EECS 151/251A FPGA Lab
Lab 5: Serial I/O - UART

Prof. John Wawrzynek, Nicholas Weaver
TAs: Arya Reais-Parsi, Tachwan Kim
Department of Electrical Engineering and Computer Sciences
College of Engineering, University of California, Berkeley

Contents

(1__Before You Start This Labl 1

2 Lab Setup| 2

3 Sorial Devi o
3.1 TAIMING| . .« v v v o v v v e e e e e e e e e e e e e e e e e e e 2
[3.2 Transmitting] 3
[3.3 Receiving] e 3
[3.4 Putting It All Together| 3
3.5 Simulationl. L Lo 4

4__Echdl 4
M1 PMOD serial interfacel 5
M2 Checkofl o 5

1 Before You Start This Lab

Before you proceed with the contents of this lab, we suggest that you get acquainted with what a
ready/valid handshake is. Read resources/Verilog/ready_valid_interface.pdf in the fpga_labs_sp18
folder. It may be helpful to draw out the timing diagrams for the ready/valid handshake to gain
understanding. If you are having trouble, ask a TA. Please note that the serial line itself is not a
ready/valid interface. Rather, it is the modules you will work with in this lab (UATransmit and
UAReceive) that have the ready/valid handshake for interfacing with other modules on the FPGA.

In this lab you will implement a UART (Universal Asynchronous Receiver / Transmitter) device,
otherwise known as a serial interface. Your working UART from this lab will be used in your
project to talk to your workstation (desktop) over a serial line.

2 Lab Setup

Run git pull in the fpga_labs_sp18 folder to fetch the latest skeleton files. You will need to
copy over your debouncer.v, edge_detector.v, and synchronizer.v from Lab 4 to your sources
directory (overwriting the skeleton files). (You could also just copy the contents.)

3 Serial Device

You are responsible only for implementing the transmit side of the UART for this lab. As you
should have inferred from reading the ready/valid tutorial, the UART transmit and receive modules
use a ready/valid interface to communicate with other modules on the FPGA.

Both the UARTS receive and transmit modules will have their own separate set of ready/valid
interfaces connected appropriately to external modules.

3.1 Framing

On the Pyng-Z1 board, the physical signaling aspects (such as voltage level) of the serial connection
will be taken care of by oft-FPGA devices. From the FPGA’s perspective, there are two signals,
FPGA_SERIAL_RX and FPGA_SERIAL_TX, which correspond to the receive-side and transmit-side pins
of the serial port. The FPGA’s job is to correctly frame characters going back and forth across
the serial connection. Figure 1 below shows a single character frame being transmitted and will be
extremely useful in understanding the protocol.

Time

! >

IDLE Start | Data | Data | Data | Data | Data | Data | Data | Data | Stop
(1'p0) | [0] [1] [2] [3] (4] (5] (6] [71 |(1'bi)

IDLE

SymbolEdgeTime = I_l
ClockFreq / BaudRate
SampleTime =
SymbolEdgeTime / 2

Figure 1: UART Frame Structure

In the idle state the serial line is held high. When the TX side is ready to send a character, it pulls
the line low. This is called the start bit. Because UART is an asynchronous protocol, all timing
within the frame is relative to when the start bit is first sent (or detected, on the receive side).

The frame is divided up in to 10 uniformly sized bits: the start bit, 8 data bits, and then the stop
bit. The width of a bit in cycles of the system clock is then naturally given by the system clock

frequency divided by the baudrate. The baudrate is the number of bits sent per second; in this lab
the baudrate will be 115200. Notice that both sides must agree on a baudrate for this scheme to
be feasible.

3.2 Transmitting

Let us first think about sending a character using this scheme. Once we have a character that we
want to send out, transmitting it is simply a matter of shifting each bit of the character, plus the
start and stop bits, out of a shift register on to the serial line.

Remember, the serial baudrate is much slower than the system clock, so we must wait Symbol EdgeTime =
% cycles between changing the character we’re putting on the serial line. After we have
shifted all 10 bits out of the shift register, we are done unless we see another transmission imme-

diately after.

3.3 Receiving

The receive side is a bit more complicated. Fortunately, we will provide the receiver module.
Open labb5/1abb.srcs/sources_1/new/uart_receiver.v so you can see the explanation below
implemented.

Like the transmit side, the receive side of the serial device is essentially just a shift register, but this
time we are shifting bits from the serial line into the shift register. However, care must be taken
into determining when to shift bits in. If we attempt to sample the serial signal directly on the
edge between two symbols, we are exceedingly likely to sample on the wrong side of the edge (or
worse, when the signal is transitioning) and get the wrong value for that bit. The correct solution
is to wait halfway into a cycle (until SampleTime on the diagram) before reading a bit in to the
shift register.

One other subtlety of the receive side is correctly implementing the ready/valid interface. Once
we have received a full character over the serial port, we want to hold the valid signal high until
the ready signal goes high, after which the valid signal will be driven low until we receive another
character.

This requires using an extra flip-flop (the has_byte reg in uart_receiver.v) that is set when the
last character is shifted in to the shift register and cleared when the ready signal is asserted. This
allows us to correctly implement the ready/valid handshake.

3.4 Putting It All Together

Although the receive side and transmit side of the UART you will be building are essentially or-
thogonal, we are packaging them into one UART module to keep things tidy. If you look at uart.v,
you will see that this module consists of instantiations of uart_receiver and uvart_transmitter,
but there are also two iob registers that the serial lines are fed through. What are these for? The
iob directive tells the synthesis tool to pack those registers into a special block called an I0B, which

is used to drive and sense from the 1O pins. Using an I0B helps ensure that you will have a nice,
clean, well-behaved off-chip signal to use as an input or output to your serial modules.

The diagram below shows the entire setup:

Keyboard + ™ 3 UATransmit | Serial Line | UAReceive y/Valid Interface
Workstation | UART UART Buffer
screen 41— UAReceive |- Serial Line |« UATransmit j«—Ready/Valid Interface

Figure 2: High Level Diagram

3.5 Simulation

We have provided a simple testbench, called uart_testbench that will run some basic tests on
two instantiations of the UART module with their RX and TX signals crossed so that they can
talk to each other. There is also a .do file that will run the test. You should note that this test
bench reporting success is not by itself a good indication that your UART is working properly.
The testbench does not attempt to test back to back UART transmissions so you will have to add
that test in yourself. Due to the way x’s are treated by Modelsim if many signals in your design
are undefined the testbench may erroneously pass. Make sure to look at the waveform to see that
everything appears to be working properly and that you adequately purge your simulation of high
7 and undefined X signals.

If the testbench prints out # <EOF> it means that it timed out; this indicates that the testbench
was stuck waiting for a condition that never became true. Inspect the waveform and match it up
to the testbench code to see where it hangs and why. You shouldn’t need to increase any of the
timeouts in the .do files.

4 Echo

Your UART will eventually be used to interact with your CPU from your workstation. However,
since you don’t have a CPU yet, you need some other way to test that your UART works on the
board.

We have provided this for you. The provided zltop contains a very simple finite state machine
that does the following continuously:

e Pulls a received character from the uart_receiver using ready/valid

o If the received character is an ASCII letter (A-Z or a-z), its case is inverted (lower to upper
case or upper or lower case)

e If the received character isn’t an ASCII letter, it is unmodified

e The possibly modified character is sent to the uart_transmitter using ready/valid to be
sent over the serial line one bit at a time

Check using the provided echo_testbench.v testbench that everything works as it should in sim-
ulation. This testbench is heavily commented to help you understand the communication between
the 2 UARTSs and the communication over the ready/valid interface. The file often refers to the
UART on the workstation as the off-chip UART and the UART on the FPGA as the on-chip UART.

4.1 PMOD serial interface

The Pyng-Z1 does not have an RS-232 serial interface! Well, ok, it does, kind of. The USB interface
you use for programming the board (and for RS-232 communication with the board’s ARM-based
system) is actually only connected to the Processor Subsystem, not the Programmable Logic. We
can’t use it from our design directly. So, we need to add a serial interface: this is usually a chip
wired to connect a device as a serial host/client to another device, with appropriate voltage level
shifting to meet the electrical specification (e.g. RS-232).

The PMOD expansion modules you need to interface with your workstation will be availble in the
next lab. You're done for now.

4.2 Checkoff

Walk your TA through the simulation results and show that your UART behaves as expected.

	Before You Start This Lab
	Lab Setup
	Serial Device
	Framing
	Transmitting
	Receiving
	Putting It All Together
	Simulation

	Echo
	PMOD serial interface
	Checkoff

