
EECS 151/251A Homework 10

Due Sunday, April 22nd, 2018

Problem 1: LFSR

A particular linear feedback shift register (LFSR) is built using the primitive polynomial x20+x3+1.
How many unique states does it have?

Problem 2: Constant Multiplier

Consider the design of a circuit for multiplying a constant, C, with a signed two-complement
variable, X, such that Y = C ×X.

In this problem, let C = 1310, and assume X is a 6-bit variable. Using only full-adder blocks
(1-bit adders) draw a multiplier circuit. Your design objective is to minimize the total number of
full-adder blocks, as well as the delay from input to output. Give priority to cost over delay.

Problem 3: Another Constant Multiplier

The circuit shown below is used to multiply the 6-bit number X by a 6-bit constant value, C. It is
made up of instances of a full-adder cell. The full-adder takes as input 3 1-bit signals and outputs
a 1-bit sum and a 1-bit carry.

FA

SumCarry

Full-adder

FAFAFAFAFAFA

FAFAFAFAFAFA

0
x0

x1
x2

x3

x4

x5

p0p1p2p3p4p5p6p7p8p9

0

What is the value of C?



EECS 151/251A Homework 10 2

Problem 4: Adders

(a) Shown below is a static CMOS implementation of a gate that computes the carry-out at a
particular bit position. If the P signal fed into the gate is calculated using P = A+B (instead
of P = A⊕B, which is usually the case) would the output of this gate still be correct? Why
or why not? If not, suggest a modification that gives the right output.

The only difference between the two cases is when A = B = 1. In that case the old version
(P = A⊕ B) is 0, but the new version (P = A + B) is 1. However, the generate signal is 1,
so the output of this gate is still low, and is therefore correct.

(b) Show the static CMOS implementation of a gate that computes the sum at a particular bit
position (S = P ⊕Cin). Again, if the P signal fed into the gate is calculated using P = A+B,
is the output of the gate correct? Why or why not? If not, suggest a modification that gives
the right output.

P P_bar

Cin_bar Cin

Cin_barP

P_bar Cin

S_bar

In the case that A = B = 1, the output needs to be S = Cin, but that is not the case since
1 ⊕ Cin = Cin. This means that the output is not correct.

One example of how to get the correct result is by using the generate signal. The logical
expression becomes S = (P ·G) ⊕ Cin



EECS 151/251A Homework 10 3

(c) The gate shown below is called a Manchester carry chain, and it computes the carry-out for
two bit positions. Does this gate give the correct output if P = A + B? Why or why not?

Looking at individual bits, each gate works fine. But in the two-bit case, this gate will not function
properly, because it allows cases where there is a fight between two devices that are trying to pull
Cout0 to ground and to VDD. For example, this happens when the first stage kills and the second
generates a carry, and this case is avoided when the propagate signal is computed correctly (using
an XOR).



EECS 151/251A Homework 10 4

Problem 5: Multipliers

(a) Implement the 4:2 compressor described in the truth table below using NOT, AND, OR, and
XOR gates. Cout and Carry are both weight 2, while Sum and all inputs are weight 1. In
the truth table, N refers to the total number of in signals at logic 1.

4:2

in1 in2 in3 in4

CinCout

Carry Sum

N Cin Cout Carry Sum

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 1 0 1
4 0 1 1 0
0 1 0 0 1
1 1 0 1 0
2 1 0 1 1
3 1 1 1 0
4 1 1 1 1

Here is a solution for the truth table given. There are solutions that use full adders for 4:2
compressors, but those have a slightly different truth table. There may be other possible
solutions for this truth table.



EECS 151/251A Homework 10 5

in1

Cout

in2
in3

in1
in2
in4

in1
in3
in4

in2
in3
in4

Cin

in1

in2

in3

in4

S

S

Cin

in1

in2

in3

in4

Carry

(b) Use this 4:2 compressor to implement a 6x6 unsigned Wallace-tree multiplier.

Start by listing the reduction layers:

0: 0 1 2 3 4 5 6 5 4 3 2 1

1: 0 2 2 3 2 4 3 3 1 2 1 1

2: 1 2 2 2 2 1 2 1 2 1 1 1

Now we are done, since we are left with two binary numbers to add. We can implement that
with a 9-bit carry-select adder.



EECS 151/251A Homework 10 6

FA HA4:24:24:24:24:2HA FA HA

1s2s4s8s16s32s64s128s256s512s1024s

HAFAFA4:2FAFAHA HA

000

9-bit Carry-Select

(c) Now use a 3:2 compressor (a full adder) to implement a 6x6 unsigned Wallace-tree multiplier.
How many more reduction layers do you need?

0: 0 1 2 3 4 5 6 5 4 3 2 1

1: 0 2 2 2 4 4 4 3 3 2 1 1

2: 1 2 2 2 3 3 3 2 2 1 1 1

3: 2 2 2 2 2 2 2 2 1 1 1 1

You need 1 more layer.

(d) Convert your multiplier from (b) to a signed multiplier. How many more compressors did
you use?

Now we need to sign extend each partial product:

0: 6 6 6 6 6 6 6 5 4 3 2 1

1: 4 4 4 4 4 4 3 3 1 2 1 1

2: 2 2 2 2 2 1 2 1 2 1 1 1

In (b) we used 10 compressors on the first layer, and 8 on the second for a total of 18. In
this problem, we now use 18 on the first layer, and 9 on the second, for a total of 27. We
therefore use 9 more compressors.

Problem 6: Tree Adders

The goal of this problem is to design a 10-bit Kogge-Stone adder optimized for delay:

(a) Design the following logic blocks at a gate level. You may draw the gates or write the Boolean
functions. Review your notes or the textbook to determine what goes inside each block. There
are also numerous resources available online about these logarithmic adders. Use the given
inputs and outputs as hints.



EECS 151/251A Homework 10 7

A(i) B(i)

G(i) P(i)

G(j), P(j)
G(i), P(i)

G(j:i), P(j:i)

G(j), P(j)
G(i)

G(j:i)

G(i:0) P(i)

S(i)

G(i-1:0)

Black square: Gi = AiBi, Pi = Ai ⊕Bi

Black circle: Gj:i = Gj + PjGi, Pj:i = PjPi

White circle: Gj:i = Gj + PjGi

White square: Si = Pi ⊕Gi−1:0

(b) Using the logic blocks you designed in part (a), design a 10-bit logarithmic adder with a carry
input and a carry output. Use a radix-2 Kogge-Stone implementation. What is the critical
path of your design? Give a block-level estimate, assuming that more complex blocks have
more delay.

Lecture 20 Slide 22 shows the basic idea of a Kogge-Stone tree. The first stage is the black
boxes: here we generate the bit propagate (Pi) and generate (Gi) signals that will be used
by the tree. For the actual tree, the Kogge-Stone implementation first groups the (Pi, Gi) in
groups of 2, therefore generating (P1:0, G1:0), (P2:1, G2:1) etc. Then those signals are grouped
again in groups of 2 to form (P3:0, G3:0), (P4:1, G4:1) etc.

The key here is that you need to incorporate the Cin signal into the tree. Remember that in
order to get a sum bit you need Si = Pi ⊕ Ci = Pi ⊕ Gi−1:0. Therefore for S0 you need P0

and Cin, for S1 you need P1 and G0 +P0Cin etc. So we add the white circles to generate the
carries needed for the final sum, including the Cin.

The critical path is shown on the tree (one example - there are multiple critical paths). In
this case, a block-level estimate of the critical path is: td = tblacksquare + 3 ∗ tblackcircle +
twhitecircle + twhitesquare.

(c) EECS 251A Only. To save logic depth, we can create inverting logic stages instead of non-
inverting logic stages. This removes the inverter at the output of each prefix block (the block
that creates G(j:i) and P(j:i)). Design the following logic blocks and use them to modify your
logarithmic adder from before. How many inverters were removed from your critical path?

We’ve made the circles colored to provide better visual difference. Note that you also need
the inverted form of the last block above. Here they are for reference:

Red circle: Gj:i = Gj + PjGi, Pj:i = PjPi

Green circle: Gj:i = Gj(Pj + Gi), Pj:i = Pj + Pi

Brown circle: Gj:i = Gj + PjGi

Blue circle: Gj:i = Gj(Pj + Gi)



EECS 151/251A Homework 10 8

A0B0A1B1A2B2A3B3A4B4A5B5A6B6A7B7A8B8A9B9A10B10A11B11 Cin

S0S1S2S3S4S5S6S7S8S9S10Cout

P0P1P2P3P4P5P6P7P8P9P10

S11

P11

Cout

G(j), P(j)
G(i), P(i)

G(j:i), P(j:i)

G(j), P(j)
G(i), P(i)

G(j:i), P(j:i)

G(j), P(j)
G(i)

G(j:i)

G(j), P(j)
G(i), P(i)

G(j:i), P(j:i)

G(j), P(j)
G(i), P(i)

G(j:i), P(j:i)

G(j), P(j)
G(i)

G(j:i)

G(j), P(j)
G(i)

G(j:i)

So each of the above circuits has one fewer inverter on each path. Now we can replace
the blocks in the above diagrams with inverted forms, mapping inverted outputs to inverted
inputs. Add inverters if the final output is inverted or if a polarity inversion is required.

The critical path has four fewer inverters, assuming it remains unchanged from before. Note
all the inverters we had to add to ensure the polarity of each signal was correct. Since these
are not on the critical path, likely they do not harm our delay.



EECS 151/251A Homework 10 9

A0B0A1B1A2B2A3B3A4B4A5B5A6B6A7B7A8B8A9B9A10B10A11B11 Cin

S0S1S2S3S4S5S6S7S8S9S10Cout

P0P1P2P3P4P5P6P7P8P9P10

S11

P11

Cout


