compressed to:

 --//--

Here, "v" is a hierarchy crossing down and "^" is a hierarchy crossing
up.

This compression is independent of black-boxing. So, if the buffers
or inverters are in black-box modules, they are still valid for
compression. The syntax for describing hierarchical/nested cases is
as follows,

• "-not-not-" means two primitive Verilog inverters are on the
same hierarchy level connected directly.

• "-not-[not]-not-" means the inverter in the middle is one
level down in the hierarchy.

7-16

Using Schematics

The following table shows the cases of compression.

To enable the buffer and inverter compression, select the check box
Enable buffer (buf) and inverter (not) compression under the
Schematic View category in the Application Preferences dialog
box.

Table 7-1 Cases of compression

Buffer/inverters Compressed symbols

-not-not- -//-

-not-not-not- -/o/-

-buf-buf- -//-

-buf-buf-buf- -//-

-not-buf-not- no compression

-[not]-[not]- -//-

-not-[not]-not- -/o/-

-not-not-[not]-not -//-

-not-[not]-[not]-not- -//-

-not-[not-not]-not- -//-

-not-[not-[not]]-not- -//-

-not-[not-and]- -//-and-

7-17

Using Schematics

The following illustrations show the uncompressed and compressed
schematics. The buffers n1 and n2 are compressed and the symbol
// is used to represent them.

You can view the number of buffers by placing your mouse over the
symbol.

Uncompressed buffers
Compressed buffers

7-18

Using Schematics

Following a Signal Across Boundaries

You can select a signal and follow it across hierarchical boundaries
in the Path Schematic view.

To follow a signal

1. Select a signal or signals, right-click and select Show Path
Schematic.

2. Select a signal in the Path Schematic view.

3. Right-click and select Expand Path from the CSM.

7-19

Using Schematics

The signal is highlighted in the path view.

7-20

Using Schematics

Finding Signals in Schematic and Path Schematic View

Highlighting Signals

You can select one or more signals to trace in a Schematic or Path
Schematic view. With this option, the selected signals are highlighted
based on the specified colors.

To highlight a signal

1. Select Trace > Highlight, then select Set Current Color.

2. Select a color for the highlight.

3. Click OK.

The signal is highlighted with the selected color.

7-21

Using Schematics

Searching for Signals

You can use the Find toolbar option to search signals.

To search for signals, enter the signal name in the Find toolbar box
in the Schematic view, then click the Find Next toolbar button.

The signal is highlighted in the schematic.

Showing Value Annotation

You can use DVE preference option Show Value Annotation to
view the value annotation in the Schematic and Path Schematic
views even after you restart DVE. You need to save the preference
settings before restarting DVE to retain the value annotation.

To save the value annotation and view it upon restart

1. Select Edit > Preferences.

The Application Preferences dialog box opens.

2. In the Schematic View category, select Show Value Annotation
and click Apply, as shown in Figure 7-1.

3. Click OK.

4. Select a scope from the Hierarchy pane, right-click and select
Show Schematics or Show Path Schematics.

The Schematic or Path Schematic view is shown with values of
the signals.

7-22

Using Schematics

Figure 7-1 Selecting 'Show Value Annotation' Preference Option

5. Exit DVE.

A message prompts you to save the preference settings.

6. Click Yes.

The preference settings are saved.

7. Open DVE again and view the Schematic or Path Schematic.

The annotated values are still visible.

7-23

Using Schematics

Selecting and Deleting All Objects from Path Schematic
View

You can select and delete all the objects at once from the Path
Schematic view without closing the view.

To select and delete all the objects from the Path Schematic
view

1. Right-click on the Path Schematic view and select Select All, as
shown in the following figure.

All the objects are selected.

2. Right-click on the Path Schematic view and select Edit > Delete,
as shown in the following figure.

All the selected objects are deleted.

7-24

Using Schematics

Back Tracing

Back Tracing helps you debug a particular signal that has a value of
X by traversing the design backwards both structurally and
temporally. You can back trace an X value to its source signals, for
example, across gates to identify the signal that caused the X value.

Note:
- Trace X, an older version of this feature, is now replaced with

Back Tracing.

- It is recommended that you use the Back Trace feature on a
gate-level design. If you use it on a non-gate level design, then
it will not Back Trace sufficiently to be useful.

7-25

Using Schematics

- Back Trace may stop tracing for various reasons (for example,
multiple X’s at the input of a cell). If this happens, you need to
manually select the input pin to continue tracing.

- Even for gate-level designs, Back Trace may not be able to
automatically trace through flip-flops. You may need to
manually select the input of the flop, that is X, to continue
tracing.

- Back Trace requires all values in the fanin cone of logic to be
dumped to produce the correct (or complete) tracing result.

Back Tracing in DVE is performed in the Back Trace Schematic view.
You can invoke the Back Trace Schematic view by selecting any
signal from any of the DVE view or pane.

The Back Trace Schematic consists of two views - Wave View and
Path Schematic. The Path Schematic view is the main structural
view. The Wave view provides a temporal view and provides
information to decide which signals need further tracing. You can
close the Wave view if not needed.

Example

The Back Trace feature is explained using the following example.

test.v

`timescale 1ns/1ps
module top;
reg EN,ENB,hv_Input;
wire lv_Output;
test2 inst (lv_Output, EN,ENB,hv_Input);

initial begin
 $vcdpluson();
 EN = 0;

7-26

Using Schematics

 ENB = 1;
 #4 EN = 1;
 ENB = 0;
 #6 hv_Input= 1;
 #10 EN = 0;
 #10 ENB = 1;
 #1 hv_Input = 1'bx;
 #6 hv_Input = 1;
 #10 ENB = 0;
 #10 EN = 1;
 #10 ENB = 1;
 hv_Input = 1'bx;
 #10 ENB = 0;
 hv_Input = 1;
 #100 $finish;
end

endmodule

module test2 (lv_Output, EN, ENB, hv_Input);
 output lv_Output;
 input EN,ENB,hv_Input;
 wire lv_Output1;
 wire int_fwire3, int_fwire4;

 nand #1(int_fwire4, EN, ENB);
 xor(int_fwire3, lv_Output1, hv_Input);
 and (lv_Output,int_fwire3,int_fwire4);

test1 test_inst(lv_Output1,EN,int_fwire4,hv_Input);
endmodule

module test1 (lv_Output,EN, ENB, hv_Input);
 output lv_Output;
 input EN, ENB, hv_Input;
 reg lv_Output;
 wire int_fwire_0, int_fwire_1;

 and (int_fwire_0, EN, ENB);
 and (int_fwire_1, EN, hv_Input);
 or (lv_Output, int_fwire_0, int_fwire_1);

7-27

Using Schematics

 always @(lv_Output)
 $display("Value for lv_Output is :%b At time
%t",lv_Output,$time);
endmodule

Compile this example using the following command:

vcs -debug -sverilog test.v -R

You get the following simulation output:

Value for lv_Output is :0 At time 0
Value for lv_Output is :1 At time 4000
Value for lv_Output is :0 At time 20000
Value for lv_Output is :1 At time 57000
Value for lv_Output is :x At time 68000
Value for lv_Output is :1 At time 77000

Note that the signal 1v_Output has a value "x". Load the VPD file in
DVE using the command:

dve -vpd vcdplus.vpd

DVE opens and you can see the design file test.v loaded.

7-28

Using Schematics

To back trace the signal with x value

1. Select the module top.inst.test_inst from the Hierarchy pane.

The variables are shown in the Data pane.

2. Select the variable 1v_Output from the Data pane, right-click and
select Add to Waves > New Wave view.

The signal is added to the Wave view.

3. Select the signal in the Wave view, right-click and select Zoom >
Zoom full.

7-29

Using Schematics

4. Move the cursor C1 to time 68000.

5. Select the signal in the Signal pane, right-click and select Show
Back Trace Schematic.

A wave group and Waveform view of the selected signal is
automatically created at the current simulation time. The
schematic shows the driver hv_input for the x value of the signal
1v_Output.

The current simulation time and value pair are annotated on the
output pins of the driving cell. The input pins of the driving cell are
annotated with the values and times of the next signal transition.

Back Trace will trace as far back as it can based upon your
preferences.

7-30

Using Schematics

6. Select the left most cell/pin in the back trace schematic to find out
why tracing stopped.

A reason will be displayed in the top of the schematic.

For example, a common reason is "Trace endpoint pin 'Top.dut.a'
status: Multiple X input pins on cells".

7. To continue back tracing, double-click on the input pin of the
leftmost cell.

Note:
The current simulation time is moved to the earliest time over
all driver inputs.

Setting the Back Trace Properties

The Back Trace Properties window is used to add multiple levels of
trace, so that tracing X signals can automatically trace back multiple
levels following the X value over time. Instead of expanding one
level, you can draw multiple levels and add multiple signals on the
traced path to the Wave view.

7-31

Using Schematics

To set the Back Trace properties

1. Select Show Back Trace Options button on the toolbar.

The Back Trace Options dialog box opens that contains the
following options:

- Stop trace at bus ripper - Stops tracing when a bus ripper is
encountered.

- Add traced signals to Back Trace Wave view - Adds the signals
on the traced path to the wave group and displayed in the Wave
view.

- Ignore read-only Verilog system calls - Ignores the read-only
Verilog system calls like $monitor or $display.

7-32

Using Schematics

- Highlight start and end points - Highlights the start and end
points of the signals in the chosen color.

- Add end signals of trace result to Back Trace Wave view - If
this option is selected, when the Back Trace operation is
complete, the pins on the final block(s) will be added to the Back
Trace Wave view.

- Only add the endpoints which value is X - Adds end points for
the signals whose value is X.

- Maximum number of end points to be added - Adds the number
of end points as specified.

- Stop if multiple X inputs - Stops the trace when multiple inputs
are provided.

- Number of levels to trace - Controls the maximum number of
levels to search backwards when automatically searching for
X values.

7-33

Using Schematics

Printing Schematics

You can print schematics to a file or printer from an active Schematic
or Path Schematic view selecting time range and signals to print.

To print schematics

1. From an active Schematic or Path Schematic view, select File >
Print.

The Print Schematic dialog box opens.

2. Click the Setup button to set printing options:

7-34

Using Schematics

- Printer or print to file

- Print in color or grayscale

- Print orientation and paper size

- Print options such as range and number of copies

3. Select whether to print All, Displayed, or Selected signals.

4. Select the page margins.

5. Choose Landscape or Portrait orientation.

6. Click OK. The schematic is printed.

7-35

Using Schematics

Schematic Visualization of RTL Designs

RTL schematic view is a Register Transfer Level graphical
representation of your design. In this view, a design is represented
as macro blocks such as adders, multipliers, and registers. Being as
close as possible to the original HDL code, this view allows you to
visually check your design.

In previous versions of VCS, most design processes and instances
of DVE schematic views were represented as rectangles. For
example, consider the Verilog test case show in Example 7-1:

Example 7-1 Schematic Visualization Design File (test.v)

module top;
wire [3:0] a;
wire q,x;
reg b,c,d,clk,rst;
dut U (a,q,x,b,c,d,clk,rst);
initial
 begin
 $monitor("%t b=%b,c=%b,d=%b,a =%b", $realtime, b,c,d,a);
 b=1'b1; c=1'b1; d=1'b1;
 #5 b=1'b0; #0 c=1'b1; #0 d=1'b1;
 #5 b=1'b1; #0 c=1'b1; #0 d=1'b1;
 #5 b=1'bx; #0 c=1'bx; #0 d=1'b1;
 $finish;
 end
endmodule

module dut (a,q,x,b,c,d,clk,rst);

 input b,c,d,clk,rst;
 output [3:0] a;
 output reg q,x;
 wire [3:0] a;

wire wire_with_no_input,

7-36

Using Schematics

 simple_wire,
 inverter,
 bitwise_operator_xor,
 complex_expression_without_condition,
 complex_expression_with_condition;
 wire [3:0] concatenation;

 assign wire_with_no_input = 1;
 assign simple_wire = b;
 assign inverter = !b;
 assign bitwise_operator_xor= b ^ c;
 assign concatenation = {wire_with_no_input,
 simple_wire,

 inverter,
 bitwise_operator_xor};

 assign a = {1'b0, concatenation};
 assign a= b ? c:d;
 assign a= b ? !(c):d;
 assign complex_expression_without_condition = (!b & !c &
d) | (!b & c & !d) | (b & !c & !d) | (d & b & c);
 assign complex_expression_with_condition= b? (b? (c & d
)|(!c & !d): (!c & d)|(c & !d)) : (b? (c & d)&(!c & !d):(!c
& d)&(c & !d));

 always @ (d or c or b)
begin
x=d;
end

 always @ (posedge clk)
begin
q<=d;
end

 always @ (negedge clk)
begin
q<=c;
end

 always @ (posedge clk)
 if (~rst)
 begin
 q<=1'b0;
 end

7-37

Using Schematics

 else
 begin
 q<=b;
 end
endmodule

Compile the test.v file shown in Example 7-1:

% vcs -debug_all test.v

Invoke the DVE GUI:

% ./simv -gui&

In previous versions of VCS, DVE generated the schematic shown
in Figure 7-2, where most of the design processes were represented
as rectangles.

These views use the following set of symbols:

• Predefined primitives (in Verilog): corresponding logic gate

• Hierarchical element: double rectangle

• Other process: rectangle

7-38

Using Schematics

Figure 7-2 DVE Showing all Processes as Rectangles

This type of representation does not allow you to quickly analyze the
functionality of each process or instance in the design.

DVE now provides more information on the RTL design process
functionality by using a larger set of symbols to represent these
processes. For each process, the RTL schematic view shows an
appropriate symbol that describes the process characteristics (see
Figure 7-3), thereby increasing the readability of the DVE design and
path schematic views.

7-39

Using Schematics

Figure 7-3 DVE Using Symbols to Represent Processes

Schematic Symbols

The symbols for nodes in the schematic represent the elements of
your design. This section describes the new set of symbols that can
be displayed in the schematic view.

Design Analysis for RTL Symbol Creation

DVE does not perform full synthesis of the design. It only performs a
simple analysis of the RTL processes to find representative symbols.

7-40

Using Schematics

DVE performs the following analysis to determine the RTL design
functionalities:

• DVE uses the sensitivity list and the main statement (simple
assignment or some conditional code) of a process to determine
its nature. After this analysis, DVE determines the symbol to use
for that process.

• Simple processes such as binary operations, assignments,
simple muxes, and flip-flops are represented by corresponding
gate-level symbols (see “Simple Logic Schematic Symbols” on
page 44).

For complex processes like multiple outputs, nested if statements,
and for loops, DVE uses a default symbol (see “Default Symbol
for a Process” on page 41).

• DVE displays all input and inout signals of a process on the left-
hand side of the symbol.

• DVE displays all output signals of a process on the right-hand side
of the symbol.

• DVE displays all control inputs (input signal that is read in a
condition expression of an if statement, a case statement, or a
conditional assignment statement) of a process at the bottom of
the symbol.

• If a signal appears on both condition and RHS of an assignment,
then it is not considered as control, so it is shown on the left-hand
side of the symbol.

• If an input is edge-triggered, DVE adds an arrow (clock symbol)
to the corresponding pin. If the edge is negative, then DVE adds
a circle to represent the falling edge.

7-41

Using Schematics

Note:
This also includes asynchronous sets or resets. DVE adds the
pin at the bottom of the symbol with an arrow that represents
the edge.

• If an input signal is inverted (preceded by the “not” operator), DVE
adds a circle on that pin to represent the pin inversion.

• If the main statement is an assignment statement, and if the main
operator of the RHS of the assignment is a “not,” then the output
pin is represented with a circle. The only exception to this is the
inverted operator, since the inversion is already represented in
the symbol itself.

Default Symbol for a Process

DVE uses the default symbol for a process if its expression or always
block is complex. Table 7-2 describes the default symbols.

7-42

Using Schematics

Table 7-2 Symbols in the Schematic View - Default Symbols

Symbol Symbol Name Example

Default symbol for
always block (or VHDL
process)

always @ (d or c or b)
 begin
 x=d;
 end

Default symbol for
assign statement (or
VHDL continuous
assignment statement)

assign
complex_expression_wit
hout_condition = (!b &
!c & d) | (!b & c & !d)
| (b & !c & !d) | (d &
b & c);

7-43

Using Schematics

Flip-Flop Schematic Symbols

Table 7-3 describes the flip-flop schematic symbols.

Table 7-3 Symbols in the Schematic View - Flip-Flops

Symbol Symbol Name Example

Negative edge triggered
flip-flop without control
input

always @ (negedge clk)
begin
 q<=c;
end

Positive edge triggered
flip-flop without control
input

always @ (posedge clk)
begin
 q<=d;
end

Positive edge triggered
flip-flop with control input

always @ (posedge clk)
if (~rst)
 begin
 q<=1'b0;
 end
else
 begin
 q<=b;
 end

7-44

Using Schematics

Simple Logic Schematic Symbols

Table 7-4 describes the simple logic schematic symbols.

Table 7-4 Symbols in the Schematic View - Simple Logic

Symbol Symbol Name Example

Wire with no input assign a = (constant value)

Simple wire assign a=b;

Concatenation assign a= { b,c,d };

Inverter assign a= ! b;

 xor operator assign a= b ^ c

7-45

Using Schematics

Using the above enhancements, DVE generates the schematic
shown in Figure 7-3, for the test.v example.

Enabling and Disabling RTL Visualization

RTL visualization is enabled by default. To disable it:

7. Select Edit > Preferences.

The Application Preferences dialog box appears.

8. In the Schematic View category, select the Disable Rtl analysis
for schematic symbols (draw everything as rectangle) option.

Multiplexer with
negative control
input

assign a= !(b) ? c:d;

Multiplexer with
positive control
input

assign a= b ? c:d;

7-46

Using Schematics

Note:
If you modify (enable or disable) this option when a schematic
view is open, you must exit and restart DVE to make the
changes take effect. If you do not exit and restart DVE, then all
modules already displayed in the schematic view continue to
display as they appeared before you changed the preference
setting.

Schematic Visualization of RTL Design Limitations

This feature does not support:

• Set or reset of flip-flops — Synchronous set or reset is shown as
an input. Asynchronous set or reset is connected to an edge pin.

• Latches — Latches are represented with the default process
symbol.

• FSM — No specific analysis is done for FSM, and so no specific
symbol is used for it. FSM is represented with the flip-flop symbol
(edge-controlled process).

• For VHDL, all processes are represented with the default process
symbol. No control pin analysis is done, so all the inputs are on
the left-hand side.

8-1

Using Smartlog

8
Using Smartlog 1

DVE Smartlog provides log analysis (diagnostic information) for
each line in the log file. It takes the compile log and simulation log
created by VCS and summarizes the data into reports. Smartlog
provides the diagnostic information in a separate log file known as a
smartlog file. Following are the main features of Smartlog:

• Hyperlink the log occurrences to the Source View

• Highlights the words, namely, Error, Warning, and so on, in
different colors

• Displays the selected message within a blue rectangle

8-2

Using Smartlog

Use Model

Use the –sml option to enable the Smartlog feature. Following is the
syntax of this option:

–sml –l <logfile>

Compile Flow

Smartlog helps you to analyze and correct the problems found
during the compilation. The steps for compile flow are as follows:

1. %vcs <options> -sml –l compile.log

2. %dve –viewlog compile.log

DVE displays the compile log in the Console Pane. You can select
file paths to view the source file. DVE displays the following three
tabs in the Console Pane:

• Log – DVE command log.

• History – Displays the list of all commands or actions that you
have taken while working in the GUI.

• compile.log – Displays the compile log. This tab is displayed by
default in the Console Pane.

Note:
You can specify –viewlog multiple times on the command line.
DVE opens multiple logs in separate tabs.

8-3

Using Smartlog

Post-processing Debug Flow

For this flow, the design should be compiled and simulated. You must
debug the design with a vpd dump file. For example:

1. %vcs <options> -sml –l compile.log

2. %simv –sml –l simout.log

3. %dve –vpd vcdplus.vpd –viewlog simout.log

DVE displays the design for the VPD file and the simulation log file.
DVE displays the following tabs in the Console Pane:

• Log – DVE command log.

• History – Displays the list of all commands or actions that you
have taken while working in the GUI.

• simout.log – Displays the runtime log. This tab is displayed by
default.

Viewing Smartlog Data in the Console Pane

DVE displays the Smartlog data in the Console Pane, as shown in
Figure 8-1.

DVE displays the log file as a normal text. It highlights the words
“Warning”, “Error”, and so on, in different colors. When a block of text
is selected, which is recognized as a message, it is highlighted with
a blue rectangle.

8-4

Using Smartlog

Figure 8-1 Smartlog Data in the Console Pane

DVE highlights the file name with optional line number and the
simulation time as hyperlinks. You can click a hyperlink to view its
source code or set the current cursor time.

Right-click Menu Options in Smartlog

Table 8-1 describes the right-click menu options in the Smartlog
view. The right-click menu displays possible actions for the selected
message. The menu options are enabled only if the action is
possible for the current message or sub-item.

8-5

Using Smartlog

Table 8-1 Right-click Menu Options in Smartlog

Filtering Options in the Console Pane

Filtering options in the Console Pane (see Figure 8-2) allow you to
configure the type of information to display in Smartlog. DVE
displays only messages matching all filters in Smartlog.

Figure 8-2 Console Pane Filtering Options

Message Type Filter

This filter displays a dynamic list of the types mentioned in Table 8-
2, based on the types that are recognized from the log. It allows
multiple selections with check boxes. The count of messages with a
given type is shown in parentheses, as shown in Figure 8-3.

Option Description

Add to Waves, Add to
Lists, Add to Watches

These options are enabled if the selected text is recognized
as a scope.
Note: The text is selected, but is not shown as a hyperlink.

Save Selection As, Save
Contents As

These options allow you to save the selected text to a
separate file.

Go To Source This option displays the source code in the Source View. This
option is enabled if there are one or more filenames
recognized in the current message.

Go To Time This option sets the current cursor time. This option is enabled
if a simulation time is recognized in the current message.

8-6

Using Smartlog

Figure 8-3 Message Type Filter

Table 8-2 List of Possible Filter Types

Message Severity Filter

This filter displays the fixed list of severities. For example, see
Figure 8-4. It allows multiple selections with check boxes. The count
of messages with given severity is shown in parentheses.

Filter type Description

All Displays all messages in the log

DVE Displays standard DVE error messages and other messages (Tcl
error, and so on)

VCS Displays standard VCS error messages (Fatal, Error, Warning,
Note, and so on)

UVM/OVM/VMM Displays $display from UVM/OVM/VMM packages (for example:
“UVM-xxx ….”)

Diagnostics Displays VCS diagnostic messages. Following are the types of VCS
diagnostic messages:
• libconfig
• xprop
• timescale

User Displays the output from user $display calls during the simulation

No Type Displays all other messages printed out by VCS/SIMV or user
printf (PLI), and so on. You can use this type to view the output
(in the log) that does not belong to any other filter type mentioned
in this table (for example, VCS copyright and so on). This is
displayed only when the other two filters, that is, Message Severity
filter and Error Code filter match.

8-7

Using Smartlog

Figure 8-4 Message Severity Filter

Error Code Filter

The Error Code Filter allows you to filter messages with a specific
message code. For example, see Figure 8-5. It allows only single
selection by clicking the Code drop-down. The filter displays a
dynamic list, which is determined by the type/severity that has been
selected.The count of messages with the code is shown in
parentheses.

8-8

Using Smartlog

Figure 8-5 Error Code Filter

Opening Log File

You can use the Open Log File dialog box, as shown in Figure 8-7,
to open a new log file.

To open the Open Log File dialog box, click the Open tab in the
Console Pane, as shown in Figure 8-6.

Figure 8-6 Opening the Open Log File Dialog Box

8-9

Using Smartlog

Figure 8-7 Open Log File Dialog Box

Select a log file from the list and click Open. You can also define the
name to be used for the new tab in the log viewer. By default, the tab
has the same name as that of the file name.

Usage Example

Consider the following UVM test case:

Example 8-1 Design File trans.sv

import uvm_pkg::*;

class trans extends uvm_sequence_item;
 typedef enum {READ,WRITE,RESET} opcode;
 rand bit [2:0] add;
 rand opcode opc;

 `uvm_object_utils_begin(trans)
 `uvm_field_int(add,UVM_ALL_ON |UVM_BIN);
 `uvm_field_enum(opcode,opc,UVM_ALL_ON)
 `uvm_object_utils_end

8-10

Using Smartlog

 function new (string name = "trans");
 super.new(name);
 endfunction

endclass

class trans_seq extends uvm_sequence #(trans);
 `uvm_object_utils(trans_seq)

 function new (string name="trans_seq");
 super.new(name);
 endfunction
 task body();
 if (starting_phase != null)
 starting_phase.raise_objection(this);
 repeat(10) begin
 `uvm_do(req);
 end
 if (starting_phase != null)
 starting_phase.drop_objection(this);
 endtask
endclass

typedef uvm_sequencer #(trans) trans_seqr;

class driver extends uvm_driver #(trans);
 `uvm_component_utils(driver)

 function new(string name,uvm_component parent);
 super.new(name,parent);
 endfunction

 task run_phase(uvm_phase phase);

 forever begin
 seq_item_port.get_next_item(req);
 `uvm_info("DRVR",req.sprint(),UVM_MEDIUM);
#1;
 seq_item_port.item_done();
 end
 endtask

8-11

Using Smartlog

endclass

class agent extends uvm_agent;
 `uvm_component_utils(agent)
 trans_seqr seqr;
 driver drv;
 function new (string name,uvm_component parent);
 super.new(name,parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 seqr=trans_seqr::type_id::create("seqr",this);
 drv=driver::type_id::create("drv",this);
 endfunction

 function void connect_phase(uvm_phase phase);
 drv.seq_item_port.connect(seqr.seq_item_export);
 endfunction
endclass

class env extends uvm_env;
 `uvm_component_utils(env)
 agent age;
 function new(string name,uvm_component parent);
 super.new(name,parent);
 endfunction
 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 age=agent::type_id::create("agent",this);
 uvm_config_db
#(uvm_object_wrapper)::set(this,"*.seqr.main_phase","defau
lt_sequence",trans_seq::get_type());
 $display(trans_seq::get_type());
 endfunction
endclass

class test1 extends uvm_test;
 `uvm_component_utils(test1)
 env env1;
 function new(string name,uvm_component parent=null);
 super.new("test1",parent);

8-12

Using Smartlog

 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 env1 =env::type_id::create("env1",this);
 endfunction
endclass

module top;
initial run_test();
endmodule

Post-processing Mode

Perform the following steps for post-processing mode:

1. Compile the trans.sv code, shown in Example 8-1, as follows:

% vcs -debug_all -sverilog -ntb_opts uvm trans.sv -sml -
l comp.log

2. Run the trans.sv code, as shown below:

./simv -ucli -i no_delta.inc +UVM_TESTNAME=test1 -sml -
l run.log

where, the no_delta.inc file contains the following run-script:

dump -file test.vpd
dump -deltaCycle on
dump -add / -aggregates
run

3. Invoke the DVE GUI, as follows:

% dve -viewlog comp.log -viewlog run.log -vpd test.vpd &

DVE displays the Source View and the simulation log (run.log), as
shown in Figure 8-8.

8-13

Using Smartlog

Figure 8-8 Post-processing Mode: Simulation Log in the Console Pane

Interactive Mode

Smartlog is enabled by default in interactive mode. Perform the
following steps to use smartlog in interactive mode:

1. Compile the trans.sv code, shown in Example 8-1, as follows:

% vcs -debug_all -sverilog -ntb_opts uvm trans.sv -sml -
l comp.log

2. Invoke the DVE GUI, as follows:

simv -gui +UVM_TESTNAME=test1 &

3. Click the Run button to run the simulation.

8-14

Using Smartlog

DVE displays the simulation log (run.log), as shown in Figure 8-9.

Figure 8-9 Interactive Mode: Simulation Log in the Console Pane

 9-1

Tracing Drivers and Loads

9
Tracing Drivers and Loads 1

This chapter describes how to use DVE to trace drivers and loads of
signals in your design. It contains the following sections:

• “The Driver Pane”

• “Tracing Drivers and Loads”

• “Active Drivers”

The Driver Pane

You can trace drivers and loads of a signal at any time to see the
drivers and loads that caused a value change. You can see all the
drivers/loads that possibly contributed to a signal value. A signal's

9-2

Tracing Drivers and Loads

load(s) are the input port(s), I/O port(s), and statements that read the
signal's value. Multiple driver panes are allowed as long as there are
multiple top level windows to contain them.

You can perform the following tasks in the Drivers pane:

Figure 9-1 Drivers pane

• Delete the Driver pane using the X icon.

• Dock or undock the Driver pane.

• Link the Driver panes to Source view in the same top level frame
and Path Schematic view. The Link to radio buttons, at the right
top of the pane, show the current linked windows.

By linking a Source and Schematic view, when you select the
object in the Drivers pane, the object will also be selected in the
linked views.

Tree view with signal name
and any driving statements

The value of the signal at the
time shown

Select to add signals to the
Wave view

The line number and file name of the
driving signal

 9-3

Tracing Drivers and Loads

• Add signals to Wave view by selecting the Add to Waves
check box. Clearing the check box does not delete anything from
the Wave view but prevents additional signals in the drivers pane
from being added to the Wave view.

Supported Functionality

• All Verilog types, constructs, control path.

• Verilog gate and UDPs.

• VHDL but only down to the process statement. All drivers within
a process are determined to be active.

Unsupported Functionality

SystemVerilog data types are not supported.

Tracing Drivers and Loads

To trace drivers and Loads

1. Select a signal in a view or pane.

For example, Data pane, Wave view, Source view, List view etc.

2. Right-click and select Trace Drivers or Trace Loads.

When a driver is traced, a new Driver pane will be created if none
exists in the current top level frame. If a driver pane exists, the
driver information will be added to the top of the list.

9-4

Tracing Drivers and Loads

Additionally, the first driver will be highlighted in the Source view
and annotated with a blue node in the gutter. In the Wave view,
you can double-click on a waveform to see its drivers. For example
on a transition from 0 -> 1 or 1 -> 0.

Note:
- Only one driver pane is allowed per top level frame.

- If you select multiple signals and trace their drivers or loads,
the driver or load is traced only for the first signal.

 9-5

Tracing Drivers and Loads

Active Drivers

During debugging, you often need to find the reason for a value
change of a particular signal. For this, you can:

• Perform active-driver tracing for this signal and view the active
driver statement (however, for interactive mode, you must dump
the signal into VPD before doing driver tracing).

• Quickly view driving signals for this statement (signals that cause
the value change of the traced signal).

• Continue active-driver tracing automatically until you find the root
cause of the value change.

DVE now supports the tracing driver functionality by allowing you to
do the following for Verilog:

• Highlight driving signals for the following active statements:

- Continuous assignments

- Assignments in RTL combinational logic and flip-flops

• Backtrace a signal value over RTL combinational logic.

• Incrementally continue active-driver tracing for contributors in the
Driver Pane.

• View intermediate drivers in the Driver Pane.

• Use the Driver Pane to view the path between the driver and the
traced signal in the path schematic view.

• Specify the maximum number of clock cycles to trace the value
change.

9-6

Tracing Drivers and Loads

Enabling Active Drivers

This feature is enabled by default, as shown in the following figure:

Figure 9-2 Enabling Active Drivers

Different colored icons are shown for displaying the active driver
detection results as follows (see Figure 9-3):

• Hollow — Hollow icon is shown for inactive drivers.

• Yellow — Yellow icon is shown for possible active drivers. The
active driver analysis stopped because of one of the following
reasons:

- Missing signal dump

- Dynamic variables

- Some limitations, as explained in the section “Active Driver
Limitations” .

 9-7

Tracing Drivers and Loads

• Green — Green icon is shown for active drivers.

Figure 9-3 Active Driver Detection

If there are inactive drivers at the selected simulation time, you can
see the inactive drivers with the active drivers using the preference
option Show both active and inactive drivers.

Hollow icon Green icon for active drivers

Yellow icon

9-8

Tracing Drivers and Loads

Usage Example

Example 9-1 test.v File

module top();

wire w1, w2, w3, w4, w5, w6;

reg r1, r2;

assign w1 = r1;
assign w2 = r2;
assign w3 = w2;
assign w4 = w3;
assign w5 = w4;
assign w6 = w5;

initial begin
 #2 r1 = 1;
 #5 r1 = 0;
 #5 r1 = 1;
 r2 = r1;
#5 r1 = 1;
#5 $finish();
end
endmodule

Compile the test.v file shown in Example 9-1:

% vcs -debug_all test.v

Invoke the DVE GUI:

% ./simv -gui&

 9-9

Tracing Drivers and Loads

Visualizing Driving Signals

Driving signals are signals that cause value changes of the traced
signal. You can use the Highlight driving signals in RTL logic
preference option to highlight driving signals with a special
background color. When this option is selected, DVE highlights the
driving signals in all windows (Source View, Wave View, Path
Schematic View, Data Pane, Driver Pane, and so on), as shown in
Figure 9-4.

This highlighting is done only for the following active statements:

• Continuous assignments

• Assignments in RTL combinational logic and flip-flops

9-10

Tracing Drivers and Loads

Figure 9-4 Highlighting Driving Signals

To enable the Highlight driving signals in RTL logic option:

1. Select Edit > Preferences.

The Applications Preferences dialog box appears.

2. In the Driver Pane category, select Highlight driving signals in
RTL logic (as shown in Figure 9-5) and then click Apply.

3. Click OK.

 9-11

Tracing Drivers and Loads

Figure 9-5 Selecting Highlight driving signals in RTL logic Option

DVE highlights signals on the right-hand side (RHS) and indexes on
left-hand side (LHS) of an assignment. When you trace another
signal, DVE clears the highlighting from the previous driving signals.

Note:
- If you expand a traced signal, DVE automatically traces the

driving signal.

- Only signals on the RHS that cause value changes on signals
or variables on the LHS are highlighted.

Figure 9-6 illustrates highlighting of driving signals in the Wave View.

9-12

Tracing Drivers and Loads

Figure 9-6 Highlighting of Driving Signals in the Wave View

If you double-click a driver or load in the Driver Pane, its driving
signals are highlighted in the Source and Path Schematic Views.

Note:
Signal highlighting is not done if an assignment statement
contains non-dumped variables, dynamic variables, or function
calls.

Highlighting Driving Signals in Path Schematic View

DVE highlights the driving signal in the Path Schematic View, as
shown in Figure 9-7.

 9-13

Tracing Drivers and Loads

Figure 9-7 Highlighting of Driving Signals in Path Schematic View

Tracing Signal Values over Combinational Logic

You can use the Trace Value Change menu command or its
equivalent toolbar icon to backtrace a signal value through multiple
active driver statements in RTL combinational logic (see Figure 9-8).
You can also execute this command by right-clicking on a signal in
the Driver Pane.

Figure 9-8 Trace Value Change Toolbar Icon

This command is enabled only when you select a signal in the Data
Pane, Source View, or Driver Pane. When you execute this
command, DVE takes the current application time (C1) of the
selected signal and backtraces its value at that time.

DVE backtraces by finding an active statement driver for a signal,
tracing its driving signal, and then repeating this on the driving signal
until more than one driving signal or non-combinational logic is

9-14

Tracing Drivers and Loads

encountered. The results of backtracing are shown in the Source
View and Driver Pane just as driver or active drivers are shown (see
Figure 9-9).

Figure 9-9 Tracing Signal Values over Combinational Logic

Note:
By default, intermediate drivers are not shown in the Driver Pane.

DVE stops backtracing in the following cases:

• Active statement driver is not a continuous assignment or an
assignment in combinational logic.

• Driving signals cannot be determined due to missing dump,
dynamic variables, function calls, or other limitations.

 9-15

Tracing Drivers and Loads

• There are no driving signals (for example, assignments to
constants).

• There is more than one driving signal. In this case, these driving
signals are highlighted in the source window. To continue, you can
run the Trace Value Change command on one of them.

• There is more than one active driver; for example, due to active
drivers limitations, an incomplete dump, or different bits of the
traced signal driven by different drivers.

You can use the Stop at port when tracing value change value
tracing option to stop backtracing if a driving signal on the RHS of the
driver is a port. Follow these steps:

1. Select Edit > Preferences.

The Applications Preferences dialog box appears.

2. In the Driver Pane category, select Stop at port when tracing
value change, and then click Apply.

3. Click OK.

Example 9-2 shows an example test.v file.

Example 9-2 test.v File

module top();

wire w1, w2, w3, w4, w5, w6;

reg r1, r2;

assign w1 = r1;
assign w2 = r2;
assign w3 = w2;
assign w4 = w3;
assign w5 = w4;

9-16

Tracing Drivers and Loads

assign w6 = w5;

initial begin
 #2 r1 = 1;
 #5 r1 = 0;
 #5 r1 = 1;
 r2 = r1;
#5 r1 = 1;
#5 $finish();
end
endmodule

Compile the test.v file shown in Example 9-2:

% vcs -debug_all test.v

Invoke the DVE GUI:

% ./simv -gui&

Incremental Active-driver Tracing in Driver Pane

You can expand an active driver in the Driver Pane and view its
driving signals, as shown in Figure 9-10. This feature allows you to
quickly trace multiple levels of drivers and display the hierarchical
relationships between drivers.

 9-17

Tracing Drivers and Loads

Figure 9-10 Expanding an Active Driver in Driver Pane

If DVE does not find any driving signals for an active driver, it
displays contributing signals, which can be:

• Assignment or continuous assignment signals at the RHS and in
the index of the LHS.

• Primitive gates and UDP input and inout ports.

• PortOut drivers such as contributing signals for expressions
connected to input, inout, or ref ports of the corresponding
instance.

DVE displays contributing signals using special icons (see Table 9-
1).

9-18

Tracing Drivers and Loads

Table 9-1 Icons for Contributing Signals

Mousing over these icons displays ToolTips with relevant contributor
signal information, as shown in Figure 9-11. The Time column of
contributing signals displays the time used to trace the parent driver
item. The Value column displays signal values at this time.

You can also expand contributing signals. Expanding them triggers
active drivers tracing at the time shown in the Time column for the
signal.

Icon Icon Name Description

Green circle

DVE displays this icon when the contributor
is completely analyzed and detected as an
active driving signal. This is usually the
case when a driver is in combinational logic
or a flip-flop, and no limitation is
encountered.

Yellow circle

DVE displays this icon when the contributor
time is accurate but it is unable to determine
if the signal really caused a value change
of the traced signal. This is usually the case
when a driver is in combinational logic, but
DVE encounters some active driver
limitations (for example, a function call on
RHS). Also, this icon is used for contributors
at time 0 in combinational logic and for the
first clock transition in flip-flops.

Red Circle

DVE displays this icon when it is not able
to analyze the contributor. This happens
when the driver is not in RTL code (for
example, in testbench code) or when DVE
encounters some active driver limitations.

 9-19

Tracing Drivers and Loads

Figure 9-11 ToolTip Displaying Contributor Signal Information

Note:
When you trace at time 0, all contributing signals are displayed
with a yellow icon, and no signal highlighting is done in the Source
View.

If the signal hierarchy information does not fit into the visible area of
the Driver Pane, you can run the Trace Drivers command on a
desired signal in that hierarchy and continue from the top level, as
shown in Figure 9-12.

Figure 9-12 Hierarchy Information in Data Pane

The feature is also available for drivers added using a Trace Value
Change command. However, for such items, expanding their
contributing signals triggers another Trace Value Change

9-20

Tracing Drivers and Loads

operation. This allows you to quickly explore several alternatives (for
example, when there are multiple driving signals or active statement
drivers).

Viewing Intermediate Drivers

When you run the Trace Value Change command on a signal, it only
displays the last driver encountered. It does not display intermediate
drivers between a signal and the last driver encountered.
Sometimes, you may want to see all intermediate drivers (for
example, if the resulting driver is unexpected).

You can use the Show intermediate drivers menu command or
Show intermediate drivers found when tracing value change
Preference option to view intermediate drivers found when tracing
value changes. By default, this option is disabled.

You can enable this option in several different ways:

• Select Edit > Preferences. Then from the Application
Preferences dialog, select Show intermediate drivers found
when tracing value change option. Click Apply and OK.

• Select Trace -> Drivers/Loads -> Show intermediate drivers.

• Right-click on a signal in the Driver Pane.

 9-21

Tracing Drivers and Loads

Figure 9-13 Viewing Intermediate Drivers in Driver Pane

Visualizing the Path Between Driver and Traced Signal

You can use the Driver Pane to view the path between the driver and
the traced signal in the Path Schematic View. Right-click on a signal
and select Show Path Schematic. When using this feature, note the
following:

• If you invoke an intermediate driver from the Driver Pane, the Path
Schematic displays the entire path between the intermediate
driver and the traced signal, including all the intermediate drivers
between them.

If there is a hierarchy in this path, the intermediate signals and
hierarchy crossing symbols are also displayed in the path
schematic, as shown in Figure 9-14.

9-22

Tracing Drivers and Loads

Figure 9-14 Visualizing the Path Between Driver and Traced Signal

• If there is any hierarchy crossing between the driver and the traced
signal, the path schematic displays the entire path, including all
the intermediate signals and hierarchy crossing symbols, as
shown in Figure 9-15.

 9-23

Tracing Drivers and Loads

Figure 9-15 Hierarchy Crossing Symbol

Multicycle Support for Value Tracing

DVE simplifies value tracing in RTL designs by recognizing certain
flip-flop coding styles and finding driving signals for such flip-flops.
Consider the code shown in Example 9-3.

Example 9-3 test.v File

module top();

reg dout, enable, scanIn, din;
reg clk;

always @(negedge clk)
 begin
 dout <= enable ? scanIn : din;
 end

initial begin
 enable = 1;
 scanIn = 1;

9-24

Tracing Drivers and Loads

 clk = 0;
 #10;
 enable = 0;
 din = 1;
 #10;
 din = 0;
 #10;
 din = 1;
end

always
 #2 clk = !clk;

endmodule

DVE recognizes the code in the first always block in Example 9-3
as a flip-flop and finds the driving signal (din) and active time for this
driving signal.

DVE highlights the driving signal din in all windows (Source View,
Wave View, Path Schematic View, Data Pane, Driver Pane, and so
on), as shown in Figure 9-4 and Figure 9-7.

If you declare a flip-flop cell using a `celldefine directive and
enable the DVE preference option Treat modules defined with
`celldefine as black-box (library) cells, DVE finds the flip-flop
inside the cell and displays the result as an input port to the cell
instance.

During the first clock cycle (for example, first negedge clock event in
the simulation), DVE displays all signals from the RHS of the flip-flop
using a yellow icon.

 9-25

Tracing Drivers and Loads

Note:
DVE recognizes only the always block as a flip-flop. If DVE does
not recognize the construct as a flip-flop or combinational logic, it
displays the driver contributors using red icons, as described in
“Incremental Active-driver Tracing in Driver Pane” on page 16.

Specifying Maximum Clock Cycles to Trace Value
Change

You can use the Preference option Maximum clock cycles to trace
value change to set the maximum number of clock cycles to trace
value changes in RTL logic. To use this option, select Edit >
Preferences. The Application Preferences dialog box appears. For
information on setting the maximum number of clock cycles to trace
value changes, see Figure 9-16.

Figure 9-16 Setting Maximum Clock Cycles to Trace Value Change

9-26

Tracing Drivers and Loads

Table 9-2 lists information about value settings in the Maximum
clock cycles to trace value change Preference setting.

Table 9-2 Maximum Clock Cycles to Trace Value Change.

Figure 9-17 on page 27 shows an example for Trace Value Change.
In this example, the Maximum clock cycles to trace value change
option is set to 3 and the Show intermediate drivers command is
enabled.

Value Description

0 Unlimited tracing. This means DVE traces value changes until
the root cause of the signal value change is found or some
other condition, as described in “Tracing Signal Values over
Combinational Logic” on page 13, is encountered (for example,
there is more than one active driver or more than one
contributing signal for certain driver). You can also cancel
backtracing in this case using the <ESC> key.

1 Default value. If you use this value, DVE traces value changes
over combinational logic only, and stops as soon as it
encounters a flip-flop or some other non-combinational code.
The behavior in this case is the same as described in “Tracing
Signal Values over Combinational Logic” on page 13.

Value greater than the
default value(1)

DVE skips the specified number of sequential logic layers and
stops. All drivers between the traced signal and the last found
driver are treated as intermediate drivers, as described in
“Viewing Intermediate Drivers” on page 20.

 9-27

Tracing Drivers and Loads

Figure 9-17 Tracing Value Change over Multiple Clock Cycles

Active Drivers Support for PLI, UCLI, and DVE Forces

Active drivers can now detect signal forces applied from PLI, DVE,
and UCLI. You can force a value from PLI, DVE, and UCLI, as shown
below:

• PLI — Using the vpi_put_value function call.

• UCLI — Using the force command.

• DVE — Using the Simulator > Force Value menu option.

DVE now displays the forced active drivers for a signal that has a
PLI, UCLI, or DVE force at a particular trace time, with a special
notation <forced driver>, as shown in Figure 9-18.

9-28

Tracing Drivers and Loads

Figure 9-18 Forced Driver

The forced value is displayed with a special prefix ^ in the “Value”
column of all views. For example, Figure 9-18 shows
0->^1 transition at time 5, which means that the signal is forced to
value 1 at time 5.

For the traced signal, DVE displays the ‘driver change time’ (signal
value change time) and ‘start trace time’ (time at which tracing is
performed) information in “Time” column. For example, in the above
figure, this information is shown in the “Time” column as 5<-6,
where 5 is the ‘driver change time’ and 6 is the ‘start trace time’.

If both ‘driver change time’ and ‘start trace time’ are same, then DVE
displays only ‘driver change time’ instead of ‘driver change time<-
start trace time’.

If the PLI, UCLI, or DVE force on a driver is released, but its value is
not changed by some design code, then DVE displays the released
driver with a special notation <force released>, as shown in
Figure 9-19.

 9-29

Tracing Drivers and Loads

Figure 9-19 Force Released

In the waveform, DVE shows the forced and released drivers in the
form of two yellow triangle symbols, as shown in Figure 9-20.

Figure 9-20 Forced and released drivers in the form of two yellow triangle
symbols

9-30

Tracing Drivers and Loads

Figure 9-21 Carat symbol in the Wave View

Usage Example

Consider the following example testcase test.sv:

module top;
 bit b;
 initial
 begin
 #0 b<=1'b1;
 #1 b<=1'b0;
 #5 b<=1'b1;
 #10 $finish;
 end
endmodule

To view the forced/released signal values:

1. Compile the above example code

% vcs -debug_all -sverilog test.sv

2. Open the DVE GUI

 9-31

Tracing Drivers and Loads

% ./simv -gui

3. Perform the following commands in the DVE GUI:

Dve%dump -add /

Dve%run 5

Dve%force top.b 1'b1 //force value at time “5”

Dve%run 5

Dve%release top.b //release value at time “10”

Dve%run

4. Right-click on the top module and select Add to Waves > New
Wave view.

5. In the wave view, select signal ‘b’ from the signal pane.

6. Move the cursor to 6 time units.

7. From the Trace menu, click Trace Drivers.

The forced driver appears in the Signals/Drivers/Loads pane, as
shown in Figure 9-22.

9-32

Tracing Drivers and Loads

Figure 9-22 Forced driver in the Signals/Drivers/Loads pane

8. Move the cursor to 15 time units.

9. From the Trace menu, click Trace Drivers.

The driver displays the result as “force released” in the Signals/
Drivers/Loads pane, as shown in Figure 9-23.

Figure 9-23 Driver displaying result as “force released”

 9-33

Tracing Drivers and Loads

Active Driver Limitations

• If there is ‘timing specification’ for primitive gates and UDPs, then
you cannot do Active Driver analysis for these drivers.

• Driving signal detection is not done when the RHS or LHS index
contains one of the following:

- Function call (including system function calls).

- Indexed part select (example: a[2+:4]).

- Stream operator (example: {>>{ a, b, c }}).

In this case, DVE displays all signals with transitions.

• You cannot perform active driver analysis for SystemVerilog and
Verilog code in the following cases:

- No driving signal analysis will be done for sequential UDPs, and
“Trace Value Change” will always stop at them (that is, multi-
cycle tracing is not possible in this case).

- If the traced signal is an output of timing check system call
(notifier, delayed clock, or data).

- Task/function calls (including system calls) in the RHS of a
driver statement or in control logic preceding the driver under
analysis.

- Loops (for example, for/while) with non-zero delays preceding
the driver under analysis. Driver under analysis inside a loop.

- Sequence match or event used in control logic preceding the
driver under analysis (even if sequences are dumped with -
assert dump_sequences).

- Constructs not currently supported in VPI.

9-34

Tracing Drivers and Loads

- When design contains the $sdf_annotate() call.

- Traced signal or driver is located in the module with specify
blocks.

• Currently in Driver Pane, DVE shows a statement as an active
statement driver if it is driving the last value change of the signal
under query.

Consider the following code:

always @(posedge clk or posedge rst)
if (rst)
 q <= 1’b0;
else
 q < =d;

For example, if the if block is active at time 5, then statement
driving q is q<=1’b0; And at time 20, else block gets active,
now the statement driving q is q<=d.

However, if the value of d is 1’b0 at time 20, then active statement
driver for q will still be shown as q <= 1’b0 at time 5, as there
was no value change on q at time20.

Limitations of Active Drivers Support for PLI, UCLI, and DVE
Forces
• If you apply force deposit on some elements of MDA, then

complete MDA is shown as forced. However, if you expand MDA,
then individual elements are shown as forced.

• This feature does not support variables of type ‘real’.

10-1

Using the Assertion Pane

10
Using the Assertion Pane 1

The Assertion pane displays SVA and OVA assertion and cover
properties results. This chapter includes the following topics:

• “Compiling SystemVerilog Assertions”

• “Displaying Assertions”

• “Displaying Cover Properties”

• “Debugging SystemVerilog Immediate and Concurrent
Assertions”

Compiling SystemVerilog Assertions

Use the -assert dve flag on the VCS command line when
compiling SystemVerilog assertions (SVA) for debugging with DVE.
You need to use the -debug option to enable SVA tracing in DVE.

10-2

Using the Assertion Pane

Note:
The link step can take a long time if you use a Solaris linker prior
to version 5.8.

To avoid linking delays when using DVE to debug designs compiled
on Solaris, perform either of the following:

• Make sure your Solaris C compiler is version 5.8 or above. To
check your compiler version, enter the following on the command
line:

ld -V

The system returns your linker version, for example:

ld: Software Generation Utilities - Solaris Link Editors:
5.8-1.283

• Use the gcc C compiler when compiling your design. For example:

vcs -assert dve -debug_pp -sverilog a.v -ld gcc

Displaying Assertions

DVE displays assertion results in the Assertion pane by instance,
start and end times of assertion events, the delta, the assertion
failures, total failures, real and vacuous successes, incomplete and
attempted assertions. Successful assertions are displayed in green,
vacuous successes in brown, and failed assertions in red.

10-3

Using the Assertion Pane

Figure 10-1 Assertion Results

When you open a design that contains assertions, DVE displays the
Assertion pane even if all the assertions pass. The default is to
display failed assertions.

To display assertion

1. Run the design containing assertions and open DVE in interactive
mode.

The scope containing assertion is loaded in the Hierarchy pane.

2. Expand the scope and click the assertion to display the variables
in the Data pane.

3. Double-click the assertion variable to it in the Source view.

4. Run the simulation to view the assertion results in the Assertion
pane.

The Assertion pane is not displayed by default. You need to
change the preference setting to automatically display the
Assertion pane.

10-4

Using the Assertion Pane

Viewing Assertion in the Wave View

To view assertion in the Wave view, double-click the assertion
attempts in the Assertion pane. You can also select the assertion
attempt, right-click and select Trace Assertions to trace the
assertion in the Wave view.

The Wave view displays the assertions as follows:

• The cursors in the Wave view mark the start and end time of the
selected assertion with the area between the cursors grayed.

• A green circle indicates a signal value at a specific time that
contributed to a successful sub-expression in the assertion.

• A red circle indicates a signal value at the time which caused a
sub-expression to fail. A sub-expression failing may result in the
overall assertion failing.

• To display the first 10 failures and successes, click the "+" next to
an assertion of interest. Figure 10-2 shows an assertion with no
delta between the start and end time.

10-5

Using the Assertion Pane

Figure 10-2 Assertion in the Wave view

• In Signal Group 1, the assertion operator_preced is listed first
in the tree view. This is the assertion result signal. The waveform
consists of red, green, and white arrows. Green arrows indicate
where the assertion was determined to be a success, and red
arrows indicate where it failed; the red arrow illustrates the first
failure. A white arrow indicates assertion clock events.

• operator_preced is expanded into the following components:

- The first component is clk_event. Each clock event shows
you when the assertion fired and the clock ticks that happen for
sequences.

- The rest of the signals are the those that contributed to the
success or failure.

- The green dots on the waveform indicate that the value of the
signal is as expected at that clock tick. The red dots indicate
that the signal contributed to the failure of the assertion at that
clock tick.

10-6

Using the Assertion Pane

• Hold the mouse cursor over the assertion to view the tooltip that
displays details about the assertion failure or success. For each
success or failure attempt, the tooltip contains start time, result,
and reason.

Displaying Cover Properties

DVE displays Cover properties in the Assertion pane by instance,
start and end time, the delta, total number of matches, mismatches,
incomplete and attempted cover properties. You can view the cover
properties in other views, such as Wave view and List view and also
create groups for the cover properties in the Signal pane.

To view cover properties

1. Run the design containing cover properties and open DVE in
interactive mode.

The scope containing cover properties is loaded in the Hierarchy
pane.

2. Select the scope to display the cover properties in the Data pane.

3. Double-click the cover property variable to view it in the Source
view.

4. Run the simulation.

10-7

Using the Assertion Pane

The Assertion pane opens. The Assertion pane is not displayed
by default. You need to change the preference setting to
automatically display the Assertion pane.

5. Select the drop-down at top left of the Assertions pane, and select
Cover properties.

The cover properties are displayed.

Debugging SystemVerilog Immediate and Concurrent
Assertions

VCS supports debugging SystemVerilog (SV) immediate and
concurrent assertions using the +vpi compile-time option, as
described below.

With this option, you can,

• get handles to assertions inside a scope using the VPI routines
vpi_iterate() or vpi_handle_by_name().

• control individual assertions by switching them ON and OFF using
the VPI routine vpi_control().

Select Cover properties in this drop-down list

10-8

Using the Assertion Pane

• register callbacks on assertions using the VPI routine
vpi_register_assertion_cb.

For more information about the VPI routines, see the IEEE
SystemVerilog LRM.

Usage Model

Compile the design with the +vpi option to access all assertions in
the design and dynamically trace the assertions through assertion
callbacks using a custom PLI application. You can also control
assertions individually by turning them on and off at desired times
during the simulation.

For more information on VPI options supported by VCS, refer to
+vpi, +vpi+1, and +vpi+1+assertion compile-time options in
VCS User Guide.

PLI use model

% vcs +vpi -P <pli>.tab [compile_options]
% simv [simv_options]

UCLI use model

% vcs -debug_pp +vpi [compile_options]

or

% vcs -debug +vpi [compile_options]
% simv -ucli

DVE use model

You can dump assertions with the -assert dve option and also
access the same in the post-process mode. This helps to identify the
contributing signals to immediate and concurrent assertions.

10-9

Using the Assertion Pane

% vcs -debug_pp +vpi -assert dve \
[compile_options]

% simv -gui //interactive mode
% dve //post-process mode

Example

The following example shows how assertions are defined in the
design file and how you can view the assertions in the DVE Data
pane.

example.v

module top;
reg a, b; reg clk=1;
always #1 clk = ~clk;

function reg fn(reg a);
 return fn_a(a);
 endfunction
function reg fn_a(reg a);
 return (a);
 endfunction

always @(a or b) begin: BLOCK1
 A1: assert final($changed(fn(a),@(posedge
clk))&&$changed(fn(b),@(posedge clk)))
 $display($time, " %m: Pass");
 else $display($time, " %m Fail");
end

always_comb
 A2: assert final($changed(fn(a),@(posedge
clk))&&$changed(fn(b),@(posedge clk)))
 $display($time, " %m: Pass");
 else $display($time, " %m Fail");

always_latch
 A3: assert final($changed(fn(a),@(posedge
clk))&&$changed(fn(b),@(posedge clk)))

10-10

Using the Assertion Pane

 $display($time, " %m: Pass");
 else $display($time, " %m Fail");

always_ff @(posedge clk) begin: BLOCK2 begin: BLOCK3
 A4: assert final($changed(fn(a))&&$changed(fn(b)))
 $display($time, " %m: Pass");
 else $display($time, " %m Fail");
end end

initial
begin
 #1 a=1; b=1;
 #5 b=0; #0 a=0;
 #1 b=1; #0 a=1;
 #10 $finish;
end

always @(a or b) begin
 unique case({a,b})
 2'b11 : $display({a,b});
 2'b11 : $display({a,b});
 2'b10 : $display({a,b});
 endcase
end

endmodule
module test;
 reg rst;
 initial begin
 rst = 0;
 #1 rst= 1;
 #4 rst = 0;
 #2 rst = 1;
 end

 always@ (rst) begin
 if(rst == 0) begin
 $uniq_prior_checkoff(0,t1);
 $display($time,, " RT OFF "); end
 else begin
 $uniq_prior_checkon(0,t1);
 $display($time,, " RT ON "); end

10-11

Using the Assertion Pane

 end

 top t1();
 A5: assert property(@(posedge t1.clk)
($changed(t1.fn(t1.a))&&$changed(t1.fn(t1.b))));
 A6: cover property(@(posedge t1.clk)
($changed(t1.fn(t1.a))&&$changed(t1.fn(t1.b))));
 top t2();
endmodule

Steps to compile the example

% vcs -sverilog -debug_pp +vpi example.v \
-assert dve -assert enable_hier -xlrm uniq_prior_final \
-assert svaext

% dve -script sva_vpi+1assertions.tcl

The script file sva_vpi+1assertions.tcl is available in the
$VCS_HOME directory.

10-12

Using the Assertion Pane

Figure 10-3 Assertions seen in DVE Data pane and Assertions pane

Data pane

Assertions pane

11-1

Using the Testbench Debugger

11
Using the Testbench Debugger 1

This chapter describes the DVE (Discovery Visual Environment)
Testbench Debugger. It includes the following topics:

• “Overview”

• “Enabling Testbench for Debugging”

• “Invoking the Testbench Debugger GUI”

• “Testbench Debugger Panes”

• “Testbench Debug”

• “Debugging Threads”

• “Debugging UVM Testbench Designs”

11-2

Using the Testbench Debugger

Overview

The DVE integrated testbench graphical debugger provides a
common interface for debugging HDL and Testbench code
simultaneously and is seamlessly integrated with the current DVE
HDL debug windows.

In interactive mode, the Testbench Debugger provides you visibility
into the testbench-related dynamic constructs and their values
during simulation. This is done by using the proven visualization of
the Testbench GUI's stack pane, local pane, and watch pane
combined with DVE's Source view and its intuitive look and feel.

Using the salient features of the new testbench debugger, you can
analyze, understand, and debug the behavior of your complicated
verification environment faster. You will be able to perform a
comprehensive analysis using the seamless design and verification
environment.

The testbench debugging interface enables you to perform the
following:

• Navigate HDL or Testbench source code in a single DVE Source
view

• View HDL and Testbench scopes in DVE's Hierarchy pane

• Analyze HDL and TB signals together in the Watch pane

• Run HDL and Testbench-related UCLI commands all from a single
application

11-3

Using the Testbench Debugger

Enabling Testbench for Debugging

To enable the debugging capabilities for the testbench, you must
specify the –debug_all switch along with your compilation
command.

Note:
If you separately compile your design and testbench (NTB-OV
separate compile flow), ensure that you use the –debug_all
switch when compiling both your design and the testbench.

Invoking the Testbench Debugger GUI

You can start the Testbench Debugger from the command line and
then run your simulation from the GUI.

• From the command prompt, enter the following:

%> simv -gui

 In this example, simv is the executable.

Note:
If you use the -debug_all switch when compiling your design
that contains testbench code, the DVE automatically provides
debugging options for your testbench program. However, you can
disable these settings in the Preferences dialog box by clearing
the option "Enable testbench debugging for interactive design" in
the Edit menu. Select a transition in the Wave view to display the
driver.

11-4

Using the Testbench Debugger

Testbench Debugger Panes

The top-level window of the Testbench Debugger GUI contains three
additional panes. The three additional panes are – Stack pane, Local
pane, and Watch pane as illustrated in the following diagram:

Source ViewLocal PaneStack Pane

Watch Pane

11-5

Using the Testbench Debugger

Note:
The Watch pane appears only when you add variables or signals
to it for monitoring purposes.

• Stack Pane - Displays the testbench dynamic hierarchy tree along
with all the testbench threads and their status. This pane is
highlighted when the Local tab is selected.

• Local Pane - Displays all the testbench variables and dynamic
objects with their current values based on the currently selected
scope within the call stack. The testbench variables and dynamic
objects will change when you select different testbench scopes in
the Stack.

• Watch Pane - Enables you to monitor the status of your variables
during simulation.

Stack Pane

This pane shares a tabbed view with the hierarchy pane. Select the
Stack tab to display the Stack pane and view the status of various
threads. This view is cross-linked with the Source and Local panes.
Double-clicking on objects in this pane synchronizes the display in
the source and local panes. The hierarchy tab displays only the static
objects in your design, whereas the Stack tab displays the dynamic
threads created during runtime.

Note:
The Stack pane appears empty when you invoke the Testbench
Debugger at time 0. The dynamic objects are displayed as and
when they are created in the testbench during simulation.

11-6

Using the Testbench Debugger

The following figure illustrates the Stack tab and the Hierarchy tab:

The above illustration shows the current active threads and their
status. The status of a thread could be – Ready, Running, Stopped,
or Suspended. The following table illustrates the conventions
denoted by these icons:

The thread column displays the unique id of the thread. It can be the
same if function calls in the stack belong to the same thread.

Ready to execute.

 Thread is executing.

Thread is stopped.

Thread is suspended.

11-7

Using the Testbench Debugger

Using the Stack Pane Context Sensitive Menu

The Stack pane context sensitive menu (CSM) provides various
options. You can quickly access and start using these options
through the context menu. To invoke the CSM, right-click from the
Stack pane. The following menu options appear:

The following table explains the menu options:

Option Description

Copy Takes copy of the object.

Show Source Displays source code of your testbench
program.

Add To Watches Adds signals to monitor in the Watch pane.

Expand All Expands the tree.

Collapse All Collapses the tree.

Select All Takes copy of all the objects.

11-8

Using the Testbench Debugger

Local Pane

The local pane shares a tabbed view with the ‘Data’ tab. The local
pane displays variables in a selected scope in the stack pane. This
view is tied to the stack pane and the default view shows variables
of the current active thread. This pane also has a Filter feature that
you can use to search or find variables.

Note:
The Local pane displays the variables when you select an object
in the Stack pane.

Watch Pane

Occasionally, you may need to monitor the status of testbench and
HDL variables throughout the simulation regardless of the active
thread. You can select all the variables and objects to watch their
behavior in this pane. The Watch pane displays the selected item, its
value and the type for tracking, regardless of the active context.

Search/Find

11-9

Using the Testbench Debugger

By default, the Watch pane contains three tabs labeled Watch 1,
Watch 2, and Watch 3. You can add as many tabs as you want. Use
the Watch panes to monitor values of variables regardless of the
current context. You can add variables from the Source or Local
window or by performing a drag-and-drop.

To add a Watch tab, go to the menu View > Watch > Add New Page.
You can also delete the watch tabs.

The following figure illustrates a typical Watch pane:

This figure illustrates the variable, its value, type, and the scope.
Using the check box in the Scope column, you can tie the variable to
a given thread throughout simulation or tie the variable to the
currently selected thread in the call stack. This feature is available for
all object types, including the design signals.

For example, add a variable called ‘x’ in the Watch pane and select
the check box to tie it to a given thread. This variable is displayed
throughout the simulation from the same dynamic instance of the
scope (active thread), irrespective of the thread being alive or not. By
default, this check box is selected.

Clearing the check box evaluates the variable in the currently active
thread in the call stack. For example, add a variable ‘x’ from the
active thread, ‘main’, during the beginning of simulation. Assume the
active thread changes to some other thread at a later point of time.

11-10

Using the Testbench Debugger

The variable ‘x’ in the Watch pane now refers to the same variable in
the dynamic instance of the scope (active thread), but not from the
active thread, ‘main’.

Class Browser

You can now view the definitions and methods of classes in DVE.
You use the Class Browser to browse, navigate, or visualize the
classes defined in the design.

The Class Browser consists of the following panes:

• Class pane — displays all the classes defined in the design in a
hierarchical view.

• Member pane — displays the content or methods of the selected
class.

Usage Model

Example

In this example, there’s hierarchy of base class and derived class.

class_browser.sv

// calling base class pre and post randomize methods inside
the derived
// class method with the help of "super" keyword
`include "vmm.sv"
program p;

class base;
static reg aa;
protected static reg bb;
protected logic mem [1:0];

11-11

Using the Testbench Debugger

rand logic [1:0] a,c;
randc logic [2:0] b;
mailbox mbox;

function void reset();

a = 1; b = 1;
endfunction

function void pre_randomize();
$display("Hello World");

endfunction

function void post_randomize();
if (!(a+c <= b))
begin
$display("a == ", a, " c == ", c, " b == ", b);
$display("Post Randomization Failed");
end
endfunction

endclass

class derived extends base;

rand byte d;

function void myfunc_pre_call();

super.pre_randomize();
d = 5;

endfunction

function void myfunc_post_call();

super.post_randomize();
d = b;

endfunction

endclass

derived c1 = new;

11-12

Using the Testbench Debugger

int ret;

initial begin

repeat (3)
begin

c1.reset();
ret = c1.randomize();
if(ret == 0)

$display("Randomization Failed");
else
begin

c1.myfunc_pre_call();
c1.myfunc_post_call();

end
end

end
endprogram

To compile this example code, use the following commands:

vcs class_browser.sv -ntb_opts rvm -debug_all -sverilog
simv -gui &

To open the Class Browser

The procedure to view the Class/Member pane is similar to viewing
the Stack/Local pane in DVE. You can view the Class/Member panes
in interactive mode when your design contains testbench. Also, in
post-process mode when the variables are dumped in the VPD file
by the $vcdplustblog task. For more information about
$vcdplustblog task, see the LCA category in the VCS Online
Documentation.

You can also open the Class/Member pane from the menu Window
> Panes.

11-13

Using the Testbench Debugger

1. Run the design where you have defined classes and invoke DVE.

The scopes with classes appear in the Hierarchy pane.

2. Select a class, right-click and select Show in Class Browser.

The classes are displayed in the Class pane.

Class Pane

Class view type filter allows

user’s classes

 to hide vmm/rvm base classes
 not inherited by that are

11-14

Using the Testbench Debugger

3. Select a class to see the methods and member variables in the
Member pane.

You can click the Type drop-down menu to select the filters based
on which you can sort the member variables.

Table 11-1 describes the filters of Member Pane type filter.

Type drop-down

Member view type filter

Member Pane

menu

objects, non class objects

allows filter of base
class variables, task,
functions, class

11-15

Using the Testbench Debugger

Table 11-1 Filters of Member Pane type filter

4. Select a class and double-click to view the class definition in the
Source view.

Or

Select a class, right-click and select Show Source.

Filter Description

Select this filter type to view the members of base
class. By default, DVE hides these members.

Select this filter type to view the internal members.
By default, DVE hides these members.

Filters the non-static members.

Filters the members with “Local” visibility.

Filters the members with “Protected” visibility.

Filters the members with “Public” visibility.

Filters virtual members.

Filters random members.

11-16

Using the Testbench Debugger

The class definition is displayed in the Source view as follows:

Note:
Constraints and Structure/Union properties are not visible in the
Member pane.

11-17

Using the Testbench Debugger

Dynamic Object Browser

DVE allows you to view and browse all existing class objects and
member values using the Object Browser feature. This feature
consists of three major pieces of functionality:

• Object Hierarchy Browser which displays current dynamic objects
and its values.

• Using Class Browser to view object instances.

• Using Local Pane filter to search for dynamic objects.

This feature helps you to:

• Locate an object without having to set a breakpoint.

• View the object along with its values/attributes.

• View aggregate paths that point to an object.

• View source lines related to the object.

Object Browser Example

Consider the following UVM test case:

Example 11-1 Design File (test.sv)

program top;

`include "uvm_macros.svh"
import uvm_pkg::*;

class test extends uvm_test;

 `uvm_component_utils(test)

11-18

Using the Testbench Debugger

 function new(string name, uvm_component parent = null);
 super.new(name, parent);
 endfunction

 virtual function void report();
 $write("** UVM TEST PASSED **\n");
 endfunction
endclass

initial
 begin
 run_test();
 end

endprogram

Compile the test.sv code, shown in Example 11-1, as follows:

% vcs -sverilog -ntb_opts uvm -debug_all test.sv

Invoke the DVE GUI, as follows:

% simv +UVM_TESTNAME=test -gui

Object Hierarchy Browser

The Object Hierarchy Browser displays hierarchical structures
which include top-level modules, programs, and packages within the
current browsing scope, as shown in Figure 11-1, in the Objects
Pane. You can expand structures in the Objects Pane to view the
following:

• Reference variables in modules, programs, or packages.

11-19

Using the Testbench Debugger

Note:
A reference variable is a variable that can point to an instance
of a class (that is, an object instance). For example, consider
the following code:

class MyClass;
 SomeOtherClass object;
 function new();
 object = new;
 endfunction
endclass

module top;
 MyClass p;
 initial begin
 p = new;
 end
endmodule

In the above code, p is a reference variable which is defined in
the static module top, so top.p is always a valid path. Also,
object is a reference variable which is not defined in a static
scope. It is a class member variable.

• Static reference variables in tasks, functions, or classes.

• Active or suspended static task or functions which contain
reference variables.

- Task or function can be expanded to view the variables.

- A task or function name contains thread ID. For example:

foo (thread 3)

11-20

Using the Testbench Debugger

The Object Hierarchy Browser displays scopes, reference
variables defined within a static scope, and object instances. It will
display only reference variable members, if an object instance is
expanded.

The Object Hierarchy Browser contains the following columns:

Table 11-2 Object Hierarchy Browser Columns

Column Name Description

Hierarchy Displays hierarchical structures which include top-level modules,
programs, and packages

Class Type Displays the name of object’s class

Object ID Displays object ID of an object

Create Time Displays the time the object is created

Create Thread Displays thread ID

11-21

Using the Testbench Debugger

Figure 11-1 Object Hierarchy Browser

The Member Pane displays members and values of a class object
selected in the Object Hierarchy Browser, as shown in Figure 11-2.

11-22

Using the Testbench Debugger

Figure 11-2 Viewing Values of a Class Object in the Member Pane

Right-click Menu Options in the Object Hierarchy Browser

Table 11-3 describes the right-click menu options available in Object
Hierarchy Browser.

11-23

Using the Testbench Debugger

Table 11-3 Right-click Menu Options in the Object Hierarchy Browser

Viewing Memory Size of Objects in Object Hierarchy
Browser

DVE allows you to view information about the memory consumed by
the objects of a design in the Object Hierarchy Browser.

To view information about the memory consumed by objects of a
design:

Right-click an object in the Object Hierarchy Browser and select
Show Total Memory, as shown in Figure 11-3.

Or

Click View > Show Total Memory

Option Description

Show Source Displays the definition of the selected object in the Source
View.

Show In Class Browser Displays class of the selected object in Class Pane.

Show Create Location Displays the location where the selected object is created
(that is, location of statement with ‘new’ call) in the Source
View.

View References Displays the reference paths of the selected object instance
in the References dialog box.

Add Object To Watches Adds the selected object to the Watch Pane.

Show Total Memory Displays Total Memory column in the Object Hierarchy
Browser. This column displays the memory size of objects in
KB.

11-24

Using the Testbench Debugger

DVE displays Total Memory column in the Object Hierarchy
Browser. This column displays the memory size of objects in KB, as
shown in Figure 11-4. If an object is present multiple times in the
object tree, then only its first occurrence is counted. You can hide this
column by clicking the Show Total Memory option again.

Figure 11-3 Viewing Memory Size of Objects in Object Hierarchy Browser

11-25

Using the Testbench Debugger

Figure 11-4 Viewing Memory Consumed by Objects in a Design

The object memory size will be displayed in the following format:

• DVE displays the memory size of all objects in KB.

• DVE will not display fractional parts of memory size, it rounds the
memory size to the nearest whole number or integer value. For
example, if memory size is less than 1 KB, then DVE will display
“1 KB”. You can select the desired object in Object Hierarchy
Browser to view its exact memory size in Member Pane, as shown
in Figure 11-5.

Note:
Object hierarchy browser displays the size of an object,
including its children. But, Member Pane displays only the size
of the selected object, not including its children.

11-26

Using the Testbench Debugger

• DVE uses “,” after three digits. For example, DVE displays 1MB
as 1,024 KB, 1GB as 1,048,576 KB.

Figure 11-5 Viewing Exact Memory Size of an Object in the Member Pane

The numbers in Total Memory column are updated automatically
during the simulation run. You can sort the Total Memory column.
The memory size of each object is counted only once by its parent
object or scope. The memory size of an object will be displayed in
gray, as shown in Figure 11-6, if it is not counted by the current
parent object.

11-27

Using the Testbench Debugger

Figure 11-6 Memory Size Displayed in Gray Color

Using Object Hierarchy Browser Filters

Object Hierarchy Browser allows you to view the desired objects
using the Object Browser Mode drop-down button, and allows you
to filter objects by hierarchy or class type using the Filter by
Hierarchy and Filter by Class Type text filters.

11-28

Using the Testbench Debugger

Figure 11-7 Object Hierarchy Browser Filters

Table 11-1 describes the Object Browser modes.

11-29

Using the Testbench Debugger

Table 11-4 Object Browser Modes

Filtering Objects in the Object Hierarchy Browser

The Filter by Hierarchy and Filter by Class Type text filters allow
you to configure the type of information to display for Hierarchy
column in the Object Hierarchy Browser. Table 11-5 describes the
text filters in Object Hierarchy Browser.

These filters allow you to specify the text to filter, and stores the
previously specified filter strings. By default, these filters use ‘*’
wildcard character as the filter string.

Mode Description

Default mode. Displays all class objects (including
UVM, OVM, and VMM) in the Object Hierarchy
Browser.

Displays UVM components in the Object
Hierarchy Browser.

Displays UVM objects in the Object Hierarchy
Browser.

Displays VMM components in the Object
Hierarchy Browser.

Displays VMM objects in the Object Hierarchy
Browser.

Displays OVM components in the Object
Hierarchy Browser.

Displays OVM objects in the Object Hierarchy
Browser.

11-30

Using the Testbench Debugger

Table 11-5 Text Filters in Object Hierarchy Browser

Filtering Objects by Name in the Object Hierarchy Browser
Using ‘Filter by Hierarchy’ Text Filter

You can also use the Filter by Hierarchy text filter to filter objects by
simple name (for example, class variable name or object member
name) in the Object Hierarchy Browser.

To filter objects by name in the Object Hierarchy Browser:

1. Click the Object Browser Mode drop-down button and clear the
check box next to Hierarchy Filter: Use Full Path option, as
shown in Figure 11-8, to disable it. By default, this option is
enabled.

2. Type the string to search in the Filter by Hierarchy text filter.

Filter Name Description

Filter by
Hierarchy

Allows you to filter objects by hierarchy name in the Object Hierarchy
Browser. DVE will use full hierarchical path name of an item to check
if it matches to the specified string.

Filter by Class
Type

Allows you to filter objects by class name in the Object Hierarchy
Browser. This filter matches the current type of the object and base
classes of the object (“Include Base Classes”). For example, filtering
for *uvm_object* will also show objects with class
uvm_component, since class uvm_component is derived from
uvm_object.

11-31

Using the Testbench Debugger

Figure 11-8 Filtering Objects by Name

Filtering Objects by Class Name in the Object Hierarchy
Browser Using the ‘Filter by Class Type’ Text Filter

You can also use the Filter by Class Type text filter to filter objects
by simple class name in the Object Hierarchy Browser.

To filter objects by name in the Object Hierarchy Browser:

1. Click the Object Browser Mode drop-down button and clear the
check box next to Class Type Filter: Include Base Classes
option, as shown in Figure 11-8, to disable it. By default, this option
is enabled.

2. Type the string to search in the Filter by Class Type text filter.

11-32

Using the Testbench Debugger

Type Filter for “All objects” Mode

You can click the Type Filter drop-down button, as shown in
Figure 11-9, to select the filters based on which you can filter the
objects in the Object Hierarchy Browser.

Figure 11-9 Filter Types for All Objects Mode

Note:
- DVE displays a scope (package, module, program, class, task,

or function), only if it contains a variable of the selected type.

- DVE displays an object if the variable of the selected type is
present in its object path. This is required to expand matching
objects after a filter is applied.

11-33

Using the Testbench Debugger

Searching Objects in the Object Hierarchy Browser

You can use Search and expand tree by filter button , as shown

in Figure 11-10, to search for the filter string in the entire tree of
objects (both expanded and collapsed folders), and view the names
where the item or one of its children contains the given filter string.

Figure 11-10 Searching Objects in the Object Hierarchy Browser

11-34

Using the Testbench Debugger

Viewing Objects in the Class Pane

DVE allows you to view objects in Class Pane. If a leaf class contains
object instances, you can view them by expanding the leaf class in
the Class Pane. When expanded, the Name column lists all object
IDs that exist for that class, as shown in Figure 11-11. The number
of reference paths that point to an object is shown in parentheses.

Figure 11-11 Viewing Objects in the Class Pane

DVE allows you to view objects in tree mode (default mode) or list
mode, as shown in Figure 11-12 and Figure 11-13.

To view objects in tree mode

In the Class Pane, click the Views button and select Tree Mode

from the drop-down list, as shown in Figure 11-12. This is the default
mode.

11-35

Using the Testbench Debugger

Figure 11-12 Viewing Objects in the Tree Mode

To view objects in list mode

In the Class Pane, click the Views button and select List Mode

from the drop-down list, as shown in Figure 11-13. This mode
displays only the leaf classes.

11-36

Using the Testbench Debugger

Figure 11-13 Viewing Objects in the List Mode

Right-click Menu Options in the Class Pane

Table 11-6 describes the new right-click menu options in the Class
Pane.

11-37

Using the Testbench Debugger

Table 11-6 Right-click Menu Options in the Class Pane

Viewing Object Instance Information in the Member Pane

Select an object instance in the Class Pane to view its information in
the Member Pane, as shown in Figure 11-14. Member Pane allows
you to do the following:

• Double-click a member variable or right-click on a member
variable and select Show Source to view its source line in the
Source View.

• Right-click on a member variable and select Add Object To
Watches option to add it to the Watch Pane.

• Use the Show In Class Browser right-click menu option to view
the selected object in the Class Pane, and its member variables
in the Member Pane.

Option Description

Show Source Displays the source line of the selected class object in the
Source View.

Show Create Location Displays the location where the selected object instance is
created (that is, location of statement with ‘new’ call) in the
Source View.

UVM/VMM Reference Displays UVM/VMM documentation in a web browser, for the
selected item.

Add Object To Watches Adds the selected object to the Watch Pane.

View References Displays the reference paths of the selected object instance
in the References dialog box.

11-38

Using the Testbench Debugger

Figure 11-14 Viewing Class Object Information in the Member Pane

Viewing Reference Path of an Object Instance

To view the reference paths that point to an object, right-click an
object instance in Class Pane, Local Pane, or Object Hierarchy
Browser, and select View References, as shown in Figure 11-15.
DVE displays the reference paths of the selected object instance in
the References dialog box, as shown in Figure 11-16.

11-39

Using the Testbench Debugger

Figure 11-15 Viewing References of an Object Instance

Figure 11-16 References Dialog Box

Table 11-7 describes the buttons of the References dialog box:

11-40

Using the Testbench Debugger

Table 11-7 References Dialog Box Buttons

Filtering Options in the References Dialog Box

The References dialog box filtering options (see Figure 11-17) allow
you to configure the type of information to display for References by
Path and References by ObjectID columns. Table 11-8 describes
the filtering options in the References dialog box.

Button Description

Includes the selected reference path in the Watch Pane.

Includes the selected reference object ID in the Watch Pane.

Displays the source code of the selected reference path in the
Source View.

Displays the selected reference path in the Object Hierarchy
Browser.

Exits the References dialog box.

11-41

Using the Testbench Debugger

Figure 11-17 References Dialog Box Filtering Options

These filters allow you to specify the text to filter, and stores the
previously specified filter strings. By default, these filters use ‘*’
wildcard character as the filter string.

Table 11-8 Filtering Options in the References Dialog Box

Searching for Dynamic Objects in the Local Pane

DVE allows you to search for dynamic objects in both currently
expanded and collapsed folders present in Local Pane. In previous
versions, the filter field in the Local Pane supports viewing the filter

Filter Name Description

Path Filter Displays the desired reference paths in the References by Path
column.

ObjectID Filter Displays the desired reference object ID in the References by
ObjectID column.

11-42

Using the Testbench Debugger

string only in the currently expanded contents. From this release

onwards, you can use Search and expand tree by filter button ,

as shown in Figure 11-18, to search for the filter string in the entire
tree of objects (both expanded and collapsed folders), and view the
names where the item or one of its children contains the given filter
string.

Figure 11-18 Object Search in the Local Pane

Adding Reference Paths to the Watch Pane

You can use the Add Object To Watch button in the Reference
dialog box (see section “Viewing Reference Path of an Object
Instance”), to include the selected reference object ID in the Watch
Pane.

11-43

Using the Testbench Debugger

The reference paths will be added to the Watch Pane with the scope
type named as Reference, as shown in Figure 11-19, which will
have a top-level scope.

Figure 11-19 Reference Paths in the Watch Pane

Note:
You can add a reference path to the Watch Pane by specifying
the path name as a new variable. But these items will be identified
as “Local” even though they are present at the top-level.

Renaming Object Name in the Watch Pane

You can rename an object in the Watch Pane by performing one of
the following:

• Click the object you wish to rename, as shown in Figure 11-20.

• Right-click an object you wish to rename and select Edit.

11-44

Using the Testbench Debugger

Figure 11-20 Renaming Object Names in the Watch Pane

Debugging VHDL Subprogram

You can view the VHDL subprograms (VHDL procedures and
functions) as a scope in the Hierarchy pane. Compile your design
using the -debug_all option.

Example

The following example shows both a procedure P and a function F.

test.vhd

library IEEE;
use IEEE.std_logic_1164.all;

entity e is end;

use std.textio.all;
architecture a of e is

procedure P (I1 : in std_logic) is
variable l: line;
variable SEL : bit := '1' ;

11-45

Using the Testbench Debugger

variable A_BUS:bit_vector(3 downto 0) := "0000";

variable D : std_logic :='1';

variable D_VEC :std_logic_vector(3 downto 0) := "0000";

variable A, B, Z,integer_test : integer range 0 to 300;

variable PERIOD1 : time := 20 ns;

variable bool1 : BOOLEAN := FALSE;

variable rel1 : REAL := -1.2;

variable str1 : STRING(1 to 6) := "INDIA ";

variable char1 : CHARACTER := ':';
begin

 D := I1 ;
 E := D ;
end procedure;
function F (I1 : std_logic) return std_logic is

variable V1 : std_logic;
variable l: line;
variable SEL : bit := '1' ;

variable A_BUS:bit_vector(3 downto 0) := "0000";

variable D : std_logic :='1';

variable D_VEC :std_logic_vector(3 downto 0) := "0000";

variable A, B, Z,integer_test : integer range 0 to 300;

variable PERIOD1 : time := 20 ns;

variable bool1 : BOOLEAN := FALSE;

variable rel1 : REAL := -1.2;

variable str1 : STRING(1 to 6) := "INDIA ";

11-46

Using the Testbench Debugger

variable char1 : CHARACTER := ':';
begin
 V1 := I1;
 return V1;
end function;

begin

process
variable P1,P2 : std_logic;
begin

wait for 2 ns;
P1 := '0';
P2 := F(P1);
wait for 1 ns;

P (P1); -- 4
end process;

end;

To compile this example code, use the following commands:

vhdlan -nc test.vhd
vcs e -debug_all
simv -gui &

11-47

Using the Testbench Debugger

Usage Model

To view the definition of the subprogram, double-click on a
subprogram in the Hierarchy pane.

The VHDL subprogram variables are not shown in the Data pane,
since they are dynamic variables and can be seen only in the Local
pane. You can view the call stack in the Stack pane when a
subprogram is active. The subprogram is active when you set a

11-48

Using the Testbench Debugger

breakpoint on a procedure and run the simulation till the breakpoint.
You need to select the stack to view the variables in the Local pane.
You can also add the subprogram variable in the Watch pane.

Limitations

• Nested Procedures are not shown in the Hierarchy pane.

• Aliased signals in active VHDL procedure are not shown in the
Local pane.

• No debug support for build-in package subprograms.

Viewing Virtual Interface Object in DVE

You can view the actual value of the Virtual Interface objects in the
Local pane, Watch pane, and Source view in DVE. The value of the
Virtual Interface object is shown only if it is initialized or else the
value “null” is shown. The Type column shows the type as “Virtual
Interface” in the Local pane.

11-49

Using the Testbench Debugger

The following illustration show the Virtual Interface type with its
actual value.

11-50

Using the Testbench Debugger

Testbench Debug

Using the following testbench debugger features, you can more
efficiently analyze, understand, and debug the behavior of your
verification environment.

• Use DVE or UCLI to view object identifier values

• Use DVE or UCLI to create object identifier breakpoints

• Create a breakpoint at the end of a method

• View the parameter type for each parameterized class name in
the Hierarchy Pane

• Avoid stepping into VMM, UVM, or OVM code

• Change dynamic variable values in the Local Pane and Watch
Pane

• Filter variables in the Local Pane

• Filter objects in the Stack Pane

• View the class in the Class Browser from the Source View and
Member Pane

• View the VMM or UVM online help documentation in an external
web browser from the Help menu, Class Pane, or Member Pane

• View struct variables in the Local Pane

• View the .size of Dynamic Arrays in Local Pane

This section contains the following topics:

• “Viewing Object Identifier Values”

11-51

Using the Testbench Debugger

• “Creating Object Identifier Breakpoints”

• “Parameterized Class Support”

• “Avoiding Stepping into VMM/UVM/OVM Code”

• “Changing Dynamic Variable Values in DVE”

• “Filtering Variables in Local Pane”

• “Filtering Objects in Stack Pane”

• “Viewing the Class in Class Browser from Source View and
Member Pane”

• “Viewing VMM/UVM Documentation”

• “Viewing Struct Variables in the Local Pane”

• “Viewing the .size of Dynamic Arrays in Local Pane”

Viewing Object Identifier Values

You can use DVE or UCLI to view values for a specific instance of an
object in your code.

Viewing Object Identifier Values in DVE

DVE displays (in the Local Pane and Watch Pane) a unique object
ID for every class instance in the following format:

<classname>@<instance number>

Where,

• <classname> is the name of a class

11-52

Using the Testbench Debugger

• <instance number> is the instance number of <classname>

For example, if there is a class named MyClass, and if you want to
refer to the third instance of that class, then DVE displays the ID of
the object as MyClass@3.

Key points to note

• If <classname> is a parameterized class, then the object ID class
name is based on the VCS internal name for the class, and not
the display name (which includes the types). For example, for the
following class:

class stack #(type T=int);
function new;
//...
endfunction
endclass

stack #(longint) s1;
stack #(byte) s2;
stack #(shortreal) s3;

The VCS internal names are stack, stack_0 and stack_1.
Therefore, the object ID for the third instance of the stack
#(byte) class is stack_0@3.

• If a class is defined within a package, the object ID consists of the
package name, a dot, and then the normal object ID, as shown
in the following example:

MyNamespace.MyClass@3

• SystemVerilog also supports nested classes (classes defined
within other classes). For example, consider the following code:

class Env;
class Other; // Nested class

11-53

Using the Testbench Debugger

string var1;
endclass

endclass

class Test;
class Other; // Nested class

int count;
endclass

endclass

In this example, class Other is declared as an inner class. To
remain unique, the real name is: Env::Other or Test::Other.
The object ID is represented with a unique name such as
Env::Other@3.

Viewing Object Identifier Values Using UCLI Commands

You can use the show –object command to view an object ID. This
command displays the object ID in the following format:

{<classname>@<instance number>}

The object ID is only shown for class objects. For other objects, the
value is shown as {}.

Viewing Object Identifier Values in Local Pane

The Local Pane displays the object instance number in the value
field, as shown in Figure 11-21.

11-54

Using the Testbench Debugger

Figure 11-21 Viewing Object Identifier Values in Local Pane

Viewing Object Identifier Values in Watch Pane

The Watch Pane displays the object instance number in the value
field, as shown in Figure 11-22.

11-55

Using the Testbench Debugger

Figure 11-22 Viewing Object Identifier Values in Watch Pane

Variable Type Root of Variable Default when added to Watch Pane

Class Object Object, Dynamic,
Local

Object

Local/Automatic
Variables

Dynamic, Local Dynamic

Static Design
Elements

Static, Local Static

11-56

Using the Testbench Debugger

Figure 11-23 Viewing the Scope of Dynamic and Local Scope Types

Figure 11-24 Viewing the Scope Type Information in a ToolTip

11-57

Using the Testbench Debugger

Viewing Object Identifier Example

Example 11-2 shows a test file (test.v) used to illustrate viewing
object identifiers.

Example 11-2 Viewing Object Identifier Design File (test.v)

class Outer;
class Inner;
integer a;
function new(integer a);
this.a = a;
endfunction

endclass

Inner inner;
endclass

class Ext_Outer extends Outer;
function new(integer a);
super.inner = new(a);
endfunction
task print;
$display("%m.a = %0d",super.inner.a);
endtask

endclass

Ext_Outer outer;
initial begin
outer = new(10);
outer.print;
end
endprogram

11-58

Using the Testbench Debugger

Compile the test.v file shown in Example 11-2.

% vcs -sverilog -debug_all test.v

Invoke the DVE GUI

% simv -gui&

Creating Object Identifier Breakpoints

You can use DVE or UCLI to set a breakpoint for a specific instance
of an object in your code.

Creating Object Breakpoints Using UCLI Commands

You can use the UCLI commands shown in Table 11-9 to create
object breakpoints:

Table 11-9 UCLI Commands to Create Object Breakpoints

Note:
- You can specify an object instance using -object_id
<classname@instance_number> (even before the given
class or instance exists).

- If you do not specify either -object or -object_id, this
command sets the breakpoint on all instances of the class.

UCLI Command Description

stop -file <file> -line
<lineno> -object_id
<objectID>

Stops the execution at a specified line if the object
is available.

stop -in <class method name>
-object_id <objectID>

Stops the execution at a specified function or task
if the object is available.

11-59

Using the Testbench Debugger

- If you restart the simulation, the breakpoint is restored using
object_id.

Creating Conditional Breakpoints

You can use the -condition <expression> option to specify a
conditional expression.

Creating Object Breakpoints Using DVE Breakpoints
Dialog

You can also use the DVE Breakpoints dialog box to create object
breakpoints. Select Simulator > Breakpoints. In the Breakpoints
dialog box, click Define>> to display the breakpoint creation tabs, as
shown in Figure 11-25.

11-60

Using the Testbench Debugger

Figure 11-25 Creating Object Breakpoints using Breakpoints Dialog Box

11-61

Using the Testbench Debugger

Figure 11-26 Dropping Objects into the Line Edit Fields

11-62

Using the Testbench Debugger

Figure 11-27 Dragging Objects into Condition and Class Object Fields

Creating Breakpoints at the End of a Method

You can use the UCLI command shown in Table 11-10 or the DVE
Breakpoints dialog box (see Figure 11-28) to create a breakpoint at
the end of a method:

11-63

Using the Testbench Debugger

Table 11-10 Command to Create Breakpoint at the end of a Function or

Task

You can use the task/function tab in the Breakpoints dialog box to
create a breakpoint at the end of a function or task.

To create a breakpoint at the end of a method using DVE:

1. Drag a function or task from the Hierarchy Pane into the line edit
field of Break in task/function, as shown in Figure 11-28.

2. Select End in the Task/Function tab.

3. Click Create in the Breakpoints dialog box to view the breakpoint
in the Source View, as shown in Figure 11-28.

UCLI Command Description

stop –in <function/task
name> -end

Stops the execution at the line of endfunction
or endtask. When a function has multiple return
statements, the breakpoint hits at the
endfunction line after one of the return
statements is executed.

11-64

Using the Testbench Debugger

Figure 11-28 Creating a Breakpoint at the end of a Function or Task in DVE

Parameterized Class Support

DVE displays the parameter type for each parameterized class
name in the Hierarchy Pane, as shown in Figure 11-29.

11-65

Using the Testbench Debugger

Figure 11-29 Viewing Parameterized Class Types

Avoiding Stepping into VMM/UVM/OVM Code

You can use the DVE Preference option Avoid stepping into UVM/
VMM code for ‘next’ and ‘step’ commands or the
stepintotblib UCLI configuration variable to avoid stepping into
VMM, UVM, or OVM code.

Note:
The value of the stepintotblib variable is synchronized with
the above-mentioned DVE preference option. Enabling this
variable (config stepintotblib on) in DVE enables the
above-mentioned DVE preference option and vice versa.

To select the Avoid stepping into UVM/VMM code for ‘next’ and
‘step’ commands option:

1. Select Edit > Preferences.

The Application Preferences dialog box appears.

11-66

Using the Testbench Debugger

2. In the Testbench/CBug category, select Avoid stepping into
UVM/VMM code for ‘next’ and ‘step’ commands, as shown in
Figure 11-30.

Figure 11-30 Application Preferences Dialog Box

Changing Dynamic Variable Values in DVE

You can use the Change Value right-click menu option to change
the values of dynamic variables in the Local Pane and Watch Pane.

11-67

Using the Testbench Debugger

This menu item is enabled only if:

• The right-click selection in the Local Pane or Watch Pane is a
single item.

• DVE is in interactive mode.

• The selected item corresponds to a testbench dynamic variable
at the current simulation time (for example, not a
$vcdplustblog recorded variable).

To change dynamic variable values in DVE:

1. Select a variable in the Local Pane or Watch Pane, right-click, and
select Change Value. Or select Simulator > Change Value. The
Change Value dialog box appears, as shown in Figure 11-31.

Figure 11-31 Change Value Dialog Box

2. To change the value of selected variable, enter a value and click
OK.

11-68

Using the Testbench Debugger

Filtering Variables in Local Pane

You can filter variables based on their types in the Local Pane. To
filter signals based on their types, click the Filter type list and select
or clear the desired type. Figure 11-32 shows the available filter
types.

Figure 11-32 Filter Types in Local Pane

Filtering Objects in Stack Pane

You can filter objects based on the text string in the Stack Pane. For
example, type the search string using regular expressions or
wildcards (*) in the text box to filter the objects (see Figure 11-33).

11-69

Using the Testbench Debugger

Figure 11-33 Filtering Objects in Stack Pane

Viewing the Class in Class Browser from Source View
and Member Pane

To view the class in the class browser from the Member Pane, select
a class in the Member Pane, right-click, and select Show in Class
Browser, as shown in Figure 11-34. Or from the Member View, drag
and drop an item into the Class Pane to view its corresponding class
in the Class Browser.

11-70

Using the Testbench Debugger

Figure 11-34 Viewing Class in Class Browser from Member Pane

The Show in Class Browser menu option is enabled only if:

• A single item is selected.

• The text in the Type column indicates a class name. This text is
in the format of Class <class_name> or Array Class
<class_name>. The class can be user-defined or from libraries
such as VMM or UVM. Figure 11-35 shows an example for VMM
classes.

11-71

Using the Testbench Debugger

Figure 11-35 VMM Classes

To view the class in the class browser from the Source View, select
a class name in the Source View, right-click, and select Show > in
Class Browser (see Figure 11-36).

The Show > in Class Browser option is enabled only if:

• The selection is in a scope that is currently active.

• The selected text is a class name.

11-72

Using the Testbench Debugger

Figure 11-36 Viewing Class in Class Browser from Source View

Viewing VMM/UVM Documentation

DVE allows you to view the VMM or UVM online help documentation
in an external web browser from the Help menu, Class Pane, or
Member Pane.

To view the VMM or UVM online help documentation from the Help
menu, select Help > UVM/VMM Reference.

To view the VMM or UVM online help documentation from the Class
Pane or Member Pane, select a UVM or VMM class in the Class
Pane or Member Pane. Right-click and select the UVM/VMM
Reference option to view its corresponding documentation in the
VMM or UVM online help. If you select multiple items, the VMM or
UVM online help documentation opens for the first selected item.

11-73

Using the Testbench Debugger

Note:
The UVM/VMM Reference option is enabled only if the selected
class (or the parent class of the selected method or variable in
Member Pane) is a UVM or VMM class.

Viewing Struct Variables in the Local Pane

DVE displays struct variables in the Local Pane, as shown in
Figure 11-37.

Figure 11-37 Viewing Struct Variables in the Local Pane

You can also use the show and get UCLI commands to view struct
variables and their values.

11-74

Using the Testbench Debugger

Struct Variables Example

Example 11-3 shows the contents of the test.sv file.

Example 11-3 Struct Variables Design File (test.sv)

program test;
int p1=4;

class myclass;

struct packed {
reg [3:0] p;
logic [3:0] q;
bit [3:0] r;
} ps;

endclass

myclass mc = new;
initial begin
mc.ps= {p:1'b1,default:p1};
// initialization with variable:value
#2 $display("%b %b",mc.ps.p,mc.ps.q,mc.ps.r);

end
endprogram

Compile the test.v file shown in Example 11-3.

% vcs -sverilog -debug_all test.sv

Invoke the DVE GUI:

% simv -gui&

11-75

Using the Testbench Debugger

Viewing the .size of Dynamic Arrays in Local Pane

DVE displays the .size() of dynamic arrays, associate arrays, and
queues in the following format:

size: <current_level_size> (<accumulative_size>)

where,

• <current_level_size> is the size of the current dimension

• <accumulative_size> is the total size of all dimensions

For example: size: 2 (20)

That is, DVE displays both the cumulative and descendants for
.size()in the Local Pane, as shown in Figure 11-38. Mouse over
the desired value to view this information in the ToolTip.

11-76

Using the Testbench Debugger

Figure 11-38 Viewing the .size of Dynamic Arrays in Local Pane

Dynamic Arrays Example

Example 11-4 shows the contents of the test.sv design file.

Example 11-4 Dynamic Arrays Design File (test.sv)

module top;
int A [][3][];
int B [2:0][][];
int C [][3][];
int D [3][][];

initial begin
 A = new [2];
 A[1][2] = new [7];
 D[2] = new [2];
 D[2][0] = new [6];

 $display("Size of A: %d", A.size());

11-77

Using the Testbench Debugger

 $display("Size of A[1][2]: %d", A[1][2].size());
 $display("Size of D[2]: %d", D[2].size());
 #1 $finish;
end
endmodule

Compile the test.sv file shown in Example 11-4:

% vcs -sverilog -debug_all test.v

Invoke the DVE GUI:

% simv -gui&

Following is the console output from the simv run:

Size of A: 2
Size of A[1][2]: 7
Size of D[2]: 2

11-78

Using the Testbench Debugger

Debugging Threads

DVE allows you to do the following:

• View all the threads in your design and the status of the selected
thread in the Stack Pane.

• Filter the named and unnamed scopes which are not active call
stacks.

• Provide better names for unnamed scopes (of type initial, always
or fork) from active call stacks.

• Search for a thread in the Stack Pane

• Set thread-specific breakpoints in the Stack Pane

• Double-click a thread ID in Console Pane to view it in the Stack
Pane

• Set different background color for stack frame from user code and
UVM (VMM, OVM) library code.

Thread Debugging Example

Consider the following test case:

Example 11-5 A Design File with Thread Debug (test.sv)

program top;

`include "uvm_macros.svh"
import uvm_pkg::*;

class test extends uvm_test;

 `uvm_component_utils(test)

11-79

Using the Testbench Debugger

 function new(string name, uvm_component parent = null);
 super.new(name, parent);
 endfunction

 virtual function void report();
 $write("** UVM TEST PASSED **\n");
 endfunction
endclass

initial
 begin
 run_test();
 end

endprogram

Compile the test.sv code shown in Example 11-5, as follows:

% vcs -sverilog -ntb_opts uvm -debug_all test.sv

Invoke the DVE GUI, as follows:

% simv +UVM_TESTNAME=test -gui

Viewing Status of a Thread in the Stack Pane

DVE allows you to view all the threads in your design and the status
of the selected thread in the Stack Pane. This helps you to view the
thread-related information and top active call stack for the selected
thread.

To view only threads in your design and status of the selected thread,
perform the following steps:

11-80

Using the Testbench Debugger

1. In the Stack Pane, click the Stack Mode button and select

Threads Only from the drop-down list, as shown in Figure 11-39,
to view the Threads Only display view (see Figure 11-40).

Figure 11-39 Viewing All Threads in Your Design

The Threads Only display consists of the threads view and stack
frame view, as shown in Figure 11-40. The threads view displays all
threads in your design hierarchically. The stack frame view displays
stack frames for the selected thread.

11-81

Using the Testbench Debugger

Figure 11-40 The Threads Only View

2. Select a thread in the threads view to view its stack trace
information in the stack frame view, as shown in Figure 11-41.

11-82

Using the Testbench Debugger

Figure 11-41 Viewing the Call Stack Information of a Thread

Place the cursor over a thread in the Thread column to bring up a
tool tip that displays its relationship chain and created time
information, as shown in Figure 11-41.

Searching a Thread in the Stack Pane

You can use the Find dialog box, as shown in Figure 11-42, to search
for a thread in the Stack Pane using the following steps:

11-83

Using the Testbench Debugger

1. In the Stack Pane, click the Stack Mode button and select the

desired stack mode:

 All Threads and Call Stacks

 Only Active Call Stack

 Threads Only

2. From the Edit menu, select Find. The Find dialog box appears.

3. From the Field drop-down list, select Thread.

4. Enter the string that you want to find in the Find field.

5. You can refine your search by selecting the Match Whole Word
Only or Match Case check boxes.

Table 11-11 Search Options to Customize a Search

6. Click the Find Next button in the dialog box. DVE highlights the
thread in the Stack Pane, as shown in Figure 11-42.

7. Click Close to close the Find dialog box.

Option Description

Match Whole Word Only Match a complete word.

Match Case Search for a word or text string with specific
capitalization.

11-84

Using the Testbench Debugger

Figure 11-42 Searching a Thread in the Stack Pane

Using Object ID Column in the Threads Only Display
View

You can drag and drop the desired object ID from the Object ID
column into:

• the source view to view the source code for the object ID

• the Watch Pane

• the Breakpoint name field of the Breakpoints dialog box as a
condition

11-85

Using the Testbench Debugger

Filtering Unnamed Scopes in the Active Call Stack View

The active call stack view allows you to filter the named and
unnamed scopes (call stacks of type fork, initial, and always) which
are not active call stacks.

To display the active call stack view, click the Stack Mode button

and select Only Active Call Stack from the drop-down list, as
shown in Figure 11-43.

Figure 11-43 Viewing The Active Call Stack Display

The active call stack view displays call stacks, as shown in
Figure 11-44. Click the Filter button to filter out the named and
unnamed scopes that are not active call stacks. The scope that is
located at the top of a new thread is named after the scope above it
(for example, the scope below fork, initial or always, is named Fork
Thread, Initial Thread, or Always Thread), and is the start of a new
thread, as shown in Figure 11-45.

11-86

Using the Testbench Debugger

Figure 11-44 The Active Call Stack Display View

11-87

Using the Testbench Debugger

Figure 11-45 Filtering Unnamed Scopes

Figure 11-46 shows the active call stack view after filtering.

11-88

Using the Testbench Debugger

Figure 11-46 The Active Call Stack View After Filtering

The Fork Thread, Initial Thread, or Always Thread scope retains its
original name if you drag and drop it into other view. For example,
Figure 11-47 shows the original name of thread 166 that was
dragged and dropped into the DVE command-line field, it is named
Fork Thread in the active call stack view (see Figure 11-46).

11-89

Using the Testbench Debugger

Figure 11-47 Dragging and Dropping Scopes Into Other Views

Support for Thread-Specific Breakpoints in the Stack
Pane

You can use the Set Thread Breakpoint right-click option to set
breakpoint on the desired thread in the Stack Pane.

To set a breakpoint on a thread, do the following:

1. In the Stack Pane, right-click on a thread and select the Set
Thread Breakpoint pull-down menu command, as shown in
Figure 11-48.

This brings up the Breakpoints dialog box.

11-90

Using the Testbench Debugger

Figure 11-48 Setting a Breakpoint on a Thread in the Stack Pane

2. In the Thread tab in the Beakpoints dialog box, choose the
breakpoint type (Enter, End, or Both) that you want to set.
Table 11-12 lists the breakpoint types available in the Thread tab.

Table 11-12 Breakpoint Types in the Breakpoints Dialog Box

3. Click Create to set a breakpoint on the selected thread.

The selected thread is now included in the list of defined
breakpoints, as shown in Figure 11-49.

4. Click Close.

Breakpoint Type Description

Enter Creates thread creating and resuming breakpoint. This breakpoint
type is selected by default in the Thread tab.

End Creates thread terminating breakpoint

Both Creates breakpoint for all thread events

11-91

Using the Testbench Debugger

Figure 11-49 Selecting Breakpoint Type in the Breakpoints Dialog Box

Viewing the Console Pane Thread in the Stack Pane

You can double-click a thread ID in the Console Pane to view it in the
Threads Only view of the Stack Pane.

To view the Console Pane thread in the Stack Pane, do the following:

1. Use the UCLI thread command in the DVE command-line to
view the list all active threads in the Console Pane.

2. Click a thread ID in the Console Pane.

11-92

Using the Testbench Debugger

DVE highlights the thread in the Stack Pane, as shown in
Figure 11-50.

Figure 11-50 Viewing the Console Pane Thread in the Stack Pane

Configuring the Background Color of a Stack Frame in
the Stack Pane and Class Pane

You can set different background colors for the stack frame from user
and library code. Table 11-13 lists the default background colors of
the Stack Pane from user and library code.

11-93

Using the Testbench Debugger

Table 11-13 The Default Background Colors of the Stack Frame

To change background color of the stack frame from user code and
library code:

1. Select Edit > Preferences.

The Applications Preferences dialog box appears.

2. In the Testbench/CBug category, Background color for stack
frame item region, select one of the following:

- The drop-down button for Stack frame from user code

- The drop-down button for Stack frame from library code

Either choice brings up a color palette for the background color
as shown in Figure 11-51.

3. Select a color from the color palette and click Apply.

4. Click OK.

For example, if you want to set green color for the stack frame from
library code, click the drop-down button, as shown in Figure 11-51,
and select green color from the color palette. The background color,
of the stack frame from library code, changes to green in the Stack
Pane and Class Pane, as shown in Figure 11-52 and Figure 11-53.

Code Type Default background color of stack frame

User Code White

UVM (VMM, OVM)
library Code

Gray

11-94

Using the Testbench Debugger

Figure 11-51 Setting the Background Color for the Stack Frame in the Stack
Pane

11-95

Using the Testbench Debugger

Figure 11-52 The Background Color of the Stack Frame in the Stack Pane

Figure 11-53 The Background Color of the Stack Frame in the Class Pane

11-96

Using the Testbench Debugger

Debugging UVM Testbench Designs

The Universal Verification Methodology (UVM) is a methodology for
functional verification using the SystemVerilog base class library. It
allows you to construct class-based verification environments using
verification component objects. It also allows you to create stimulus
using sequence objects.

Since UVM defines class-based testbenches, you need a debug
environment that allows you to view the entire UVM class structure,
including class inheritance relationships and the instance trees.This
provides you a complete information of your verification
environment, which helps you to understand the UVM architecture
and to make the debug of UVM designs easier.

DVE supports the debugging of UVM testbench designs and allows
you to do the following:

• View all available configurations in your design

• View the set/get history of a configuration item

• View all the predefined phases of common and UVM domain

• Set breakpoints on the important phases or on the phase methods
of uvm_component.

• View runtime arguments using the Simulation Arguments dialog
box

• Filter UVM object items in the Watch Pane

11-97

Using the Testbench Debugger

UVM Testbench Design Debug Example

Consider the following test case:

Example 11-6 Design File With Thread Debug (test.sv)

program top;

`include "uvm_macros.svh"
import uvm_pkg::*;

class test extends uvm_test;

 `uvm_component_utils(test)

 function new(string name, uvm_component parent = null);
 super.new(name, parent);
 endfunction

 virtual function void report();
 $write("** UVM TEST PASSED **\n");
 endfunction
endclass

initial
 begin
 run_test();
 end

endprogram

Compile the test.sv code shown in Example 11-6 as follows:

% vcs -sverilog -ntb_opts uvm -debug_all test.sv

Invoke the DVE GUI using the following command:

% simv +UVM_TESTNAME=test -gui

11-98

Using the Testbench Debugger

UVM Resource Browser

The UVM Resource Browser is a configuration interface which
displays all available configurations/resources in your design. It
allows you to exchange information across different components to
configure topology, mode of operation, and runtime parameters.

The classes derived from uvm_component can use the
uvm_resource_db methods or the set_config_int,
set_config_string, or set_config_object methods to store
this information. Other components can use uvm_resource_db
methods or the get_config_int, get_config_string, or
get_config_object methods to get this information.

Viewing the UVM Resource Browser

You can view the UVM Resource Browser in the Resource tab of the
UVM Debug Pane. It contains Resource View and Resource History
View, as shown in Figure 11-55. This view updates when the
simulation stops.

To view the UVM Resource Browser, perform the following steps:

Click the Debug UVM/OVM button.

Or

Select Debug UVM/OVM from the Trace menu, as shown in
Figure 11-54.

11-99

Using the Testbench Debugger

Figure 11-54 Opening the UVM Resource Browser

The UVM Debug dialog box appears, as shown in Figure 11-55. This
dialog box displays the Resource tab which contains the UVM
Resource Browser.

11-100

Using the Testbench Debugger

Figure 11-55 Viewing the UVM Resource Browser

Using the Resource View

The Resource View displays all available configurations in your
design. This view contains four columns, namely, Name, Scope,
Value, and Type, as shown in Figure 11-56, and displays names and
values of function arguments defined in your design. This view

11-101

Using the Testbench Debugger

allows you to sort the data in each column. Table 11-14 describes the
columns of the Resource View. You can select only one item at a
time.

Figure 11-56 Resource View

Table 11-14 Resource View Columns

Filtering Configurations in the Resource View

Filtering options in the UVM Resource Browser (see Figure 11-57)
allow you to configure the type of information to display for Name,
Scope, and Type columns in the Resource View. Table 11-15

Column name Description

Name Displays the following function arguments:

•The name argument of the set function of uvm_resource_db

•“The field_name argument of set_config_* and
set_resource_* functions of uvm_component

Scope Displays the scope argument of a function

Value Displays the value or val argument of a function.

Type Displays the argument type. The type can be string, integer, bit,
bit[0:0], bit[1:1], enum, object, virtual interface, or array. The string
of scope is taken from the member of uvm_resource_db. It is a
regular expression without the leading /^ and ending $/.

11-102

Using the Testbench Debugger

describes the filtering options in the UVM Resource Browser. You
can use one or more filters to filter configurations in the Resource
View.

Figure 11-57 Resource Browser Filtering Options

These filters allow you to specify the text to filter and to store the
previously specified filter strings. By default, these filters use ‘*’
wildcard character as the filter string. You can change this default
setting to a simple string or regular expression using the Syntax
drop-down in the Global category of the Application Preferences
dialog box.

11-103

Using the Testbench Debugger

Table 11-15 Filtering Options in the UVM Resource Browser

Type Filter for the Resource View

You can click the Type Filter drop-down, as shown in Figure 11-58,
to select the filters based on which you can sort the configurations in
the Resource View.

Type Filter in the Resource View allows the filter of
check_connection_relationship, default_sequence and
recording_detail configuration items. These configurations
may contain large number of “(failed lookup)” items.

Filter name Description

Name Allows you to view the desired function arguments in the Name
column.

Scope Specifies the hierarchical reference path of an object to view only
the resource/configuration whose scope pattern matches the
specified path. You can select an object from the Object Hierarchy
Browser and use Show Resource right-click option to specify it in
this filter. You can reset other filters to show only the resource/
configuration for this object.

Type Allows you to view the desired argument type in the Type
column.You can specify one of the following types: *, Int, Bit,
bit[0:0], bit[1:1], Enum, String, Object, Virtual
interface, or Array.

11-104

Using the Testbench Debugger

Figure 11-58 Resource View Type Filter

Using the Resource History View

The Resource History View displays the set/get history of the
resource/configuration item selected in the Resource View. This
View contains four columns, as shown in Figure 11-59, and you can
sort the data in each column. You can double-click an item in the
Resource History View to view the code from where the set/get
function is called. You can select only one item at a time.

Table 11-16 describes the columns in the Resource View.

Table 11-16 Resource History View Columns

Column Name Description

Action Displays the set/get history of the resource item selected in
Resource View

Accessor Displays the objects that set or get the resource/configuration
information

Value Displays the value or val argument of a function

Time Displays the time at which action is performed

11-105

Using the Testbench Debugger

Figure 11-59 Resource History View

Filtering Action Items in the Resource History View

The Filter Types of the UVM Resource Browser (see Figure 11-60)
allow you to configure the type of information to display for the
Action column in the Resource History View. Table 11-17
describes the filter types of the Resource History View.

Table 11-17 Resource History View Filter Types

Filter type Description

All Calls Displays the abnormal resource/configuration operations of
the entire design. This filter type is selected, by default.

Set Calls Without Get Displays the set calls of the resource/configuration selected
in the Resource View.

Get Calls Without Set Displays the get calls of the resource/configuration selected
in the Resource View.

11-106

Using the Testbench Debugger

Figure 11-60 Filtering Action Items in the Resource History View

Right-click Menu Options in the Resource View

Table 11-18 describes the right-click menu options available in the
Resource View.

11-107

Using the Testbench Debugger

Table 11-18 Right-click Menu Options in the Resource View

Right-click Menu Options in the Resource History View

Table 11-19 describes the right-click menu options available in the
Resource History View.

Table 11-19 Right-click Menu Options in the Resource History View

UVM Factory View

The UVM Factory View provides an interface to view the list of all
classes or overridden classes that define the UVM factory facility.
You can view the UVM Factory View in the Factory tab of the UVM

Option Description

Show Interface
Definition

Navigates you to the SV-interface with which the virtual interface
is connected.This option is enabled only when the value type of the
selected resource/configuration is virtual interface.

Set radix Allows you to change the radix of the selected variable (Int, Bit, and
Enum). Supported radixes include: binary, octal, decimal, and hex.
The enum values are shown in the EnumString (value) format.
For example, IDLE(’h0). This option is enabled only when the
selected value type is one of the vector types.

Export Set/Get
calls

Exports the resource/configuration into a text file.

Option Description

Show Call in Source
Window

Displays the source line of the selected call in the Source View.

Show Accessor in
Object Browser

Displays the class object of the selected accessor in the Object
Hierarchy Browser.

Show Accessor in
Class Browser

Displays the class of the selected accessor in the Class Pane.

11-108

Using the Testbench Debugger

Debug Pane, as shown in Figure 11-61. By default, this view
displays only the overridden classes and updates for each simulation
stop.

To view the UVM Factory View, perform the following steps:

1. Select Panes > UVM from the Window menu.

2. Click the Factory tab in the UVM Debug Pane, as shown in
Figure 11-61.

Figure 11-61 UVM Factory View

The UVM Factory View contains three columns, namely, Original
Type, Override Type, and Override Instance, as shown in
Figure 11-61, and you can sort the data in each column. This view
allows you to select only one item at a time.

11-109

Using the Testbench Debugger

Table 11-20 describes the columns in the UVM Factory View.

Table 11-20 UVM Factory View Columns

Filtering Types and Instances in the UVM Factory View

Filtering options in the UVM Factory View (see Figure 11-62) allow
you to configure the type of information to display for Original Type,
Override Type, and Override Instance columns.

Figure 11-62 Factory View Filtering Options

Column name Description

Original Type Displays the list of original types

Override Type Displays the type of instance override

Override
Instance

Displays instance overrides

11-110

Using the Testbench Debugger

These filters allow you to specify the text to filter and stores the
previously specified filter strings. By default, these filters use ‘*’
wildcard character as the filter string. You can change this default
setting to a simple string or regular expression by using the Syntax
drop-down in the Global category of the Application Preferences
dialog box.

Filtering Items in the UVM Factory View

Table 11-21 describes the filter types of the UVM Factory View.

Table 11-21 UVM Factory View Filter Types

Right-click Menu Options in UVM Factory View

Table 11-22 describes the right-click menu options available in the
UVM Factory View.

Filter type Description

All Types Displays the list of all classes

User Types Only Displays the user-defined classes

Override Types
Only

Displays the overridden classes

11-111

Using the Testbench Debugger

Table 11-22 Right-click Menu Options in the UVM Resource Browser

UVM Phase View

UVM provides the objection mechanism to control the phases of
simulation. This mechanism raises or drops works for each
testbench component until the simulation is complete. The UVM
component raises an objection when it is busy doing work and drops
its objection when it is idle. Figure 11-63 shows the UVM Phase
View in the UVM Debug Pane. The UVM Phase View displays all
the predefined phases of common and UVM domain.

Click the Show only the active phase check box to view only the
executing phases.

Option Description

Show original class in
Class Browser

Displays the original class of the selected
class in the Class Pane

Show override class
in Class Browser

Displays the overridden class of the
selected class in the Class Pane

Show Source for Original Class Displays the source line of the selected
original class in Source View

Override Class Displays the source line of the selected
override class in Source View

Override Instance
(Enabled only for
instance override)

Displays the source line of the selected
override instance in Source View

11-112

Using the Testbench Debugger

Figure 11-63 UVM Phase View

The State column displays the status of a phase. The status of a
phase can be as follows:

NA — Not started

STRT — Executing

DONE — Completed

11-113

Using the Testbench Debugger

You can use the Phase History button to view the information of the
selected phase in the Phase History Table, as shown in Figure 11-
64.

Figure 11-64 Viewing Phase History Table

You can right-click on a phase, select Set Component Breakpoint
to open the Breakpoints dialog box, and create a breakpoint on the
corresponding phase function of uvm_component (for example,
uvm_component::run_phase). You can specify condition or
object options for this component breakpoint.

You can use the Breakpoint drop-down, as shown in Figure 11-65,
to view the options available to set breakpoints.

11-114

Using the Testbench Debugger

Figure 11-65 Options to Set Breakpoints

Table 11-23 describes the breakpoint options.

Table 11-23 Breakpoint Options

The objections in the selected phase (uvm_phase::phase_done)
is displayed in the Objection History View, as shown in Figure 11-
66. For each objection action, its time, type, source object’s path,
and its object ID are displayed. After the action, the total number of
remaining objection count is listed in the Count(Total) column.

Breakpoint Option Description

Break on uvm_root:phase_started Opens the Breakpoints dialog box and displays
Break in the task/function field as
uvm_root::phase_started

Break on uvm_root:build_phase Stops the execution in the
uvm_root::build_phase

Break on uvm_root:run_phase Stops the execution in the
uvm_root::run_phase

Breakpoints Opens the Breakpoints dialog box and displays
the breakpoint list

11-115

Using the Testbench Debugger

Figure 11-66 Objection History View

You can use the object text filter to filter the objection list by the object
reference path, as shown in Figure 11-67. Click the Show active
objection only check box to filter the raised objection items that are
dropped.

Figure 11-67 Object Text Filter

11-116

Using the Testbench Debugger

UVM Phase Breakpoints

You can set breakpoints on the important phases or on the phase
methods of uvm_component using the UVM drop-down in the Task/
Function tab of the Breakpoints dialog box, as shown in Figure 11-
68. Click this drop-down button to view the list of predefined phase
breakpoints. Select a phase method from the list, to add it to the
Break in task/function field.

Figure 11-68 UVM Phase Breakpoints

As shown in Figure 11-68, the UVM component breakpoints are
divided into three phases, namely, Build, Run, and Cleanup. Each
category contains a list of phase methods that can be used as a
breakpoint.

11-117

Using the Testbench Debugger

The Build phase, as shown in Figure 11-69, contains the following
phase methods:

build_phase, connect_phase,
end_of_elaboration_phase, and start_of_sim_phase

Figure 11-69 Phase Methods in the Build Phase

The Run phase, as shown in Figure 11-70, contains the following
phase methods:

run_phase, pre_reset_phase, reset_phase,
post_reset_phase, pre_configure_phase,
configure_phase, post_configure_phase,
pre_main_phase, main_phase, post_main_phase,
pre_shutdown_phase, shutdown_phase, and
post_shutdown_phase

11-118

Using the Testbench Debugger

Figure 11-70 Phase Methods in Run Phase

The Cleanup phase, as shown in Figure 11-71, contains the
following phase methods:

extract_phase, check_phase, report_phase, and
final_phase

11-119

Using the Testbench Debugger

Figure 11-71 Phase Methods in Cleanup Phase

The Report phase, as shown in Figure 11-72, contains the following
phase methods:

uvm_report_info, uvm_report_warning,
uvm_report_error, and uvm_report_fatal

Figure 11-72 Phase Methods in Report Phase

11-120

Using the Testbench Debugger

Simulation Arguments Dialog Box

UVM provides the uvm_cmdline_processor class, which helps to
parse the simulation runtime options. DVE displays this information
in the Simulation Arguments dialog box. You can open this dialog
box from the DVE Simulation Setup dialog box, as shown in
Figure 11-73.

Figure 11-73 Simulation Arguments Dialog Box

The Simulation Arguments dialog box displays information in a list
view, and contains the following two arguments:

• Regular Arguments

• UVM Arguments

11-121

Using the Testbench Debugger

The UVM Arguments tree includes all the options starting with +UVM
(case-insensitive).

The -f run.f option contains other simulation options and it can
be expanded to view options in it. Same is the case with the -i/-do
options. The tcl script content can be expanded to view options in
it.

The Simulation Arguments dialog box information is read-only. It
updates to the latest simv options whenever the dialog box is
opened or a different design is selected using the Designator box.

Filtering Variables in the Watch Pane

DVE allows you to filter UVM object items in the Watch Pane using
the text filter and Dynamic attribute filter type filter, as shown in
Figure 11-74. Each Watch Pane contains its own text filter and
Dynamic attribute filter type filter.

These filters work on the visible leaf items. That is, if any leaf item is
visible, its parent items will also be displayed (even if they do not
match the filters).

11-122

Using the Testbench Debugger

Figure 11-74 Watch Pane Filters

 12-1

Debugging Transactions

12
Debugging Transactions 1

This chapter contains the following sections:

• “Introduction”

• “Transaction Debug”

• “Transaction Debug in SystemC Designs”

• “Viewing NTB-OV Variables using tblog/msglog”

Introduction

Productive system-level debug necessitates keeping a history of the
system evolution that covers the varied modeling abstraction and
encapsulation constructs used in both the design and testbench.
Moreover, given the mix of abstraction layers and the wealth of data

 12-2

Debugging Transactions

sources in modern SoC design with IP reuse including user-added
messaging, a flexible recording mechanism with an easy to control
use-model and sampling mechanism is required.

To address these needs, VCS provides a pair of system tasks
$vcdplustblog and $vcdplusmsglog which is to be called from
SystemVerilog. The tasks can be applied in many contexts to record
data directly into the VPD file. Both the tasks are based on the
transaction abstraction:

• $vcdplustblog is intended for design and testbench static and
dynamic data recording. It is primarily suited for logging of
testbench call frames and for creating dynamic data waveforms
essential for post-process debug. $vcdplustblog forms the
basis of transaction-based debug of dynamic data.

• $vcdplusmsglog on the other hand, is intended primarily for
recording messages, notes, and most importantly transactions -
definition, creation, and relationships on multiple streams.
$vcdplusmsglog forms the basis of transaction modeling and
debug.

Transaction Debug

Using $vcdplustblog

The $vcdplustblog system task is primarily used for debugging of
dynamic data. The data could be variables in the design or testbench
code. You can call $vcdplustblog in any task, function, or begin
block in any static or automatic scope. This sampling level provides
a high level of flexibility and is quite matched to testbench recording
with the focused selective recording on the call boundaries.

 12-3

Debugging Transactions

The $vcdplustblog task when called during simulation dumps the
variables it is sampling into the default VPD file (default name in
interactive is inter.vpd and in post-process is vcdplus.vpd). Variables
to record can be passed as arguments. In addition,
$vcdplustblog can pick up the static and automatic variables in
the current frame, and any number of base class variable levels if
called in a method, without enumeration. The frame implies the
scope and time where the system task was called. Hence, the frame
depends on not only the scope but also the time. Multiple
$vcdplustblog task calls at the same timestamp are allowed.

In interactive mode, a $vcdplustblog call can be invoked with the
call command from UCLI or DVE prompt without requiring any
code changes. In such usage, $vcdplustblog uses the UCLI
active scope as its reference scope. A sample call follows:

ucli% call {$vcdplustblog("Hello World!")}
Or
dve> call {$vcdplustblog("Hello World!")}

Usage Model
$vcdplustblog([frame_class_var_level],[<string>][,<var>]^n
)

Where,

<frame_class_var_level>

Specifies integer value as follows:

0 — (default). When you specify the integer zero, no frame
variables are recorded.

 12-4

Debugging Transactions

1 — Records frame variables up to one level. If specified in a
class method, $vcdplustblog dumps the class data
members.

2 — Records up to two levels, that is the data recorded when
integer value 1 is specified + dump 1-level up of base data
members if class is an extension.

N — Same as N-1 recording + dump (N-1)-level up of base data
members if class is an extension

-1 — Records all the frame variables and all the class data up
to the very base class, if class is an extension.

<string>

Specifies any multi-line text or HTML text passed as a string
variable or literal.

<var>

Specifies one or more dynamic or static variable provided as an
argument (relative to the current scope or with absolute path).

Example 1

The following example shows the usage of $vcdplustblog in a
class method to record data depending on the
frame_recording_level passed to $vcdplustblog. The illustration
following the example shows how it is displayed in DVE. A more
detailed description of what $vcdplustblog records into the VPD
file, and the DVE pane that is added (Transaction pane) is explained
in later sections.

program test;
class class1;

 12-5

Debugging Transactions

logic class1_logic;
bit class1_bit;
byte class1_byte;
task class1_fun (int x=0);

logic class1_task_logic;
byte class1_task_byte;
bit class1_task_bit;

endtask
endclass
class class2 extends class1;

logic class2_logic;
bit class2_bit;
byte class2_byte;
task class2_fun (int x2=0);

logic class2_task_logic;
byte class2_task_byte;
bit class2_task_bit;

endtask
endclass
class class3 extends class2;

logic class3_logic;
bit class3_bit;
byte class3_byte;
task class3_fun (int x3=0);

logic class3_task_logic;
byte class3_task_byte;
bit class3_task_bit;

endtask
endclass
class class4 extends class3;

logic class4_logic;
bit class4_bit;
byte class4_byte;
task class4_fun (int x3=0);

logic class4_task_logic;
byte class4_task_byte;
bit class4_task_bit;

$vcdplustblog(-1,"Minus-One"); // Case A
$vcdplustblog(0,"Zero"); // Case B
$vcdplustblog(1,"One”); // Case C
$vcdplustblog(2,"Two"); // Case D

 12-6

Debugging Transactions

$vcdplustblog(3,"Three");
$vcdplustblog(4,"Four");

endtask
endclass

class4 inst=new();
initial

begin
 inst.class4_fun();

#12 $finish;
end

endprogram

Case A: In the example, when you pass integer minus one (-1) as
the frame_recording_level while calling $vcdplustblog, all the
base class data members are recorded as shown in the following
figure for the resulting DVE display in the Local pane:

 12-7

Debugging Transactions

Figure 12-1 Local pane display in DVE

Case B: In the example, when you pass integer zero (0) as the
frame_recording_level while calling $vcdplustblog, no variables
are recorded for this call as shown in the following figure. Note that
the Local pane is empty:

 12-8

Debugging Transactions

Figure 12-2 Local pane display in DVE

Case C: In the example, when you pass integer one (1) as the
frame_recording_level while calling $vcdplustblog, only the first
level that is class 4 and its data members are recorded as shown in
the following figure:

 12-9

Debugging Transactions

Figure 12-3 Local pane display in DVE

Case D: In the example, when you pass integer two (2) as the
frame_recording_level, variables in the current extended class
where $vcdplustblog is invoked and the immediate base class
(Class 3 and 4) are recorded as shown in the following figure:

 12-10

Debugging Transactions

Figure 12-4 Local pane display in DVE

VPD Recording

$vcdplustblog records the data into the VPD file, to be later read
in by DVE. The following information is recorded per call:

• Optionally, frame local variables and class data members if in a
method, as controlled by the <frame_recording_level>

• Message <string> if passed as a variable or literal

• Dynamic or static <variables> provided as arguments (name
relative to current scope or with absolute path)

In addition, the following items, not passed explicitly as an
argument are recorded per call:

• Time of the $vcdplustblog call

 12-11

Debugging Transactions

• Call stack of the $vcdplustblog call

$vcdplustblog Data Type Limitations

Except for container types, all the data types supported by the DVE
Testbench GUI are supported by $vcdplustblog recording, when
specified in the local frame or passed as arguments. Container types
are not recorded as a whole, however individual element like a word
or member can be recorded by $vcdplustblog. This limitation in
container types is intended to avoid large data size.

Turning $vcdplustblog Task ON/OFF

You can globally turn the dumping of data on and off. This is useful
to limit the dumping for certain time ranges or based on conditions.
The following tasks are used for this purpose:

• $vcdplustblogoff() — Disables globally $vcdplustblog
based dumping.

• $vcdplustblogon()— Enables globally $vcdplustblog
based dumping.

Conditions can be specified in code surrounding these task. These
tasks do not take any arguments.

Viewing $vcdplustblog objects in DVE

For every $vcdplustblog call, you can view the dynamic variables
depending upon the level specified in the call. Stack pane displays
the call stack and Local pane displays the dynamic variables and
their values. The Wave view displays the values recorded in the
multiple calls in a particular scope over time. The transaction details
and messages are displayed in a new pane called the Transaction
pane.

 12-12

Debugging Transactions

Transaction Pane

The Transaction pane displays all the $vcdplustblog messages
in a tabular format. It shows the time, scope of the $vcdplustblog
call, call stack, severity, type, and message. Each row in the
Transaction pane corresponds to one $vcdplustblog call. The
type of a $vcdplustblog call displayed in the transaction pane is
TB, and the severity is DEFAULT.

To open the Transaction pane, click the Transaction pane toolbar
button or click Window > Panes > Transaction.

You can perform the following tasks from the Transaction pane:

• Filter the view using each column — Click the respective filter text
field to filter objects. For example, to filter by messages, enter the
string in the Messages filter text field.

• View source code of the object — Select a row, right-click and
select Show Source.

• Add objects to the Wave view — Select a row, right-click and select
Add to Waves.

• Add objects to the List view — Select a row, right-click and select
Add to Lists.

• Trace transaction to set context for the transaction message —
Select a row, right-click and select Trace Transactions.

By default, DVE displays the current simulation time data in the Stack
and Local pane. If you select a previous simulation time from the
Transaction pane, the Stack and Local panes display the data
recorded by $vcdplustblog at the selected (previous) time unit,
which is nothing but the transaction history.

 12-13

Debugging Transactions

Viewing the Dynamic Data Types in the Wave view

You can add a particular $vcdplustblog call, that is a row from the
Transaction pane to the Wave View. Wave view would then show a
single fabricated variable tied to the particular scope where call
exists with values over time across the multiple $vcdplustblog
calls made in said scope. Similarly, variables recorded in a call
(whether from a frame or passed as argument) can be shown in the
Wave view and they also create a fabricated variable that groups the
data into a waveform display (a row) across the multiple samplings
made in the scope.

There can only be one $vcdplustblog variable per call scope
representing and grouping all the individual calls made from this
scope. The individual calls are displayed as individual values, that is
boxes of this $vcdplustblog variable. The value is held until a
subsequent call is made from the same scope, thus forming a new
value for the collective $vcdplustblog scope variable.

In the Wave view,

• The messages are displayed in the format specified in the
$vcdplustblog string variable, multi-line text, or html.

• You can set the display of messages from the Application
Preferences dialog box. The messages are always displayed, but
you can turn on/off the display of call stack or values.

• You can search the waveforms by giving the string pattern with
wildcards, or just scan with the Search Forward and Search
Backwards buttons.

The following illustration displays the $vcdplustblog objects in
the DVE Wave view:

 12-14

Debugging Transactions

Figure 12-5 $vcdplustblog display in the Wave view

Modified Version of Example 1

To make the Wave display and how it interacts with the Transaction
pane clearer, a slightly modified version of the Example 1 is used to
generate the figures that follows.

…
class4 inst=new();
initial
 begin
 for (int i = 0; i < 10; i++) begin
 #1;
 inst.class4_fun();
 end
 #12 $finish;
 end
endprogram

 12-15

Debugging Transactions

Selection is for "Case C" mentioned under Example 1, that is when
integer value "One" is passed. Note that since all the calls are in the
same scope "\class4::class4_fun", a single $vcdplustblog Wave
variable is created and the calls are individual values across time,
also note the multiple $vcdplustblog calls per time slot.

Figure 12-6 Wave view of Case C $vcdplustblog call with the modified

example

The Transaction pane, context synced with the Wave view, is also
shown in the following figure.

 12-16

Debugging Transactions

Figure 12-7 Transaction Pane of $vcdplustblog “Case C”

 12-17

Debugging Transactions

Using $vcdplusmsglog

$vcdplusmsglog is primarily designed for transaction recording.
$vcdplusmsglog allows modeling and tracking of transactions on
multiple streams. It can be used to define, create (start/extend/
finish), and describe transactions including relationships. Similar to
$vcdplustblog, $vcdplusmsglog can also be called from the
UCLI prompt.

Usage Model

The task call syntax is as follows:

$vcdplusmsglog ([<frame_class_var_level>,]
[<stream_spec>,] <msg_type>, [<msg_name>,] <msg_severity>,
[<message>,] <relation_spec>, [, <var>]^n)

where,

<frame_class_var_level>

Specifies integer value as follows:

0 — (default). When you specify the integer zero, no frame
variables are recorded.

1 — Records frame variables up to one level. If specified in a
class method, $vcdplusmsglog dumps the class data
members.

2 — Records up to two levels, that is the data recorded when
integer value 1 is specified + dump 1-level up of base data
members if class is an extension.

N — Same as N-1 recording + dump (N-1)-level up of base data
members if class is an extension

 12-18

Debugging Transactions

-1 — Records all the frame variables and all the class data up
to the very base class, if class is an extension.

<stream_spec>

Specifies an optional stream to use in the recording. If no stream
is specified, then the call scope is used as stream (like
$vcdplustblog). The stream can be a name passed as literal
or a variable. Optionally, you can pass a scope name in which
case the stream is created under the said scope.

stream_spec := stream_name [, stream_scope]
where,

stream_scope — <SV identifier literal or string variable>

stream_name — <SV simple (non-escaped) identifier literal or
string variable>

<msg_type>

Specifies a transaction message type, such as NOTE, or
XACTION. The message type is same as that of
vmm_log::types_e that is the type encodings of the enum are
same. The constant names however are changed to be more
generic. The full listing of the types enum is shown in a later
section.

<msg_name>

Specifies the name of the transaction.

<msg_severity>

 12-19

Debugging Transactions

Specifies the transaction message severity. The message
severity is same as that of vmm_log::severities_e, the type
encodings of the enum are same. The constant names however
are changed to be more generic. The full listing of the severity
enum is shown in a later section.

<message>

Specifies the optional message to record with the transaction. The
message can consist of a header and optionally a body.

message := msg_header [, msg_body]

<relation_spec>

Specifies the transaction relation. A relation is a self-relation, such
as START or FINISH. $vcdplusmsglog creates a transaction
on the given stream that is the call would be viewed abstractly as:

$vcdplusmsglog (<message type, name, severity here>,
START/FINISH)

If relation is not a self-relation, then a target transaction is required
and the relation is a uni-directional relation between source and
target. The call can be viewed abstractly as:

$vcdplusmsglog(<relation_source>, relation,
<relation_target>)

where, the source is specified by the tuple (<stream_spec>,
<msg_type>, <msg_name>, <msg_severity>), and target is the
transaction target you are relating the source to. The example is
as follows:

<relation_spec> := [relation][<user_relation_name>][,
<relation_target>]
where

 12-20

Debugging Transactions

<user_relation_name> — string name required only if relation is
"USER" enum field.

<relation_target> —
[[[stream_scope.]stream_name.]msg_name]

The full listing of the types enum is shown in a later section.

<var>

Specifies the transaction attribute variables.

Example

In the following example, multiple calls to $vcdplusmsglog is
made to record the transactions.

`include "msglog.svh" // Package containing the enum
definitions
program p;
import _vcs_msglog::*; // Import package
class C;
 int att1 = 1;
 int att2 = 2;
 task read;
 // Create READ transaction on stream "stream1" and
 // start it with attributes: att1, att2
 $vcdplusmsglog("stream1",XACTION,"read",NORMAL,"READ",
 START, att1, att2);
 #2;
 // Finish READ transaction
 $vcdplusmsglog("stream1",XACTION,"read",NORMAL,"READ",
 FINISH);
 Endtask // read

 task response;
 int att3 = 3;
 // transaction RESP is on same stream, and has att3
 $vcdplusmsglog("stream1",XACTION,"resp",NORMAL,"RESP",
 START, att3);

 12-21

Debugging Transactions

 #1;
 $vcdplusmsglog("stream1",XACTION,"resp",NORMAL,"RESP",
 FINISH);
 endtask // response
endclass // C

 C c = new;
 initial begin
 c.read();
 c.response();
 // Relation: RESP is a child of READ.
 $vcdplusmsglog("stream1",XACTION, "resp",NORMAL, CHILD,
 "read");
 #1;
 $finish;
 end

endprogram

In the “read task”, see the two calls that START and FINISH. The
transaction called "read" on stream is "stream1"; the type is
XACTION, and the severity is NORMAL. The attributes recorded at
the START of the message are "att1" and "att2" variable values.

In the “response” task, see the two calls that START and FINISH.
The transaction called "resp" on stream is "stream1", the type is
XACTION, and the severity is NORMAL. The transaction attribute
recorded at the START of this transaction is "att3".

The following figure shows the Wave view of DVE displaying the
transactions on stream 1. The stream forms a "row" in the Wave
view, transactions as values on the stream, transaction names are
shown in the lower right corner of the transaction box, and the
header message is shown in the box header.

 12-22

Debugging Transactions

Figure 12-8 $vcdplusmsglog Transaction Recording (Example 1)

In the example, you also create a unidirectional relationship of:

"resp" (on stream1) is a child of "read" (on stream1)

where, "resp" is the source of the relationship, and "read" is the
target.

DVE displays the relationship in the source transaction, shown in the
tooltip in the figure above.

The first line in the example listing "`include "msglog.svh"" includes
the VCS package that defines all the enums for type, severity, and
relations.To run this example in VCS and use the package in the
msglog.svh file found under include in the VCS release, you will
compile as follows:

vcs -sverilog -debug_all <testname> +incdir+$VCS_HOME/
include

Transaction Relationships

The transaction relationship enum is as follows:

enum int {
 START = 'h0001,

 12-23

Debugging Transactions

 FINISH = 'h0002,
 PRED = 'h0004,
 SUCC = 'h0008,
 SUB = 'h0010,
 PARENT = 'h0020,
 CHILD = 'h0040,
 XTEND = 'h0080,
 USER = 'h0100// USER RELATION
} _MSG_R;

START. FINISH, XTEND — are self-relations; they operate on the
source and do not need a target transaction. START indicates
starting a transaction, and FINISH completes it. XTEND relation
allows you to "grow" a transaction (it should start and not finished)
with more attributes at any point in its duration.

PARENT/CHILD — Indicates hierarchical transactions.

SUB — Indicates composition sub-part of the transactions.

SUCC/PRED — Indicates causal relationship between the
transactions.

These are the built-in relationships. To create any other named
relation you want beyond the built-in, you can use the USER relation.
If you specify USER, then you must specify an argument as a string
name.

VPD Recording

The $vcdplusmsglog task records the following information into
the VPD file:

• Message header and body, types, severities, and relations

• Dynamic or static variables provided as arguments (relative to
current scope or with absolute path)

 12-24

Debugging Transactions

Similar to $vcdplustblog, the following items, not passed
explicitly as an argument, are recorded per call:

• Time of the $vcdplusmsglog call

• Call stack of the $vcdplusmsglog call

$vcdplusmsglog however has a different focus than
$vcdplustblog. $vcdplusmsglog is targeted towards
transaction modeling and debug, and has no frame recording
capability. Its string message consists of a header and a body; the
header is expected to be used to describe the kind of the transaction
"read", or "write", while the body is used for any generic messaging.
The variables are passed in model attributes of the transactions.

Turning $vcdplusmsglog Task ON/OFF

You can globally turn the recording of messages on and off. This is
useful to limit the recording for certain time ranges or based on
conditions. The following tasks are used for this purpose:

• $vcdplusmsglogoff() — Disables globally
$vcdplusmsglog based recording.

• $vcdplusmsglogon()— Enables globally $vcdplusmsglog
based recording.

Filtering $vcdplusmsglog Messages in Wave View

You can filter the transaction messages in the Wave View.

Example

In the following example, multiple calls to $vcdplusmsglog is
made to record the transactions.

 12-25

Debugging Transactions

test.sv

`include "msglog.svh" // Package containing the enum
definitions. See the document

“Debugging with Transactions” in VCS
Online Documentation to see the
msglog.svh file.

program p;
class C;
 int att1 = 1;
 int att2 = 2;
 task read;
 // Create READ transaction on stream "stream1" and
 // start it with attributes: att1, att2
 $vcdplusmsglog("stream1",XACTION,"read",NORMAL,"READ",
 START, att1, att2);
 #2;
 // Finish READ transaction
 $vcdplusmsglog("stream1",XACTION,"read",FATAL,"READ",
 FINISH);
endtask // read

 task response;
 int att3 = 3;
 // transaction RESP is on same stream, and has att3

$vcdplusmsglog("stream1",XACTION,"resp",WARNING,"RESP",
 START, att3);
 #1;
 $vcdplusmsglog("stream1",XACTION,"resp",NORMAL,"RESP",
 FINISH);
 endtask // response
endclass // C

 C c = new;
 initial begin
 c.read();
 c.response();
 // Relation: RESP is a child of READ.
 $vcdplusmsglog("stream1",XACTION, "resp",ERROR, CHILD,
 "read");

 12-26

Debugging Transactions

 #1;
 $finish;
 end

endprogram

To compile this example code, use the following commands:

vcs test.sv -debug_all -sverilog
simv -gui &

To filter the transaction messages in Wave View

1. Select the messages in the Transaction pane.

2. Right-click and select Add to Waves.

 12-27

Debugging Transactions

The unfiltered transaction messages are added in the Wave View
as shown the figure.

3. Select the signal in the Wave View, right-click and select
Transaction Filter.

Select the signal

 12-28

Debugging Transactions

The Transaction Waveform Filter dialog box appears.

4. Specify the following information, as required:

- Message — Identifies the transaction message. Type the string
or the string with wildcards, for example RESP*, to filter the
messages.

- Call Stack — Identifies the caller stack. Type the string or string
with wildcards to filter by call stack.

- Name — Identifies the message name. Type the string or string
with wildcard to filter by name.

- Severity — Specifies the message severity. Select the check
box against the severity using which you want to filter or select
the All check box to select all the severities.

 12-29

Debugging Transactions

- Type — Specifies the message type. Select the check box
against the message type you want.

- Relation — Specifies the relation type. Select the check box
against each relation to filter based on relation.

- User — Identifies the user-defined relation type. Type the string
to filter.

- Target — Identifies the message target. Type the string to filter
based on target.

- User Logging Error — Specifies the runtime errors flagged by
$vcdplusmsglog call. Select or clear the check box to show
or hide the error messages.

5. Click OK to apply the filter criteria and close the dialog box.

Click Apply to apply the filter criteria and not close the dialog box.

Click Cancel to abandon the changes, and close the dialog box.

Click Tips to display the tips page on the right.

The messages are filtered in the Wave View as per your filter

criteria. The filtered waveforms display the icon.

 12-30

Debugging Transactions

Following figure displays messages filtered by RESP.

Limitations
• Filtering of $vcdplustblog data is not yet supported.

Viewing Streams and Transaction Relations

You can now use the following features in the Transaction pane:

• Streams list for stream display and the messages within.

• A Transaction Relations dialog box for display and exploration of
the transaction relations.

Message Value

Filtered Message

 12-31

Debugging Transactions

Example

Example 12-1 shows streams and transaction relations.

Example 12-1 Transaction Debug
program p;
 import _vcs_msglog::*;
 string OpStream = "OpStream";

class C;
int att1 = 1;
int att2 = 2;

task read;

 string read1="READ";
 $vcdplustblog(-1,"Read Dynamic data");
 $vcdplusmsglog(OpStream,XACTION,"read",NORMAL,"READ",START,att1, att2);
 #2;
 $vcdplusmsglog(OpStream,XACTION,"read",NORMAL,"READ",FINISH);

endtask

task write;

 int att3 = 3;
 $vcdplustblog(-1,"Write Dynamic data");
 $vcdplusmsglog(OpStream,XACTION,"write",NORMAL,"WRITE",START,att3);
 #1;
 $vcdplusmsglog(OpStream,XACTION,"write",NORMAL,"WRITE",FINISH);

endtask

task response;

 int att3 = 3;
 $vcdplustblog(-1,"Response Dynamic data");
 $vcdplusmsglog(OpStream,XACTION,"resp",NORMAL,"RESP",START,att3);
 #1;
 $vcdplusmsglog(OpStream,XACTION,"resp",NORMAL,"RESP",FINISH);

endtask
endclass

C c = new;

initial
begin
c.read();
c.write();
c.response();
 //Relation between the Transaction

 $vcdplusmsglog(OpStream,XACTION, "resp",FATAL, CHILD,"read");

 12-32

Debugging Transactions

 $vcdplusmsglog(OpStream,XACTION, "read",ERROR,SUCC,"write");
 $vcdplusmsglog(OpStream,XACTION, "write",WARNING,PARENT,"read");
 $vcdplusmsglog(OpStream,XACTION, "write",NORMAL,CHILD,"read");
 $vcdplusmsglog(OpStream,XACTION, "write",TRACE,SUB,"resp");

#1;
$finish;
end
endprogram

Steps to compile the example:

% vcs -nc -debug_all -sverilog \
$VCS_HOME/include/msglog.svh top.sv

% ./simv

% dve -vpd vcdplus.vpd &

Viewing Streams and Messages in Streams List

To view the streams and messages in streams, load the design in
DVE.

The Transaction pane displays the stream list on the left and
Transaction table on the right.

Streams list Transaction table

 12-33

Debugging Transactions

The Streams list shows all the streams created up to the current
time. A stream is considered created when the first message for that
stream is recorded.

The Stream list contains the following items:

• Stream column — Displays leaf-level name for stream.

• Scope column — Displays the scope where it is defined.

You can filter streams in the Streams list using stream and scope
filters on top.

Selection in the Stream list triggers filtering in the Transaction
table on the right. You can select multiple streams. When no
stream is selected, the Transaction table is empty.

• Nodes — Contains the following three nodes:

- All — Shows all messages in the Transaction table upon
clicking.

- msglog — Contains all msglog streams. These streams are
typically defined using $vcdplusmsglog() calls with a name.

 12-34

Debugging Transactions

- tblog — Contains all streams generated by tblog.

From the Streams list, you can add the selected streams and
dumped variables to the Wave View.

Viewing Messages in the Transaction Table

To view the messages in the Transaction table, click on a node in the
Streams list.

The Transaction table contains the following items:

• Options list — Changes table mode.

- The Group View groups messages related to a single
transaction as a single row. You can expand this row to see all
self relations for the row. Self relations are START, FINISH, and
EXTEND.

- The Reset View displays a time-ordered message list
regardless of relations.

 12-35

Debugging Transactions

• Filters — Control transactions/messages and stream selection in
the Streams list. To filter the messages, click the header of any
column.

Viewing Transaction Relations

Transaction relation is a unidirectional association between a source
and target message name.

To view transaction relations

1. Select a message in the Transaction table.

2. Right-click and select Show Transaction Relations.

The Transaction Relations dialog box appears.

 12-36

Debugging Transactions

You can view the relation history and its details. You can also
highlight the items for easy identification in the Transaction table
and Wave View.

3. Click the Tips>> button at any time for more details about each
field in the Transaction Relations dialog box.

SystemVerilog String Variables dump using
$vcdplustblog() and $vcdplusmsglog()

You can dump the SystemVerilog String variables in DVE through
$vcdplustblog or $vcdplusmsglog.

Usage Model

In the following example, SV string datatype is defined.

Transaction messages

Transaction relations

 12-37

Debugging Transactions

test.sv

package pkg;

class C;
 int i;
 integer p;
 int a1=5;
 string base = "string1";

 task main(int x = 0);
 int f = x;
 int a=1;
 string str = "string2";
 bit c=1'h0;
 bit [2:0] cc = 3'h1;
 byte byte1= 1;
 logic log='h1;

 begin
 $vcdplustblogon();
 $vcdplustblog(-1,"Message",f);
 $vcdplustblogoff();
 $vcdplustblog(-1,"One",a);
 $display("Message");
 end
 endtask
endclass
endpackage // pkg

program prog;
 import pkg::*;

 C inst = new;
 initial
 begin //: A1
 int inti =12;
 inst.main();
 #1;
 inst.main(1);

 12-38

Debugging Transactions

 #1;
 inst.main(2);
 end // : A1
endprogram

To compile this example, use the following commands:

vcs -R -nc -debug_all -sverilog test.sv
dve -vpd vcdplus.vpd &

The following illustration display the SV String variables in the Local
pane.

Editing Transaction Debug Preferences

You use the Transaction Debug category in the Application
Preferences dialog box to change the settings.

To edit the transaction debug preferences

1. Open DVE.

2. Click Edit > Preferences.

 12-39

Debugging Transactions

The Application Preferences dialog box opens.

3. Click the Transaction Debug category in the left pane and select
the following options, as required:

• Transaction pane settings

- Automatically open Transaction pane — Opens the Transaction
pane automatically when DVE is invoked, if this check box is
selected.

- Docked Transaction pane — Opens the Transaction pane in
the same TopLevel window, if this check box is selected.

• Waveform settings

- Show caller — Displays the Caller string head, tail, both head
and tail, or none in the Wave View and the tooltip.

 12-40

Debugging Transactions

- Show values — Displays the values of the $vcdplustblog
and $vcdplusmsglog objects in the Wave View.

- Show relations — Displays the relations specified in the
$vcdplusmsglog statement.

4. Click one of the following:

OK to apply your settings and close the dialog box.

Apply to apply your settings and have the dialog box remain open.

Cancel to close and not apply the settings.

Using tblog and msglog in DVE Command Prompt

You can use tblog and msglog in the DVE command prompt
interactively, without using them in the source code, for debugging
the transactions.

Following are the advantages of using tblog/msglog in the
interactive mode:

• When you use tblog/msglog in the source code, tblog/
msglog gets executed for every call, whereas in interactive mode,
tblog/msglog gets executed only when you issue that
command.

• When you use tblog/msglog in the source code, you need to
recompile the design. whereas in the interactive mode, you don't
need to recompile.

Consider the following example:

tblog.sv

program prog;
 class C;

 12-41

Debugging Transactions

 int i;
 integer p;
 string base = "B";

 task main(int x = 0);
 int f = x;
 string str = "A";
 bit c=1'h0;
 logic log='h1;
 begin
 $display("Message %d",x);
 end
 endtask
endclass

 C inst = new;
 initial
 begin
 int inti =12;
 inst.main();
 #1;
 inst.main(1);
 #1;
 inst.main(2);
 end
endprogram

Compile the example using the following commands:

vcs -nc -debug_all -sverilog tblog.sv

./simv -gui &

The design is loaded in DVE. Type the following commands in the
DVE command prompt:

dve> stop -file tblog.sv -line 13
dve>run
dve>tblog -l -1 -m {"Run1"}

 12-42

Debugging Transactions

dve>run
dve>tblog -l -1 -m {"Run2"}
dve>run
dve>tblog -l -1 -m {"Run3"}
dve>run

The DVE Console pane shows the output as follows:

 12-43

Debugging Transactions

Now, you can see the tblog data in the Transaction pane

Double-click on any record in the Transaction pane to see the corresponding
the Local pane, as shown:variable in

 12-44

Debugging Transactions

Transaction Debug in SystemC Designs

Using tblog

The SC tblog class is implemented in SystemC for better
transaction level debugging in DVE. This class records formatted
string information in the VPD file, which is displayed by DVE.

You can call the SC tblog class within any SC_THREAD,
SC_CTHREAD, SC_METHOD, function, or constructor.

This chapter consists of the following sections:

• “Use Model” on page 44

• “SC tblog On/Off Control” on page 45

• “Recorded Information in VPD File” on page 46

• “Example” on page 47

• “Viewing the Recorded Information in DVE” on page 51

Use Model

Use the following command for better transaction level debugging in
DVE:

sc_snps::tblog << “String" <<
 << TBLOG_VAR(var) <<
 << sc_snps::end;

Where,

• sc_snps::tblog is the class, which is defined in the
tli_tblog.h file.

 12-45

Debugging Transactions

• String is the string, which is recorded in the VPD file.

• TBLOG_VAR is a macro, which displays the following information
in DVE:

- Name of the var for declaration, where var is the dynamic or
static variable provided as argument (relative to current scope
or with absolute path).

- typeid(var), converted to an enum as required, for
declaration.

- Value of the variable which is encoded as required.

Note:
You must include tli_tblog.h to use sc_snps::tblog
#include "tli_tblog.h.

SC tblog On/Off Control

The SC tblog class supports a global mechanism to turn dumping
on and off. This is useful to limit the recording for certain time ranges
based on conditions.

Disabling tblog-based recording

You can use the following API call to disable tblog-based
recording:

sc_snps::tblogoff();

Enabling tblog-based recording

You can use the following API call to enable tblog-based recording:

sc_snps::tblogon();

 12-46

Debugging Transactions

Note:
Enabling or disabling tblog-based recording is global for both
SystemVerilog and SystemC. If you turn it ON or OFF with
$vcdplustblog in SystemVerilog, then the SystemC recording
is also turned ON or OFF and vice versa.

Enabling or disabling tblog-based recording by passing an
argument

You can use the following API call to pass in an argument, for
example, from a variable:

sc_snps::tblogon(bool)

 Example:
• sc_snps::tblogon()

 OR

 sc_snps::tblogon(true) or sc_snps::tblogon(1)

• sc_snps::tblogoff()

 OR

 sc_snps::tblogon(false) or sc_snps::tblogon(0)

Recorded Information in VPD File

The following information is recorded in VPD file:

• Current simulation time

• Call stack

 12-47

Debugging Transactions

• Constant string message

• Name of the variable

• Value of the variable

Note:
- If the space within the waveform is limited, hovering the mouse

pointer over a certain transaction shows its full text in a separate
window.

- If you double-click a log record, it opens the call stack in the
Stack pane.

Example
============================Mem.h========================
#define SC_INCLUDE_DYNAMIC_PROCESSES

#include "systemc"
using namespace sc_core;
using namespace sc_dt;
using namespace std;
#include "tlm.h"
#include "tlm_utils/simple_initiator_socket.h"
#include "tlm_utils/simple_target_socket.h"
#include "tli_tblog.h"
SC_MODULE(Initiator)
{
 tlm_utils::simple_initiator_socket<Initiator> socket;
 SC_CTOR(Initiator)
 : socket("socket") {
 SC_THREAD(init_process);
 }
 void init_process()
 {
 tlm::tlm_generic_payload* trans = new
tlm::tlm_generic_payload;
 sc_time delay = sc_time(20, SC_NS);
 for (int i = 1; i < 40; i += 4)
 {

 12-48

Debugging Transactions

 tlm::tlm_command cmd =
static_cast<tlm::tlm_command>(rand() % 2);
 if (cmd == tlm::TLM_WRITE_COMMAND) data = i;

 trans->set_command(cmd);
 trans->set_address(i);
 trans->set_data_ptr(reinterpret_cast<unsigned
char*>(&data));
 trans->set_data_length(4);
 trans->set_streaming_width(4);
 trans->set_byte_enable_ptr(0);
 trans->set_dmi_allowed(false);
 trans->set_response_status(
tlm::TLM_INCOMPLETE_RESPONSE);
 socket->b_transport(*trans, delay);

 cout << "trans = { " << (cmd ? "Write" :
"Read") << ", " << hex << i
 << " } , data = " << hex << data << " at time "
<< sc_time_stamp()
 << endl;
sc_snps::tblog<<"trans"
 << TBLOG_VAR(*trans) << TBLOG_VAR(data)
 << sc_snps::end;
 sc_snps::tblogon();
 wait(delay);
 }
 }

 int data;
};

SC_MODULE(Memory)
{
 tlm_utils::simple_target_socket<Memory> socket;

 SC_CTOR(Memory)
 : socket("socket")
 {
 // Register callback for incoming b_transport interface

 12-49

Debugging Transactions

method call
 socket.register_b_transport(this, &Memory::b_transport);

 // Initialize memory with random data
 for (int i = 0; i < 256; i++)
 mem[i] = 0x1010 | (rand() % 256);
 }

 // TLM-2 blocking transport method
virtual void b_transport(tlm::tlm_generic_payload& trans,
sc_time& delay)
 {
 tlm::tlm_command cmd = trans.get_command();
 sc_dt::uint64 adr = trans.get_address() ;
 unsigned char* ptr = trans.get_data_ptr();
 unsigned int len = trans.get_data_length();
 unsigned char* byt = trans.get_byte_enable_ptr();
 unsigned int wid = trans.get_streaming_width();

 if (cmd == tlm::TLM_READ_COMMAND)
 { memcpy(ptr, &mem[adr], len);
sc_snps::tblog<<"Mem_READ"
 << TBLOG_VAR(trans) << TBLOG_VAR(mem[adr])
 << sc_snps::end;
}
 else if (cmd == tlm::TLM_WRITE_COMMAND)
 {
 memcpy(&mem[adr], ptr, len);
sc_snps::tblog<<"Mem_WRITE"
 << TBLOG_VAR(trans) << TBLOG_VAR(mem[adr])
 << sc_snps::end;
 }

 // Obliged to set response status to indicate successful
completion
 trans.set_response_status(tlm::TLM_OK_RESPONSE);

 }

 int mem[256];
};

 12-50

Debugging Transactions

SC_MODULE(Top)
{
Initiator initiator;
 Memory memory;

 SC_CTOR(Top):initiator("initiator"),memory("memory")
 {
 initiator.socket.bind(memory.socket);
 }
};
int sc_main(int argc, char* argv[])
{
 Top top("top");
 sc_start();
 return 0;
}
==

======Mem.cpp====================
#include "Mem.h"
==================================

To compile this example code, use the following commands:

./clean.csh

syscan Mem.cpp -cflags -g -tlm2
vcs -sysc=22 sc_main -cflags -g -debug_all
simv

To run this example code, use the following commands:

./simv

dve –vpd vcdplus.vpd &

 12-51

Debugging Transactions

 Viewing the Recorded Information in DVE
To view the transactions using tblog

1. Open simv in DVE using the %simv –gui & command.

2. Double-click on the SystemC code where you have tblog in the
Hierarchy pane.

3. Set the breakpoint at sc_snps::tblog

4. Run the simulation.

5. Click Next.

 12-52

Debugging Transactions

6. Click Window > Panes > Transaction to open the Transaction
pane.

7. In the Transaction pane, double-click on the desired transaction,
to view:

- Stack function in the Stack Pane, as shown in Figure 12-9.

- Data members in the Local Pane, as shown in Figure 12-10.

 12-53

Debugging Transactions

Figure 12-9 Stack Function in the Stack Pane

 12-54

Debugging Transactions

Figure 12-10 Data Members in the Local Pane

8. Hover the mouse pointer over the transaction to view its
transaction values in the Wave View.

 12-55

Debugging Transactions

Note:
You can add any transaction in the Wave View.

Using msglog

DVE supports recording, displaying, and debugging of transactions
for SystemVerilog and SystemC/C++. In SystemVerilog,
transactions are captured using the $vcdplusmsglog API. In the

 12-56

Debugging Transactions

SystemC/C++ domain, transactions are also captured with the
msglog API. This document describes how to use the msglog API
inside SystemC/C++ source code.

The SystemC msglog API in SystemC provides better transaction
level debugging in DVE. It allows modeling and tracking of
transactions on multiple streams. It can be used to define, create
(start, extend, or finish) and describe transactions including
relationships.

Usage

The following syntax describes the usage of the SystemC msglog
API:

 sc_snps::msglog [<< stream_name [<< stream_scope]]
 << sc_snps::MSG_T [<< msg_name]
 << sc_snps::MSG_S [<< msg_header [<< msg_body
 [<< msg_body_more...]^n]]
 << sc_snps::MSG_R[<< relation]
 [<< [[stream_scope.]stream_name.]msg_name]
 [<< MSGLOG_VAR(<var>)]^n
 << sc_snps::end;

 stream_scope := <SV identifier literal or string var>
 stream_name := msg_name := <SV simple (non-escaped)
 identifier literal or string var>

 msg_header := msg_body := <html string literal or string
 var>
 relation := <Any literal string or var>

 12-57

Debugging Transactions

Note:
sc_snps::msglog is defined in the tli_msglog.h file. Its
arguments are order dependent, as shown in below table:

• MSG_T (Message Type) is of type enum. It consists of the
following values.

 enum E_MSG_T {

Table 0-1. Arguments of sc_snps::msglog

Argument Description Example

sc_snps::msglog
<<..

Starts the collection of
arguments. The value given
before sc_snps::MSG_T goes
into {Streamname}

sc_snps::MSG_T Defines the message type. Value
given after sc_snps::MSG_T
goes into {Msg label}

sc_snps::XACTION,
sc_snps::DEBUG

sc_snps::MSG_S Defines the message severity.
The first string object after
sc_snps::MSG_S goes into
{Header}, everything else
given after sc_snps::MSG_S
goes into {Body}

sc_snps::TRACE,
sc_snps::ERROR

sc_snps::MSG_R Defines the message relation.
The first string object after
sc_snps::MSG_R goes into
{Relation-Label} and the
optional second string before
MSGLOG_VAR goes into the
relation_target, which is
"[[stream_scope.]stream
_name.]msg_name".

sc_snps::START,
sc_snps::FINISH

MSGLOG_VAR All variables for which you
want to see transactions in the
Transaction pane should be
defined in MSGLOG_VAR.

<<MSGLOG_VAR(*trans)

... <<
sc_snps::end

Finishes the collection of
arguments, and writes the data
to VPD.

 12-58

Debugging Transactions

 FAILURE = 0x0001,
 NOTE = 0x0002,
 DEBUG = 0x0004,
 REPORT = 0x0008,
 NOTIFY = 0x0010,
 TIMING = 0x0020,
 XHANDLING =0x0040,
 XACTION = 0x0080,
 PROTOCOL = 0x0100,
 COMMAND = 0x0200,
 CYCLE = 0x0400
} ;

• MSG_S (Message Severity) is of type enum. It consists of the
following values.

enum E_MSG_S {
 FATAL = 0x0001,
 ERROR = 0x0002,
 WARNING = 0x0004,
 NORMAL = 0x0008,
 TRACE = 0x0010,
 DEBUGS = 0x0020,
 VERBOSE = 0x0040,
 HIDDEN = 0x0080,
 IGNORE = 0x0100
};

• MSG_R (Message Relation) is of type enum. It consists of the
following values.

enum E_MSG_R {
 START = 0x0001,
 FINISH = 0x0002,
 PRED = 0x0004,
 SUCC = 0x0008,
 SUB = 0x0010,
 PARENT = 0x0020,
 CHILD = 0x0040,
 XTEND = 0x0080,
 USER = 0x0100

 12-59

Debugging Transactions

 } ;

You must include the tli_msglog.h header file to use
sc_snps::msglog. This file is located at the following path:

$VCS_HOME/etc/systemc/tlm/tli/tli_msglog.h

The make the header visible, compile your SystemC source file with
the tlm2 option, as shown in following example:

syscan ... -tlm2 ... myfile.cpp

Alternatively, add the include path as shown below:

syscan ... -cflags -I$VCS_HOME/etc/systemc/tlm/tli
... myfile.cpp

Example
============================Mem.h========================
#define SC_INCLUDE_DYNAMIC_PROCESSES

#include "systemc"
using namespace sc_core;
using namespace sc_dt;
using namespace std;
#include "tlm.h"
#include "tlm_utils/simple_initiator_socket.h"
#include "tlm_utils/simple_target_socket.h"
#include "tli_tblog.h"
using namespace sc_snps;
#include "tli_msglog.h" //msglog API is declared in this file
SC_MODULE(Initiator)
{
 tlm_utils::simple_initiator_socket<Initiator> socket;
 SC_CTOR(Initiator)
 : socket("socket") {
 SC_THREAD(init_process);
 }
 void init_process()

 12-60

Debugging Transactions

 {
 tlm::tlm_generic_payload* trans = new
tlm::tlm_generic_payload;
 sc_time delay = sc_time(20, SC_NS);
 for (int i = 1; i < 40; i += 4)
 {
 tlm::tlm_command cmd =
static_cast<tlm::tlm_command>(rand() % 2);
 if (cmd == tlm::TLM_WRITE_COMMAND) data = i;

 trans->set_command(cmd);
 trans->set_address(i);
 trans->set_data_ptr(reinterpret_cast<unsigned
char*>(&data));
 trans->set_data_length(4);
 trans->set_streaming_width(4);

 trans->set_byte_enable_ptr(0);
 trans->set_dmi_allowed(false);
 trans->set_response_status(
tlm::TLM_INCOMPLETE_RESPONSE);
 socket->b_transport(*trans, delay);

cout << "trans = { " << (cmd ? "Write" : "Read") << ", " <<
hex << i << " } , data = " << hex << data << " at time " <<
sc_time_stamp() << endl;

 wait(delay);
 }
 }

 int data;
};

SC_MODULE(Memory)
{
 tlm_utils::simple_target_socket<Memory> socket;

 SC_CTOR(Memory)
 : socket("socket")
 {
 // Register callback for incoming b_transport interface
method call

 12-61

Debugging Transactions

 socket.register_b_transport(this, &Memory::b_transport);

 // Initialize memory with random data
 for (int i = 0; i < 256; i++)
 mem[i] = 0x1010 | (rand() % 256);
 }

 // TLM-2 blocking transport method
 virtual void b_transport(tlm::tlm_generic_payload& trans,
sc_time& delay)
 {
 tlm::tlm_command cmd = trans.get_command();
 sc_dt::uint64 adr = trans.get_address() ;
 unsigned char* ptr = trans.get_data_ptr();
 unsigned int len = trans.get_data_length();
 unsigned char* byt = trans.get_byte_enable_ptr();
 unsigned int wid = trans.get_streaming_width();

 if (cmd == tlm::TLM_READ_COMMAND)
{ memcpy(ptr, &mem[adr], len);

sc_snps::msglog << "stream"
<< sc_snps::NOTE << "CYCLE"
<<sc_snps::TRACE<<"write Mem" << "writing

mem transactions"
<<sc_snps::START
<<MSGLOG_VAR(trans)
<<end;

}
 else if (cmd == tlm::TLM_WRITE_COMMAND)

 {
 memcpy(&mem[adr], ptr, len);
 sc_snps::msglog << "stream"

<<sc_snps::NOTE << "CYCLE"
<<sc_snps::TRACE <<"write Mem" <<

"writing mem transactions"
<<sc_snps::FINISH
<<MSGLOG_VAR(trans)
<<end;

 }

 12-62

Debugging Transactions

 // Obliged to set response status to indicate successful
completion
 trans.set_response_status(tlm::TLM_OK_RESPONSE);
 }

 int mem[256];
};

SC_MODULE(Top)
{
Initiator initiator;
 Memory memory;

 SC_CTOR(Top):initiator("initiator"),memory("memory")
 {
 initiator.socket.bind(memory.socket);
 }
};
int sc_main(int argc, char* argv[])
{
 Top top("top");
 sc_start();
 return 0;
}
===

======Mem.cpp=====================
#include "Mem.h"
==================================

To compile this example code, use the following commands:

./clean.csh

syscan Mem.cpp -cflags -g -tlm2
vcs sc_main -cflags -g -debug_all
simv

 12-63

Debugging Transactions

To run this example code, use the following commands:

./simv -gui&

SystemC msglog On/Off Control

The SystemC msglog class supports a global mechanism to turn
msglog dumping on and off.

Disabling msglog-based recording

You can use the following API call to disable msglog-based
recording:

sc_snps::msglogoff();

Enabling msglog-based recording

You can use the following API call to enable msglog-based
recording:

sc_snps::msglogon();

Enabling or disabling msglog-based recording by passing an
argument

You can use the following API call to pass in an argument, for
example, from a variable:

sc_snps::msglogon(bool)

 where,

sc_snps::msglogon() is equivalent to
sc_snps::msglogon(true) or sc_snps::msglogon(1)

 12-64

Debugging Transactions

and

sc_snps::msglogoff() is equivalent to
sc_snps::msglogon(false) or sc_snps::msglogon(0)

Note:
Default setting of msglog recording is msglogon().

Recorded Information in VPD File

The following information is recorded in VPD file:

• Current simulation time

• Call stack

• Constant string message

• Message Labels

• Message Types

• Message Severities

• Message Relation

• Dynamic or Static variables

Note:
- If the space within the waveform is limited, hovering the mouse

pointer over a certain transaction shows its full text in a separate
window.

- If you double-click a log record, it opens the call stack in the
Stack pane.

 12-65

Debugging Transactions

 Viewing the Recorded Information in DVE
To view the transactions using msglog

1. Open simv in DVE using the %simv –gui & command.

2. In the Hierarchy pane, double-click on the SystemC code which
contains msglog.

3. Run the simulation and stop in the portion of the code, where
msglog API’s are present.

4. Click Window > Panes > Transaction to open the Transaction
pane:

5. In the Transaction pane, double-click on the desired transaction,
to view:

- Stack function in the Stack Pane, as shown in Figure 12-11.

 12-66

Debugging Transactions

- Data members in the Local pane, as shown in Figure 12-12.

- Hover the mouse pointer over the transaction to view its
transaction values in the Wave View, as shown in Figure 12-13.

Figure 12-11 Stack Function in the Stack Pane

 12-67

Debugging Transactions

Figure 12-12 Data Members in the Local Pane

 12-68

Debugging Transactions

Figure 12-13 Transaction Values in the Wave View

 12-69

Debugging Transactions

Note:You can add any number of transactions in the Wave view

Limitations

Following is the limitation of SystemC msglog class:

The stack shows SystemC/C++ frames with their functions names
only. Source file or Source line information is not available.

 12-70

Debugging Transactions

Viewing NTB-OV Variables using tblog/msglog

You can view NTB/OV variables in DVE using the tblog and
msglog system tasks. The syntax for tblog/msglog for NTB/OV
is similar to $vcdplustblog/$vcdplusmsglog, as shown below:

$vcdplustblog for SV:

$vcdplustblog(-1,"Write", i);

tblog for OV:

tblog(-1,"Write",i);

$vcdplusmsglog for SV:

$vcdplusmsglog(OpStream, XACTION, "SYSTEM", NORMAL, "System
Msg", "I am a parent", START, i);

msglog for OV:

msglog(OpStream, XACTION_T, "SYSTEM", NORMAL_S, "System
Msg", "I am a parent", START_R, i);

In the syntax, note the text in mauve. This is the type of severity or
relation.

An example for this feature has been copied in the $VCS_HOME/
doc/examples/debug/transaction_debug/
ntb_ov_msglog directory.

For msglog, #include “msglog.vrh” file is required. This file is
available in $VCS_HOME/include.

The representation in DVE is as follows:

 12-71

Debugging Transactions

Figure 12-14 Visualization of msglog in Wave view

Figure 12-15 Visualization of tblog in Wave view

 12-72

Debugging Transactions

Figure 12-16 Visualization after applying the filter: filter by severity warning

13-1

Using the C, C++, and SystemC Debugger

13
Using the C, C++, and SystemC Debugger1

This chapter describes debugging VCS and VCS MX designs that
include C, C++, and SystemC modules with DVE. It contains the
following sections.

• “Getting Started”

• “Commands Supported by the C Debugger”

• “Common Design Hierarchy”

• “Interaction with the Simulator”

• “Configuring CBug”

• “VPD Dumping for SC_FIFO Channels”

• “Supported platforms”

• “Example: A Simple Timer”

13-2

Using the C, C++, and SystemC Debugger

• “Viewing SystemC Source and OSCI Names in DVE”

• “Using CBug to Display Instance Name of Target Instance in TLM-
2.0”

• “CBug Stepping Improvements”

Getting Started

This section describes how to get started using DVE to debug
designs that include C, C++, and SystemC modules.

Using a Specific gdb Version

Debugging of C, C++ and SystemC source files relies upon a gdb
installation with specific patches. This gdb is shipped as part of the
VCS image and is used per default when CBug is attached. No
manual setup nor installation of gdb is needed.

Attaching the C-Source Debugger in DVE

You can debug designs containing C-source modules with or without
the C debugger running. However, you must attach the C-source
debugger to view and debug C-source code within the design.

Note that the -debug_all flag enables line breakpoints for the HDL
(Verilog, VHDL) parts only not for C files. You must compile the C
files with the "-g" C compiler option as follows:

• When invoking the C/C++ compiler directly:

gcc ... -g ...

13-3

Using the C, C++, and SystemC Debugger

g++ ... -g ...

• When invoking one of the VCS tools:

vcs ... -cflags -g ...
syscan ... -cflags -g ...
syscsim ... -cflags -g ...

The following steps describe attaching the C-source debugger to run
DVE to debug VCS or VCS MX (Verilog, VHDL, and mixed)
simulations containing C, C++, and SystemC source code.

1. Compile your VCS or VCS MX with C, C++, or SystemC modules
as you normally would, making sure to compile all C files you want
to debug in DVE.

For example, with a design with Verilog on top of a C or C++
module:

gcc -g [options] -c my_pli_code.c
vcs +vc -debug_all -P my_pli_code.tab my_pli_code.o

Or with a design with Verilog on top of a SystemC model:

syscan -cpp g++ -cflags "-g" my_module.cpp:my_module
vcs -cpp g++ -sysc -debug_all top.v

Note that you must use -debug or -debug_all to enable
debugging.

2. Open DVE.

3. Click to start the simulation.

4. Select Simulator > C/C++ Debugging.

Or

Enter cbug on the console command line.

13-4

Using the C, C++, and SystemC Debugger

Debugging of C, C++, and SystemC source code is enabled and
you see the following message in the console History tab:

CBug - Copyright Synopsys Inc. 2003-2006.

Note:
The C-source debugger will automatically attach when you set a
breakpoint in a C / C++ file (extensions .c, .cc, .cpp, and .h are
recognized).

Detaching the C-source Debugger

You can detach and reattach the C-source debugger at any time
during your session.

To detach the C-source debugger, toggle the debugger off by
selecting Simulator > C/C++ Debugging or enter the following
command on the console:

cbug -detach

Displaying C Source Files in the Source View

There are three ways to display a C source file in the Source view:

• Automatically when the simulation stops in a given C file due to
a breakpoint or cross-step

• Explicitly through File > Open.

Note:
Select C/C++ files as File type in the Open Source File dialog box.

13-5

Using the C, C++, and SystemC Debugger

Double-click a SystemC process in the design hierarchy. DVE
automatically opens the source file if the file can be found and was
compiled with -g; otherwise you are prompted to proceed.

Commands Supported by the C Debugger

These commands are supported by the C debugger:

• continue

• run

• next

• next -end

• step

• get variable_name (Returns the variable value)

• finish

• stack

• dump (of SystemC objects)

• cbug

Note:
Save/restore is also supported for simulations that contain
SystemC or other user-written C/C++ code (e.g. DPI, PLI, VPI,
VhPI, DirectC), however, there are restrictions. See the
description of the 'save' and 'restore' command in the UCLI User
Guide for full details. CBug has to be detached during a 'save' or
'restore' command but can be re-attached afterwards.

13-6

Using the C, C++, and SystemC Debugger

The following commands are not supported:

• force (applied to C or SystemC signals)

• release (applied to C or SystemC signals)

• drivers (applied to C or SystemC signals)

• loads (applied to C or SystemC signals)

Note:
This section uses the full UCLI command names. If you are using
a command alias file, such as the Synopsys-supplied alias file,
enter the alias on the UCLI command line. See the UCLI User
Guide for more information.

scope Command

The scope command is supported for SystemC instances.

show Command

show [-instances|-signals|-ports] is supported for
SystemC instances, for example "show -ports top.inst1". Any other
type such as -scopes, -variables, -virtual is not
supported for SystemC instances. A radix is ignored.

change Command

The change command is supported within these two strict
limitations:

• Only variables that are visible in the current scope of the C function
(e.g. local variables, global variables, class members.) can be
changed. Hierarchical path names like top.inst1.myport are not
supported.

13-7

Using the C, C++, and SystemC Debugger

• The type must be a simple ANSI type like int, char, bool.
Changing SystemC bit-vector types like sc_int<> or user-defined
types is not supported. Any attempt to set an unsupported
datatype will trigger the error message "Unsupported type for
setting variable".

stack Command

When you are stopped in C code, then you can see the stack list.
Each entry of the list tells the source file, line number, function name.
The function where you are stopped right now appears at the top of
the list. If the source code for a given function has been compiled
without compiler flag -g, then the file/line number information is not
available. CBug selects without-g.txt in this case.

Command stack -up|-down move the active scope up or down.
The source file corresponding to the active scope is shown and get
command applies to this scope.

Accessing C/C++/SystemC Elements with the get Command

Note:
When you use the "get" command for SystemC variables, the
value of radix types hex and bin is represented with a prefix '0'
and optionally with a '0x' or '0b' format specifier. The prefix '0' is
added if the value field does not start with a '0'. This is visible in
the UCLI get output and in DVE.

For example, a 16bit value of ('C' notation) 0x8888 appears as
(SystemC notation) 0x08888, and a decimal '3' (11) in a two bit
variable appears as '0b011' in binary radix.

When stopped at a C source location, certain elements are visible
and can be queried with the ucli::get command:

13-8

Using the C, C++, and SystemC Debugger

• Function arguments

• Global variables

• Local variables

• Class members (if the current scope if a method)

• Ports, sc_signal and plain members of SystemC modules
anywhere within the combined HDL+SystemC instance hierarchy.

• Arbitrary expression including function calls, pointers, array
indices etc. Note that some characters such as ’[]’ need to be
enclosed by ’{ }’ or escaped with ’\’ otherwise Tcl will interpret them.

Examples

• ucli::get myint

• ucli::get this->m_counters

• ucli::get {this->m_counters[2]}

• ucli::get strlen(this->name)

The <name> given with a synopsys::get <name> argument
refers to the scope in the C source where the simulation stopped (the
active scope). This is important to keep in mind because C source
may have multiple objects with the same name but in different
scopes. Which one is visible depends on the active scope. This
means that <name> may not be accessible anymore once you step
out of a C/C++ function.

13-9

Using the C, C++, and SystemC Debugger

Accessing SystemC Elements with the get Command through
an hierarchical Path Name

The argument of synopsys::get may refer to an instance within
the combined HDL/SystemC instance hierarchy. All ports, sc_signals
and also all plain member variables of an SystemC instance can be
accessed with synopsys::get at any time. Access is possible
independent of where the simulation is currently stopped, even if it is
stopped in a different C/C++ source file or not in C/C++ at all.

Example

Assume this instance hierarchy

 top (Verilog)
 middle (Verilog)
 bottom0 (SystemC)

where "bottom0" is an instance of this SC module:

SC_MODULE(Bottom) {
 sc_in<int> I; // SC port
 sc_signal<sc_logic> S; // SC signal
 int PM1; // "plain" member variable, ANSI type
 str PM2; // "plain" member variable, user-def type
};
struct str {
 int a;
 char* b;
};

These accesses are possible:

 synopsys::get top.middle.bottom0.I
 synopsys::get top.middle.bottom0.S
 synopsys::get top.middle.bottom0.PM1
 synopsys::get top.middle.bottom0.PM2
 synopsys::get top.middle.bottom0.PM2.a

13-10

Using the C, C++, and SystemC Debugger

Access is possible at any point in time, independent of where the
simulation stopped. Note that this is different to accessing local
variable of C/C++ functions. They can only be accessed if the
simulation is stopped within that function.

Note that accessing plain member variables of SystemC instances is
only possible with synopsys::get but not with synopsys::dump.

Format / Radix:

The C debugger will ignore any implicitly or explicitly specified radix.
The format of the value returned is exactly as it is given by gdb (only
SystemC data types are specially dealt with). Besides integers, you
can also query the value of pointers, strings, structures, or any other
object that gdb can query.

SystemC Datatypes:

The C debugger offers specific support for SystemC datatypes, for
example, an sc_signal<sc_bv<8>>. When you do a print of such
a value, gdb usually returns the value of the underlying SystemC
data structure that is used to implement the data type. This is
normally by no means what you want to see and is generally
useless. The C debugger recognizes certain native SystemC data
types and prints the value in an intuitive format. For example, it will
print the value of the vector in binary format for an
sc_signal<sc_bv<8>>.

The following native SystemC types are recognized.

Templatized channel types C<T1>:

C := { sc_in_clk, sc_in, sc_inout, sc_out, sc_signal,
ccss_param }

13-11

Using the C, C++, and SystemC Debugger

T1 := { bool, [[un]signed] char, [unsigned][long|short] int,
 [[long] double] float, sc_logic, sc_lv, sc_bit, sc_bv,
 sc_[u]int, sc_int_base, sc_big[u]int, sc_[un]signed,
 sc_fxval[_fast], sc_[u]fix[ed][_fast], sc_string,
 char*, void*, struct X* }

When the value of an object O of such a type C is to be printed, then
the C debugger prints the value of O.read() rather than O itself.

Native SystemC data types:

 T2 := { sc_logic, sc_lv, sc_bit, sc_bv,
 sc_[u]int, sc_int_base, sc_big[u]int, sc_[un]signed,
 sc_fxval[_fast], sc_[u]fix[ed][_fast], sc_string }

The C debugger prints values of these data types in an intuitive
format. Decimal format is taken for sc_[u]int, sc_int_base,
sc_big[u]int,sc_[un]signed, binary format for sc_logic,
sc_lv, sc_bit, sc_bv.

Example

SystemC source code:

sc_in <int> A
sc_out<sc_bv<8>>B;
sc_signal <void*>;
int D;
synopsys::get A
17
synopsys::getB
01100001
synopsys::getC
0x123abc
synopsys::getD
12

13-12

Using the C, C++, and SystemC Debugger

Changing Values of SystemC and Local C Objects with
synopsys::change

CBug supports changing the values of C variables and SystemC
sc_signal using the UCLI change command.

 Example:

change my_var 42
change top.inst0.signal_0 "1100ZZZZ"

Changing SystemC Objects

The value change on any SystemC sc_signal, either from C++
code or using the change command, modifies only the next value,
but not the current value.

The current value is updated only with the next SystemC delta cycle.
Therefore, you may not view the effect of the change command
directly. If you query the value with the UCLI get command, then
you will see the next value because the get command retrieves the
next value, but not the current value for sc_signal.

However, accessing the sc_signal with read() inside the C++
code, displays the current value until the next SystemC delta cycle
occurs. CBug generates a message explaining that the assignment
is delayed until the next delta cycle.

Note:
A change may compete with other accesses inside the C++ code.
If a signal is first modified by the change command, but later on,
if a write() happens within the same delta-cycle, then write()
cancels the effect of the earlier change command.

13-13

Using the C, C++, and SystemC Debugger

The format of the value specified with the change command is
defined by the corresponding SystemC datatype. ANSI integer types
expect decimal literals. Native SytemC bit-vector types accept
integer literal and bit-string literals.

Examples
SystemC module 'top.inst_0' has
sc_signal<int> sig_int
sc_signal<sc_int<8> > sig_sc_int
sc_signal<sc_lv<40> > sig_sc_lv

change top.inst_0.sig_int 42 // assign decimal 42

change top.inst_0.sig_sc_int 0d015 // assign decimal 15
change top.inst_0.sig_sc_int 0b0111ZZXX //assign bin value
change top.inst_0.sig_sc_int 0x0ffab // assign hex value
change top.inst_0.sig_sc_int 15 // assign decimal 15
change top.inst_0.sig_sc_int -15 // assign decimal -15

change top.inst_0.sig_sc_lv 0d015 // assign decimal 15
change top.inst_0.sig_sc_lv -0d015 // assign decimal -15
change top.inst_0.sig_sc_lv 0b0111ZZXX // assign bin value
change top.inst_0.sig_sc_lv 0x0ffab // assign hex value
change top.inst_0.sig_sc_lv 0011ZZXX // assign bin value

Supported Datatypes

The following datatypes are supported:

• All types of ANSI integer types, for example, int, long long,
unsigned char, bool, and so on.

• Native SystemC bit-vector types: sc_logic, sc_lv, sc_bv,
sc_int, sc_uint, sc_bigint, and sc_biguint.

13-14

Using the C, C++, and SystemC Debugger

Limitations of Changing SystemC Objects
• Only SystemC objects sc_signal and sc_buffer can be

changed. Changing the value of ports, sc_fifo, or any other
SystemC object is not supported.

• You must address SystemC objects by their full hierarchical path
name or by a name relative to the current scope.

Example:

 scope top.inst1.sub_inst
 change top.inst0.signal_0 42 // correct
 change signal_0 42 // wrong, local path not supported
for SystemC

 scope top.inst0
 change signal_0 43 // correct, scope + local

• User-defined datatypes are not supported.

• A permanent change (force -freeze) is not supported.

Changing Local C Variables

Local C variables are the variables that are visible within the current
C/C++ stack frame. This is the location where the simulation stops.
However, you can change the frame by using the UCLI stack -up
or stack-down command, or by double-clicking on a specific frame
in the DVE stack pane.

Local C variables are the:

• Formal arguments of functions or methods

• Local variables declared inside a function or method

13-15

Using the C, C++, and SystemC Debugger

• Member variables visible in the current member function and
global C variables

Example
 100 void G(int I)
 101 {
 102 char* S = strdup("abcdefg");
 103 ...
 104 }
 105
 106 void F()
 107 {
 108 int I=42;
 109 G(100);
 110 ...
 111 }

 Assume that the simulation stops in function G at line 103.

 change I 102 //change formal arg I from G defined in line 100
 change I 0xFF
 change S "hij kl"
 change {S[1]} 'I'
 scope -up
 change I 42 // change variable I from F defined in line 108

Limitations of Changing Local C Variables
• You must attach CBug.

• You can change only simple ANSI types like: bool, all kinds of
integers (for example, signed char, int, long long), char*, and
pointers. Arrays of these types are supported if only a single
element is changed.

• The format of the value is defined by gdb, for example, 42, 0x2a,
’a’, "this is a test".

13-16

Using the C, C++, and SystemC Debugger

• SystemC types are not supported, for example, sc_int, sc_lv
is not supported.

• STL types such as std::string, std::vector, and so on, are
not supported.

• Using the full path name (for example, top.inst_0.my_int) is
not supported. You can use only local names (for example,
my_int or this->my_int).

Using Breakpoints

You can set line breakpoints on C / C++ / SystemC source files using
the Source view, the Breakpoints dialog box, or the command line.
Breakpoints in C-source code support line breakpoints.

Set a Breakpoint from the Breakpoints Dialog Box

You can set a line, time, or signal breakpoint using the Breakpoints
dialog box. See the section “Managing Breakpoints from the Dialog
Box” on page 4-15 for more information.

Control Line Breakpoints in the Source view

You can control line breakpoints in the Source pane in two ways:

• Clicking on the circular breakpoint indicator in the line attribute
area.

• Selecting a line breakpoint, right-clicking from the attribute area,
then selecting a context-sensitive menu command.

For more information, see the section “Control Line Breakpoints in
the Source view” on page 4-13.

13-17

Using the C, C++, and SystemC Debugger

Set a Breakpoint from the Command Line

To create a line breakpoint from the command line, enter the stop
command into the console command line using the following syntax:

stop -file filename -line linenumber

For example:

stop -file B.c -line 10
stop -file module.cpp -line 101
stop -in my_c_func
stop -in timer::clock_action()

Instance Specific Breakpoints

Instance specific breakpoints are supported with respect to SystemC
instances only. Specifying no instance or instance name "-all" means
to always stop, no matter what the current scope is,

If the debugger reaches a line in C, C++, SystemC source code for
which a instance-specific breakpoint has been set, then it will stop
only if the following two conditions are met:

• The corresponding function was called directly or indirectly from
a SystemC SC_METHOD, SC_THREAD or SC_CTHREAD
process.

• The name of the SystemC instance to which the SystemC process
belongs matches the instance name of the breakpoint.

Note that C functions called through the DPI, PLI, DirectC or VhPI
interface will never stop in an instance-specific breakpoint because
there is no corresponding SystemC process.

13-18

Using the C, C++, and SystemC Debugger

You must use the name of the Systemc module instance and not the
name of the SystemC process itself.

Breakpoints in Functions

You can also define a breakpoint by its C/C++ function name with the

stop -in function

command.

Examples
stop -in my_c_function
stop -in stimuli::clock_action()

Restriction

If multiple active breakpoints are set in the same line of a C, C++ or
SystemC source code file, then the simulation will stop only once.

Deleting a Line Breakpoint

To delete a line breakpoint, do either of the following:

• Click the red button in the Source view to disable the breakpoint.

• Select View > Breakpoints, select the breakpoint to delete, then
click Delete.

• On the console command line, enter

stop -delete <index>

then press Enter.

13-19

Using the C, C++, and SystemC Debugger

Stepping Through C-source Code

Stepping within, into, and out of C code during simulation is
accomplished using the step and next commands. Extra arguments
to either step or next, such as -lang or -thread are not supported for
C code. Only next -end is allowed.

Stepping within C Sources

You can step over a function call with next or step into a function
with step.

Note:
Stepping into a function that was not compiled with -g is generally
supported by gdb and also the C debugger. However, in some
cases gdb becomes confused on where to stop next and may
proceed further than anticipated. In such cases, it is
recommended to set a breakpoint on a C source that should be
reached soon after the called function finishes and then issue the
command synopsys::continue.

Use the stack -up command to open the source code location
where you want to stop, set a breakpoint, and then continue.

Cross-stepping between HDL and C Code

Cross-stepping is supported in many but not all cases where C code
is invoked from Verilog or VHDL code. These cases are supported:

• From Verilog caller into a PLI C function - Note that this is only
supported for the "call" function, but not that "misc" or "check"
function and also only if the PLI function was statically registered.

13-20

Using the C, C++, and SystemC Debugger

• From the PLI C function back into the Verilog caller.

• From Verilog caller into DirectC function and also back to Verilog.

• From VHDL caller into an VhPI "foreign" C function that mimics a
VHDL function and also back to VHDL. Note that the cross-step
is not supported on the very first occasion when the C function is
executed. Cross-stepping is possible for 2nd, 3rd and any later
call of that function.

• From Verilog caller into an export "DPI" C function and also back
to Verilog.

• At the end of a Verilog export "DPI" task or function back into the
calling C function. Note that this cross-step HDL > C is only
possible if the Verilog code was reached via a cross-step from C-
> HDL in the first place.

All cross-stepping is only possible if the C code has been compiled
with debug information (gcc -g).

Cross-stepping in and out of Verilog PLI Functions

When you steps through HDL code and come to a call of a user-
provided C function, such as a PLI function like $myprintf, then
the next command will step over this function. But the step
command will step into the C source code of this function.
Consequent step/next commands walk through the C function
and finally you return to the HDL source. Seamless stepping HDL->
C > HDL is thus possible. This feature is called cross-stepping.

Cross-stepping is supported only for function that meet this criteria:

• PLI function

• Statically registered through a tab file

13-21

Using the C, C++, and SystemC Debugger

• The call only (but not misc or check)

Cross-stepping into other Verilog PLI functions is not supported.
However, an explicit breakpoint can be set into these function which
will achieve the same effect.

Cross-Stepping in and out of VhPI Functions

Cross-stepping from VHDL code into a C function that is mapped
through the VhPI interface to a VHDL function is supported with
certain restrictions:

• Cross-step in is not possible on the very first occasion when the
C function is executed. Only later calls are supported. A cross-
step out of C back into VHDL code is always supported.

• Cross-stepping is not supported for C code mapped through the
VhPI interface onto a VHDL entity.

• Cross-stepping from Verilog into a DirectC function is supported,
also cross-step back out. There are no restrictions.

• Cross-stepping between [System]Verilog and import/export DPI
functions is supported with a few restrictions:

• Cross-step from an import DPI function back into the calling
Verilog source code is supported only if this DPI function was
entered with a cross-step in the first place. That means doing
continuously step commands will lead from the Verilog caller, into
and through the import DPI function and back to the Verilog caller
statement into the import DPI function, through that function and
finally back into the calling Verilog statement.

13-22

Using the C, C++, and SystemC Debugger

However, if the DPI function was entered through a run command
and the simulation stopped in the import C function due to a
breakpoint, then the cross-step out of the import DPI function into
the calling Verilog statement is not supported. The simulation will
advance until the next breakpoint is reached.

• Cross-step from an export DPI task/function back into the calling
C source code is supported only if this DPI task/function was
entered with a cross-step in the first place. That means doing
continuously step commands will lead from the C caller, into and
through the import DPI task/function and back to the C caller.

However, if the export DPI task/function was entered through a
run command and the simulation stopped in the export task/
function due to a breakpoint, then the cross-step out of the export
DPI function into the calling C statement is not supported. The
simulation will advance until the next breakpoint is reached.

Cross-stepping from C into HDL

Stepping from C code (that is called as a PLI function) into HDL code
is generally supported. There are two ways to do this.

• If the C function was reached by previously cross-stepping from
HDL into C, then CBug is able to automatically transfer control
back to the HDL side once you step out of the C function. In this
case, just type step or next in C code.

13-23

Using the C, C++, and SystemC Debugger

• In all other cases, CBug is not able to detect that the C domain is
exited and needs an explicit command to transfer control back to
the HDL side. When you do a step or next command that leaves
the last statement of a C function called from HDL, then the
simulation will stop in a location that belongs to the simulator
kernel. There will be usually no source line information available
since the simulator kernel is generally not compiled with -g, so
you will not see a specific line/file information.Instead, file without-
g.txt will be displayed.

If this happens, you can proceed as follows:

synopsys::continue or run

 or

next -end

The continue will bring you to the next breakpoint which could
be in either HDL or C source code. The next -end command
will stop as soon as possible in the next HDL statement or the
next breakpoint in C code, whichever comes first. Again, use
commands synopsys::continue or synopsys::next -end
to proceed.

Cross-Stepping in and out of SystemC Processes

CBug offers specific support for stepping between SystemC or HDL
processes:

• When you leave a function that defines a SC_METHOD process,
then a step or next command will automatically stop in the next
SystemC or HDL process, whatever comes next.

13-24

Using the C, C++, and SystemC Debugger

• Similarly, when you use the step or next command over a 'wait'
statement that belongs to an SC_THREAD process, then you will
stop in the next SystemC or HDL process, whatever comes next.

• Doing a step or next in Verilog or VHDL will automatically stop
in a SystemC process if that process happens to be next SystemC
or HDL process to be executed.

That means doing step or next repeatedly will follow to flow of
SystemC and HDL processes in the exact order in which the
simulator executes them.

Direct gdb Commands

You can send certain commands directly to the underlying gdb
through UCLI command cbug::gdb. The command will be
executed right away and the UCLI command will return the response
from gdb.

 The command is

 cbug::gdb gdb-cmd

gdb-cmd is an arbitrary command accepted by gdb including an
arbitrary number of arguments, for example info sources. Doing
cbug::gdb will automatically attach CBug, send <gdb-cmd> to gdb
and return the response from gdb as the return result of the Tcl
routine. The result may have one or multiple lines.

The routine returns successfully in most cases, even if gdb itself
gives an error response. The routine gives an Tcl error response only
when gdb-cmd has the wrong format, for example when it is empty.

13-25

Using the C, C++, and SystemC Debugger

Only a small subset of gdb commands are always allowed. These
are commands that for sure do not change the state of gdb or simv,
e.g. commands show, info, disassemble, x, etc. Other
command make cbug::gdb return with error saying cannot execute
this gdb command because it would break CBug.

Example:

ucli% cbug::gdb info sources

Source files for which symbols have been read in:

../pythag.c, rmapats.c, ctype-info.c, C-ctype.c, C_name.c,

../../gcc/libgcc2.c

Source files for which symbols will be read in on demand:

ucli% cbug::gdb whatis pythag
type = int (int, int, int)
ucli%

Add Directories to Search for Source Files

This is directly done with the gdb dir dir-name command. For
example:

ucli% gdb dir /u/joe/proj/abc/src

Use this command to check which directories are searched:

ucli% gdb show dir
Source directories searched:
/u/joe/proj/abc/src:$cdir:$cwd

13-26

Using the C, C++, and SystemC Debugger

Adding directories may be needed to locate the absolute location of
some source files.

Example:

ucli% cbug::expand_path_of_source_file foo.cpp
Could not locate full pathname, try "gdb list
sc_fxval.h:1" followed by "gdb info source" for more
details. Add directories to search path with "gdb dir
<src-dir>".

ucli% gdb dir /u/joe/proj/abc/src

ucli% cbug::expand_path_of_source_file foo.cpp
/u/joe/proj/abc/src/foo.cpp

Note that adding a directory partially invalidates the cache used to
store absolute pathnames. Files for which the absolute path name
has already been successfully found and cached are not affected.
But files for which the pathname could not be located so far will be
tried again the next time if a new directory was added after the last
try.

 Common Design Hierarchy

An important part of debugging simulations containing SystemC and
HDL is the ability to view the common design hierarchy and common
VPD trace file.

The common design hierarchy shows the logical hierarchy of
SystemC and HDL instances in the way it is specified by the user.
See also the VCS / DKI documentation for more information how to
add SystemC modules to a simulation.

13-27

Using the C, C++, and SystemC Debugger

The common hierarchy shows these elements for SystemC objects:

• Modules (instances)

• Processes:

- SC_METHOD, SC_THREAD, SC_CTHREAD

• Ports: sc_in, sc_out, sc_inout,

- sc_in<T>

- sc_out<T>

- sc_inout<T>

- sc_in_clk (= sc_in<bool>)

- sc_in_resolved

- sc_in_rv<N>

- sc_out_resolved

- sc_out_rv<N>

- sc_inout_resolved

- sc_inout_rv<N>

• Channels:

- sc_signal<T>

- sc_signal_resolved

- sc_signal_rv<N>

- sc_buffer<T>

- sc_clock

13-28

Using the C, C++, and SystemC Debugger

- rvm_sc_sig<T>

- rvm_sc_var<T>

- rvm_sc_event

• With datatype T being one of

- bool

- signed char

- [unsigned] char

- signed short

- unsigned short

- signed int

- unsigned int

- signed long

- unsigned long

- sc_logic

- sc_int<N>

- sc_uint<N>

- sc_bigint<N>

- sc_biguint<N>

- sc_bv<N>

- sc_lv<N>

- sc_string

13-29

Using the C, C++, and SystemC Debugger

All these objects can also be traced in the common VPD trace file.
Port or channels that have a different type, for example a user-
defined struct, will be shown in the hierarchy but cannot be traced.

The common design hierarchy is generally supported for all
combinations of SystemC, Verilog, and VHDL. The pure-SystemC
flow (the simulation contains only SystemC but neither VHDL nor
Verilog modules) is also supported.

All these objects can also be traced in the common VPD trace file.
Interaction between CBug and the Simulator

The common design hierarchy is supported in the following
combinations:

 SystemC top
 Vlog down

and

 SystemC top
 Vlog down
 VHDL down

and

 VHDL top
 SystemC down
 Vlog down

and

 Vlog top
 SystemC down

13-30

Using the C, C++, and SystemC Debugger

 and

 Vlog top
 SystemC down
 VHDL down

Common VPD tracing and other debugging features are not
supported in the following combinations:

 SystemC-top
 VHDL down

and also not

 VHDL top
 Verilog down
 SystemC instantiated from Verilog

and also not

 sc_main()
 SystemC top
 Verilog top

Post-processing Debug Flow

One way to use DVE is to first let the simulation run, create a VPD
file and then look at the VPD file afterwards. This is called post-
processing mode. All data will be contained in a VPD file.

There are different ways to create a VPD file. Not all are supported
for common VPD with SystemC:

13-31

Using the C, C++, and SystemC Debugger

Supported
• Interactive using DVE and the Add to Waves... command.

• Run the simulation in -ucli mode and apply synopsys::dump
command.

 Not Supported
• With $vcdpluson() statement(s) in Verilog code.

• With VCS option +vpdfile.

If you create a VPD file in one of the unsupported ways, then you will
not see SystemC objects at all. Instead you will find dummy Verilog
or VHDL instances at the place were the SystemC instances are
expected. The simulation will print warning that SystemC objects are
not traced.

Use these commands to create a VPD file when SystemC is part of
the simulation:

Create file dumpall.ucli :
cbug::config add_sc_source_info always <-- this line is
 optional, *1
synopsys::cbugsynopsys::cbug <--this line is optional, *1
synopsys::scope .
 set fid [synopsys::dump -file dump.vpd -type VPD]
 puts "Creating VPD file dump.vpd"
 synopsys::dump -add "." -depth 0 -fid $fid
 synopsys::continue

Then run simulation like this:

simv -ucli < dumpall.ucli

13-32

Using the C, C++, and SystemC Debugger

The line synopsys:cbug is optional. If specified, then CBug will
attach and store in the VPD file the source file/line information for
SystemC instances that are dumped. This is convenient for post-
processing: a double-click on a SystemC instance or process will
open the source-code file.

Note that all source code must be compiled with compiler flag -g
which will slow down the simulation speed to some extend (how
much varies greatly with each design). Furthermore, attaching CBug
will take some CPU time during which the underlying gdb reads all
debug information. This seconds runtime overhead is constant. Last,
attaching CBug creates a gdb process that may need a large amount
of memory if the design contains many C/C++ files compiled with
-g flag. In summary, adding the synopsys:cbug is a tradeoff
between better debugging support and runtime overhead.

13-33

Using the C, C++, and SystemC Debugger

Interaction with the Simulator

Usually the C debugger and the simulator (the tool, e.g. simv) work
together unnoticed. However, there are a few occasion when the C
debugger and the tool cannot fully cooperate and when this is visible.
These cases depend on whether the active point (the point where
the simulation stopped, for example due to a BP) is in the C domain
or HDL domain.

Prompt Indicates Current Domain

The prompt reflects if the simulation is stopped in the HDL or C
domain.

• ucli% -> HDL domain

• CBug% -> C domain

Commands affecting the C domain:

Commands that apply to the C domain, for example setting a
breakpoint in C source code, can always be issued, no matter in
which domain the current point lies.

Some commands, however, can only be applied when the simulation
is stopped in the C domain:

• The stack command to show which C/C++ functions are currently
active.

13-34

Using the C, C++, and SystemC Debugger

• Reading a value from C domain (e.g. a class member) with the
synopsys::get command is sensitive to the C function where
the simulation is currently stopped. Only variables visible in this
C scope can be accessed.

That means it is not possible to access, for example, local
variables of a C/C++ function or C++ class members when
stopped in HDL domain. Only global C variables can always be
read.

Combined Error Message

When the C debugger is attached and you enter a command, such
as get xyz, then UCLI issues the command to both the simulator
and the C debugger (starting with the one where the active point lies,
e.g., starting with the tool in case the simulation is stopped in the
HDL domain). If the first one responds without error, then the
command is not issued again to the second one. However, if both
tool and the C debugger produce an error message, the UCLI
combines both error messages into a new one which is then printed.

Example:

 Error: {
 {tool: Error: Unknown object}
 {cbug: Error: No symbol "xyz" in current context.;}
 }

Update of Time, Scope, and Traces

Any time, when the simulation is stopped in C code, the following
information is updated:

• Correct simulation time

13-35

Using the C, C++, and SystemC Debugger

• Scope variable (accessible with synopsys::env scope) is either
set to a valid HDL scope or to string "<calling-C-domain>"

- If you stop in C/C++ code while executing a SystemC process,
then the scope of this process is reported.

- String "<calling-C-domain>" is reported when the HDL scope
that calls the C function is not known. This happens, for
example, in case of DPI, PLI, VhPI or DirectC functions.

• All traces (VPD file) are flushed

Configuring CBug

Use the cbug::config UCLI command to configure the CBug
behavior. The following modes are supported:

Startup Mode

When CBug attaches to a simulation, then there are two different
modes to choose from. Enter the UCLI command:

cbug::config startup fast_and_sloppy|slow_and_thorough

to select the mode before attaching CBug.

Mode 'slow_and_thorough' is the default and may consume
much CPU time and virtual memory for the underlying gdb in case of
large C/C++/SystemC source code bases with many 1000 lines of C/
C++ source code.

13-36

Using the C, C++, and SystemC Debugger

Mode 'fast_and_sloppy' will reduce the CPU and memory
needed, however, it comes on the expense that not all debug
information is available to CBug right away. Most debugging features
will still work fine, but there may be occasional problems, for
example, setting breakpoints in header files may not work.

Attach Mode

cbug::config attach auto|always|explicit

Mode 'attach' defines when CBug attaches. Value 'auto' is the default
and attaches CBug is some situations, for example when you set a
breakpoint in a C/C++ source files and when double-clicking a
SystemC instance. Value 'always' will attach CBug whenever the
simulation starts. If value 'explicit' is selected, then CBug is never
attached automatically.

cbug::config add_sc_source_info auto|always|explicit

The cbug::add_sc_source_info command stores source file/
line information for all SystemC instances and processes in the VPD
file. Doing that may take a long time but is useful for post-processing
a VPD file after the simulation ended. Value 'auto' invokes
cbug::add_sc_source_info automatically when CBug attaches
and the simulation runs without the DVE GUI; 'always' invokes
cbug::add_sc_source_info automatically whenever CBug
attaches; 'explicit' never invokes it automatically. Default is 'auto.'

13-37

Using the C, C++, and SystemC Debugger

VPD Dumping for SC_FIFO Channels

CBug supports VPD dumping of SystemC sc_fifo channels. It also
supports printing the content of FIFOs with the UCLI get command.
The format of how the data is printed can be configured.

FIFO objects that can be Dumped or Printed

CBug supports VPD dumping for the following:

• sc_fifo channels = objects of type sc_core::sc_fifo.

• User-defined classes or structs using the << operator (see
“Support for Data Types”).

• Classes derived from sc_fifo.

Not supported:

• sc_fifo_in ports

• sc_fifo_out ports

Only SystemC 2.2 is supported. SystemC 2.0.1 and 2.1 are not
supported.

Displaying Data in SC_FIFO

• The number of available tokens currently stored in the FIFO is
always displayed.

• The values of tokens can be optionally displayed. You can set a
limit on the number of tokens that are displayed.

13-38

Using the C, C++, and SystemC Debugger

• The list of processes that are currently waiting for a FIFO
data_read or data_written event can also be displayed optionally.

Example

The current status of a FIFO of type sc_fifo of size 20 is printed. The
dumping of this FIFO has been configured to show processes and
tokens, but no more than four tokens:

20 available
0 free

Waiting for read:
 TOP.inst0.Stim
Waiting for write:

Data: [0]=oldest value
[0] 8902
[1] 13
...
[18] 9999
[19] 1111

The FIFO is currently full; all 20 slots are filled with tokens, 0 slots are
free. The oldest token (the one that will be removed by the next
read() call) is at position’[0]’, and has value 8902. The most
recently written token is at position ‘[19]’.

Configuring Dumping of a FIFO

The format on how the content of a FIFO is dumped can be
configured from DVE, with an UCLI command, from the DVE
Preferences dialog, or by a C interface.

13-39

Using the C, C++, and SystemC Debugger

Configuring with UCLI

The UCLI command cbug::config fifo_dump specifies how
FIFOs are dumped. The number of tokens currently available in the
FIFO is always printed in the first line.

Printing of tokens stored in the FIFO is controlled using the following
command.

cbug::config fifo_dump data (on|off|<limit>)
[<object_path>]

Value on specifies to dump all tokens regardless of their number.
Value off (the default) turns off printing tokens altogether. An
integer specifies the maximum number of tokens to be printed. If
more values are available, then half the limit is printed above the
“...” and the other half after the “...” , as shown in the above
example.

If a SystemC FIFO object is specified with <object-path>, then
the limit applies to this FIFO only. If no object is specified, then the
limit is the default limit for all other FIFOs.

Example
cbug::config fifo_dump data on
cbug::config fifo_dump data 10 Top.fifo1
cbug::config fifo_dump data off Top.A.fifo3
cbug::config fifo_dump data 4

A SystemC process that calls the blocking method
sc_fifo::read() blocks when the FIFO is empty. The process
dynamically waits until the data_written event of the FIFO
triggers, which happens on the next write() or nb_write().
Similarly, a process writing sc_fifo::write() blocks when the

13-40

Using the C, C++, and SystemC Debugger

FIFO is full. You can configure displaying processes that are
suspended in the dynamic lists of the data_read and
data_written events with the following command:

cbug::config fifo_dump proc (on|off)

The setting applies to all FIFOs. The processes are not printed if the
printing tokens are disabled. Printing processes are disabled by
default.

Configuring with DVE

To configure with DVE:

1. Click Edit > Preferences.

The Application Preferences dialog box opens.

2. Select Testbench/CBug.

The SystemC sc_fifo Dumping appears on the right-hand side.
Select the desired options.

Note:
Specifying the limit of #tokens for a particular sc_fifo in the DVE
GUI is not possible. You can do this only with the UCLI
cbug::config command.

Configuring from SystemC Source Code

The same configurations can also be done from the user’s SystemC
source code using the following C functions.

extern "C" int sc_snps_cbug_fifo_set_limit_num_objects \
(int num, sc_core::sc_object* fifo_ptr=0);

13-41

Using the C, C++, and SystemC Debugger

The Value -1 on the first argument is equivalent to off and defines to
print no data. Value 0 is equivalent to on and defines to print all data
without limit. A positive number sets the limit of tokens to be printed.
Specifying fifo_ptr=0 sets the default limit for all FIFOs.

extern "C" int sc_snps_cbug_fifo_set_show_proc \
(int enable_showing_processes);

Both functions are declared in the systemc_user.h file, which you
need to include as follows:

#include <cosim/bf/systemc_user.h>

Support for Data Types

Native ANSI and SystemC types

Native ANSI types (for example, bool, int, long long) are fully
supported. They are displayed in the same way as an sc_signal
object of the same type. You cannot change the radix.

Native SystemC bit-vector types (sc_lv, sc_bv, sc_int, ...) are
also fully supported. They are printed in the same way as the <<
operator. Bit-vectors are printed in full length with no restrictions. You
cannot change the radix.

String type std::string (and char*) are fully supported. The full
length of the string is displayed.

13-42

Using the C, C++, and SystemC Debugger

User-defined Types

Printing tokens is based on the << operator. Dumping of user-
defined types (for example, classes or structs), is fully supported if
the << operator for this type is defined properly.

Note that OSCI SystemC makes it mandatory to define the <<
operator of any type T used in an sc_fifo, so that there is no extra
work needed for debugging. However, the operator may be defined
as a stub, in which case tokens are not properly displayed.

The number of available tokens and processes (if enabled) is always
properly displayed, even if the << operator is just a stub.

Change Bars in Waveform

A FIFO trace in the waveform shows a change bar whenever the
FIFO has activity (read(), write(), nb_read(), nb_write()
calls).

A change bar is also printed when the visible status does not change.
For example, imagine that both read() and write() happen at the
same time step. A change bar is printed even though the number of
available tokens does not change.

UCLI 'get' Command

The UCLI get command prints the same information as VPD
dumping. Both of them share the same functionality, and are subject
to the same configuration.

13-43

Using the C, C++, and SystemC Debugger

Speed Impact

If a FIFO is not dumped, then no runtime overhead is incurred. If it is
dumped, then the overhead varies greatly with the configuration,
number of tokens to be printed, and type.

You can reduce the runtime overhead by first configuring to print only
the minimal amount of information (no data, no processes). Then,
when the simulation reaches a certain time, change the configuration
to display more data.

Supported platforms

Interactive debugging with CBug is supported on the following
platforms:

• RHEL32/Suse, 32-bit

• RHEL64/Suse, 64-bit (VCS flag -full64)

• Solaris 5.9/5.10, 32-bit

Interactive debugging with CBug is not supported on these
platforms:

• Solaris, 64-bit

• -comp64 flow of VCS, all platforms

• any other platform

An explicit error message is printed when you try to attach CBug on
a platform that is not supported.

13-44

Using the C, C++, and SystemC Debugger

For Solaris 32-bit (sparcOS5), interactive debugging with CBug is
not possible in:

• Any kind of C/C++ code if the simulation has been compiled with
vcs -vera command.

• C/C++ code that is located in a shared library (e.g. mylib.so) and
explicitly loaded with an dlopen() command. All VhPI
applications fall into this situations. Debugging of C/C++ source
files located inside such a shared library is not possible.

If you set a breakpoint and stop there, then gdb and CBug fails
and simv terminates without any error message. Stopping in other
C/C++ source files that are not part of the shared library is
supported. Note that this restriction is specific to Solaris, RHEL32
has no such restriction.

For Solaris 64-bit, debugging of SystemC modules is only possible
in the post-processing flow. Port/signals of SystemC modules can be
dumped in a VPD file and later displayed by DVE. Note that this
specific platform does not allow to store source file/line information
for SystemC instances; doing a double-click an SystemC instance or
process will not open the corresponding source file.

Using SYSTEMC_OVERRIDE

VCS ships with multiple SystemC versions (2.0.1, 2.1, 2.2) which are
used per default. In rare cases, it might be necessary to use a
different SystemC installation that you compiled on your own. This
can be done by setting the SYSTEMC_OVERRIDE environment
variable (see the VCS / VCSi User Guide).

If you use SYSTEMC_OVERRIDE, then some or all of the SystemC
specific CBug features are not available.

13-45

Using the C, C++, and SystemC Debugger

These features are not available:

• Tracing of SystemC objects (ports, sc_signals).

• Printing of SystemC native datatypes like sc_int in an intuitive
format. Instead you will see the usual form how gdb prints the data
which is generally not useful for SystemC objects.

• Stopping in the next SystemC user process with ’next’ or ’step’.

These feature may or may not work depending on how much
different the SystemC installation is compared to an OSCI
installation:

• Showing SystemC objects (instances, processes, ports) in the
common hierarchy (Hierarchy pane in DVE).

• Double-clicking an SystemC instance or processes to open the
source file.

• Cross-stepping in or out of SystemC user processes and HDL
code

Any other SystemC specific CBug feature:

The following non-SystemC specific CBug feature will always work:

• Setting breakpoints in SystemC source code (you may have to
open the source file with File/Open File in DVE, though).

• Stepping through SystemC source code. Note that stepping out
of one SC user processes and stopping in the next one without a
breakpoint is not supported).

13-46

Using the C, C++, and SystemC Debugger

• Access a variable/class member with synopsys::get. The
variable needs to be visible in scope of the C function where the
simulation is currently stopped. Note that enhanced printing of
native SystemC types is not available.

Example: A Simple Timer

The design is a simple timer that decrements a count starting from
an initial value and signals an interrupt when the count reaches 0.

The test case is a Verilog top + SystemC down test case.

my_top is the driving module that drives the clock, reset, inval_valid,
inval, current_val, and interrupt and samples the timer_val (current
timer value and interrupt from the SystemC module).

Where:

• reset restores the initial value of the timer.

13-47

Using the C, C++, and SystemC Debugger

• inval is the timer initial value.

• inval_valid indicates to the timer that the input value is valid.

• timer_val is the current timer value.

The SystemC module for timer instantiates the sc_subtracter module
that has sc_current_value as the input and returns
sc_current_value-1 as the result (sc_current_value_minus_one).

The current_value-1 that is returned by the subtracter module is
feedback to the subtracter module at every succeeding clock edge
till the final value reaches 0 and interrupt is triggered.

1. Compile the testcase.

syscan -cpp g++ -cflags "-g" timer.cpp:timer sc_subtracter.cpp
vcs -cpp g++ -sysc top.v -debug_all $VCS_HOME/lib/ucli.o -timescale=1ps/1ps

2. Start DVE.

dve

3. Click to start the simulation.

The DVE Hierarchy pane displays the design. Note that SystemC
modules display in orange.

13-48

Using the C, C++, and SystemC Debugger

4. To display the source code of a process (), drag and drop the
process from the Hierarchy pane to the Source view.

Note that anytime a C source code is opened or a breakpoint is
set on a C source code, the C debugger is launched automatically.

Drag a process to the Source Pane

The source
code displays in
the Source
Pane.

13-49

Using the C, C++, and SystemC Debugger

5. Click on the design to display variables in the Variable Pane.

6. In the Hierarchy Pane, select the top level of the design (my_top
(my_top)), right-click, then select Add to Waves from the context-
sensitive menu.

The Wave view displays waveforms up to the current simulation
time. .

13-50

Using the C, C++, and SystemC Debugger

Note:
You cannot display the waveform while the simulator is stopped
in C code.

7. To set line breakpoint, click any green circle in the Line Attribute
area of the Source view as follows.

Note:
Similar to setting a breakpoint in the C code, you can set a
breakpoint in HDL code and step back and forth between C and
HDL code using the debugger.

Click any breakable line
indicator to activate line
break.

Red circle indicates
activated line
breakpoint.

13-51

Using the C, C++, and SystemC Debugger

8. Click (Continue) in the Top Level Window toolbar.

The simulation advances to the breakpoint.

9. Enter finish in the console command line.

The simulation runs to the end.

Viewing SystemC Source and OSCI Names in DVE

This chapter describes how the DVE CBug automatically displays
SystemC port and signal names with its source name.

This chapter consists of the following sections:

• “Use Model”

• “Source and OSCI Names”

• “Displaying Source and OSCI Names in DVE”

• “Limitations”

Use Model

• The following example provides the recommended conventions
for naming signals and ports in the SystemC constructor:

Example-1:

sc_in CLK;

SC_CTOR(top) : CLK("CLK") {...}

13-52

Using the C, C++, and SystemC Debugger

In this case, the port will be visible, as expected, in the design
hierarchy with its proper name top.CLK.

• If the port name is not provided, then a random port name such
as port_0 will be generated and assigned automatically, as
shown in the following example:

Example-2:

sc_in CLK;

SC_CTOR(top) {...}

// Initializer for CLK is missing

This naming convention is not recommended because the
hierarchy refers to the port or signal as top.port_0, whereas
the source code knows only CLK.

• You can provide a different name explicitly, as shown in the
following example:

Example-3:

 SC_CTOR(top) : CLK("BCLK") {...}

This naming convention is not recommended, because the
hierarchy refers to the port or signal as top.BCLK, whereas the
source code recognizes only CLK.

13-53

Using the C, C++, and SystemC Debugger

Source and OSCI Names

Source Name

Source name is the name of an instance in the SystemC source
code. In Example-1, CLK is the source name.

OCSI Name

OCSI name is the name given to the constructor. In Example-2,
port_0 is the OSCI name, and in Example-3, BCLK is the OSCI
name.

Note:
The SystemC language recommends you to provide same names
for Source and OSCI.

Displaying Source and OSCI Names in DVE

DVE supports display of both source and OSCI name. To activate
this feature, do the following:

1. Compile and build the simulation executable with debug flags.

% syscan -cflags -g and

% vcs -debug_all

2. In DVE, select Edit > Preferences > Testbench/CBug > CBUG:
Store SystemC class member variables which are not derived
from SystemC base classes in VPD (performance impact).
This setting also enables displaying better descriptions for
names like 'port_0'.

13-54

Using the C, C++, and SystemC Debugger

3. Enable CBug, using any one of the following methods:

- Type cbug on the DVE command-line

- In DVE, select Simulator > C/C++ Debugging > [x] Enable

For Example-2, DVE shows:

port_0 (CLK) in Data, Wave, Watch, and List panes. The
following figure shows the port_0 (CLK) port in the Data pane:

Example-4:

For the following source code, as shown in the figure given below:

sc_in<int> my_port_array[4];

13-55

Using the C, C++, and SystemC Debugger

 DVE displays the following ports in the Data pane:

 * port_1 (my_port_array[0])
 * port_2 (my_port_array[1])
 * port_3 (my_port_array[2])
 * port_4 (my_port_array[3])

13-56

Using the C, C++, and SystemC Debugger

Limitations

The following are the limitations of viewing SystemC Source and
OSCI Names in DVE:

• DVE depends on the capability of the GNU Project Debugger
(GDB). At present, GDB cannot access variables defined in
certain namespace scenarios. This breaks the UCLI get
command for plain member variables in modules that contain
namespace.

GDB cannot read the dimensions of multi-dimensional arrays in
certain template scenarios. For multi-dimensional arrays, DVE
generates a warning message and displays the array content as
a linear array.

• This feature is available only on SystemC 2.2 and newer versions
(if any), but not on versions 2.1 and 2.0.1.

13-57

Using the C, C++, and SystemC Debugger

Using CBug to Display Instance Name of Target Instance
in TLM-2.0

This section describes how to use CBug to display the instance
name of a target instance in Transaction-level Modeling (TLM).

When the simulation stops inside SystemC source code, then UCLI
or DVE reports where it stopped. This scope refers to a SystemC
module from the static design hierarchy. Use the UCLI command
senv activeScope to view the active scope. In DVE, the scope is
also shown at the bottom-right.

The following are various cases where CBug reports the SystemC
module as a scope:

• If the simulation stops inside a member function of a SystemC
module, then this module is reported.

• If stopped inside a C function, CBug looks in the call stack for the
nearest SystemC module and reports it.

Note:
CBug analyzes the call stack only up to a maximum depth of
five levels.

• CBug also looks into the call stack if it is stopped inside a C++
member that is not related (derived) to a SystemC module.

• If the SystemC kernel is currently executing a SystemC process,
and the call stack does not reveal a SystemC module, then the
SystemC module which owns this process is reported.

13-58

Using the C, C++, and SystemC Debugger

• If neither the call stack nor the active process reveals a module,
then an empty scope is reported. DVE displays Calling C
domain in this case. This can happen with DPI or PLI calls
initiated from the HDL side.

Example

Consider the following SystemC module mem_tb:

....
mem_tb_socket -> b_transport(trans, delay);
....

This module calls the b_transport function through the
mem_tb_socket socket, which is an initiator socket.

Consider another SystemC module memory, in which b_transport
is defined, as given below:

void memory :: b_transport (tlm::tlm_generic_payload&trans,
sc_time & delay)
{
....
....
}

If control steps in or stops at the b_transport function, then the
senv activeScope command displays the memory as an active
scope.

13-59

Using the C, C++, and SystemC Debugger

Limitations of Displaying Instance Name of Target
Instance in TLM-2.0

If you call ordinary C functions or member functions of ordinary C++
classes that do not belong to a scope (that is, that are not derived
from an sc_object), then the calling scope is displayed only if the
caller with a scope is less than five levels away on the call stack. This
happens because the visibility of the caller scope ends at level five
of the call stack frame.

CBug Stepping Improvements

This section describes the enhancements made to CBug to make
stepping smarter in the following topics:

• “Using Step-out Feature” on page 59

• “Automatic Step-through for SystemC” on page 60

Using Step-out Feature

You can use the step-out feature to advance the simulation to leave
the current C stack frame. If a step-out leaves the current SystemC
process and returns into the SystemC or HDL kernel, then simulation
stops on the next SystemC or HDL process activation, as usual, with
a sequence of next command.

CBug currently supports the existing next -end UCLI command.
This command is used to advance the simulation until you reach the
next break point or exit the C domain, and then you are back into the
HDL domain.

13-60

Using the C, C++, and SystemC Debugger

The behavior of this command is changed to support the step-out
functionality. This command is now equivalent to the gdb finish
command. This feature will be continued under a new UCLI
command next –hdl.

Note:
The step-out feature does not apply in an HDL context.

Automatic Step-through for SystemC

The following are some of the typical scenarios where you can step
into SystemC kernel functions:

• Read()or Write()functions for ports or signals

• Assignment operator gets into the overloaded operator call

• sc_fifo, tlm_fifo, sc_time and other built-in data type
member functions or constructors

• wait() calls and different variants of wait() calls

• Performing addition or other operations on ports gets inside the
kernel function when you do a step. This happens if you have a
function call as part of one of its arguments to the add function.

A step should step-through to the next line in the user code or at
least outside the Standard Template Library (STL), but should not
stop within the STL method. CBug does a step-through for any
method of the following STL classes:

• STL containers like std::string, std::hash

• Other STL classes like vector, dequeue, list, stack, queue,
priority_queue, set, multiset, map, multimap, and bitset

13-61

Using the C, C++, and SystemC Debugger

Enabling and Disabling Step-through Feature

Use the following command to enable the step-through feature:

cbug::config step_through on

Use the following command to disable the step-through feature:

cbug::config step_through off

If step-through is disabled and UCLI step ends in a SystemC kernel
or STL code, then an information message is generated if you use
next -end (=gdb finish). This message states that
cbug::config enable stepover exists, and may be useful.
This message is generated only once while CBug is attached.

Recovering from Error Conditions

In some cases, it is possible that an automatic step-through does not
quickly stop at a statement, but triggers another step-through,
followed by another step-through, and so on. In this case you notice
that DVE or UCLI hangs, but may not be aware that the step-through
is still active.

CBug must recognize this situation and take action. This happens if
a step-through does not stop on its own after 10 consecutive
iterations of internal finish or step.

CBug can either stop the chain of internal finish or step
sequences on its own, and report a warning which states that the
automatic step-through is aborted and how to disable it.

14-1

Debugging Constraints

14
Debugging Constraints 1

Debugging constraints is a challenge because incorrect constraints
can result in no legal solution. Also, constraints may contain complex
conditions and reflect relations between variables that may be
difficult to understand.

Constraints can fail due to failed randomization of a class object,
conflicting constraints, or unexpected values assigned to variables.
Better debug capabilities can help you understand the constraints
better. In addition, interactive debug can help you understand how a
certain randomize call was solved, sources of inefficiency, and the
reason for a solver failure.

DVE supports constraint debugging by allowing you to:

• Analyze a randomize call after the randomization has been
completed and before the post_randomize() function is
executed.

14-2

Debugging Constraints

• Set breakpoints to stop simulation at a certain randomize call.

• View static information about constraints in the Member Pane.

• Browse constraint objects in the Local Pane.

• View constraint details and how the constraints were solved in the
Constraints dialog box.

• Understand randomization by querying any variable or constraint.

• Change the radix type of a variable value and values of a
constraint expression in the Solver Pane and Relation Pane of
the Constraints dialog box.

• Drag-and-drop a variable or constraint block item from the Solver
Pane or Relation Pane into the Search field of the Constraints
dialog box.

• Use the Add To Search right-click option in the Solver Pane and
Relation Pane, to specify a variable or constraint block item in the
Search field.

• View object ID information of a class object in the Value column
of the Solver Pane.

• Extract test case of a Partition and Randomize Call item.

• Control rand_mode/constraint_mode and randomization
from UCLI/DVE.

This chapter consists of the following sections:

• “Enabling Constraint Solver for Debugging”

• “Invoking the Constraint Solver Debugger GUI”

• “Debugging Constraint-Related Problems”

14-3

Debugging Constraints

• “Constraint Browsing in Class Hierarchy Browser”

• “Browsing Objects in Local Pane”

• “Using the Constraints Dialog”

• “Inconsistent Constraints”

• “Debugging Constraints Example”

• “Changing Radix Type of a Variable or Constraint Expression in
Constraints Dialog Box”

• “Drag-and-Drop Support for Constraints Debug”

• “Viewing Object ID Information of a Class in Solver Pane”

• “Cross Probing”

• “Extracting Test Case”

• “Controlling rand_mode/constraint_mode and Randomization
from UCLI/DVE”

• “Constraints Debug Limitations”

Enabling Constraint Solver for Debugging

To enable debugging capabilities for the constraint solver, you must
specify the –debug_all switch, along with your compilation
command. For example:

% vcs -debug_all test.v

14-4

Debugging Constraints

Invoking the Constraint Solver Debugger GUI

You can start the constraint solver debugger from the command line,
and then run the simulation from the GUI:

% simv -gui

Debugging Constraint-Related Problems

To debug constraint-related problems, follow these guidelines:

• “Breaking Execution at a Randomize Call” on page 4

• “Analyzing a Randomization Call” on page 18

Breaking Execution at a Randomize Call

You can set a breakpoint to stop the simulation at a certain
randomize call. A breakpoint is a setting on a line of code that tells
DVE to stop the simulation immediately before the line of code on
which it is set so that you can examine that line of code before
continuing.

You can use the UCLI commands shown in Table 14-1or the DVE
Breakpoints dialog box to set a breakpoint at a certain randomize call
(see Figure 14-1).

14-5

Debugging Constraints

Table 14-1 Commands to Set Breakpoint at a Randomize Call

Note:
You must specify the above-mentioned UCLI commands in the
DVE console.

To open the Breakpoints Dialog, select Simulator > Breakpoints. In
the Breakpoints dialog box, click Define>> to display the breakpoint
creation tabs, as shown in Figure 14-1.

UCLI Command Equivalent
Setting in DVE
Breakpoints
Dialog Box

Description

stop –file <file>
–line <line> -skip
<num>

See Figure 14-1 Allows you to stop at any randomize
call and skip any number of
intermediate randomize calls.

stop –solver See Figure 14-2 Stops the execution at all
subsequent randomize calls.

stop –solver –once See Figure 14-2 Stops the execution at the next
randomize call encountered.

stop –solver -serial
<num>

See Figure 14-2 Stops the execution at a randomize
call with a certain solver serial
number.

14-6

Debugging Constraints

Figure 14-1 Setting Breakpoints in the Line Tab

14-7

Debugging Constraints

Figure 14-2 Setting Breakpoints in the Constraints Tab

Stopping at Randomize Calls Within Macros

DVE supports debugging of randomize calls within the macro
content. You must expand the macro, as shown in Figure 14-3, to
stop the execution at a certain randomize call within the macro

14-8

Debugging Constraints

content. Then click the Step in Constraint Solver toolbar icon to
open the Constraints dialog box (see Figure 14-26). DVE highlights
the randomize call in the macro content.

Figure 14-3 Stopping Execution at Randomize Calls within Macros

Creating Solver Conditional Breakpoint at Randomize
Calls

You can use the stop -solver UCLI command along with options
-class, -solver_cond or the DVE Breakpoints dialog box to
create a solver conditional breakpoint at a certain randomize call.

Creating Solver Conditional Breakpoint Using stop -solver UCLI
command

Use the following syntax:

stop –solver –class <class_name> -solver_cond <expr>

14-9

Debugging Constraints

where,

<class_name> — The name of class definition to which the built-in
randomize() method belongs. For example,
obj1.randomize(), where obj1 is the instantiated object of the A
class definition. You can specify –class A for a randomize()
method call from any instantiated objects of A.

<expr> — Following is the syntax of <expr>:

expression ::= { condition [logical_op condition]}

condition::= variable [relational_op value]

variable::=[classobj_member.|struct_member.|union_member.]
 simple_name[.size] | 1

value:: = decimal_number|binary_number|hex_number
 (radix_base ::= ‘b | ‘h)
logical_op ::= && | || | or | and
relational_op ::= == | < | > | = | !=

Key points to note:

• Only variables of type rand whose modes are ON, are taken care
in solver expression. That is, –solver_cond is different from
-condition.

• The -class command is optional. If no class is specified on the
command line, the -solver_cond command applies to the
std::randomize() call. You can specify rand variables from
the randomization data of the current scope (LRM 12.11).

• If you do not specify rand_value, the rand variable can be
solved to any non-zero value.

14-10

Debugging Constraints

• If -class is specified without –solver_cond, the breakpoint is
hit when any rand variable of the specified class is solved.

Creating Solver Conditional Breakpoint Using DVE Breakpoints
Dialog

Figure 14-4 illustrates creating a solver conditional breakpoint in the
Constraints tab of the DVE Breakpoints dialog box.

Figure 14-4 Creating Solver Conditional Breakpoint in Breakpoints Dialog

14-11

Debugging Constraints

Setting Breakpoint on Parameterized Classes

You can set a breakpoint on parameterized classes from the
command line or the Class Browser.

To set breakpoints on parameterized classes from the command
line, use the following syntax:

%dve> stop –solver –class {class_name} –solver_cond {expr}

For example:

%dve> stop –solver –class {ext1#(byte,bit[31:0],bit)} \
-solver_cond { a > 0 }

To set breakpoints on parameterized classes from the Class
Browser:

1. Right-click on a class and select Set Breakpoint, as shown in the
Figure 14-5.

14-12

Debugging Constraints

Figure 14-5 Setting Breakpoint on Parameterized Classes

2. Enter an expression for the constraint solver in the Expression
field of the Breakpoints dialog box, as shown in Figure 14-6.

14-13

Debugging Constraints

Figure 14-6 Setting Breakpoint on Parameterized Classes

3. Click the Create button.

Setting Breakpoints on Constraint Inconsistency and Timeout

You can set a breakpoint on constraint inconsistency and timeout
from the command line or from the Breakpoints dialog box. This
section describes the following topics:

Use the following syntax to set a breakpoint on constraint
inconsistencies and timeout from the command line:

stop –solver [–class <class_name>] [-inconsistency|-timeout
| -solver_cond <expr>]

The following points describe the usage of this syntax:

14-14

Debugging Constraints

• –class is optional. If you don’t specify a class, then
-inconsistency and -timeout will apply to the
std::randomize() call.

• <class_name> is the name of class definition to which the built-
in randomize() method belongs. For example,
obj1.randomize(). Here, obj1 is instantiated object of the A
class definition. You can specify –class A for the randomize()
method call from any instantiated objects of A. If you specify
<class_name> as *, then all classes will be considered.

• -inconsistency specifies the condition that will be satisfied
when any inconsistent constraints exist in the specified class.

• -timeout specifies the condition that will be satisfied when any
timeout constraints exist in the specified class. The value of
timeout is set by using simv option
+ntb_solver_cpu_limit=<timeout value>.

• You cannot use solver_cond, -inconsistency, and
-timeout together. VCS generates an error message, if these
options are used together.

• solver_cond, -inconsistency, and -timeout are optional.
If none of them are specified, then VCS stops at all randomize
calls of the specified class.

Examples

Use the following command to detect potential constraint
inconsistencies from class C:

% dve> stop –solver –class C –inconsistency

Use the following command to detect potential constraint timeout
from class C:

% dve> stop –solver –class C –timeout

14-15

Debugging Constraints

Use the following command to detect potential constraint
inconsistencies from any class:

% dve> stop –solver –class * –inconsistency

Use the following command to detect potential constraint
inconsistencies from any class:

% dve> stop –solver –class * –timeout

To set a breakpoint on constraint inconsistency and timeout from the
Breakpoints dialog box, select Inconsistency or Timeout, as shown
in Figure 14-7.

14-16

Debugging Constraints

Figure 14-7 Detecting Constraint Inconsistencies and Timeout

You can view the timeout constraints information in a separate
partition of the Solver Pane, as shown in the following figure. For
more information on Solver Pane, see “Using the Solver Pane” on
page 25.

14-17

Debugging Constraints

Figure 14-8 Viewing Timeout Information

14-18

Debugging Constraints

Analyzing a Randomization Call

Once you are at a randomize call, you can:

• Click the Next or Continue toolbar icon to continue execution.
This does not open the Constraints dialog box.

• Use the step -solver command or its equivalent toolbar icon
(see Figure 14-9) to open the Constraints dialog box.

Figure 14-9 Step in Constraint Solver Toolbar Icon

You can apply this command only on the current line to be
executed. This command takes you directly into constraint debug
mode if the current line has a randomize call. Otherwise, it goes
to the next line.

The following steps explain how to analyze a randomization call
when you use the step -solver command:

1. Execution breaks at the beginning of the post_randomize()
call, if you have overwritten it. If you have not overwritten the
post_randomize() call, execution breaks at the end of the
randomize call.

2. In DVE, the Constraints dialog box opens up automatically if you
execute the step -solver command or click the Step in
Constraint Solver toolbar icon. It includes two tabs: Solver Pane
and Relation Pane, as shown in Figure 14-16. You can also select
Simulator > Constraints to open this dialog box when constraints
data is ready.

14-19

Debugging Constraints

When you finish analyzing a randomize call, you can continue
execution as usual. Program execution stops at the next breakpoint
or runs to completion.

Constraint Browsing in Class Hierarchy Browser

You can use the Constraints folder in the Member Pane to view static
information about constraints in DVE. This folder displays all
constraints under it which are defined in the selected class, as
shown in Figure 14-10.

Figure 14-10 Viewing Static Constraint Information in Member Pane

DVE allows you to view the corresponding definition of a constraint
block in the Source View, as shown in Figure 14-11.

14-20

Debugging Constraints

Figure 14-11 Viewing Definition of a Constraint Block in Source View

DVE allows you to select the constraint items to be displayed in the
constraint block, as shown in Figure 14-12. By default, all constraint
items are displayed in the Member Pane.

14-21

Debugging Constraints

Figure 14-12 Viewing Constraint Items

Mouse over the Constraints folder, constraint block, or a constraint
item to view a ToolTip with relevant constraint information, as shown
in Figure 14-13.

14-22

Debugging Constraints

Figure 14-13 ToolTip with Constraint-related Information

Overridden constraints are displayed in gray using a different icon.
For example, if a constraint is overridden in a derived class, you can
select Base members in the Type filter to view the constraint from
the base class, as shown in Figure 14-14.

14-23

Debugging Constraints

Figure 14-14 Viewing Overridden Constraints

Browsing Objects in Local Pane

The Local Pane shares a tabbed view with the Data tab. The Local
Pane displays variables of a selected scope in the Stack Pane.

Note the following points about how constraint object browsing
works in the Local Pane (shown in Figure 14-15):

• For foo.randomize(), you can only browse foo and parent
hierarchies of foo. In the Local Pane, DVE displays random
variables, state variables, constraint blocks, and constraint
expressions in each class at each level of hierarchy.

• For random fields, DVE displays the values of their rand_modes
in the ToolTips.

• For foo, DVE displays the current values of random and state
variables at all levels of hierarchy, in the Value column of the Local
Pane.

14-24

Debugging Constraints

• Constraint modes of Constraint Blocks are displayed in their
ToolTips.

• For a std::randomize call, you can browse each argument as
a separate object in addition to foo.

• DVE also displays the following information about constraints in
the Local Pane:

- The icon for a variable is displayed in gray if rand_mode is off.

- The icon for a constraint block is displayed in gray if
constraint_mode is off.

- Constraint blocks defined inside the base or parent class are
displayed under the super folder in the Data Pane.

- You can use the show -randomize command to get the serial
number for the last randomize call.

14-25

Debugging Constraints

Figure 14-15 Object Browsing in Local Pane

Using the Constraints Dialog

DVE displays the Constraints dialog box when you execute the step
-solver command or click the Step in Constraint Solver toolbar

icon . This dialog box includes two tabs: Solver Pane and Relation
Pane, as shown in Figure 14-16.

Using the Solver Pane

The following debug data of a certain randomize call is displayed in
the Solver Pane (see Figure 14-16):

14-26

Debugging Constraints

• The serial number of the randomize call (Randomize Call)

• Problem partition numbers

• The call of function (Function Call)

• The name and mode (On/Off) of constraint block (Constraint
Block)

• Constraint expression (Constraint Expression)

• The name, type (Rand/RandC/State), mode (On/Off if type is
Rand/RandC), value, and initial value range of variable (Variable)

• The name and value of function call argument (Argument)

• Object ID information of a class

• If there is inconsistency, then name, type, mode of variables, and
constraint expressions are displayed under the inconsistent
folder, as shown in Figure 14-23.

Icon and Text Color in Constraints Dialog
• The icon and text for soft/dropped constraints is displayed in gray.

• The icon and text for off constraint blocks and all constraints inside
off constraint blocks is displayed in gray.

• All other constraints are displayed in black.

• The icon for rand off variables is displayed in gray.

14-27

Debugging Constraints

Figure 14-16 Constraints Dialog Solver Pane

Table 14-2 explains the right-click menu options in the Constraints
dialog box Solver Pane:

14-28

Debugging Constraints

Table 14-2 Right-click Options in Constraints Solver Dialog Pane

Option Name Description

Show Source This option works for Randomize Call, Function
Call, Constraint Block, Constraint Expression, and
Variable. It opens the corresponding file and
highlights the corresponding line in the Source
View.

Show In Class Browser This option works for Variable and Constraint Block.
It locates the definition in the Class Browser (Class
Pane and Member Pane).

Show Relation This option works only for Variable. The selected
variable and related variables are displayed in the
Relation Pane.

Set Radix Allows you to change the radix type of a variable
value. For more information, see “Changing Radix
Type of a Variable or Constraint Expression in
Constraints Dialog Box” .

Extract Testcase Allows you to extract partition-level test cases. For
more information, see “Extracting Test Case” .

14-29

Debugging Constraints

Figure 14-17 Menu Options in the Constraints Dialog Solver Pane

14-30

Debugging Constraints

Searching Variables or Constraints in Solver Pane

You can use the Search field to search for variables or constraint
blocks in the Solver Pane (see Figure 14-18).

Figure 14-18 Using the Solver Pane Search

14-31

Debugging Constraints

Using the Relation Pane

When you right-click on any variable in the Solver Pane and select
the Show Relation option, the Relation Pane appears and the
corresponding variable and other variables related to this variable
are displayed in the Relation Pane (see Figure 14-19).

Table 14-3 explains the right-click menu options in the Constraints
dialog box Relation Pane:

Table 14-3 Right-click Options in Relation Pane

Option Name Description

Show Source This option works for Constraint Expression and
Variable. It opens the corresponding file and
highlights the corresponding line in the Source
View.

Show In Class Browser This option works for Variable. It locates the
definition in the Class Browser (Class Pane and
Member Pane).

Show Relation This option works for a Variable not on the top level.
The selected variable and related variables are
displayed in the Relation Pane.

Show In Solver This option works for Constraint Expression. It
highlights the selected constraint expression in the
Solver Pane.

Set Radix Allows you to change the radix type of a variable
value. For more information, see “Changing Radix
Type of a Variable or Constraint Expression in
Constraints Dialog Box” .

Delete This option deletes the currently selected root
variable from the Relation Pane.

14-32

Debugging Constraints

Figure 14-19 Constraints Dialog Relation Pane

14-33

Debugging Constraints

To view the Solver Pane and Relation Pane side by side, as shown
in Figure 14-20, click the Split button near the top right-hand side of
the Constraints dialog box.

Figure 14-20 Viewing Solver Pane and Relation Pane Side by Side

DVE displays the solved-together variables using a different icon in
the corresponding line, as shown in Figure 14-21.

Table 14-4 shows the icons used by DVE to indicate solved-together
variables.

14-34

Debugging Constraints

Table 14-4 DVE Icons for Solved-together Variables:

Figure 14-21 Solved-together and Related Variables

Inconsistent Constraints

If the solver finds inconsistent constraints while executing the step
–solver command, DVE displays a message box (see Figure 14-
22). Click OK to go to the Constraint dialog box Solver Pane, where
minimal inconsistent constraints are displayed, as shown in
Figure 14-23.

Icon Indicates

Solved-together variable

Not solved-together variable

14-35

Debugging Constraints

Figure 14-22 Message Box

Figure 14-23 Viewing Inconsistent Constraints in Solver Pane

14-36

Debugging Constraints

Debugging Constraints Example

This section explains a constraints debugging example. Example 14-
1 shows how constraints are defined in a sample design file. You can
view these constraints in the DVE Member Pane, Local Pane, and
Constraints dialog box.

Example 14-1 Design File with Constraints (cstr_debug.sv)

class cls;
 rand bit[1:0] a;
 randc bit[1:0] b;
 rand bit[3:0] data1;
 rand bit[31:0] alist[5];
 bit[31:0] blist[5];
 rand bit[7:0] addr, data;
 rand bit s;
 rand bit[31:0] d;

 constraint c_simple {
 a >= b;
 }

 constraint c_dist {
 data1 dist {4'b0010 := 1, 4'b1000 :=2, 4'b1010 :=5};
 }

 constraint c_foreach {
 foreach(alist[i])
 foreach(blist[j])
 (alist[i] != blist[j]);
 }

 constraint c_ifelse {
 if (addr <= 7)
 data < 10;
 else if (addr > 7)
 (data >=10 && data <= 15);
 }

14-37

Debugging Constraints

 constraint c_implication { s -> d == 0; }
 constraint c_order { solve s before d; }

endclass

module test;
 cls c=new;
 initial begin
 repeat(10) c.randomize();
 end
endmodule

Compile the cstr_debug.sv code, shown in Example 14-1, as
follows:

% vcs -sverilog -debug_all cstr_debug.sv

Invoke the DVE GUI:

% simv -gui&

To debug the constraints in DVE, follow these steps:

1. Set breakpoints in the Breakpoints dialog box to stop the
simulation at a certain randomize call. To open the Breakpoints
dialog box, select Simulator > Breakpoints and click Define>>
to display the breakpoint creation tabs.

For more information on the types of breakpoints that you can set
in the Breakpoints dialog box, see “Breaking Execution at a
Randomize Call” on page 4. For example, Figure 14-24 shows
how to set a breakpoint that stops execution at all subsequent
Randomize Calls.

14-38

Debugging Constraints

Figure 14-24 Setting Breakpoints in the Constraints Tab

2. Click to start the simulation. The current active line stops at
the first Randomize Call, as shown in Figure 14-25.

14-39

Debugging Constraints

Figure 14-25 Execution Stopping at the First Randomize Call

3. To view the Constraints Folder and constraint blocks in the
Member Pane, select a class in the Class Pane.

4. To see the constraint variables in the Local Pane, select a scope
in the Stack Pane.

5. To open the Constraints dialog box, execute the step -solver
command in the DVE console, or click the Step in Constraint

Solver toolbar icon .

14-40

Debugging Constraints

Figure 14-26 Viewing Constraints Dialog Box

14-41

Debugging Constraints

Changing Radix Type of a Variable or Constraint
Expression in Constraints Dialog Box

DVE allows you to change the radix type (the numeric base used to
display integer values) of a variable value or values of a constraint
expression in the Solver Pane and Relation Pane of the Constraints
dialog box. You can use one of the following two methods to do this:

• Using Constraints Dialog Box

• Using Tcl command

Supported Radix Types

• Binary

• Octal

• Decimal

• Hexadecimal

Using Constraints Dialog Box to Change the Radix Type
of a Variable or Constraint Expression

Changing Radix Type of a Variable

To change the radix type of a variable value, right-click on the
desired variable name in Solver Pane or Relation Pane, click Set
Radix, and then select the desired radix type from the list, as shown
in Figure 14-27. If this variable is present in different places (for
example, in both Solver and Relation panes), then changes will be
applied to selected variable only.

14-42

Debugging Constraints

Figure 14-27 Changing the Radix Type of a Variable

Note:
- Changing radix of a variable in Constraints dialog box will not

affect it in other views (Local Pane, Member Pane, and so on),
and vice versa.

- This feature does not support values of type enum.

- The “User-Defined” radix option (see Figure 14-27) is not
supported.

For example, in the Constraints dialog box shown in Figure 14-28,
consider variable “b” whose radix type is “Hexadecimal”.

14-43

Debugging Constraints

Figure 14-28 Changing the Radix Type of a Variable Value

Table 14-5 shows how DVE displays the value of this variable in
other radix formats.

Table 14-5 Value of a Variable “b” in Different Radix Formats

Radix Final Value Initial Value Range
Decimal 3 [0 : 3]

Binary 2‘b11 [2‘b0 : 2‘b11]

Hexadecimal 2‘h3 [2‘h0 : 2‘h3]

Octal 2‘o3 [2‘o0 : 2‘o3]

14-44

Debugging Constraints

Changing Radix Type of Constraint Expression

To change the radix type of a constraint expression, right-click on the
desired constraint expression in Solver Pane or Relation Pane, click
Set Radix, and then select the desired radix type from the list. Every
constant string inside the expression will be transformed according
to the new radix. If this constraint expression is present in different
places, then changes will be applied to selected constraint
expression only.

For example, consider the constraint expression highlighted in
Figure 14-29:

14-45

Debugging Constraints

Figure 14-29 Changing the Radix Type of a Constraint Expression

Table 14-6 shows this expression in different radix formats

Table 14-6 Changing Radix Type of a Constraint Expression

Expected Radix Result

Decimal (alist[4]!=blist[0])

Binary (alist[32'b100]!=blist[32'b0])

Hexadecimal (alist[32'h4]!=blist[32'h0])

Octal (alist[32'o04]!=blist[32'o0])

14-46

Debugging Constraints

Using Tcl Command to Change the Radix Type of a
Variable or Constraint Expression

You can use the following Tcl command at the DVE command line to
change the radix type of a variable or constraint expression:

gui_constraint_set_radix [-id windowid] -radix
string [-vars list] [-exprs list]

Where,

gui_constraint_set_radix — Enables radix change for a
variable or constraint expression in Constraints dialog box

id windowid — Window identifier.

radix string — Radix Type

vars list — Variables to set radix

exprs list — Constraint expressions to set radix

If the desired variable or constraint expression is present in different
places, then changes will be applied to selected variable or
constraint expression only.

Examples

gui_constraint_set_radix –id Solver.1 –radix hex –
vars {x}// changes the radix type of variable “x”
 to “Hexadecimal”.

14-47

Debugging Constraints

gui_constraint_set_radix –id Solver.1 –radix oct –
exprs {x=1}//changes the radix type of all
 constant strings inside the expression
 “x=1” to “Octal”.

Drag-and-Drop Support for Constraints Debug

This section describes drag-and-drop support for Constraints Debug
under the following topics:

• “Drag-and-Drop Support in Constraints Dialog Box”

• “Drag-and-Drop Items from Class Browser and Member Pane to
Breakpoint Dialog Box”

Drag-and-Drop Support in Constraints Dialog Box

The Constraints dialog box allows you to drag-and-drop a variable or
constraint block item from the Solver Pane or Relation Pane into the
Search field.

When you drag-and-drop an item from Solver Pane or Relation Pane
into the Search field, the Constraints dialog box automatically
updates its Search type as per the item you dropped into Search
field. For example, if current Search type is “Constraint Block”, but
the item dropped into Search field is a variable, then the Search type
automatically changes to “Solved Variable”.

14-48

Debugging Constraints

Performing Drag-and-Drop Operation in the Solver Pane

Figure 14-30 Performing Drag-and-Drop Operation in the Solver Pane

Drag an item from the Solver Pane or Relation Pane and hover the
mouse pointer over the Search field, as shown in Figure 14-31, to
drop it into the Search field.

14-49

Debugging Constraints

Figure 14-31 Performing Drag-and-Drop Operation

Performing Drag-and-Drop Operation in the Relation Pane

You must click the Split button in the Constraints dialog box to
perform drag-and-drop operation in Relation Pane. Click the Split
button near the top right-hand side of the Constraints dialog box to
view the Solver Pane and Relation Pane side-by-side, as shown in
Figure 14-32.

14-50

Debugging Constraints

Figure 14-32 Performing Drag-and-Drop Operation in the Relation Pane

Using “Add To Search” Option

You can also use the Add To Search right-click option in the Solver
Pane and Relation Pane, to specify a variable or constraint block
item in the Search field. Right-click on a variable or constraint block
item and select Add To Search option, as shown in Figure 14-33, to
specify it in the Search field.

14-51

Debugging Constraints

Figure 14-33 Using “Add To Search” Option

Drag-and-Drop Items from Class Browser and Member
Pane to Breakpoint Dialog Box

DVE allows you to drag-and-drop Class Browser items (class name)
and Member Pane items (variable and constraint block item) into the
Breakpoints dialog box, as shown in Figure 14-34.

14-52

Debugging Constraints

Figure 14-34 Drag-and-Drop Items to the Breakpoint Dialog Box

14-53

Debugging Constraints

Viewing Object ID Information of a Class in Solver Pane

An object ID uniquely identifies an object within the entire database.
Objects are referred to via their unique object IDs. DVE displays
object ID of a class object in the Value column of the Solver Pane, as
shown in Figure 14-35. You can use this information to find
corresponding object-related information in the Local Pane. DVE
displays the object ID information in the following format:

@<object index>

Example: @1

Figure 14-35 Viewing Object ID Information of a Class in the Solver Pane

14-54

Debugging Constraints

Cross Probing

Cross probing is the ability to select items in the Constraints dialog
box and have them mapped to the corresponding items in the Local
Pane.

Cross Probing to Local Pane

You can use the Show In Local Pane right-click option on a
Randomize Call item in the Solver Pane, to cross probe its
corresponding class item in Local Pane, as shown in Figure 14-36.

Note:
- You can use this option only on current root class item

(Randomize Call item) in Solver Pane.

- This option will be enabled on root class item (Randomize Call),
if it contains object ID information.

- This option will be disabled, if current Randomize Call is coming
from standard randomize, and does not contain object ID
information.

14-55

Debugging Constraints

Figure 14-36 Cross Probing to the Local Pane

Cross Probing to Class Browser from Randomize Call

You can use the Show In Class Browser right-click option on a
Randomize Call item in Solver Pane, to cross probe its
corresponding class item in Class Browser.

14-56

Debugging Constraints

Extracting Test Case

DVE allows you to extract test case of a Partition and Randomize
Call item. This section describes the following topics:

• “Extracting Test Cases from DVE”

• “Extracting Test Cases Using UCLI Command”

Extracting Test Cases from DVE

DVE allows you to extract partition-level test cases using the Extract
Testcase right-click option in the Solver Pane. This allows you to
create test case for a desired Partition when needed, thereby saving
you debug time.

You can use the Extract Testcase right-click option on a Randomize
Call or a Partition, as shown in Figure 14-37.

14-57

Debugging Constraints

Figure 14-37 Extracting Test case from DVE

DVE displays Extract Testcases dialog box (directory dialog box for
Randomize Call item and filename dialog box for Partition item), as
shown in Figure 14-38, when you use the Extract Testcase option.
Click Save button in the Extract Testcases dialog box to extract test
case to specified directory or file.

14-58

Debugging Constraints

Figure 14-38 Viewing Extracting Testcases Dialog Box

Using “Extract Testcase” Option on a Randomize Call Item

This operation extracts test cases for all Partitions under the
Randomize Call, where each Partition generates a test case. DVE
displays Extract Testcases dialog box (directory dialog box) which
allows you to specify directory name. By default, the directory will be
<working_dir>/simv.cst/testcases_gui

Using “Extract Testcase” Option on a Partition Item

This operation extracts test case for the selected Partition. DVE
displays Extract Testcases dialog box (filename dialog box) which
allows you to specify directory name and file name. By default, the
path of the file will be:

<working_dir>/simv.cst/testcases_gui/
extracted_r_<serial_num>_p_<partition_num>.sv
<working_dir>/simv.cst/testcases_gui/
extracted_r_<serial_num>_p_<partition_num>_inconsistent_co
nstraints.sv

14-59

Debugging Constraints

Extracting Test Cases Using UCLI Command

You can use the following UCLI command to extract test cases from
DVE:

constraints extract [-all] [-partition <n>] [-dir
<dirname>] [-file <filename>]

Where,

<n> — Specify the number of a certain FOG Partition or GP Partition

<dirname> — Specified path that output data will be dumped into

<filename> — Specified file that output data will be dumped into

Controlling rand_mode/constraint_mode and
Randomization from UCLI/DVE

DVE and UCLI allows you to control rand_mode() or
constraint_mode() methods and rerun randomization call. This
helps you to find the root cause for constraint failure and perform
interactive debugging without exiting the DVE.

The rand_mode() method can be used to control whether a
random variable is active or inactive. Inactive variables are not
randomized by the randomize() method, and their values are
treated as state variables by the solver.

The constraint_mode() method can be used to control whether
a constraint is active or inactive. When a constraint is inactive, it is
not considered by the randomize() method.

14-60

Debugging Constraints

Controlling rand_mode/constraint_mode from UCLI

You can use the UCLI call command to control rand_mode() and
constraint_mode() methods from UCLI or from DVE console.
The following use model describes the commands to control these
modes.

Use Model

rand_mode()

Following is the syntax for calling the rand_mode()method:

ucli% call [object.][rand_variable.]rand_mode(0|1)

or

ucli% call [object.]rand_variable.rand_mode()

Where,

object — Optional. Name of an allocated class object. If this
argument is not specified, then the action is applied to the current
(this) object.

rand_variable — Name of a random variable to which the
operation is applied. This argument is optional. If you do not
specify this argument, then the operation is applied to all random
variables within the specified object.

rand_mode — Allows you to specify the randomization mode.
The mode can be 0 (OFF) or 1 (ON) (see Table 1). If no argument
is specified, then this command returns the current active state of
the specified random variable. It returns 1 if the variable is active
(ON), and returns 0 if the variable is inactive (OFF).

14-61

Debugging Constraints

Table 14-7 rand_mode Arguments

Note:
VCS generates an error message, if the specified object/
variable does not exist or the object is not allocated.

constraint_mode()

Following is the syntax for calling the constraint_mode()
method:

ucli% call [object.][constraint_block.]constraint_mode(0|1)

or

ucli% call [object.]constraint_block.constraint_mode()

Where,

object — Optional. Name of an allocated class object. If this
argument is not specified, then the action is applied to the current
(this) object.

constraint_block — Name of a constraint block. The
constraint block name can be the name of any constraint block in
the class hierarchy. If you do not specify this argument, then the
operation is applied to all constraints within the specified object.

value Meaning Description

0 OFF Sets the specified variables to inactive, so that they are not
randomized on subsequent calls to the randomize() method.

1 ON Sets the specified variables to active, so that they are
randomized on subsequent calls to the randomize() method.

14-62

Debugging Constraints

constraint_mode — Allows you to specify the constraint mode.
The mode can be 0 (OFF) or 1 (ON) (see Table 1). If no argument
is specified, then this command returns the current active state of
the specified random variable. It returns 1 if the constraint is active
(ON), and returns 0 if the constraint is inactive (OFF).

Table 14-8 constraint_mode Arguments

Note:
VCS generates an error message, if the specified object/
constraint block does not exist or the object is not allocated.

Controlling rand_mode/constraint_mode from DVE

DVE allows you to enable or disable rand_mode() and
constraint_mode() variables in the Local Pane using the Set
Rand Mode and Set Constraint Mode right-click options.

Figure 14-39 and Figure 14-40 shows how to set rand_mode for
random variable and constraint _mode for a constraint variable. By
default, rand mode for all variables is set to On. You can select Off
to disable the selected variable. Figure 14-41 and Figure 14-42
shows the random and constraint variables when the mode is set to
OFF.

value Meaning Description

0 OFF Sets the specified constraint block to inactive, so that it is not
enforced by subsequent calls to the randomize()method.

1 ON Sets the specified constraint block to active, so that it is
considered by subsequent calls to the randomize() method.

14-63

Debugging Constraints

Figure 14-39 Enabling/Disabling Rand Mode

14-64

Debugging Constraints

Figure 14-40 Enabling/Disabling Constraint Mode

14-65

Debugging Constraints

Figure 14-41 Disabled Random Variable

Figure 14-42 Disabled Constraint Variable

14-66

Debugging Constraints

Rerandomization from DVE/UCLI

When there is a solver failure due to inconsistent constraints, you
should identify the source of the conflict and modify the inconsistent
constraints using the call commands described above or force
command, and then you can perform rerandomization from the UCLI
or DVE console to generate a new constraint database for further
debugging.

Rerandomization from UCLI

You can use the following UCLI command for rerandomization from
UCLI or DVE console:

cstr% step –solver –re_randomize

This command works only in constraint debug mode (that is, it can
be executed only when the cstr% prompt is generated after you
execute step –solver). VCS generates an error message, if you
call this command in non-constraint debug mode.

When you execute the above command, a new constraint debug
database will be generated for this rerandomization. A new Solver
View will be displayed in DVE. You can compare the data in the two
views.

If simv goes to the next line or exits from the constraint debug mode,
then VCS removes both constraint debug databases.

For example, consider the following testcase(test.sv):

Example 14-2 Design File with Constraints (test.sv)

1: class A;
2: rand bit[3:0] x,y,z;
3: constraint C1 {

14-67

Debugging Constraints

4: x + y == z;
5: }
6: constraint C2 {
7: solve x before y;
8: }
9: endclass
10:
11: program test;
12: initial begin
13: A obj = new;
14: obj.x = 4'b1111;
15:
16: $display("before randomize()");
17: obj.randomize();//set breakpoint here
18: $display("x = %d", obj.x);
19:
20: $display("after randomize()");
21:
22: end
23: endprogram

Set the breakpoint at line 17 and run the simulation.

Execute the following commands:

ucli% step –solver // generate debug db for obj.randomize
at Line 17
cstr% call obj.x.rand_mode() // the current active state 1
cstr% call obj.x.rand_mode(0) // set rand_mode as inactive
cstr% call obj.x.rand_mode() // return the current state 0
cstr% call obj.C2.constraint_mode(0) // disable C2
cstr% step –solver –re_randomize // generate a new db for
re-randomizing at Line 17
cstr% next // the both dbs are removed
test.v, 18: $display("x = %d", obj.x);
ucli%

14-68

Debugging Constraints

Rerandomization from DVE

Use the Redo Randomize Call and Step in Constraint Solver

toolbar icon . to perform rerandomization from DVE.

For example, consider Example 14-2.

Compile the test.sv code shown in Example 14-2, as follows:

% vcs -sverilog -debug_all test.sv

Invoke the DVE GUI, as follows:

% ./simv -gui&

Perform the following steps:

1. Set the breakpoint at line 17 and run the simulator.

2. To open the Constraints dialog box, execute the step -solver
command in the DVE console, or click the Step in Constraint

Solver toolbar icon .

If there is unexpected data or any inconsistences in the Constraints
dialog box Solver Pane, change the mode of desired rand variables

or constraint blocks, and click the toolbar icon to open the new

Constraints dialog box which contains both current and new Solver
Panes side-by-side (see Figure 14-43). You can use this side-by-
side comparison view to compare both Solver Panes for further
debugging:

14-69

Debugging Constraints

Figure 14-43 Constraints Dialog Box Side-by-Side Comparison View

Click the Split button to view the Relation Panes under
corresponding Solver Panes, as shown in Figure 14-44.

14-70

Debugging Constraints

Figure 14-44 Relation Panes Under Corresponding Solver Panes

You can use the Switch View Mode drop-down, as shown in
Figure 14-45, in the Constraints dialog box, to view either original
randomize or rerandomize views.

14-71

Debugging Constraints

Figure 14-45 Switch View Mode Drop-Down

Table 14-9 describes the Switch View Mode drop-down options.

Table 14-9 Switch View Mode Drop-Down Options

Option Description

Original Displays Solver Pane for the current randomize call.

Rerand Displays Solver Pane for rerandomizing.

All Default option. Displays both original randomize and
rerandomize views.

14-72

Debugging Constraints

Value Annotation

You can use the Annotate button to annotate the different solved
value for random variables on rerandomize Solver Pane. This
feature helps you to understand the difference between original
randomize result and re-randomize result.

Figure 14-46 Different Solved Value Annotation

Click the Annotate button, for each solved variable in rerandomize
tree(Solver.2), DVE searches the same solved variable in original
randomize tree(Solver.1), and annotates the difference of solved
value and initial value range in red (see Figure 14-46), in
rerandomize tree.

14-73

Debugging Constraints

Constraints Debug Limitations

• Cross-probing to the Member Pane on a hierarchical variable or
constraint (obj.variable/obj.constraint) goes only to the
top-level object (obj).

 15-1

Debugging Macros in DVE

15
Debugging Macros in DVE 1

During debugging, if you encounter a macro, viewing its definition
and signal values could be a challenge. Also, it is difficult to
understand its cause and effect because you cannot view the value
annotated in its content.

DVE now supports macro debugging capability by allowing you to:

• Expand and collapse the macro content

• View signal value annotations in the macro content

• View the macro content in a tooltip

• Jump to the definition of a macro in the source code

• Change the background color of line attribute area for expanded
macros

• View text indentation in expanded macro and tooltip

 15-2

Debugging Macros in DVE

• Set a breakpoint inside the macro content

• Step in and out of the macro content

• Trace drivers and loads of a signal inside the macro content

• View the macro definition for a nested macro

Enabling Macro Debug

The syntax to enable macro debug features is:

VCS

% vcs -debug_all <filename> <other_options>

VCS MX

• For pure Verilog designs:

% vlogan <filename> <other_options>
% vcs -debug_all top_module

• For mixed-language designs:

% vhdlan <vhdl_files> <other_options>
% vlogan <verilog_files> <other_options>
% vcs -debug_all top_module <other_options>

Expanding and Collapsing the Macro Content

You can expand or collapse the macro in the Source View by clicking
on the +/- icon that appears to the left side of the macro, as shown in
Figure 15-2. However, if there is a nested macro, it will be expanded
and parameters will be resolved automatically.

 15-3

Debugging Macros in DVE

Viewing Signal Value Annotations in the Macro Content

DVE annotates the values dumped during simulation for signals
inside the macro content, as shown in Figure 15-2. Follow the below
steps to use this capability.

1. Select Edit > Preferences.

The Applications Preferences dialog box appears.

2. In the Source View category, select Show value annotation and
click OK.

Viewing the Macro Content in a Tooltip

Hovering the mouse cursor on the macro displays its content in a
tooltip, as shown in Figure 15-2. If there is a nested macro, it will be
expanded and parameters will be resolved automatically. Hovering
the mouse cursor on a signal displays its type and value annotation
information in a tooltip.

Note:
Tooltip displays value annotations only if the macro content
contains a single signal. It does not display value annotations if
the macro content contains multiple signals.

Viewing the Definition of a Macro in the Source Code

DVE now displays the macro as a hyperlink. You can click the
hyperlink to go to the macro definition in the source code.

 15-4

Debugging Macros in DVE

Note:
You cannot view hyperlink for macros used inside the macro
definition.

You can use the toolbar icon shown below to go back to the location
where the macro is used.

Viewing Text Indentation in Expanded Macro and Tooltip

The expanded macros and tooltip displays the macro content with
same indentation as defined in the macro definition.

For example, if you define a macro in source code with indentation,
as shown below:

Then this macro is displayed in expanded macro and tooltip, as
shown in Figure 15-1:

 15-5

Debugging Macros in DVE

Figure 15-1 Viewing Text Indentation

Figure 15-2 Macro Debug in DVE

 15-6

Debugging Macros in DVE

Changing Background Color of Line Attribute Area for
Expanded Macros

You can change the background color of line attribute area for
expanded macros. The default background color is gray.

Figure 15-3 Changing Background Color

To change background color of line attribute area for expanded
macros:

1. Select Edit > Preferences.

The Applications Preferences dialog box appears.

 15-7

Debugging Macros in DVE

2. In the Source View - Source Colors category, click the
Background for macro expansion drop-down, as shown in
Figure 15-4.

3. Select a color from the color palette and click Apply.

4. Click OK.

Figure 15-4 Selecting a Color from the Color palette

For example, if you select green color from the palette, then the color
of line attribute area changes to green, as shown in Figure 15-5.

 15-8

Debugging Macros in DVE

Figure 15-5 Changing the Color of Line Attribute Area

Examples

Consider the following example testcase test.v:

`define MYDATA data

`define MAX 32
`define NMAX 37
`define NASSIGN nsignal = `NMAX

`define MY_ALWAYS always \
 begin \
 wait ((clk===1'b1) && (`MYDATA===8'bz)) \
 begin \
 ->dbevt; \
 end \
 wait (clk==1'b0); \

 15-9

Debugging Macros in DVE

 end

`define CHECKCLK(theclk) (theclk===1'b1)
`define CHECKDATA(thedata) (thedata===8'bz)

`define MY_ALWAYS_P(pclk,pdata, pevent) always \
 begin \
 wait (`CHECKCLK(pclk) && `CHECKDATA(pdata)) \
 begin \
 ->pevent; \
 end \
 wait (clk==1'b0); \
 end

`define MYASSIGN1(x, y) \
 assign x = y + 10; \
 assign pcaddr1 = `MY_Max(y, x);

`define MYASSIGN2(x, y) \
 assign y = x + 10; \
 assign pcaddr2 = `MY_Max(x, y);

`define MYASSIGN(q, x, y) \
 assign x = y + 10; \
 assign q = `MY_Max(y, x);

`define y data2

`define RHS rhs

`define LHS lhs

`define MY_Max(a,b) ((a) > (b) ? (a) : (b))

module cpu;
 wire [7:0] data;
 wire [7:0] accum;
 reg pcaddr;
 reg clk;
 reg myArr[`MAX:0];

 wire [7:0] data_m;

 15-10

Debugging Macros in DVE

 reg clk_m;
 event dbevet_m;

 wire [7:0] data1;
 wire [7:0] accum1;
 reg pcaddr1;

 wire [7:0] data2;
 wire [7:0] accum2;
 reg pcaddr2;

 reg q1;
 reg q2;

 wire [7:0] data1;

 reg lhs, rhs;
 reg lhs1, rhs1;

 event dbevt;

 `MY_ALWAYS

 `MY_ALWAYS_P(clk_m, data_m, dbevet_m)

 assign data1 = `y;

 assign `MYDATA = 10;
 assign accum = data + 10;
 assign clk = ~clk;

 assign pcaddr = `MY_Max(data, accum) ;

 `MYASSIGN1(accum1, data1) `MYASSIGN2(accum2, data2)

 ̀ MYASSIGN(q1, accum1, data1) ̀ MYASSIGN(q2, accum2, data2)

 assign `LHS = `RHS;

 assign lhs1 = rhs1;

 15-11

Debugging Macros in DVE

endmodule

Steps to compile the example:

% vcs -sverilog -debug_all test.v

% simv -gui&

The following examples demonstrate how to debug a macro in DVE.

Example-1: Simple Macro Defined as Signal Name

Example 15-1 Simple Macro Defined as Signal Name

 15-12

Debugging Macros in DVE

Example-2: Single Line Macro with Parameters

Example 15-2 Single Line Macro with Parameters

Usage Example

Consider the test case shown in Example 15-3.

Example 15-3 Macro Debugging Test File (test.v)

`define MYDATA data

`define MAX 32
`define NMAX 37
`define NASSIGN nsignal = `NMAX

`define MY_ALWAYS always \
 begin \
 wait ((clk===1'b1) && (`MYDATA===8'bz)) \
 begin \

 15-13

Debugging Macros in DVE

 ->dbevt; \
 end \
 wait (clk==1'b0); \
 end

`define CHECKCLK(theclk) (theclk===1'b1)
`define CHECKDATA(thedata) (thedata===8'bz)

`define MY_ALWAYS_P(pclk,pdata, pevent) always \
 begin \
 wait (`CHECKCLK(pclk) && `CHECKDATA(pdata)) \
 begin \
 ->pevent; \
 end \
 wait (clk==1'b0); \
 end

`define MYASSIGN1(x, y) \
 assign x = y + 10; \
 assign pcaddr1 = `MY_Max(y, x);

`define MYASSIGN2(x, y) \
 assign y = x + 10; \
 assign pcaddr2 = `MY_Max(x, y);

`define MYASSIGN(q, x, y) \
 assign x = y + 10; \
 assign q = `MY_Max(y, x);

`define y data2

`define RHS rhs

`define LHS lhs

`define MY_Max(a,b) ((a) > (b) ? (a) : (b))

module cpu;
 wire [7:0] data;
 wire [7:0] accum;
 reg pcaddr;
 reg clk;

 15-14

Debugging Macros in DVE

 reg myArr[`MAX:0];

 wire [7:0] data_m;
 reg clk_m;
 event dbevet_m;

 wire [7:0] data1;
 wire [7:0] accum1;
 reg pcaddr1;

 wire [7:0] data2;
 wire [7:0] accum2;
 reg pcaddr2;

 reg q1;
 reg q2;

 wire [7:0] data1;

 reg lhs, rhs;
 reg lhs1, rhs1;

 event dbevt;

 `MY_ALWAYS

 `MY_ALWAYS_P(clk_m, data_m, dbevet_m)

 assign data1 = `y;

 assign `MYDATA = 10;
 assign accum = data + 10;
 assign clk = ~clk;

 assign pcaddr = `MY_Max(data, accum) ;

 `MYASSIGN1(accum1, data1) `MYASSIGN2(accum2, data2)

 ̀ MYASSIGN(q1, accum1, data1) ̀ MYASSIGN(q2, accum2, data2)

 assign `LHS = `RHS;
assign lhs1 = rhs1;

 15-15

Debugging Macros in DVE

endmodule

Compile the test.v design file shown in Example 15-3:

% vcs -sverilog -debug_all test.v

Invoke the DVE GUI:

% simv -gui&

Setting Breakpoints in the Macro Content

A breakpoint is a setting on a line of code that tells DVE to stop the
simulation immediately before the line of code on which it is set, so
that you can examine it before continuing. DVE allows you to debug
macros by setting breakpoints inside your macro content.

To set a breakpoint inside your macro content, you can:

• Click the line attributes area of the Source view, next to an
executable line, or

• Right-click the line attributes area of the Source view, and select
Set Breakpoint.

A solid red circle indicates that a line breakpoint is set (see
Figure 15-6).

 15-16

Debugging Macros in DVE

Figure 15-6 Setting Breakpoint Inside the Macro Content

Note:
You can only set a line breakpoint on an executable line. If a line
is not executable, then no breakpoint is set when you click next
to it.

When you run the simulator, the line where the simulation stopped is
marked by a yellow arrow (current active line) in the Source View, as
shown in Figure 15-7.

 15-17

Debugging Macros in DVE

Figure 15-7 Yellow Arrow Indicating the Line where Simulation Stopped

In Figure 15-7, you can see that the simulation stopped at the
breakpoint. When the simulator stops inside macros, you can use
the Next icon (shown in Table 15-1), to run the simulator step-by-
step: inspecting functions, stepping line-by-line, setting new
breakpoints, and so on.

To disable a breakpoint inside the macro content

Click the solid red breakpoint circle to disable it.

To delete a breakpoint inside the macro content

Double-click on a solid red circle. The red circle disappears,
indicating that the breakpoint is deleted.

To delete all breakpoints inside the macro content

Right-click on a breakpoint, then select Delete Breakpoint or Delete
All Breakpoints.

 15-18

Debugging Macros in DVE

Creating Breakpoints in the Macro Content Using
Breakpoints Dialog

You can use the Breakpoints dialog box to create and show
breakpoints inside the macro content of the specified file.

1. Select a line in the line attribute area, right-click, and select
Properties. The Breakpoints dialog box appears (see Figure 15-
8 on page 19).

 15-19

Debugging Macros in DVE

Figure 15-8 Breakpoints Dialog Box

2. Select the Line tab and fill out the following fields:

- Break in file — Enter the file name or browse to the file where
you want to create the breakpoint.

- at line — Enter the line number for the breakpoint.

 15-20

Debugging Macros in DVE

- Macro line offset — Choose a line offset inside the macro to
add a macro breakpoint. If you choose 0 as the macro offset,
the breakpoint is set on the line where the macro is used, but
not inside the macro.

Note:
The Macro line offset field is enabled only if the specified file
is open in a source window and there is macro usage at the
specified line.

Setting Breakpoint in the Macro Content Using DVE Tcl
Command

You can use the following DVE Tcl command to set a breakpoint
inside your macro content:

gui_sim_watch –file <file> -line <line> -macroline <offset>

where,

• <file> — File in which the macro is used.

• <line> — Line number in which the macro is used.

• <offset> — Line number in the macro content.

Stepping In and Out of Macros

DVE allows you to step through the macro content line-by-line.
Table 15-1 explains the three buttons that help you step through the
macro content.

 15-21

Debugging Macros in DVE

Table 15-1 Buttons or Icons in DVE for Stepping Into and Out of Macros

Icon Icon Name Description

OR

Step

Next

When the simulation stops at a line that includes
macro usage, you can use this icon to step the
current active line into the macro content. The
current active line steps into the macro content,
only if:

•The current execution file is opened and there
is a macro instance in the current execution
line

•The macro content is expanded

For example, when the simulation stops at line
57, as shown in Figure 15-9, and the macro is
expanded, then click the “step” or “next” icon to
move the current active line into the macro
content, as shown in Figure 15-10.

Step out
When the current active line is in the macro
content, you can use this icon to step the current
active line out of the current expanded macro
content. This causes the simulator to execute
until the end of the macro (an end statement)
is reached, and then stop at the next executable
line of code outside the macro.

For example, when the current active line is
inside the macro content, as shown in
Figure 15-10, then click this icon to step the
current active line out of the current expanded
macro content, as shown in Figure 15-11.

Note: This icon is enabled only when the
simulator steps inside the macro content.

 15-22

Debugging Macros in DVE

Figure 15-9 Current Active Line at a Line which Includes Macro Usage

Figure 15-10 Stepping into the Macro Content

Figure 15-11 Stepping out of the Macro Content

 15-23

Debugging Macros in DVE

Tracing Drivers and Loads Inside Macro Content

DVE allows you to trace drivers and loads of signals inside the macro
content. Do the following to trace drivers and loads inside the macro
content:

• Right-click on the desired driver or load in the Driver Pane and
select show source. The driver is highlighted in the Source view,
as shown in Figure 15-12.

Figure 15-12 Tracing Drivers and Loads Inside the Macro Content

 15-24

Debugging Macros in DVE

Macro Expansion Location

DVE expands the macro from the end line of the macro usage, as
shown in Figure 15-13.

Figure 15-13 Macro Expansion Location

 15-25

Debugging Macros in DVE

Nested Macro Support

DVE supports viewing macro definitions for nested macros, as
shown in Figure 15-14.

Figure 15-14 Viewing Macro Definition for Nested Macro

Macro Debugging Limitations

• Macro debugging is not supported in UCLI.

• If a macro (used in the same place) has multiple definitions, only
the last definition parsed by the compiler is supported. Figure 15-
15 illustrates this limitation.

 15-26

Debugging Macros in DVE

Figure 15-15 Macro Usage Multiple Definitions

 16-1

DVE Interactive Rewind

16
DVE Interactive Rewind 1

You can create multiple simulation snapshots using the DVE
"Checkpoint" feature during an interactive debug session. In the
same debug session, you can go back to any of those previous
snapshots, by using the DVE "Rewind" feature and do 'What if'
analysis.

When you create multiple checkpoints, say at times "t1, t2, t3, ...tn",
and you want to rewind from your current simulation time to a
previous simulation time say t2, then all the checkpoints that follows
t2 (t3, t4 etc.) gets deleted. This is intentional, because when you go
back to history using the rewind operation, you are given an option
to force/release the signal values and continue with a different
simulation path untill you get the desired results. This is called as
“What if” analysis. This way, you need not restart your simulation
from time zero and you save time.

Following are the advantages of the Checkpoint and Rewind feature:

 16-2

DVE Interactive Rewind

• Checkpoint directly saves multiple simulation states and you can
rewind to any of those saved states using "Rewind".

• Checkpoint and Rewind are done by the tool.

• More user friendly, and very quick in performance.

• Lists all the checkpoints, within a session, with respective
simulation time.

Interactive Rewind Vs Save and Restore

Interactive rewind seems similar to Save and Restore operation.
Even though there are similarities, there are also differences.

Similarities between Save/Restore and Checkpoint/Rewind
• You can save a snapshot at a particular simulation time, when the

simulator is in a "Stop” State.

• You can go back to the previously saved state.

• You can remove the intermediate saved data. In Save-Restore,
you delete the saved data. In Checkpoint/Rewind, you need to
issue the checkpoint -kill or -join commands.

 16-3

DVE Interactive Rewind

Differences between Save/Restore and Checkpoint/Rewind:

Usage Model

In this section, you will see how interactive rewind works in DVE.

Example
top.v

module top;
 reg clock,count;
 leaf_entity m(.x(clock));
 initial
 begin
 clock <=1'b0;
 count <= count+1;
 #1 clock <=1'b1;
 count <= count+1;
 #2;
 end
 endmodule

leaf.v

module leaf_entity(input x);
 reg clock;
 int counter = 0;

Save/Restore Checkpoint/Rewind

Persistent across different simv runs. Not persistent across simv runs. As soon as
simv quits, all the checkpoint data is lost.

Doesn’t describe saved state. Describes various checkpoint state using the
checkpoint -list command. You can
also see the list of checkpoints in the tooltip.

Save/Restore operation is slow. Faster than Save/Restore for the same
simulation run.

Not supported in SystemC Supported for SystemC designs.

 16-4

DVE Interactive Rewind

 reg dummy; // leave it at 'X'

initial begin
 clock = 0;
 forever begin
 #1 clock = ~clock;
 counter++;
 if (counter==100)
 $finish();
 end
end

endmodule

Compile the top.v and leaf.v examples:

% vcs -nc -debug_all -sverilog leaf.v top.v

Invoke the DVE GUI:

% simv -gui&

 16-5

DVE Interactive Rewind

To create simulation checkpoint in DVE, click the Add Checkpoint

icon. on the toolbar.

To rewind or go back to the checkpoint, select a simulation time
available in the Simulation Checkpoint box and click the Rewind

to the selected checkpoint icon on the toolbar.

To delete a checkpoint, select a simulation time available in the

Simulation Checkpoint box and click the Checkpoint kill icon
on the toolbar. You cannot delete the first checkpoint.

 16-6

DVE Interactive Rewind

The following illustrations show how to create checkpoints and
rewind to a previous checkpoint in DVE:

1. Create a checkpoint at 10 ns.

2. Create several checkpoints as shown in the drop-down menu.
The following illustration show the current simulation time is 50 ns.

 16-7

DVE Interactive Rewind

3. Click the Rewind button to rewind to a previous checkpoint, say
20 ns.

The following illustrations show the comparison of variables in the
Data pane and in the Source view when the simulation checkpoint
was created at 20 ns and the status of the same after the rewind from
50ns to 20 ns.

Checkpoint created at 20ns

After the rewind at 20ns

 16-8

DVE Interactive Rewind

You can also perform the following tasks from the DVE command
prompt:

• Change the checkpoint depth using the config
checkpointdepth command in the DVE Console pane.

• Delete a particular Session State in DVE using the command
checkpoint -kill <Checkpoint ID>. Thus, a particular
checkpoint ID is deleted and the remaining checkpoints are
available with the same checkpoint ID.

Note:
Interactive rewind works with all debug options like -debug,
-debug_pp, -debug_all. For more information about these
debug switches, see the VCS User Guide in the VCS Online
Documentation.

Limitations

• Not supported with FSDB dumping and with Specman GUI, Vera
GUI, C debugger (cbug), Parallel VPD, Parallel VHDL, and
Parallel VCS.

• Rewind operation doesn’t rewind the Tcl files that you have
created.

• If your PLI contains SOCKET connections or Multi-threads, and
spanned processes, then those will not be rolled back along with
the Checkpoint rewind.

• Interactive rewind is not supported for analog designs.

A-1

Menu Bar and Toolbar Reference

A
Menu Bar and Toolbar Reference A

This chapter describes the menu bar, toolbar, command-line,
preferences, command shortcuts, and GUI customization options. It
includes the following topics:

• “Menu Bar Options” on page 2

• “Editing Preferences” on page 26

• “Toolbar Reference” on page 41

• “Using the Context-Sensitive Menu” on page 55

• “Keyboard Shortcuts” on page 67

• “Using the Command Line” on page 72

A-2

Menu Bar and Toolbar Reference

Menu Bar Options

This section provides an overview of the following TopLevel window
menus and describe how to create user-defined menus:

• “File Menu”

• “Edit Menu”

• “View Menu”

• “Simulator Menu”

• “Signal Menu”

• “Scope Menu”

• “Trace Menu”

• “Window Menu”

• “Help Menu”

• “Testbench Debugger Menu Options”

• “User-Defined Menu”

File Menu

The following options comprise the File menu

Options Description

Open Database... Displays the Open Database dialog box, which enables
you to select and open simulation database (VCD or
VPD) files for post-processing.

Close Database... Displays the Close Database dialog box, which enables
you to close an open simulation database (VPD) file.

A-3

Menu Bar and Toolbar Reference

Load Waveform Updates Loads the waveforms updates.

Reload Databases Reloads the open databases for post-processing.

Open File Displays the Open Source File dialog box, which
enables you to select and display a source file in the
Source view.

Close File Closes the source file displayed in the active Source
view or window.

Save Values Saves values according to the selection:
Tabular List — For List view
Event Based List — For List view
Memory Contents — For Memory view

Execute Tcl Script... Displays the Execute Tcl Script dialog box, which
enables you to select and source a Tcl script.

Load Session... Displays the Load Session Dialog, which enables you
to load a saved session.

Save Session... Displays the Save Session dialog box, which enables
you to save the current session.

Save Current View Saves the current view without database information to
session file.

Load Last Auto-Session Loads the previously saved session.

Print Prints to printer or file the contents of an active wave,
list, or Schematic view.

Recent Databases Displays a list of recently opened databases to choose
from.

Recent Tcl Scripts Displays a list of recently run scripts to choose from.

Recent Sessions Displays a list of recently opened sessions to choose
from.

Close View/Pane Closes the currently active view or pane but the
TopLevel window will still be open.

Close Window Closes the currently active TopLevel window.

Exit Exits DVE.

A-4

Menu Bar and Toolbar Reference

Edit Menu

The following options comprise the Edit menu:

Options Description

Cut/Copy/Paste/Paste
From/Delete

Copy works on any text. If the copy function can
determine the text to be an object, copy will copy the
object, Otherwise it will copy the selected text.
Copied text can be pasted in any widget that supports
text, for example an editor or the DVE command line.
Object copies work in widgets, such as DVE panes,
which support DVE objects that sort DVE objects such
as any DVE panes.

Note:Cut and Delete work only on DVE objects and
are limited to some windows, such as the Wave, List,
and Memory views.
Paste From generates a list of clipboard objects copied
from.

Expand By Levels Contains the following submenu:
All – Expands all items for all levels under the
currently selected item.
This option can take a long time if executed at the
root level of a huge design.
2 – Expands 2 levels of child items from currently
selected item.
3 – Expands 3 levels of child items from currently
selected item.
4 – Expands 4 levels of child items from currently
selected item.
5 – Expands 5 levels of child items from currently
selected item.

Expand All Expands all child items under all parents regardless of
what item is selected.

Collapse Parent Collapses to the parent of the currently selected item.
If no item is selected, no action is taken.

Collapse All Collapses all children to the top most parent regardless
of what item is selected.

A-5

Menu Bar and Toolbar Reference

Synchronize Selection Selection is not global. You can have different items
selected in different panes at any time. Synchronize
Selection allows you to sync up all panes to one
selection.

For example, if you have a signal selected in the Wave
window but its parent scope is not shown in the
Hierarchy window, clicking on Synchronize Selection
will cause the parent scope of the signal to be
highlighted in the Hierarchy window and also that signal
will be highlighted in the Data pane and any other pane
where it exists. This functionality is particularly useful
in the Schematic window.

Select by Levels Contains the following submenu:
All – Selects all items for all levels under the
currently selected item. Note: this can take a long
time if executed at the root level of a huge design.
2 – Selects 2 levels of child items from currently
selected item.
3 – Selects 3 levels of child items from currently
selected item.
4 – Selects 4 levels of child items from currently
selected item.
5 – Selects 5 levels of child items from currently
selected item.

Select All Selects all objects in pane or window.

Find... Displays the Find dialog box.

Find Next Active if any text exists in Find dialog box or find menu
line edit. If clicked, finds next occurrence of the text in
the active pane.

Find Previous Similar to Find Next but finds previous occurrence of
text.

Go To Address... Displays a dialog box in which you can enter an
address. This menu option is active if the Memory view
is open and populated.

Search for Signals/
Instances...

Displays the Search for Signals dialog box. Use this to
find any object that exists in the opened and current
database. If the object is not loaded, this dialog box will
attempt to load it.

A-6

Menu Bar and Toolbar Reference

Create Marker Creates a marker in the Wave view. This is only active
if a Wave pane exists in the TopLevel window for which
the Edit menu is activated. If a Wave pane exists,
clicking this menu option puts you in create marker
mode. A white hashed marker is created and it follows
the mouse in the Wave pane. The marker will be placed
on the next mouse-click.

Markers... Displays the Marker dialog box (See “Cursors and
Markers” on page 54).

Go To Marker Provides a list of markers that you have created in the
current Wave view. You can select any marker to view
the marker in the center of the Wave view. If no markers
are present in the current window, the submenu will be
empty.

Delete Marker Provides a list of markers that you have created in the
current Wave view. You can select any marker to delete
it. If no markers exist, the submenu will be empty.

Move Marker Provides a list of markers that you have created in the
current Wave view. You can select any marker, then
click the desired location in the Wave pane to move the
marker to that location. If no markers are present in the
current window, the submenu will be empty.

Set Reference Marker Sets a currently selected marker as the reference
marker for displaying values in relation to other
markers.

Show Marker Values Displays Absolute, Adjacent, or Relative values for
signals at a selected marker. See “Cursors and
Markers” on page 54.

Preferences... Displays the Application Preferences dialog box (See
“Editing Preferences” on page 24).

Undo Signal Group
Operation

Undo the last signal group relative operation.

Redo Signal Group
Operation

Redo the last signal group relative operation.

A-7

Menu Bar and Toolbar Reference

View Menu

The following options comprise the View menu:

Options Description

Selection Tool Used for schematic views. You can use this option to select
objects. Ctrl-click adds objects to the selected set. Click and
drag creates a box. Everything inside the box will be selected.

Zoom In Tool Used for Schematic views. Enlarges the view of the selected
object.

Zoom Out Tool Used for Schematic views. Enables you to reduce the
magnification level of an active object.

Pan Tool Used for schematic views. Allows you to interactively move the
center of the object without changing the scale. When you select
this tool, the cursor changes to a hand. Click the toolbar
selection arrow or press escape key to change the cursor back
to normal.

A-8

Menu Bar and Toolbar Reference

Zoom> Contains a submenu for all zoom operations. These menu items
are only applicable for Schematic and Wave views.

Zoom Full – Fits all viewable objects into the current view.
Zoom In – Enlarges the object.
Zoom Out – Reduces the magnification level of the selected
object.
Zoom Fit Selection – Changes view to center on the
selected set of schematic objects and so all selected objects
are visible in the current pane.
Zoom Fit Highlight – Same as Zoom Fit Selection but for
highlighted schematic objects. This option is available if
there are highlighted objects.
Pan To Selection – Moves the view so the selected set of
schematic objects is centered and viewable in the current
pane. It does not change the zoom.
Pan To Highlight – Same as Pan To Selected but for
highlighted schematic objects.
Zoom to Cursors – If the two Wave view cursors are
present, this puts the area between the cursors in the view
with each cursor at opposite sides of the view.
Zoom to Time Range... – Displays a dialog box for entering
a time range, then zooms to that time range.
Back in Zoom and Pan History – Iterates through saved
zoomed or panned views for current pane. When you
change a zoom or a pan in a view, DVE stores the previous
view so you can retrieve it.
Forward in Zoom and Pan History – If you have gone
backward in zoom/pan history, this menu item provides an
easy way to go to the next view. Clicking this item will
eventually get to the current view.
Named Zoom and Pan Settings... – Displays a dialog box
that allows you to choose from any views that you saved
with a name.

Set Time Scale... Opens the Set Time Scale dialog box that allows you to change
the time unit.

List Window Time
Range...

Opens the Set Time Range dialog box that allows you to change
the start time and end time in the List view. This option is
available only from the List view menu bar.

Options Description

A-9

Menu Bar and Toolbar Reference

Delta Cycle > This is available only if delta cycle information exists in the
database. (Also see Capture Delta Cycle
Values in Simulator Menu.)

Expand Time – Expands at the simulation time (C1) time to
show the delta cycles within that time.
Collapse Time – Collapses the expanded delta cycle
display at C1 time.
Collapse All – Collapses any expanded delta cycle displays
regardless of where C1 is.

Associate With Associates a signal group in waveform or signal group pane
with a specified database, so that when a signal from a different
database is being added, the signal with the same hierarchical
name of the specified database is actually added. Associate
with "Any Database" to remove this setting.

Go to Beginning Goes to the start of all simulation data (usually 0). This moves
the cursor and changes the view in the Wave view to show the
beginning of simulation time.

Go to End Same as above but for the end of simulation data.

Go to Time Displays the Go To Time dialog box that allows you to change
the simulation time in the debugger. The Wave view shows the
new simulation time.

Link C1 to Sim
Time

Sets the debugger time with the current interactive simulation
time. This option is available only in an interactive debug
session.

Move C1 to Sim
Time

Synchronizes the debugger time with the current interactive
simulation time. This option is available only in an interactive
debug session.

Use Global Time
(C1)

Keeps simulation data in current TopLevel with the global C1
marker.

Increase Row
Height

Increases the height of all traces in the Wave view.

Decrease Row
Height

Decreases the height of all traces in the Wave view.

Set Row Height to
Default

Resets the height of all traces in the Wave view to the default.

Options Description

A-10

Menu Bar and Toolbar Reference

Watch Provides some operations for the Watch pane:
Add New Page - Adds a new page in the Watch pane.
Delete Current Page - Deletes the currently selected page from
the Watch view.
Rename Current Page - Assigns a new name to the current
page.
Edit Variable - Lets you edit the variable name.

Toolbars Contains the following submenu. You can select or clear the
following check boxes to view or hide them as desired.

Edit
File
Scope
Trace
Window
Signal
Simulator
Time Operations
Zoom
Zoom and Pan History

Options Description

A-11

Menu Bar and Toolbar Reference

Simulator Menu

The following options comprise the Simulator menu.

Options Description

Setup... Displays the Simulation Setup dialog box to allow
modification of default simulation runtime settings.
Note, this does not allow you to control simulator
compile-time settings. See “Starting an Interactive
Session from the DVE GUI” on page 7.

Rebuild and Start Rebuilds the simulator by executing the VCS Makefile,
then starts the simulation.

Start/Continue Runs the simulation until a breakpoint is hit, the
simulation finishes, or for the duration specified in the
Set Continue Time dialog box.

Stop Stops a running simulation (same as CTRL+C in UCLI
mode).

Step Moves the simulation forward by stepping one line of
code, irrespective of the language of the code. This is
the same as the UCLI Step command.

Next For VHDL, Verilog, and TB code, next steps over tasks
and functions.

Next in CBug Advances to the next line in CBug code.

Step In Active Thread Stops at the next executable line in the current active
thread.

Next in Active Thread Advances over to the next executable line in the current
thread only. This will step over tasks, functions, etc.

Step In Testbench For Native TestBench (NTB) OpenVera and
SystemVerilog testbenches, stops at the next
executable line in the testbench.

Step Out Steps to the next executable line outside of the current
function or a task.

Restart Stops the currently running simulation and restarts it
with the current simulation setup. This retains all open
windows and GUI setups. If the simulation is not
running, this option will start it.

Show stack Displays C-language. SystemVerilog and
NativeTestBench stacks in Console pane.

A-12

Menu Bar and Toolbar Reference

Move up Stack Steps up the current stack.

Move down Stack Steps down the current stack.

Breakpoints... Displays the Breakpoints dialog box that allows you to
view, create, edit, enable, disable and delete
breakpoints. See “Setting Breakpoints in Interactive
Simulation” on page 18.

Run to Cursor Runs and stops in the selection position if possible.

Save State... Brings up a File Browser dialog box that allows you to
save the current state of the simulator as a file.

Restore State... Brings up a File Browser dialog box that allows you to
restore a saved simulation state.

Add Checkpoint Adds a simulation checkpoint.

Rewind to Checkpoint Rewinds to the selected checkpoint.

Delete Checkpoint Deletes the selected checkpoint.

Terminate Kills a running simulation.

Force Value Force to 0 - Forces the values of the selected signal/
variable to 0.
Force to 1 - Forces the values of the selected signal/
variable to 1.
Force to x - Forces the values of the selected signal/
variable to x.
Force Release - Release the forces of the slected
signal/variable.
Set Force.. - Open the force dialog.

Dump Full Hierarchy Dumps the hierarchy of the entire design into a vpd file
without triggering the dump of values.

Add Dump... Brings up the Dump Values dialog box to specify scopes
or signals to dump value change information starting at
the current time. See “Dumping Signal Values” on page
9.

Dump Turns on value change dumping at the current time for
any selected scope or signal in the active pane.

Capture Delta Cycle
Values

Toggles to turn on/off delta cycle dumping starting at the
current time. Note that this substantially increases the
VPD file size. You should try to limit the time span for
dumping delta cycle values.

A-13

Menu Bar and Toolbar Reference

Continue For Time... Displays the Continue for Time dialog box where you
enter a time. The time specifies the duration for which
the simulation runs if no breakpoints are hit. For
example, if set to 10, the simulation runs ten times when
you click the Continue toolbar button.

Periodic Waveform
Update Interval...

Opens the Value Update Interval dialog box. You can
choose time interval to enable periodic waveform
update. This allows you to see waveforms dynamically
as the simulator runs. The smaller the interval the worse
the performance.

C/C++ Debugging Enable - Enables debugging of C, C++, and SystemC
source code. Allows to step in C/C++ code, set
breakpoint etc.
Show External Functions - Shows user-defined
external functions (PLI, DPI, Direct C).

A-14

Menu Bar and Toolbar Reference

Signal Menu

The following options comprise the Signal menu:

Options Description

Display Signal
Group

Contains the following submenu that allows you to group the
signals in the Wave view.

New Signal Group - Creates a new signal group.
All – Turns on visibility for all existing signal groups.

All the signal groups are listed. You can choose to display or
hide the particular signal group by selecting or clearing the
respective check box.

Add to Waves Contains the following submenu:
New Wave view - Adds the selected signal to a new Wave
view.
Recent (New View) - Adds the selected signal to recently
created Wave view. If none exists, creates a new Wave view.
Create New Group - Creates a new group in the Wave view
and adds the selected signal under the newly created group.

Add to Lists Same as Add to Waves but for the List view.

Add to Groups New Group – Creates a new signal group. The name will be
Group<n>, where n is one more than the highest number of
existing signal group. The new signal group is created at the top
of the signal list.
The existing signal groups are also displayed. You can add
signals to the existing signal groups.

Add to Watches Adds signal to the Watch pane.

Show Memory Displays signal in the Memory view if the selected signal is a
memory or MDA. If there is no current Memory view, DVE creates
one according to the target policy.

Show Back
Trace Schematic

Displays the Back Trace Schematic for the selected object.

Set Insertion Bar Sets the insertion bar above the selected signal in the Wave or
List view. This menu item is not available in other windows. If
more than one signal is selected, DVE places the insertion bar
above the signal closest to the top of the signal list.

Insert Divider Inserts a blank divider row in the waveform display.

Show Definition Locates the definition of interface or modport ports in the
Hierarchy pane.

A-15

Menu Bar and Toolbar Reference

Sort Signals Displays signals by declaration, ascendingly, or descendingly.

Set Bus... Displays the Bus/Expression dialog box for managing the bus
and expression creation/deletion. See “Building Buses and
Setting Expressions” on page 5-29.

Set
Expressions...

Displays the Bus/Expression dialog box for managing the bus
and expression creation/deletion. See “Building Buses and
Setting Expressions” on page 5-29.

Set Search
Constraints

Searches for signals per the search constraint. When the
constraint is matched, the C1 cursor moves to that time location.
Searching works only on the selected set of signals. If no signals
are selected, it will search all the signals in the current view.
Following are search constraints:

Any Edge – (Default) Searches for signals with any edge.
Rising – Searches for signals with rising edge.
Falling – Searches for signals and points to the falling
edges.
Failure – Stops on next or previous assertion failure. This
options is available for assertion signals.
Success – Stops on next or previous assertion success.
This options is available only if the signal is an assertion.
Match – Searches for the next or previous match.
Mismatch – Stops on next or previous assertion mismatch.
This option is available only if the signal is an assertion.
X Value – Searches for any signal that contains x value.
Signal Value... – Opens the Value Search dialog box that
allows you to enter a specific value as the constraint. If the
value is found, the search will stop and the cursor C1 is
positioned at that value. Values must match the radix that is
currently selected for the signal.

Search
Backwards

Searches backwards in time.

Search Forward Searches forward in time.

Highlight X
Values

Toggles on/off highlighting X values for the singly selected
signal. Useful at high zoom levels.

Compare... Displays the Signal Compare dialog box where you can select
waveforms to compare. See “Comparing Signals, Scopes, and
Groups” on page 5-26.

Show Compare
Info

Shows the result of the last signal comparison. This option is
available only if a signal comparison has been performed.

Analog Overlay Overlays selected signals in Wave view in a overlay signal group
and displays the waveform in analog style.

A-16

Menu Bar and Toolbar Reference

Unoverlay Unoverlays the overlaid signals.

Shift Time... Displays the Shift Time dialog box to specify the parameters to
shift a signal in time.

Set Radix Provides options for radix changes of the selected signal.
Changing radix on a signal is global and will change the radix
wherever the signal is displayed in DVE.

User Defined > Allows you to specify and edit user-defined
radices. See “Managing User-Defined Radices” on
page 5-12.
The other radices available are:
Enumerated Type
ASCII
Binary
Octal
Decimal
Hexadecimal
Unsigned
Signed magnitude
One’s Complement
Two’s Complement
Strength
Default

Transaction
Filter

Sets transaction filter.

Default
Properties

Applies default properties to the selected signal. Clear the check
box to allow the selected item to have its own radix and signal
property.

 Properties... Displays the Signal Properties dialog box that allows you to
change the signal properties.

A-17

Menu Bar and Toolbar Reference

Scope Menu

The following options comprise the Scope menu:

Options Description

Show Source Shows the source of the object selected. If multiple objects are
selected, shows the source of the first object in the selected set.
If the Use checkbox is checked, the Source view used is the
current open Source view. If no Source view exists, DVE creates
a new Source view according to the target policy.

Show
Schematic

Same as above except that it shows the object in a Design
Schematic pane.

Show Path
Schematic

Same as above except that it shows the object in a Path
Schematic pane.

Note: The following menu items affect the currently active Source and Schematic
views.

Show in Class
Browser

Opens Class and Member pane; locates the currently selected
class or member.

Show Full
Hierarchy

Displays the full hierarchy in the Hierarchy pane.

Move Up Moves up one level of hierarchy to the parent.

Moves the selection in the Source view up one level of hierarchy
from the scope of the currently selected line. If the current line
is the top of the hierarchy or no line is selected, this item is not
available.

Move Down Moves down one level to the selected scope.

Moves the selection to the start of the definition of the currently
selected object. Note that in the Source view, this only works if
the object itself is selected. It does not work if the entire line is
selected and more than one token is selected on that line.

Back Moves to the previous view of source information in the current
Source view. DVE maintains a history of Source view views, so
that it is easy to go back to a previous view of the source. This
is useful for large source files and reduces the need for scrolling.

Forward Same as above but moves forward in the source view history if
you have previously gone backwards.

A-18

Menu Bar and Toolbar Reference

Show Allows navigation to certain types of relative source lines based
on the selected object type. The Source view only shows
definition. This menu contains the following submenu:

Definition – Shows the definition of the selected object.
Current Scope – Changes the selection to the first line of
the current scope.
Assertion – Changes the Source view to the definition of
the selected assertion if the object is an instance of an
assertion.
Unit Binding – Changes the Source view to the location
where the assertion is bound to a module with a bind
statement for OVA assertion instances.
Entity – Changes the Source view to the architecture's entity
if the current selection is in a VHDL architecture.
Architecture – Changes the Source view to the entity’s
architecture if the current selection is in a VHDL entity.
Macro - Shows the value and information of the selected
macro in a separate Source view. The Source view contains
all the queried macros in it.
Macro Definition - Shows the definition of the selected
macro in the Source view.
In Class Browser - Shows class in the Class browser.

Edit Source Displays a text editor based on your Editor source preference
setting (vi editor is default). DVE preloads the editor with the
source file that is in the currently active DVE Source view and
positions it on the same selected line. If no file is open in the
Source view or a different kind of DVE pane is active, this menu
option is not available.

Edit Parent Same as above except that the source of the parent instance is
preloaded in the text editor.

Expand Path Expands fanin or fanout of the current path to one additional
level from the selected object.

Add Fanin/
Fanout...

Displays the Fanin/Fanout dialog box in which you specify fanin/
fanout parameters for the path schematic. This menu option is
available for Path Schematic only.

Annotate
Values

Allows you to toggle signal annotation on and off for the current
scope in Source/Data/Schematic/Path Schematic views.
Annotation allows you to see values within the context of the
display. For example in the Source view, the annotation will be
below the source text for variables, while in the schematic, the
annotation will be on pins or nets.

A-19

Menu Bar and Toolbar Reference

Trace Menu

The following options comprises the Trace menu:

Properties Opens the Properties dialog box that shows all available
properties for the currently selected schematic or path schematic
object. This menu option is available for Schematic and Path
Schematic only.

Options Description

Trace Assertion Traces the assertion and displays the results in the current
or a new Wave view automatically. This menu option is
active only if an assertion is selected in the currently active
pane and certain conditions are met
(libassertiondebug.so must be available).

If a specific assertion attempt is selected, that attempt will
be traced. If you select no specific attempt, DVE traces
the first attempt. The assertion trace gives detailed
debugging information for a specific assertion attempt, so
you can easily point to the expression in the assertion that
failed.

Assertion Attempts... Displays the Assertion Attempts dialog box. If the selected
object in the currently active pane is an assertion, the
dialog box will be populated with all attempt information
for that assertion. If the selected object is not an assertion,
the dialog box is empty.

Trace Drivers Finds the driver of the object, shows the driver in the
drivers/loads pane and shows the driver in the Source
view of the current window. If no window is present, DVE
creates one. If a drivers pane already exists, the new trace
information is added to it.

This menu option will be active if the object selected in
the currently active pane is a variable or signal. For this
capability to work, the design must be compiled with one
of the -debug options with complete simv.daidir directory.

Trace Loads Finds loads of the signal.

Drivers/Loads Allows you to navigate and manage drivers/loads. See
Tracing Drivers and Loads.

A-20

Menu Bar and Toolbar Reference

Follow Signal Displays a list of instances of a selected signal in the
Source view.

Highlight Allows you to highlight and manage highlighted objects in
all panes.

Recent Color - Highlights any currently selected object
in the current view with the recently used color.
Clear Selected – Removes all highlight color from the
selected object.
Clear All – Removes all highlights regardless of
whether the object is selected or not.
Clear by Color - Removes the highlights from the
object. (The color is selected in the submenu.)

Spot Signal Path Follows the selected signal through the design in path
schematic.

Stop Signal Spotting Stops following the signal path.

Back Trace Starts back tracing on selected signal.

Back Trace Options Displays the Back Trace Options dialog box.

Hide/Show Wave View Toggles display of the Back Trace Wave view.

Trace Transaction Sets context for the transaction message.

Show Relations Opens the Transaction Relations dialog box.

A-21

Menu Bar and Toolbar Reference

Window Menu

The following items comprise the Window menu:

Options Description

New Opens a new instance of one of the following window selections
according to current target criteria:

Source View
Schematic View
Path Schematic View
Wave View
List View
Memory View

Set This Frame
Target For

Sets the currently active frame as the target for one of the
following selections:

Source View
Schematic View
Path Schematic View
Wave View
List View
Memory View

Panes Displays the selected pane in the active TopLevel window.
Console
Hierarchy
Data
Signal Groups
DriverLoad
Stack
Local
Watch
Assertion

New Top Level
Frame

Opens a new TopLevel frame displaying one of the following
selections:

Empty
Assertion + Hierarchy
Hierarchy + Data
Hierarchy + Data + Console
Console

Load Default
Layout

Returns the currently active TopLevel frame to the default layout.

A-22

Menu Bar and Toolbar Reference

Load Layout Loads a layout session.
Reset Layout - Resets the layout to the initial layout.
From File - Loads a pre-saved layout session file.

Save Current
Layout

Saves the current DVE layout.
To default - Saves the current DVE layout as
~/.synopsys_dve_default_layout.tcl. When DVE restarts, it
uses this default layout instead of the last layout when you
have exited DVE.
To File - Saves the current DVE layout to a layout session
file.

Maximize View Maximizes the selected view to cover the entire layout.

Arrange Arranges all the non-docked panes in current toplevel window.
Cascade - Display windows in cascade format.
Tile - Display windows in tile format.
Vertical - Display windows in vertical tile format.
Horizontal - Display windows in horizontal tile format.

Dock in New
Row

Positions the currently active window or pane in a new row of the
current TopLevel frame according to one of the following
selections:

Left
Right
Top
Bottom

Dock in New
Column

Positions the currently active window or pane in a new column
of the current TopLevel frame according to one of the following
selections:

Left
Right
Top
Bottom

Undock Undocks the selected window from the TopLevel window.

Move To Moves to new Top level window.

Set Top Level
Title

Sets the title of the top level window.

Current
Window List

Lists the current TopLevel windows.

A-23

Menu Bar and Toolbar Reference

Help Menu

The following items comprise the Help menu:

Testbench Debugger Menu Options

A few menu options specific to debugging your testbench programs
are available. These options are added to different menus in the
main DVE GUI such as View menu, Simulator menu, and the
Window menu.

The following section explains the new options in different menus.

Options Description

Help Contents Opens the DVE User Guide in the VCS Online
Documentation.

Note: Firefox is the default browser for viewing the
product online help documentation. To change the
default browser setting, you must set the
environment variable BROWSER before starting
DVE. For example, to view the online help
documentation in Mozilla browser, set BROWSER to
mozilla, as shown below:
% setenv BROWSER mozilla

Help Search Opens the Search tab of the VCS Online
Documentation.

A Quick Start Verilog
Example

Loads an example design.

A Quick Start Mixed
Example

Loads an example design when VCS MX is running.

Tutorial for Mixed Example Loads an example design for VCS MX.

About Displays DVE version and copyright information.

A-24

Menu Bar and Toolbar Reference

View Menu

The View menu allows you to customize your viewing options in the
Watch pane. It has a new menu option, Watch. Click View > Watch
and select the relevant option, as described in the following table:

Signal Menu

The Signal menu allows you to add signals to the Watch tab. To add
a signal for monitoring, select Signal > Add to Watches > Watch.

Simulator Menu

The Simulator menu allows you to run and control the simulation.
Use the following commands to control the simulation:

Options Description

Add New Page Adds a new tab to your Watch pane.

Delete Current Page Deletes the Watch tab from the Watch pane.

Rename Current Page Renames your Watch tab.

Edit Variable Allows you to cut, copy, and paste the variable names
in the Watch tab.

Options Description

Step In Testbench Stops at the next executable line in the testbench for Native
Testbench (NTB), OpenVera, and SystemVerilog
testbenches.

Step Out Steps to the next executable line outside of the current
function or task.

Step in ActiveThread Stops at the next executable line in the current active thread.

Next in Active
Thread

Advances the simulation stepping over tasks and functions
in the current active thread.

You can also use the ucli -thread command.

A-25

Menu Bar and Toolbar Reference

Window Menu

The Window menu allows you to select or clear the following panes
to debug your testbench programs. To enable the panes, select
Window > Pane and then select the relevant option, as described in
the following table:

User-Defined Menu

You can create your own menu in DVE using the following command:

gui_add_menu -menu "myMenu > MenuTcl" -tcl_cmd myExec -icon
$::env(DVE_AUXX_GUI)/images/toolbars/grn_dot.xpm
proc myExec {} { source myTCL.tcl }

This command creates a new menu item (user-defined) called
myExec in the menu myMenu and executes the Tcl script myTCL.tcl
when selected. The icon displayed next to this menu item is specified
by the -icon argument.

You cannot add a new icon to an existing menu item (even if it is
copied to another menu).

For example, File > Exit is added to the menu myMenu (which
becomes myMenu > Exit). Since File > Exit has no icon associated
with it, myMenu will also not have any icon, even if you add it
explicitly. All the menu add commands have to be in the
~/.synopsys_dve_usersetup.tcl file.

Options Description

Stack Stack pane to your DVE top-level window.

Local Local pane to your DVE top-level window.

Watch Watch pane to your DVE top-level window.

A-26

Menu Bar and Toolbar Reference

Editing Preferences

DVE creates the '.synopsys_dve_prefs.tcl' file, which stores
user preference information. The Application Preferences dialog box
contains the following categories and options.

A-27

Menu Bar and Toolbar Reference

Global Options

Options Description

Set Font Allows you to set the font of dialog box, menu
commands, and font in Source view, Console pane, List
view etc.

Signal/scope
matching options

Ignore case - Ignores cases while searching for signals
or scopes.
Ignore delimiter - Ignores delimiter characters while
searching for signals or scopes, such as comma
character.

Toolbar control sizes Find field width - Specifies the width of the Find field.
Continue time field width - Specifies the width of the
Continue Time field.
Time field width - Specifies the width of the Time field.

Tooltip limits Maximum lines - Specifies the maximum lines of tooltip
to be shown.
Maximum Character widths - Specifies the maximum
width of characters in the tooltip.

View filters Apply view filters immediately when typed - Allows the
text filters to work while the text is still being typed. If it
is off, you need to press the Enter key for the text filter
to take effect.
Case sensitive - Specifies of the filter should be case
sensitive.
Syntax - Specifies the syntax for filters, regular
expression, wildcards, or simple strings.

Log GUI commands in
Console pane

Records GUI commands also in the Console pane with
the UCLI commands.

Activate line wrapping
in Console pane

Displays the log commands with line wrapping enabled,
which lets you view the commands in next line when the
line is full, such that each line fits in the viewable window.

Allow top-level
windows to hide non-
blocking dialog boxes

Allows non-modal dialog box to go behind its parent
window, so that the parent window can be fully shown
without closing the dialog box.

Show Exit dialog box Displays the Exit dialog box when you exit DVE, if
selected.

Maximum number of
log lines

Specifies maximum number of log lines to be
displayed.

A-28

Menu Bar and Toolbar Reference

Assertion Debug Options

Maximum number of
drop items

Specifies maximum number of drop items to be
displayed.

Options Description

Automatically open
Assertion pane

Opens the Assertion view, if DVE detects that the database
contains assertion data.

Dump all scopes with
assertions when
Assertion pane is
opened

Dumps all the scopes when the Assertion view is opened,
so that all assertions can have values in the VPD after that.

Docked Assertion pane Docks the Assertion view in the top-level window, instead
of showing it as a pane like the Source view.

Show warning when
libassertdebug.so is
missing

Shows a warning message if libassertdebug.so is not
available for assertion debugging.

Show cover and
sequence mismatches
in Wave view

Decides whether the cover and sequence mismatches will
be shown in the Wave view.

Label assertion
attempts with start time

Decides whether the assertion attempt's start time will be
labelled always, never, or only with failures.

Options Description

A-29

Menu Bar and Toolbar Reference

Data Pane Options

Design Debug Options

Options Description

Initial state Specifies in which state you want to display the Data pane,
Detail mode or List mode.

Options for detail mode Specifies the display options for the Detail mode. Shows
grid, Value column, value annotation, adjusts width of
Name, Value, and Type column if selected.

Sort signal on loading — Sorts the signals after loading in
to the Data pane.

Show signal name by level — Shows the name of the
signals in waveform with levels of scopes.

Show horizontal scroll bar — Displays the horizontal scroll
bar per pane or per column as per your selection.

Options for list mode Specifies the maximum number of characters for signal
name and adds selected signal to Wave/List views in the
order of display or selection.

Options Description

Initial display time units Sets the time unit of DVE according to first opened
database or a specified time unit.

Always use units Uses the selected time unit.

Signal value display Sets the display style of value changes.

Maximum number of
elements of array

Sets the biggest array that can be added into Wave or List
views. For bigger arrays, Memory view can be used to view
the values.

Limited number of
elements of array for
annotate values

Sets the number of elements of array that value annotation
will show.

Use the simulation as
design debug library in
interactive

Allows DVE to use simv in interactive mode as design
debug library to get connection data.

A-30

Menu Bar and Toolbar Reference

Use separate thread
for loading value
changes

Uses a separate thread for loading the value changes.

Pre-load design debug
library

Allows DVE to load the static design debug library in
advance in post-process mode, or when this preference
option is not selected.

Use design debug
library for design
hierarchy in post
process

Allows you to view the complete hierarchy in a partially
dumped VPD.

Use design debug
library for signal search

Allows DVE to search for objects in the design debug
library instead of the vpd.

Treat modules defined
within ’celldefines as
blackbox (library) cells

Hides the internal schematic for celldefined modules.

Treat modules defined
within ’uselib or -y/-v as
blackbox (library) cells

Hides the internal schematic for uselib or -y/-v modules.

Sync the current scope
and the GUI

Syncs the simulator's current scope or active scope with
DVE GUI widgets.
Shows the source code of the current scope.

Use a highlight color
scheme for ports

Allows you to select the highlight color for In, Out, and Inout
ports.

Options Description

A-31

Menu Bar and Toolbar Reference

Driver Pane Options

Hierarchy Pane Options

Options Description

Display full path names
for signals

Displays full path of the signals, if selected.

Driver displays scope
instance rather than
source line

Shows the scope of the driver instead of the source and
line in the Driver pane.

Hide duplicate drivers/
loads that point to the
same source line

Hides the duplicate drivers/loads that point to the same
source line, if selected.

Driver value display
radix

Specifies the radix for driver value, Hexadecimal, Octal,
or Binary.

Active statement driver
detection

Turns on active statement driver tracing for tracing drivers.

Show both active and
inactive drivers

Displays both the active and inactive drivers.

Options Description

Display options Displays grid lines, scope navigator, and Type column in
the Hierarchy pane, if selected. Adjusts Name and Type
column width.

Show horizontal scroll
bar

Allows the horizontal scrollbar to be shown per column or
use one for the entire pane.

Initial states of filters Sets the initial status of type filters for Hierarchy pane.
You need to restart DVE for this option to take effect.

Maximum number of
child items to sort when
expanding a scope

Sets the maximum number of child items that Hierarchy
pane can sort.

A-32

Menu Bar and Toolbar Reference

List View Options

Memory View Options

Options Description

Show grid Show signal names in grid form, and justify text
preferences for the signal pane. These settings are similar
to data pane preferences.

Truncate signal name
for number of
characters to keep

Sets the maximum number of characters shown for each
signal in the List view.

Use Insertion Bar Shows the red insertion bar in the List View.

Bring List view to the
front when adding
signals

Brings the List view in the front when adding objects to the
existing List view, which is hidden behind other top-level
windows.

Show signal name by
level

Shows the name of the signals in waveform with levels of
scopes.

Minimum spacing
between value
columns

Sets the minimum number of characters between two
value columns.

Show database name
for signals

Displays the database name for signals using either the
design designator or the name of the VPD file, as per your
selection.

Options Description

Change the text
alignment of memory
table to left

Aligns the text of Memory table to the left.

Selection color in the
memory table

Specifies the color for the Memory table.

A-33

Menu Bar and Toolbar Reference

Schematic View Options

Options Description

Maximum number of
cells in schematic

Specifies the maximum number of cells to be displayed
in the Schematic view.

Text size scheme Specifies the font size in schematics.

Automatic zoom to
selection in design
schematic

Moves and zooms the schematic automatically, so that the
new selection from searching can be shown in the visible
range.

Expand path
connections for any
connected direction

Expands path in path schematic to get more connection
which doesn't contribute to the expanded item but you
might want to know.

Disable tooltip in
Schematic view

Disables the tooltip in the Schematic view, if selected.

Enable buffer (buf) and
inverter (not)
compression

Enables the buffer and inverter compression in the
Schematic view.

Enable zooming in
Schematic view with
mouse wheel

Enables zooming when you roll the mouse.

Ignore read-only
Verilog system calls

Ignores the read-only Verilog system calls, for example
$monitor or $display, when selected.

Show Value Annotation Displays the annotated values of the signals.

Maximum length of
net’s name in
schematic

Specifies the maximum length of net’s name in the
Schematic view.

Hover color Specifies the color on mouse hover.

Path schematic setting Specifies the path schematic settings.

Scroll/zoom to fit the new path and the starting point - If
selected, the path schematic view is zoomed or scrolled
so that the newly created path and its starting point is fit
in the window view.

Select the new path and starting point - Selects the
newly created path and its starting point.

Highlight newly expanded paths in color - Highlights the
newly expanded paths in the chosen color.

A-34

Menu Bar and Toolbar Reference

Schematic Styles Specifies visibility and color for port/pin and other
schematic objects.

Pin symbol - Specifies the pin symbol that you want to
use, box with direction or a simple line.

Options Description

A-35

Menu Bar and Toolbar Reference

Simulator Options

Source View Options

Options Description

Show Simulation Setup
dialog box for
Simulator > Rebuild
and Start

Displays the Simulation Setup dialog box when you select
the Rebuild and Start option from the Simulator menu,
when this check box is selected.

Show Simulation Setup
dialog box for
Simulator > Restart

Displays the Simulation Setup dialog box when you select
the Restart option from the Simulator menu, when this
check box is selected.

Set simulator
executable in
Simulation Setup
dialog box to simv/
scsim by default

Selects simv/scsim as the simulator executable by default
in the Simulator Executable field in the Simulation Setup
dialog box, when this check box is selected.

Allow using GUI when
executing ’run’
command in the script

Allows you to use the DVE GUI when you are running the
simulation, when this check box is selected.

Seek next can advance
simulation

Advances the simulation when you select the Seek Next
option, when this check box is selected.

Options Description

Automatically load
source for top module

Loads source code for the top module in the Source
view when you open DVE.

Show value annotation Enables source code annotation, if selected. You can view
the value of the simulation run at a given time directly in
the source code.

Activate line wrapping Lets you view the commands in next line when the line is
full, such that each line fits in the viewable window.

Show line numbers Shows number of each line of the source code.

Reuse first Source
view

Displays the source code in the existing Source view.

A-36

Menu Bar and Toolbar Reference

Use dialog to warn
about outdated source
files

Displays a dialog box that warns that the source files are
outdated.

Display encrypted
content in Source view

Shows the encrypted source. By default, DVE hides the
encrypted source so that the junk characters are not
displayed.

Enable ‘include file
expansion in source
code

Enables ‘include file expansion in source code

Tab width Defines the number of spaces for each tab key ('\t') in
the Source view.

Editor Lets you select the editor type to view the source code.

Reload source when
changed on disk

Allows DVE to detect the file change and automatically
reloads the source if "Always" is set.

Source Window Colors Specifies colors to display Source view components by
clicking the drop-down arrows and selecting a color. You
can also select the background color of the active and
inactive scope.

Options Description

A-37

Menu Bar and Toolbar Reference

Testbench/CBug Options

Options Description

Watch array elements
display limit

Sets the maximum number of elements that the GUI can
display for a large array when it is expanded in the Local
pane and Watch pane.

Stack depth display
limit

Sets the maximum levels of stacks for Cbug.

Enable testbench
debugging for
interactive design

Enables the Testbench Debugger panes in the DVE main
window. This will disable "step in testbench" and the
programs will not be dumped and shown in the Hierarchy
pane. However, you can still open the testbench source
files manually and set line breakpoints, but you cannot see
the testbench signals.

Share Hierarchy and
Stack panes in
dockable pane

Opens the Hier pane and the Stack pane in a dockable
window. Clearing this check box opens the pane in a
separate window.

Share Data and Local
panes in dockable
pane

Opens the Local pane and the Data pane in a dockable
window. Clearing this check box opens the pane in a
separate window.

Sync the current frame
and the GUI (Stack
pane)

Syncs the current frame or active frame with DVE GUI
widgets.
Shows the source code of the current frame.

SystemC sc_fifo
dumping

Contains the following options:
Dump details of tokens stored in FIFO - Dumps the tokens
details in first in first out order.
Dump names of processes waiting for read/write - Dumps
the processes name that are waiting for either read or
write.
Maximal number of tokens - Sets the tokens limit.

CBug: Store source
file/line info for all the
SystemC instances
and processes in VPD
(performance impact)

Stores information of the source file/line for all instances
and processes of SystemC in the VPD file.

A-38

Menu Bar and Toolbar Reference

CBug: Store SystemC
class member
variables which are not
derived from SystemC
base classes in VPD
(performance impact)

Saves the class member variables of SystemC, that are
not derived from the SystemC base classes, in the VPD
file.

Options Description

A-39

Menu Bar and Toolbar Reference

Transaction Debug Options.

Wave View Options

Options Description

Transaction pane
settings

Contains the following two options:
Automatically open Transaction pane — Opens the
Transaction pane automatically when you start DVE.
Docked Transaction pane — Displays the Transaction
pane in the same TopLevel window, if selected.

Stream list settings Contains options to show grid, left justify Name and Scope
columns.

Waveform settings Contains the following options:

Zero-time message box width — Displays the message
box in the width selected.

Show relations — Displays the relations specified in the
$vcdplusmsglog statement.

Show values — Displays the values of the $vcdplustblog
and $vcdplusmsglog objects in the Wave view.

Maximum value lines — Displays the values upto the lines
selected.

Show call stack — Displays the call stack’s head, tail, both,
or nothing in the Wave view and in the Tooltip.

Maximum call stack — Displays the call stack upto the
maximum levels chosen.

Options Description

Display settings Specifies the waveform display settings.

Use Insertion Bar in the
Signal pane for the
location to insert the
signal(s)

Inserts the signal in the Signal pane wherever the insertion
bar is placed.

A-40

Menu Bar and Toolbar Reference

Keep original signals
when creating overlay
signal

Keeps the original signal from waveform after they are
overlaid.

Ignore case when
sorting signals

Ignores cases while sorting signals.

Disable dragging to
change the height for
digital waveforms

Disables changing the height of waveform signals in digital
drawing style, if selected.

Enable tracing on
double-click

Starts tracing the signal when you double-click on a signal.

Enable zoom mouse
gestures with the left
mouse button

Allows zoom action using left mouse button when the
mouse is dragged in different direction.
Drag from left to right or from right to left means zoom
by selected range.
Drag towards down-left direction means last zoom, drag
towards down-left direction means next zoom in history,
Drag upwards or downwards means zoom full, drag
towards up-right direction means zoom in 2x, while drag
towards down-right direction means zoom out 2x.

Enable zoom mouse
gestures with the
middle mouse button

Same as above, but uses the middle mouse button.

Enable vertical
scrolling
synchronization for
linked views

Allows you to scroll linked views vertically, if selected.

Bring Wave view in the
front when adding
signals

Brings the Wave view in the front when you add signals.

Show signal name by
level

Shows the name of the signals in waveform with levels
of scopes.

Default wave row
height

Defines the row height of the wave.

Default minimum pixels
to trigger stroke

Specifies the number of pixels needed to trigger a zoom
operation by mouse gestures except for zoom range
(left to right or right to left).

Bus value Displays bus value as either LSB or MSB

Waveform value font Specifies the font to be used for waveform value.

Options Description

A-41

Menu Bar and Toolbar Reference

Toolbar Reference

This section describes all toolbar text fields, menus, and icons. You
can drag and drop toolbars into any location in a TopLevel DVE
window toolbar using the toolbar handles.

To toggle the display of toolbars on and off, select Edit > Toolbars,
then select the desired toolbar.

File

The following items comprise the File toolbar:

Show database name
for signals

Displays the database name for the signal by either
using the design designator or the name of the VPD file.

Waveform Styles Allows you to select the style scheme and color for
various data types.

Analog values changes within one pixel - Chooses
values to plot.

Icon Description

Open Database or File

Displays the Open Database or Open File
dialog box, depending on the DVE window
displayed, and enables you to select and
open a VPD file.

Load Waveform Updates

Loads waveform updates

Options Description

A-42

Menu Bar and Toolbar Reference

Edit

The following items comprise the Edit toolbar:

Print

Prints to printer or file the contents of an
active wave, list, or Schematic view.

Icon Description

Cut, Copy, Paste, Delete

Copy works on any text. If the copy
function can determine the text to be an
object, copy will copy the object,
Otherwise it will copy the selected text.
Copied text can be pasted in any widget
that supports text, for example an editor or
the DVE command line.

Object copies work in widgets, such as
DVE panes, which support DVE objects
that sort DVE objects such as any DVE
panes.

Cut and Delete works only on DVE objects
and some windows and are limited to
some windows, such as the Wave, List,
and Memory views.

Search for Signals/Instances

Displays the Search for Signals dialog
box. Use this to find any object that exists
in the opened and current database. If the
object is not loaded, this dialog box will
attempt to load it.

Find

Selects string to search for, then press
Enter to search.

Find Previous/Next

Active if any text exists in the Find dialog
box or the Find menu text box. If clicked,
finds the previous or next occurrence of
the text in the active pane.

A-43

Menu Bar and Toolbar Reference

Zoom/Zoom and Pan History

Toolbar Command View Menu Command Action

Selection Tool Prepares the cursor for selecting
objects (the default cursor).

Zoom In Tool Prepares the cursor for zooming
in. The cursor becomes a
magnifying glass. Drag a
bounding box around the area to
enlarge.

Zoom Out Tool Prepares the cursor for zooming
out. The cursor becomes a
magnifying glass. Drag a small
box to zoom out by a large
amount, or a large box to zoom out
by a small amount.

Pan Tool Prepares the cursor for panning
the window view. The cursor
becomes a hand shape. Point and
drag to pan the view.

Zoom Full Zooms out to display entire
design.

Zoom In 2X Zooms in 2x.

Zoom Out 2X Zooms out 2x.

Named zoom and pan
setting

Zooms to your settings.

Zooms to selection Zooms to area selected with the
Selection Tool.

Go back in zoom and
pan history

Goes back to the last zoom
setting.

Go forward in zoom and
pan history

Goes forward in the zoom history.

Zoom to Cursors Zooms to cursors C1 and C2.

A-44

Menu Bar and Toolbar Reference

Scope

The following items comprise the Scope toolbar:

Icon Description

Annotate Values

Displays the currently active scope signal
values at the current time in the Source
view.

Move Up to the parent

Moves the selection in the Source view up
one level of hierarchy from the scope of
the currently selected line. If the current
line is the top of the hierarchy or no line is
selected, this item is not available.

Move Down to the selected
scope

Moves the selection to the start of the
definition of the currently selected object.
Note that in the Source view, this only
works if the object itself is selected. It does
not work if the entire line is selected and
more than one token is selected on that
line.

Move Back/Forward in List of
Scopes or schematics

Back or forward arrow moves to the
previous view of source information in the
current source view or forward in the
source view history if you have previously
gone backwards.

DVE maintains a history of Source view,
so that it is easy to go back to a previous
view of the source. This is useful for large
source files and reduces the need for
scrolling.

A-45

Menu Bar and Toolbar Reference

Trace

The following items comprise the Trace toolbar:

Window

The following items comprise the Window toolbar:

Icon Description

Trace Drivers/Trace Loads

This menu item is active if the object
selected in the currently active pane is a
variable or signal. For this capability to
work, the design must be compiled with
one of the -debug options and an mdb
library must exist.

When clicked, this finds the driver of the
object, shows the driver in the Drivers/
Loads pane and shows the driver in the
Source view of the current window. If no
window is present, DVE creates one. If a
drivers pane already exists, the new trace
information is added to it.

Find Next/Previous

Finds the next or previous driver or load or
the next or previous driver or load in the
current instance respectively.

Icon Description

Show Source

Opens a new Source view and display
source for the selected object.

Show Schematic

Opens a new Schematic pane.

A-46

Menu Bar and Toolbar Reference

 Show Path Schematic

Opens a new Path Schematic pane.

Show Back Trace

Schematic

Displays the back trace schematic for the
selected signal.

Show Wave

Opens a new Wave pane or display a
previously opened pane.

 Show List

Opens a new List pane or display a
previously opened pane.

 Show Memory

Opens a new Memory pane.

Add to Watches

Adds signal to the Watch pane.

Panes

Opens the selected pane

A-47

Menu Bar and Toolbar Reference

Back Trace

The following items comprise the Back Trace toolbar:

Icon Description

Toggle display of the
Back Trace Wave view

Displays the Back Trace Wave view.

Show Back Trace
Options

Opens the Back Trace Options dialog box.

Start Back Trace on
selected signal

Starts back tracing the selected signal.

A-48

Menu Bar and Toolbar Reference

Interactive Rewind

Interactive Rewind is an LCA feature. For more information, see the
VCS Online Documentation.

The following items comprise the Interactive Rewind toolbar:

Signal

The following items comprise the Signal toolbar:

Icon Description

Add Checkpoint

Adds a simulation checkpoint.

Rewind to the
selected checkpoint

Rewinds to the selected checkpoint.

Delete the selected
Checkpoint

Deletes the selected checkpoint.

Icon Description

A-49

Menu Bar and Toolbar Reference

Search Backward/Forward/
Select Search Criteria

Backward or forward arrow launches
search in time for the constraint selected
in the listbox.
•Any Edge – (Default) Search stops and

positions C1 cursor on the next or
previous edge found.

•Rising – Search stops and positions C1
cursor on the next or previous rising edge
only.

•Falling – Search stops and positions C1
cursor on the next or previous falling
edge only.

•Failure – Available only if the signal is an
assertion; stops on next or previous
assertion failure.

•Success – Available only if the signal is
an assertion; stops on next or previous
assertion success.

•Vacuous – Available only if the signal is
an assertion; stops on the next or
previous vacuous success.

•Signal Value ... – Displays a small dialog
box that allows you to enter a specific
value as the constraint. If the value is
found, the search will stop and position
C1 where the signal takes on the entered
value. Values must match the radix that
is currently selected for the signal.

Set number of seeks

Set the number of matched values to seek
for one search backward/forward
operation by clicking the search icon.

A-50

Menu Bar and Toolbar Reference

Simulator

The following items comprise the Simulator toolbar:

Icon Description

Start/Continue

Runs the simulation until a breakpoint is
hit, the simulation finishes, or for the
duration specified in the Set Continue
Time dialog box or toolbar time entries.

Continue for Specified Time

Runs the simulation for the specified time,
then stops.

Stop

This icon is active when the simulation is
running. Click to stop the simulation.

Next

For VHDL, Verilog, and TB code, next
steps over tasks and functions.

Step

Moves the simulation forward by stepping
one line of code, irrespective of the
language of the code. This is the same as
the UCLI Step command.

Step In Active Thread

Steps to the executable line in the active
thread.

Next in Active Thread

Steps to the next executable line in the
active thread.

A-51

Menu Bar and Toolbar Reference

Time Operations

The following items comprise the Time Operations toolbar:

Next in CBUG Code

Steps in C code

Step In Any Testbench Thread

For Native TestBench (NTB) OpenVera
and SystemVerilog testbenches, stops at
the next executable line in the testbench.

Step Out

Steps to the next executable line outside
of the current function or a task.

Restart

Stops the currently running simulation and
restarts it with the current simulation
setup. This retains all open windows and
GUI setups. If the simulation is not running
it is started.

Icon Description

Sets current time and display
time unit

Displays current time of the C1 cursor. Set
the current time by entering a new time in
this field.

Displays the time units for displaying
simulation data. Select View > Set Time
Scale to set time units and precision.

A-52

Menu Bar and Toolbar Reference

Grid

The following items comprise the Grid toolbar:

Testbench GUI Simulator Toolbar Options

For more information on these icons description, see the section
“Simulator”

Note:
Move the cursor over the icon to display the ToolTip.

Icon Description

Setting Grid in Wave view

Opens the Grid Properties dialog box.

Next

Next in CBug code

Step

Step in Active Thread

Next in Active Thread

Step in any Testbench Thread

Step Out

Stop

Start/Continue

A-53

Menu Bar and Toolbar Reference

Customizing the DVE Toolbar

For customizing the DVE toolbar, you need to use Tcl commands.
You can create toolbars only for items that exist in one of the DVE
menus. For example in the Edit toolbar, Copy and Cut are toolbar
items.

Note:
For repeated usage, integrate the Tcl commands in your
~/.synopsys_dve_usersetup.tcl file.

Adding a New Toolbar

To add a new toolbar, use the gui_create_toolbar command.

gui_create_toolbar -name myName -title myTitle

The argument passed to -name should be used to add items to the
new toolbar. Note that the toolbar is not visible until you add an item
to it.

Adding Items to a Toolbar

To add items to a toolbar, use the gui_add_toolbar_item
command.

gui_add_toolbar_item -toolbar myName -item "Edit > Find..."

Ensure to retain the trailing dots in the toolbar item name if the
corresponding menu item has it.

A-54

Menu Bar and Toolbar Reference

Deleting an Existing Toolbar

Determine the toolbar name by placing the mouse over the toolbar
handle. The toolbar can be deleted from the GUI or from the
command-line.

To delete a toolbar from the GUI, perform any of the following steps:

• Right-click on the corresponding toolbar handle and select Hide.

• Right-click on any toolbar handle or empty toolbar area and clear
the check box corresponding to the toolbar.

To delete a toolbar from the command-line, use the following
command:

gui_delete_toolbar -name "<toolbar_name>"
gui_delete_toolbar -name "&Edit"

Deleting an Item in a Toolbar

To delete a single item from a toolbar

1. Determine the toolbar name and the name of the item to delete.

2. Run the gui_delete_toolbar_item command.

gui_delete_toolbar_item -toolbar Edit -menu "Edit > Copy"

Ensure to retain the trailing dots in the toolbar item name if the
corresponding menu item has it. Toolbar items can only be deleted
from the command-line.

A-55

Menu Bar and Toolbar Reference

Using the Context-Sensitive Menu

The following sections explain the commands and their descriptions
available in the CSM of each of the DVE panes and views. In any
pane/view, right-click to display the CSM, then select the desired
command.

A-56

Menu Bar and Toolbar Reference

Hierarchy Pane CSM

Command Description

Copy Copies the selected object or string to the
clipboard buffer.

Scope Navigator Toggles On/Off the scope navigator toolbar

Show Source Displays source code in the Source view for the
selected object.

Show Schematic Displays a design schematic for the selected
object.

Show Path Schematic Displays a path schematic for the selected object.

Add To Waves Displays the selected signal or signals in the Wave
view.

Add To Lists Displays the selected signal or signals in the List
view.

Add To Groups Adds objects to a signal group (new or existing per
your selection) in the Signal pane.

Add To Watches Adds objects to the last active Watch pane.

Show in Class Browser Opens the Class and Member panes and locates
the currently selected class or member.

Show Full Hierarchy Shows the full hierarchy in the Hierarchy pane.

Move Up Moves up one level of hierarchy to the parent.

Move Down Moves down one level to the selected scope.

Expand By Levels Allows expansion by multiple levels with a single
action.

Expand All Expands the entire hierarchy at once. There may
be a delay getting the hierarchy from the
simulation when working interactively.

Collapse Parent Collapses the parent scope.

Collapse All Collapses all expanded scopes.

Select By Levels Allows you to select scopes by levels. You can
select more than one level at a time.

Select All Selects all that are visible in the hierarchy (does
not implicitly expand).

Add Dump Dumps the values of signals and scopes into the
VPD file.

A-57

Menu Bar and Toolbar Reference

Data Pane CSM

Dump Dumps the values of signals and scopes
recursively into the VPD file.

Show External Functions Shows user-defined external (PLI, DPI, DirectC)
functions.

Command Description

Copy Copies the selected object or string to the
clipboard buffer.

Show Source Displays source code in the Source view for the
selected object.

Show Schematic Displays a design schematic for the selected
object.

Show Path Schematic Displays a path schematic for the selected object.

Show Back Trace Schematic Displays a back trace schematic of the selected
object.

Show Memory Displays the contents of the memory variable in
the Memory view.

Add To Waves Displays the selected signal or signals in the Wave
view.

Add To Lists Displays the selected signal or signals in the List
view.

Add To Groups Adds objects to a signal group (new or existing per
your selection) in the Signal pane.

Add To Watches Adds objects to the last active Watch pane.

Show Definition Locates the definition of interface or Modport Port
in the Hierarchy pane.

Expand All Expands the entire hierarchy at once. There may
be a delay getting the hierarchy from the
simulation when working interactively.

Collapse All Collapses all expanded scopes.

Select All Selects all that are visible in the hierarchy (does
not implicitly expand).

Show Value Annotation Annotates signal values for selected items.

Command Description

A-58

Menu Bar and Toolbar Reference

Set Radix Sets the notation of the selected signals to the
selected radix.

Set Bus Collects a group of signals for display as if they
were a bus.

Set Expression Opens the Bus/Expression dialog box.

Highlight Item Highlights the currently selected objects in the
chosen color.

Delete All Breakpoints Deletes all breakpoints.

Set Breakpoint Sets breakpoint on the selected signal.

Add Dump Dumps the values of signals and scopes into the
VPD file.

Dump Dumps the values of signals and scopes
recursively into the VPD file.

Force Value Force to 0 - Forces the values of the selected
signal/variable to 0.
Force to 1 - Forces the values of the selected
signal/variable to 1.
Force to x - Forces the values of the selected
signal/variable to x.
Force Release - Release the forces of the slected
signal/variable.
Set Force.. - Open the force dialog.

Command Description

A-59

Menu Bar and Toolbar Reference

Source View CSM

Command Description

Copy Copies the selected object or string to the
clipboard buffer.

Follow Signal Follows the selected signal in the source code.

Move Up Moves up one level of hierarchy to the parent level.

Move Down Moves down one level to definition of the selected
scope or cell.

Show Shows the selected object’s definition, current
scope, assertion, unit binding, entity, architecture,
macro, or macro definition.

Show Schematic Displays a design schematic for the selected
object.

Show Path Schematic Displays a path schematic for the selected object.

Show Back Trace Schematic Displays the back trace schematic of the selected
object.

Show Memory Displays the contents of the memory variable in
the Memory view.

Add To Waves Displays the selected signal or signals in the Wave
view.

Add To Lists Displays the selected signal or signals in the List
view.

Add To Groups Adds objects to a signal group (new or existing per
your selection) in the Signal pane.

Add To Watches Adds objects to the last active Watch pane.

Expand All Expands the entire hierarchy at once. There may
be a delay getting the hierarchy from the
simulation when working interactively.

Collapse All Collapses all expanded scopes.

Edit Source Opens the source code in the editor you select in
the Application Preferences dialog box.

Edit Parent Edits the source file of the parents instance.

Annotate Values Annotates the signal values for selected scope.

Set Radix Sets the notation of the selected signals to the
selected radix.

Trace Drivers Traces drivers for the selected signal.

A-60

Menu Bar and Toolbar Reference

Trace Loads Traces loads on the selected signal.

Drivers/Loads Traces/deletes drivers or loads per the selection
of submenu.

Highlight item Highlights the currently selected objects in the
chosen color.

Delete All Breakpoints Deletes all breakpoints.

Set Breakpoint Sets breakpoint on the selected signal.

Run to Cursor Runs and stops where the cursor is positioned.

Back Trace Start Back Trace on selected signal.

Force Value Force to 0 - Forces the values of the selected
signal/variable to 0.
Force to 1 - Forces the values of the selected
signal/variable to 1.
Force to x - Forces the values of the selected
signal/variable to x.
Force Release - Release the forces of the slected
signal/variable.
Set Force.. - Open the force dialog.

Add Dump Dumps the values of signals and scopes into the
VPD file.

Dump Dumps the values of signals and scopes
recursively into the VPD file.

Command Description

A-61

Menu Bar and Toolbar Reference

Schematic View CSM

Command Action

Copy Copies selected object or string to the clipboard.

Paste Pastes objects or string from the clipboard

Show Source Displays the source code for the selected object.

Show Path Schematic Shows path schematic for the selected object.

Show Back Trace
Schematic

Displays the back trace schematic of the selected object.

Add to Waves Adds signals to the Wave view.

Add to Lists Displays the selected signal or signals in the List view.

Add to Groups Adds objects to a signal group (new or existing per your
selection) in the Signal pane.

Move Up Moves up one level of hierarchy to the parent level.

Move Down Moves down one level to definition of the selected scope
or cell.

Back Moves back in list of scopes or schematics.

Forward Moves forward in list of scopes or schematics.

Selection Tool Changes mouse cursor to an arrow to select objects.

Zoom In Tool Changes mouse cursor to a zoom-in tool. You need to
select the object to view a magnified image.

Zoom Out Tool Changes mouse cursor to a zoom-out tool. You need to
select the object to view a small image.

Pan Tool Changes the mouse cursor to a hand used to pan the
object view in both dimensions.

Zoom Zooms in/out/full per the selection.

Annotate Values Annotates the signal values for selected scope.

Set Radix Sets the notation of the selected signals to the selected
radix.

Highlight Item Highlights the currently selected objects in the chosen
color.

Trace Drivers Shows drivers of the selected signal.

Trace Loads Shows loads of the selected signal.

Drivers/Loads Shows the drivers/loads in the next, previous instance or
in the current instance, deletes all or the selected driver/
load per your selection.

A-62

Menu Bar and Toolbar Reference

Wave View CSM

Trace X Highlights all signals/cell, which could cause the selected
signal to be of X value.

Add Dump . . . Dumps the values of signals and scopes into the VPD file.

Dump Dumps the values of signals and scopes recursively into
the VPD file.

Force Value Force to 0 - Forces the values of the selected signal/
variable to 0.
Force to 1 - Forces the values of the selected signal/
variable to 1.
Force to x - Forces the values of the selected signal/
variable to x.
Force Release - Release the forces of the slected signal/
variable.
Set Force.. - Open the force dialog.

Command Action

Cut Cuts (copies and removes) the selected object into
the clipboard.

Copy Copies the selected object into the clipboard
buffer.

Paste Pastes or inserts the copied object from the
clipboard.

Paste From Inserts the object from the clipboard but gets the
data from the specified database.

Delete Removes the selected object.

Set Search Constraint Searches for signals per the selected criteria/
constraint in the sub-menu, any edge, rising,
falling, failure, success, match, mismatch, signal
with X value, or any other specific value etc.

Signal Value Opens the Value Search dialog box and searches
for specified signal value.

Search Backward Searches for previous match based on search
constraint settings.

Search Forward Searches for next match based on search
constraint settings.

A-63

Menu Bar and Toolbar Reference

Signal Pane CSM

Only those options are explained, which are not included in the
description of “Signal Menu” on page 14.

Zoom Zooms objects as per the selection in the sub-
menu.

Create Marker Creates a marker where you click in the Wave
view.

Markers Opens the Markers dialog box.

Go To Marker Goes to the selected marker.

Delete Marker Deletes the selected marker.

Move Marker Moves the marker to the selected point.

Expand Time Expands the data cycle data at the time.

Collapse Time Collapses the data cycle data at time.

Collapse All Collapses the expanded delta cycle data.

Command Action

Cut Cuts (copies and removes) the selected object into
the clipboard.

Copy Copies the selected object into the clipboard
buffer.

Past Pastes or inserts the copied object from the
clipboard.

Paste From Inserts the object from the clipboard but gets the
data from the specified database.

Delete Removes the selected object.

Rename Renames the selected signal group.

Sort In Group Sorts all signals in this group in ascending,
descending, or declaration order.

Associate With Associates signal group with database.

Highlight Item Highlights the currently selected objects in the
selected color.

Trace Drivers Traces drivers for the selected signal.

Trace Loads Traces loads for the selected signal.

A-64

Menu Bar and Toolbar Reference

Set Draw Style Scheme Sets a draw style for the selected signal.

A-65

Menu Bar and Toolbar Reference

List View CSM

The options in the List view CSM are similar to the ones available in
the CSM of the Signal pane.

Driver Pane CSM

Command Action

Trace Drivers Shows drivers of the selected signal.

Trace Loads Shows loads of the selected signal.

Show Bit Driver Info Shows bit driver information.

Show Source Removes all information from the driver pane.

Show Schematic Shows schematic for the selected object.

Show Path Schematic Shows path schematic of the selected object.

Show Back Trace
Schematic

Shows the back trace schematic of the selected
object.

Add To Waves Adds the trace information to the Wave view.

Add To Lists Adds the signals to the List view.

Add To Groups Adds the signal in the selected group or creates a
new group.

Highlight Item Advances the simulation to the specified time.

Add Dump Dumps the value of signals and scopes into the
VPD file.

Dump Dumps the value of signals and scopes recursively
into the VPD file.

Force Value Force to 0 - Forces the values of the selected
signal/variable to 0.
Force to 1 - Forces the values of the selected
signal/variable to 1.
Force to x - Forces the values of the selected
signal/variable to x.
Force Release - Release the forces of the slected
signal/variable.
Set Force.. - Open the force dialog.

Copy Copies the selected object into the clipboard.

A-66

Menu Bar and Toolbar Reference

Watch Pane CSM

The options in the CSM of Watch pane is similar to other windows
and has been already explained in the previous sections.

Memory View CSM

Assertion Pane CSM

Delete Clears drivers/loads in this window.

Delete All Clears drivers/loads in all windows.

Synchronize Source
Window

Toggle button On (checked) means Source view
tracks selection from the driver pane. Selecting
signal highlights signal port or declaration in
Source view. Selecting driving statement
highlights that statement.

Synchronize Path
Schematic Window

Toggle button On (checked) means Schematic
view tracks selection from the driver pane.
Selecting signal highlights the signal. Selecting
driving statement shows design with scope
selected.

Command Action

Go to address Goes to the specified address in the Memory view.

Add to Waves Adds the signals to the Wave view.

Add to Lists Adds the signals to the List view.

Add to Groups Adds the signal in the selected group or creates a new
group.

Set Radix Sets the notation of the selected signal to the chosen radix.

Properties Opens the Memory Properties dialog box where you can
modify the property to display a signal in the Wave view.

Command Action

Copy Copies selected object to the clipboard buffer.

A-67

Menu Bar and Toolbar Reference

Keyboard Shortcuts

You can create Hotkey/Shortcut key in DVE by having the command
in the ~/.synopsys_dve_usersetup.tcl file or executing the
same at the DVE command-line as follows. The Tcl file is stored in
your VCS Home directory.

gui_set_hotkey -menu "Simulator->Setup..." -hot_key "F5" -
replace

The -replace switch overrides an already existing hotkey. For
more information on setting hotkeys, type 'help gui_set_hotkey' at
the DVE command-line.

You can map hotkeys for a tcl script as well. For example, to show
hierarchical signal path in the Signal view in DVE, run the following
commands:

% gui_set_hotkey -tcl "gui_set_pref_value -category
{wave_name_column} -key {fullname} -value {All}" -hot_key
"Ctrl+p"

OR

Trace Assertion Traces the selected assertion in the Wave view.

Assertion Attempts Displays attempts for selected assertion.

Show Source Displays source code of the selected object.

Add to Waves Adds the signals to the Wave view.

Add to Lists Adds the signals to the List view.

Add to Groups Adds the signal in the selected group or creates a new
group.

Synchronize Selection Synchronizes selection with other views.

Delete All Breakpoints Deletes all breakpoints.

Set Breakpoint Sets breakpoint on the selected signal.

A-68

Menu Bar and Toolbar Reference

% gui_set_hotkey -tcl_cmd "gui_set_pref_value -category
{wave_name_column} -key {fullname} -value {All}" -hot_key
"Ctrl+p"

To create a shortcut key binding, add a line such as the following:

::snpsMenu::add_hotkey_binding -menu "Edit > Find..." -
hot_key "Shift+F"

This sets Shift+F to be the keyboard shortcut for the Find dialog box.
Use the syntax Menu > MenuItem to select the menu item you want
to set the key binding for.

File Command Shortcuts

Edit Command Shortcuts

Commands Shortcut Keys

Open Database Ctrl+O

Close Window Ctrl+W

Load Waveform Updates Ctrl+U

Commands Shortcut Keys

Cut Ctrl+X

Copy Ctrl+C

Paste Ctrl+V

Delete DEL

Synchronize Selection Ctrl+Y

Select All Ctrl+A

Find Ctrl+F3

Find Next F3

Find Prev Shift+F3

Go to Address Ctrl+G

A-69

Menu Bar and Toolbar Reference

View Command Shortcuts

Simulator Command Shortcuts

Search for Signals/
Instances

Ctrl+H

Commands Shortcut Keys

Selection Tool ESC

Zoom In Tool =

Zoom Out Tool -

Zoom > Zoom Full F

Zoom > Zoom In +

Zoom > Zoom Out O

Zoom > Zoom Fit Selection Ctrl+T

Zoom > Zoom Ft Highlight Ctrl+Shift+T

Zoom > Zoom To Cursors Ctrl+Q

Commands Shortcut Keys

Start/Continue F5

Step/Next > Step F11

Step/Next > Next F10

Step/Next > Next In CBug Ctrl+F10

Step/Next > Step In Active
Thread

F12

Step/Next > Next in Active
Thread

Ctrl + F9

Step/Next > Step In
testbench

Ctrl+F11

Step/Next > Step Out F9

Restart Ctrl+F5

A-70

Menu Bar and Toolbar Reference

Signal Command Shortcuts

Scope Command Shortcuts

Trace Command Shortcuts

Commands Shortcut Keys

Add To Waves > Recent
Wave

Ctrl+4

Add To Lists > Recent Ctrl+5

Add To Watches > Recent Ctrl+6

Show Memory Ctrl+7

Search Backward Shift+F4 OR <

Search Forward F4 OR >

Commands Shortcut Keys

Show Source Ctrl+1

Show Schematic Ctrl+2

Show Path Schematic Ctrl+3

Move Upt F8

Move Down Shift+F8

Commands Shortcut Keys

Trace Drivers Ctrl+D

Trace Loads Ctrl+L

Highlight Item > Recent
Color

Ctrl+E

Highlight Item > Clear
Selected

Ctrl+Shift+M

Highlight Item > Clear All Ctrl+M

A-71

Menu Bar and Toolbar Reference

Help Command Shortcuts

Window Command Shortcuts

Tcl GUI Commands Shortcuts

Commands Shortcut Keys

Help Contents F1

Commands Shortcut Keys

Switch Top Level Ctrl + S

Commands Shortcut Keys

Scroll Current View Left Left

Scroll Current View Up Up

Scroll Current View Right Right

Scroll Current View Down Down

Toggle Scope Navigator Ctrl+R

A-72

Menu Bar and Toolbar Reference

Using the Command Line

Use the command line to enter DVE and Unified Command Line
Interface (UCLI) commands. The table below describes some of
these commands.

Note:
For more information on the list of DVE Tcl commands or DVE
GUI commands, type help <command_name> in the DVE
Console pane.

Commands marked with an asterisk (*) are UCLI commands.

Command Description

 open_db Opens a database file.

 close_db Closes a database file.

 open_file Opens file.

 exit Exits application.

Design Query:

 show* Displays design information for a scope or nested
identifier.

 drivers* Obtains driver information for a signal/variable.

 loads* Obtains load information for a signal/variable.

 fanin Extracts the fanin cone of the specified signal(s).

 search Locates design objects whose names match the name
specification you provide.

Simulator:

 open_sim Setup Simulator executable and arguments.

 start* Starts tool execution.

 step* Advances the tool one statement.

 next* Advances the tool stepping over tasks and functions.

 run* Advances the tool and stop.

 finish* Allows the tool to finish then return control back to UCLI.

A-73

Menu Bar and Toolbar Reference

 restart* Restarts tool execution, and keeps the setting in the last
run.

Breakpoints:

 stop Adds or displays stop breakpoints.

Navigation:

 scope* Gets or changes the current scope.

 thread* Displays thread information or move the current thread.

 stack* Displays thread information or move the call stack.

 listing* Displays source text.

 add_schem Shows scope in Schematic view.

 add_source Shows signal/scope in Source view.

Signal/Variable/Expression:

 get* Obtains the value of a signal/variable.

 force* Forces or deposit a value on a signal/variable.

 release* Releases a variable from the value assigned using
'force'.

 call* Executes a system task or function within the tool.

 sexpr* Evaluates an expression in the tool.

 vbus* Creates, deletes, or display a virtual object.

 add_group Adds signals to Group.

 add_list Adds signals to the List view.

 add_mem Adds memory to the Memory view.

 add_pathschem Shows path schematic for signal(s)/ scope(s).

 add_watch Adds signals to Watch view.

 add_wave Adds signals to the Wave view.

 delete_group Deletes signals from given group.

 delete_list Deletes signals from given list view.

 delete_watch Deletes signals from global watch view.

 delete_wave Deletes signals from given wave view.

 compare Compares signal/scopes.

 view Opens, closes or lists view.

Signal Value and Memory:

 dump* Creates/manipulates/closes dump value change file
information.

 memory* Loads/writes memory type values from/to files.

A-74

Menu Bar and Toolbar Reference

 add_mem Adds memory to the Memory view.

Session Management:

 save* Saves simulation state into a file.

 restore* Restores simulation state saved in a file.

 save_session Saves session.

 open_session Opens session.

Help Routines:

 help Lists basic commands. Use -all for listing all commands.

 alias* Creates an alias for a command.

 unalias* Removes one or more aliases.

 config* Displays/sets current settings for configuration
variables.

Macro Control:

 do* Evaluates a macro script.

 onbreak* Specifies script to run when a macro hits a stop-point.

 onerror* Specifies script to run when a macro encounters an
error.

 resume* Resumes execution of a macro file.

 pause* Pauses execution of a macro file.

 abort* Aborts evaluation of a macro file.

 status* Displays the macro file stack.

Misc.:

 ace* Evaluates analog simulator command.

 cbug* Debugs support for C, C++ and SystemC source files

 coverage* Evaluates coverage command(s).

 power Powers measure.

 quit* Exits application.

 senv* Displays one or all synopsys::env array elements.

 setenv* Sets the value of a system environment variable.

 sn* Displays the Specman prompt when used without
arguments, and executes e code commands when they
are entered as optional arguments.

 tcheck* Disables/enables timing check upon a specified
instance/port at runtime.

 virtual Creates, deletes or displays a virtual object.

IN-1

Index

Symbols
.size() 11-75
+vpi+1+assertions 10-7, 10-8
$sdf_annotate 9-34
$vcdplustblog 11-67
$VCS_HOME 10-11

A
About DVE(Help menu selection) A-23
Add Fanin/Fanout A-18
Add to Lists A-14, A-62
Add to Waves A-14, A-62
Annotate Values A-18
-assert dump_sequences 9-33
Assertion Attempts A-19
Assertion Failure Summary Pane 10-2
Assertion failures 10-2
Assertion Unit 3-4
Assertion Window 10-1
automatic step-through

Systemc 13-60

B
Back A-17

Beginning (menu selection) A-9
binary radix 5-5
bits, displaying in waveform 5-7
Breakpoints A-12
buffer

compressing 7-14
Building Buses 5-31
Bus Builder 5-31
buses, building 5-31

C
C1 cursor 5-6
CBug 13-57
–class 14-9
Close Database (File menu selection)

reference A-2
Close File (File menu selection)

reference A-3
Close Window (File menu selection)

reference A-3
closing a VPD database 1-22
column headings

rearranging 3-6
Commands Supported by the C Debugger 13-5
Compare A-15
compile-time options 1-3

IN-2

-condition 11-59
Configuring CBug 13-35
constraint_mode 14-24
context-sensitive menus, using A-56
Continue A-11
coverage databases 1-5
cursor C1 5-54
cursor C2 5-54
cursors, inserting 5-54

D
database

closing 1-22
opening 1-11

–debug_all 14-3
debug_all, option 1-4
debug_pp, option 1-3
debug, option 1-3
debugging options 1-3
default symbol 7-42
Display Signal Groups A-14
Dock

Window menu selection A-22
dock and undock windows 2-13
drag zooming 5-62
Dump Values A-12, A-63
duplicate signals, displaying 5-24
DVE 10-8, 13-57

exiting 1-22
DVE Help (Help menu selection) A-23

E
Edit Bus A-15
Edit Parent A-18
Edit Source A-18
Edit User-Defined Radices A-16
End (View>Go To menu selection)

reference A-9
Execute Tcl Script (File menu selection)

reference A-3
Exit (File menu selection)

reference A-3
exitingDVE 1-22
Expand Path A-18

F
filee, required 1-4
Find (Edit menu selection)

reference A-5
flip-flop schematic symbols 7-43
force signal values 3-19
force values 3-19
Forward A-17

G
Go To (View menu selection)

reference A-9
gui, option 1-6

H
hexadecimal radix 5-5
hyperlink 4-6
hyperlink include file 4-6

I
icons

Verilog Named Begin 3-4
Verilog Named Fork 3-4
Verilog Task 3-4

immediate assertion support 10-7
include file as hyperlink 4-6
inserting new markers 5-57
integers, storing 5-7

IN-3

interactive options 1-6
interval between cursors 5-54
inverter

compressing 7-14

L
List Window A-21

panes 6-2
save format 6-6
set markers 6-3
set signal properties 6-4
using 6-1
view simulation data 6-3

Load Session (File menu selection)
reference A-3

loading a VPD database 1-11
lower timescale 5-41

M
Main Window

example 2-3
using 2-1

Markers dialog box 5-55, 5-58
markers, inserting 5-54
Menu Bar

reference A-2
using 2-20

Move Down to Definition A-17
Move Up to Parent A-17

N
Name column (signal pane) 5-6
new markers, inserting 5-57

O
-object_id 11-58
offset 15-94

Open Database
Toolbar icon A-41

Open Database (File menu selection)
reference A-2

Open Database dialog box 1-11
Open File (File menu selection)

reference A-3
opening

database 1-11
OVA library 1-4

P
path schematic

delete objects, select objects 7-23
PLI 10-8
post-processing, options 1-5

Q
quitting DVE 1-22

R
radix

binary 5-5
hexadecimal 5-5

rand_mode 14-24
rearranging column headings 3-6
Reload Database A-3
rename signals in wave view 5-8
Required Files 1-4
Restore State A-12
RTL schematic 7-35
Run A-11
Run Example (Help menu selection) A-23

S
save preferences 7-21

IN-4

Save Session (File menu selection)
reference A-3

Save State A-12
scalar signals 5-5
schematic views 7-2
Scopes

example 3-3
script, running 1-14
Search Backward A-15
Search Forward A-15
searching in the Waveform pane 5-64
Set Expression A-15
Set Precision text field A-52
Set Radix A-16, A-62
Set Search Constant A-15
set signal properties 6-4
Set Time text field A-52
Setup A-11
Shift Time A-16
Show A-18
Show Comparison Info A-15
show In class browser 14-28
show In solver view 14-31
Show Memory A-14
show –object 11-53
Show Path Schematic A-17
show -randomize 14-24
Show Relation 14-28
Show Scehmatic A-17
Show Source A-17
show value annotation 7-21
Signal Menu A-14
Signal Properties A-16
signal renaming 5-8
signals

scalar 5-5
vector 5-5

Simple logic Schematic Symbols 7-44

Source Pane
Toolbar icon 1-31, 2-9, 2-10, A-46, A-47

Standard Template Library 13-60
std randomize 14-24
Step A-11
stepintotblib 11-65
step-out feature

using 13-59
STL 13-60
Stop A-11
stop at port 9-15
stop –file –line -skip 14-5
stop -in -object_id 11-58
stop –solver 14-5
stop –solver –once 14-5
stop –solver -serial 14-5
support for immediate assertion 10-7
Supported Platforms for Debugging with CBug

13-43
sva_vpi+1assertions.tcl 10-11
SystemC

automatic step-throug 13-60
SystemVerilog 10-7

T
Terminate A-12
time data type 5-7
Time... (View>Go To menu selection)

reference A-9
Tips button 5-58
TLM 13-57
TLM-2.0 13-57
Toolbar

using 2-20
Trace Drivers A-19, A-62
Trace Loads A-19, A-62
Trace Value Change 9-13

IN-5

U
UCLI 10-8, 13-57, 14-4
ucli, option 1-6
Undock A-22
undock windows 2-13
upper timescale 5-41
Using Breakpoints with CDebugger 13-16
Using the C, C++, and SystemC Debugger

13-1, 14-1

V
value annotation in schematic view 7-21
Value column (Signal pane) 5-6
value transitions 5-40
vector signals 5-5
Verilog Named Begin icon 3-4
Verilog Named Fork icon 3-4
Verilog Task icon 3-4
View menu, reference A-7

visualization of driving signals 9-9
VPD file 1-4

closing 1-22
loading 1-11

VPI 9-33, 10-8
vpi_control 10-7
vpi_handle_by_name 10-7
vpi_iterate 10-7
vpi_register_assertion_cb 10-8

W
Waveform pane

cursors 5-54
Waveform pane, using 5-1
Window Menu

reference A-21

Z
zooming

by dragging 5-62

	VCS Document Navigator
	Contents
	Getting Started
	Overview
	Enabling Debugging
	Debug Options
	Required Files

	Invoking DVE
	64-bit Mode
	Interactive Mode
	Starting an Interactive Session from the DVE GUI

	Post-Process Mode
	Using the -vpd command
	Loading the Design Database File in the DVE GUI

	Using Session File
	Using the -session command
	Loading a Session File in the DVE GUI

	Using Tcl Scripts
	Passing DVE Arguments from Simulator Runtime Command Line

	Saving a Session or Layout
	Saving the Current View
	Restoring a Saved Simulation

	Closing a Database
	Exiting DVE
	DVE Log Files
	DVE Licensing Queuing
	DVE Setup Files
	Managing User Setup Files
	Usage

	Typical Symbols Used in DVE
	Special Symbols Used in DVE
	Low Power Symbols Used in DVE

	DVE Command-line Reference
	Usage

	Using the Graphical User Interface
	Overview of DVE Window Configuration
	Creating a Window Title for All Views and Panes

	Managing DVE Panes and Views
	Managing Target Views
	Maximizing View
	Docking and Undocking Views and Panes
	Dragging and Dropping Docked Windows

	The Console Pane
	The Watch Pane
	The Memory View
	Setting Properties of Signal in Memory View

	C, C++, and SystemC Code
	Using the Menu Bar and Toolbar
	Searching Signals or Scopes
	Mapping to the Location of the Source Files
	Interactive Mode
	Use Model

	Post-process Mode
	Use Model

	Editing Preferences
	Using Context-Sensitive Menu

	Using the Hierarchy and Data Panes
	The Hierarchy Pane
	Scope Types and Icons
	Filtering the objects in the Hierarchy Pane

	Navigating Open Designs
	Expanding and Collapsing the Scope
	Rearranging Columns in the Hierarchy Pane
	Populating Other Views and Panes
	Displaying Variables in the Data Pane
	Dragging and Dropping Scopes

	Dumping Signal Values
	Moving Up or Down in the Hierarchy Pane

	The Data Pane
	Viewing Signals and Values
	Filtering the Signals
	Forcing Signal Values
	Viewing Interfaces as Ports
	Viewing $unit Signals
	Debugging Partially Encrypted Source Code

	Using the Source View
	Loading Source Code
	Loading a Source View from the Hierarchy Pane
	Loading a Source View from the Assertion View
	Displaying Source Code from a File

	Using the Mouse in the Source View
	Working with the Source Code
	Expanding and Collapsing Source Code View
	Displaying Include File as Hyperlink
	Example

	Editing Source Code
	Selecting and Copying Text to the Clipboard
	Color-coding the Source File
	Setting Desired Color for Inactive 'ifdef `else Code in DVE
	Usage Example

	Navigating the Design from the Source View
	Navigating Code in Interactive Simulation
	Setting Breakpoints in Interactive Simulation
	Managing Breakpoints
	Setting Breakpoints in a Class Object
	Creating Conditional Breakpoints

	Debugging During Initialization of SystemVerilog Static Functions and Tasks
	Enabling Static Debug in DVE
	Debugging Static Code
	Features Disabled in Initialization Phase

	Annotating Values

	Using Wave View
	Viewing Waveform Information
	Viewing a Waveform
	Viewing Nanosim Analog Signals
	Setting the Simulation Time

	Using the Signal Pane
	Expanding Verilog Vectors, Integers, Time, and Real Numbers
	Adding Signal Dividers
	Renaming Signals
	Renaming Signal Groups
	Undo and Redo Operation for Signals
	Creating Multiple Groups when Adding Multiple Scopes
	Creating Nested Signal Groups
	Creating Nested Signal Groups in the Wave View
	Creating Nested Signal Groups in the List View
	Using Signal Group Manager to Create Nested Signal Groups

	Deleting Signal Group
	Customizing Duplicate Signal Display
	Overlapping Analog Signals
	Using User-defined Radices
	Comparing Signals, Scopes, and Groups
	Creating a Bus
	Modifying Bus Components
	Viewing Bus Values

	Creating an Expression or a Counter
	Limitations

	Using the Wave View
	Customizing Waveforms Display
	Displaying Grid in Wave View
	Example
	Setting Grid Properties

	Cursors and Markers
	Using Cursors
	Creating Markers

	Extracting State Name
	Example
	Limitations

	Zooming In and Out
	Drag Zooming
	Visualizing X at all Zoom Levels
	Expanding and Contracting Wave Signals
	Searching Value or Edge of Signal
	Shifting Signals
	Printing Waveform

	Viewing PLI, UCLI, and DVE Forces in Wave View

	Using the List View
	The List View
	Viewing Simulation Data
	Using Markers
	Setting Signal Properties
	Comparing Signals
	Saving a List Format

	Using Schematics
	Overview
	Viewing Schematic
	Opening a Design Schematic View
	Annotating Values
	Making Modules as Black-Box
	Mapping Symbols in Schematic
	Generating .db or .sdb Files

	Opening a Path Schematic View
	Displaying Connections in a Path Schematic
	Compressing Buffer and Inverter in Schematic
	Following a Signal Across Boundaries

	Finding Signals in Schematic and Path Schematic View
	Highlighting Signals
	Searching for Signals
	Showing Value Annotation
	Selecting and Deleting All Objects from Path Schematic View

	Back Tracing
	Example
	Setting the Back Trace Properties

	Printing Schematics
	Schematic Visualization of RTL Designs
	Schematic Symbols
	Design Analysis for RTL Symbol Creation
	Default Symbol for a Process
	Flip-Flop Schematic Symbols
	Simple Logic Schematic Symbols

	Enabling and Disabling RTL Visualization
	Schematic Visualization of RTL Design Limitations

	Using Smartlog
	Use Model
	Compile Flow
	Post-processing Debug Flow

	Viewing Smartlog Data in the Console Pane
	Right-click Menu Options in Smartlog

	Opening Log File
	Usage Example
	Post-processing Mode
	Interactive Mode

	Tracing Drivers and Loads
	The Driver Pane
	Supported Functionality
	Unsupported Functionality

	Tracing Drivers and Loads
	Active Drivers
	Enabling Active Drivers
	Usage Example
	Visualizing Driving Signals
	Highlighting Driving Signals in Path Schematic View

	Tracing Signal Values over Combinational Logic
	Incremental Active-driver Tracing in Driver Pane
	Viewing Intermediate Drivers
	Visualizing the Path Between Driver and Traced Signal
	Multicycle Support for Value Tracing
	Specifying Maximum Clock Cycles to Trace Value Change

	Active Drivers Support for PLI, UCLI, and DVE Forces
	Active Driver Limitations

	Using the Assertion Pane
	Compiling SystemVerilog Assertions
	Displaying Assertions
	Viewing Assertion in the Wave View

	Displaying Cover Properties
	Debugging SystemVerilog Immediate and Concurrent Assertions
	Usage Model

	Using the Testbench Debugger
	Overview
	Enabling Testbench for Debugging
	Invoking the Testbench Debugger GUI
	Testbench Debugger Panes
	Stack Pane
	Local Pane
	Watch Pane
	Class Browser
	Usage Model

	Dynamic Object Browser
	Object Browser Example
	Object Hierarchy Browser
	Viewing Memory Size of Objects in Object Hierarchy Browser
	Using Object Hierarchy Browser Filters
	Viewing Objects in the Class Pane
	Viewing Object Instance Information in the Member Pane
	Viewing Reference Path of an Object Instance
	Searching for Dynamic Objects in the Local Pane
	Adding Reference Paths to the Watch Pane
	Renaming Object Name in the Watch Pane

	Debugging VHDL Subprogram
	Example
	Usage Model
	Limitations

	Viewing Virtual Interface Object in DVE

	Testbench Debug
	Viewing Object Identifier Values
	Viewing Object Identifier Values in DVE
	Viewing Object Identifier Values Using UCLI Commands
	Viewing Object Identifier Values in Local Pane
	Viewing Object Identifier Values in Watch Pane
	Viewing Object Identifier Example

	Creating Object Identifier Breakpoints
	Creating Object Breakpoints Using UCLI Commands
	Creating Object Breakpoints Using DVE Breakpoints Dialog
	Creating Breakpoints at the End of a Method

	Parameterized Class Support
	Avoiding Stepping into VMM/UVM/OVM Code
	Changing Dynamic Variable Values in DVE
	Filtering Variables in Local Pane
	Filtering Objects in Stack Pane
	Viewing the Class in Class Browser from Source View and Member Pane
	Viewing VMM/UVM Documentation
	Viewing Struct Variables in the Local Pane
	Struct Variables Example

	Viewing the .size of Dynamic Arrays in Local Pane
	Dynamic Arrays Example

	Debugging Threads
	Thread Debugging Example
	Viewing Status of a Thread in the Stack Pane
	Searching a Thread in the Stack Pane
	Using Object ID Column in the Threads Only Display View

	Filtering Unnamed Scopes in the Active Call Stack View
	Support for Thread-Specific Breakpoints in the Stack Pane
	Viewing the Console Pane Thread in the Stack Pane
	Configuring the Background Color of a Stack Frame in the Stack Pane and Class Pane

	Debugging UVM Testbench Designs
	UVM Testbench Design Debug Example
	UVM Resource Browser
	Viewing the UVM Resource Browser
	Using the Resource View
	Using the Resource History View
	Right-click Menu Options in the Resource View
	Right-click Menu Options in the Resource History View

	UVM Factory View
	Right-click Menu Options in UVM Factory View

	UVM Phase View
	UVM Phase Breakpoints
	Simulation Arguments Dialog Box
	Filtering Variables in the Watch Pane

	Debugging Transactions
	Introduction
	Transaction Debug
	Using $vcdplusmsglog
	Viewing Streams and Transaction Relations
	SystemVerilog String Variables dump using $vcdplustblog() and $vcdplusmsglog()
	Editing Transaction Debug Preferences
	Using tblog and msglog in DVE Command Prompt

	Transaction Debug in SystemC Designs
	Viewing NTB-OV Variables using tblog/msglog

	Using the C, C++, and SystemC Debugger
	Getting Started
	Using a Specific gdb Version
	Attaching the C-Source Debugger in DVE
	Detaching the C-source Debugger

	Displaying C Source Files in the Source View

	Commands Supported by the C Debugger
	Changing Values of SystemC and Local C Objects with synopsys::change
	Changing SystemC Objects
	Changing Local C Variables

	Using Breakpoints
	Set a Breakpoint from the Breakpoints Dialog Box
	Control Line Breakpoints in the Source view
	Set a Breakpoint from the Command Line

	Deleting a Line Breakpoint
	Stepping Through C-source Code
	Stepping within C Sources
	Cross-stepping between HDL and C Code
	Cross-stepping in and out of Verilog PLI Functions
	Cross-Stepping in and out of VhPI Functions
	Cross-stepping from C into HDL
	Cross-Stepping in and out of SystemC Processes

	Direct gdb Commands
	Add Directories to Search for Source Files

	Common Design Hierarchy
	Post-processing Debug Flow

	Interaction with the Simulator
	Prompt Indicates Current Domain
	Commands affecting the C domain:
	Combined Error Message
	Update of Time, Scope, and Traces

	Configuring CBug
	Startup Mode
	Attach Mode
	cbug::config add_sc_source_info auto|always|explicit

	VPD Dumping for SC_FIFO Channels
	FIFO objects that can be Dumped or Printed
	Displaying Data in SC_FIFO
	Configuring Dumping of a FIFO
	Configuring with UCLI
	Configuring with DVE
	Configuring from SystemC Source Code

	Support for Data Types
	Native ANSI and SystemC types
	User-defined Types

	Change Bars in Waveform
	UCLI 'get' Command
	Speed Impact

	Supported platforms
	Using SYSTEMC_OVERRIDE

	Example: A Simple Timer
	Viewing SystemC Source and OSCI Names in DVE
	Use Model
	Source and OSCI Names
	Displaying Source and OSCI Names in DVE
	Limitations

	Using CBug to Display Instance Name of Target Instance in TLM-2.0
	Limitations of Displaying Instance Name of Target Instance in TLM-2.0

	CBug Stepping Improvements
	Using Step-out Feature
	Automatic Step-through for SystemC
	Enabling and Disabling Step-through Feature
	Recovering from Error Conditions

	Debugging Constraints
	Enabling Constraint Solver for Debugging
	Invoking the Constraint Solver Debugger GUI
	Debugging Constraint-Related Problems
	Breaking Execution at a Randomize Call
	Creating Solver Conditional Breakpoint at Randomize Calls
	Analyzing a Randomization Call

	Constraint Browsing in Class Hierarchy Browser
	Browsing Objects in Local Pane
	Using the Constraints Dialog
	Using the Solver Pane
	Using the Relation Pane

	Inconsistent Constraints
	Debugging Constraints Example
	Changing Radix Type of a Variable or Constraint Expression in Constraints Dialog Box
	Supported Radix Types
	Using Constraints Dialog Box to Change the Radix Type of a Variable or Constraint Expression
	Using Tcl Command to Change the Radix Type of a Variable or Constraint Expression

	Drag-and-Drop Support for Constraints Debug
	Drag-and-Drop Support in Constraints Dialog Box
	Drag-and-Drop Items from Class Browser and Member Pane to Breakpoint Dialog Box

	Viewing Object ID Information of a Class in Solver Pane
	Cross Probing
	Cross Probing to Local Pane
	Cross Probing to Class Browser from Randomize Call

	Extracting Test Case
	Extracting Test Cases from DVE
	Extracting Test Cases Using UCLI Command

	Controlling rand_mode/constraint_mode and Randomization from UCLI/DVE
	Controlling rand_mode/constraint_mode from UCLI
	Controlling rand_mode/constraint_mode from DVE
	Rerandomization from DVE/UCLI

	Constraints Debug Limitations

	Debugging Macros in DVE
	Enabling Macro Debug
	Expanding and Collapsing the Macro Content
	Viewing Signal Value Annotations in the Macro Content
	Viewing the Macro Content in a Tooltip
	Viewing the Definition of a Macro in the Source Code
	Viewing Text Indentation in Expanded Macro and Tooltip
	Changing Background Color of Line Attribute Area for Expanded Macros
	Examples
	Usage Example
	Setting Breakpoints in the Macro Content
	Creating Breakpoints in the Macro Content Using Breakpoints Dialog
	Setting Breakpoint in the Macro Content Using DVE Tcl Command

	Stepping In and Out of Macros
	Tracing Drivers and Loads Inside Macro Content
	Macro Expansion Location
	Nested Macro Support
	Macro Debugging Limitations

	DVE Interactive Rewind
	Interactive Rewind Vs Save and Restore
	Usage Model
	Limitations

	Menu Bar and Toolbar Reference
	Menu Bar Options
	File Menu
	Edit Menu
	View Menu
	Simulator Menu
	Signal Menu
	Scope Menu
	Trace Menu
	Window Menu
	Help Menu
	Testbench Debugger Menu Options
	View Menu
	Signal Menu
	Simulator Menu
	Window Menu

	User-Defined Menu

	Editing Preferences
	Global Options
	Assertion Debug Options
	Data Pane Options
	Design Debug Options
	Driver Pane Options
	Hierarchy Pane Options
	List View Options
	Memory View Options
	Schematic View Options
	Simulator Options
	Source View Options
	Testbench/CBug Options
	Transaction Debug Options.
	Wave View Options

	Toolbar Reference
	File
	Edit
	Zoom/Zoom and Pan History
	Scope
	Trace
	Window
	Back Trace
	Interactive Rewind
	Signal
	Simulator
	Time Operations
	Grid
	Testbench GUI Simulator Toolbar Options
	Customizing the DVE Toolbar
	Adding a New Toolbar
	Adding Items to a Toolbar
	Deleting an Existing Toolbar
	Deleting an Item in a Toolbar

	Using the Context-Sensitive Menu
	Hierarchy Pane CSM
	Data Pane CSM
	Source View CSM
	Schematic View CSM
	Wave View CSM
	Signal Pane CSM
	List View CSM
	Driver Pane CSM
	Watch Pane CSM
	Memory View CSM
	Assertion Pane CSM

	Keyboard Shortcuts
	File Command Shortcuts
	Edit Command Shortcuts
	View Command Shortcuts
	Simulator Command Shortcuts
	Signal Command Shortcuts
	Scope Command Shortcuts
	Trace Command Shortcuts
	Help Command Shortcuts
	Window Command Shortcuts
	Tcl GUI Commands Shortcuts

	Using the Command Line

	Index

