
EECS 151/251A FPGA Lab

Lab 6: External Communication and I2S Audio Clocks

Prof. John Wawrzynek, Nicholas Weaver
TAs: Arya Reais-Parsi, Taehwan Kim

Department of Electrical Engineering and Computer Sciences
College of Engineering, University of California, Berkeley

Contents

1 Finish last week’s UART 1
1.1 PMOD serial interface . 1
1.2 Implement your design . 2
1.3 Hello, world! . 2

2 I2S Audio 3
2.1 Interface Setup . 3

3 Conclusion + Checkoff 4
3.1 Checkoff Tasks . 4

1 Finish last week’s UART

Recall that in Lab 5 we designed a UART module for our FPGAs but without any way to plug
them into our workstations. A problem no more! The first part of this week’s lab will be getting
you to communicate with your UART using a new PMOD expansion module.

1.1 PMOD serial interface

Recall that the Pynq-Z1 does not have an RS-232 serial interface. Before you can continue, there-
fore, you must upgrade your Pynq-Z1 with one: the Pmod USBUART is available for you in this
lab. (The Pmod RS232 is another module you could use, but it doesn’t take care of framing your
data in the USB protocol for you.)

Have a read over the Pmod USBUART Reference Manual (resources/pmodusbuart_rm.pdf). You
might agree that mapping the pin on the Zynq chip to a PMOD port, then to the right pin on the
PMOD header, then to the right pin on the transceiver chip, can be quite confusing. See if you can
work it out. Here’s a little help:

1

https://store.digilentinc.com/pmod-usbuart-usb-to-uart-interface/
https://store.digilentinc.com/pmod-rs232-serial-converter-and-interface-standard/
https://reference.digilentinc.com/reference/pmod/pmodusbuart/reference-manual

• Connect FPGA_SERIAL_TX in your design to the Pmod USBUART’s RXD pin (PMOD header
pin 2).

• Connect FPGA_SERIAL_RX in your design to the Pmod USBUART’s TXD pin (PMOD header
pin 3).

What do RTS and CTS do? Respectively Request to Send and Clear to Send, these signals
are used for hardware flow control. We will ignore them, so make sure to disable hardware flow
control in the software you use to connect to your board (or more likely, make sure not to enable
it by accident).

Note: Make sure that the power selection jumper on the Pmod USBUART is set to LCL3V3 -
as you’ll read in the reference manual, this is because we’re powered the system from an external
source and not through the tiny USB interface chip on the PMOD module.

1.2 Implement your design

Synthesize your design and generate the bitstream, then program the board just like you have done
in previous labs.

Pay attention to the warnings generated by the tool chain. Again, it’s possible to write your
Verilog in such a way that it passes behavioural simulation but doesn’t work in implementation.
Yours truly’s first attempt failed miserably upon implementation: warnings about “multi driven
nets”, for example, can mean that certain logic pathways are never implemented on chip.

If you get stuck, it will help to structure your Verilog as a state machine in a very similar way to
the provided uart_receiver.v.

1.3 Hello, world!

Now, make sure the USB serial cable is plugged in between the Pynq-Z1 board and your workstation
and then run:

screen $SERIALTTY 115200

This tells screen, a highly versatile terminal emulator, to open up the serial device with a baud
rate of 115200 (you might have to run as root). When you type a character into the terminal, it is
sent to the FPGA over the FPGA_SERIAL_RX line, encoded in ASCII. The state machine in z1top

may modify the character you sent it and will then push a new character over the FPGA_SERIAL_TX

line to your workstation. When screen receives a character, it will display it in the terminal.

You can find which $SERIALTTY to connect to by perusing the output of the dmesg command (in
Linux) or checking the Device Manager (in Windows).

Now, if you have a properly working design, you should be able to tap a few characters into the
terminal and have them echoed to you (with inverted case if you type letters). Make sure that if
you type really fast that all characters still display properly. If you see some weird garbage symbols
then the data is getting corrupted and something is likely wrong. If you see this happening very
infrequently, don’t just hope that it won’t happen while the TA is doing the checkoff; take the time

2

now to figure out what is wrong. UART bugs are a common source of headaches for groups during
the first project checkpoint.

To close screen, type Ctrl-a then Shift-k and answer y to the confirmation prompt. If you don’t
close screen properly, other students won’t be able to access the serial port. If you try opening
screen and it terminates after a few seconds with an error saying “Sorry, can’t find a PTY” or
“Device is busy”, execute the command killscreen which will kill all open screen sessions that
other students may have left open. Then run screen again.

Use screen -r to re-attach to a non-terminated screen session. You can also reboot the computer
to clear all active screen sessions.

2 I2S Audio

In this and next week’s labs we will first develop an interface for and then use an external audio
DAC (Digital/Analog Converter). Since our Pynq-Z1 boards do not have one, we will attach one
through another PMOD module: the Pmod I2S. (The reference manual is also available as a PDF
in resources/pmodi2s_rm.pdf.)

The DAC enables our board to output high-fidelity stereo audio. In previous labs you have ap-
proximated audio signals using a square wave with single bit resolution. An output filter on the
Pynq-Z1 made that wave seem nice, but it still only had 1-bit resolution. The Pmod I2S uses a
Cirrus Logic CS4344 D/A converter (datasheet also in resources/CS4344-45-48_F2.pdf). “I2S”,
also written I2S, is the name of the interface format used to communicate with the chip.

2.1 Interface Setup

1. Read the Pmod I2S reference manual carefully.

2. Look over the CS4344 datasheet to reinforce what the reference manual said.

3. If it helps, skim wider resources like the Wikipedia I2S article to get a feel for what you’re
implementing.

The I2S interface is a lot simpler than other common digital audio interfaces, like AC’97. Like
AC’97, however, it requires us to generate very specific clocks for communication. Your first task
in this lab will be to generate the three requisite clock signals for the I2S interface: the master clock
MCLK, a bit clock SCLK, and a left/right channel-select clock LRCK. (That means that we will use
an “external” SCLK source for the CS4344.) These clocks are all derived from our 125 MHz system
clock.

Note the special requirements on audio bit alignment to the clock edges, and on which bits are
transmitted when. Your second task is to generate a bit counter that will track which bit of each
sample to output for each bit clock. Even if you don’t later use this counter to output the right
bit, getting it right is a good exercise in designing to the interface specification.

3

https://reference.digilentinc.com/reference/pmod/pmodi2s/reference-manual
https://d3uzseaevmutz1.cloudfront.net/pubs/proDatasheet/CS4344-45-48_F2.pdf
https://en.wikipedia.org/wiki/I%C2%B2S

Figure 1 summarises timing for the interfaces. Use the simple testbench provided (i2s_controller_testbench.v
to make sure your waveforms match it. (It’s very simple: it just creates a system clock and sends
an initial reset signal.)

Figure 1: I2S timing summary (credit: Texas Instruments)

The DAC chip allows us to select bit depth and sampling rate. Use:

• Bit depth: 24

• Sample rate (LRCK): 88.2 kHz

• MCLK to LRCK ratio: 128

You might have to change these later, so don’t hard code any values you derive from these.

3 Conclusion + Checkoff

3.1 Checkoff Tasks

1. Show your TA that you can successfully type characters on the keyboard and have them
echoed back to display on your screen session.

2. Demonstrate to your TA that your I2S clocks waveforms match the requirements in the
reference manual.

4

	Finish last week's UART
	PMOD serial interface
	Implement your design
	Hello, world!

	I2S Audio
	Interface Setup

	Conclusion + Checkoff
	Checkoff Tasks

