
EECS 151/251A Homework 2

Due Friday, February 2th, 2018

Problem 1: Verilog

A) The following code describes a 3-bit linear-feedback shift register (LFSR), which generates a
repeating pattern of pseudo-random numbers.

module lfsr(

input [2:0] R,

input Load,

input Clock,

output reg [2:0] Q

);

always@ (posedge Clock)

if (Load)

Q <= R;

else

Q <= {Q[1], Q[0] ^ Q[2], Q[2]};

endmodule

(a) Draw the circuit that corresponds to the code, using combinational logic blocks (gates
etc.) and state elements.

(b) If 100 is loaded into the LFSR initially, what is the sequence of numbers generated? List
the binary numbers it generates, start from 001.

B) The code below is similar to the code in the previous, but blocking assignments are used.
The example below should illustrate why blocking assignments for synchronous logic should
be avoided if possible.

module lfsr(R, Load, Clock, Q) ;

input [2:0] R;

input Load, Clock;

output reg [2:0] Q;

always@ (posedge Clock)

if (Load)

Q <= R;

else begin

Q[0] = Q[2];

Q[1] = Q[0] ^ Q[2] ;

Q[2] = Q[1];



EECS 151/251A Homework 2 2

end

endmodule

(a) Draw the circuit that corresponds to the code.

(b) If 001 is loaded initially, what is the sequence of numbers generated?

A) (a) -

(b) -

Cycle Q[2:0]

0 100
1 011
2 110
3 111
4 101
5 001
6 010
7 100

The question confusingly asked to list the pattern from 001, so from this sequence:
{001, 010, 100, 011, 110, 111, 101} then back to 001.

B) (a) -

(b) - The generator always outputs 000 after the rst cycle.



EECS 151/251A Homework 2 3

Cycle Q[2:0]

0 001
1 000
2 000
...

...

Problem 2: Timing

The timing parameters for the circuit below are as follows:

Setup time 50 ps
Hold time 45 ps
Clock-to-q delay 40 ps (min), 60 ps (max)
Propagation delay per gate 80 ps (min), 100 ps (max)

A) Identify the critical path (i.e. the longest timing path) or paths in this circut. You may make
use of the register names (R1 and R2) and the gate names (G1, G2, G3, G4) to help you
describe the critical path(s).

B) Use your answer in part (a) to calculate the maximum clock rate at which this circuit can be
reliably run.

C) Can the register hold times ever be violated in this circuit? Why?

A) There are three critical paths.
Path 1: from output of R1, through G2, G4, G1, to input of R1.
Path 2: from output of R1, through G3, G4, G1, to input of R1.
Path 3: from output of R2, through G3, G4, G1, to input of R1.

B) Tclk−q + Td,G2 + Td,G4 + Td,G1 + Tsu ≤ Tclk ⇒ Tclk ≥ 410ps so Fclk,max ≈ 2.44GHz

C) No. The shortest path in the circuit is R2 through G1 to R1. Minimum clk-to-q + minimum
gate delay = 120ps. This is larger than the hold time of 45ps, hence hold time will not be
violated.



EECS 151/251A Homework 2 4

Problem 3: Edge Detector Circuit

Design a Verilog module to detect the falling edge of an input signal. The input signal is synchronous
to the clock, and when a falling edge is seen, a 1 clock cycle pulse should be emitted as an output
signal.

module edge_detector (input signal, input clk, output falling_edge);

/* Your code here */

endmodule

module edge_detector (input signal, input clk, output falling_edge);

reg last_signal;

always @ (posedge clk)

last_signal <= signal;

assign falling_edge = last_signal && ~signal;

endmodule

Draw your Verilog implementation of this circuit as a schematic of gates and flip-flops.

Problem 4: Build a Multiplier Using an Accumulator

Construct a multiplier by accumulating the results of an adder. Here is a Verilog template to
complete.

module multiplier (

input clk, input start, output done,

input [15:0] arg1, input [15:0] arg2,

output [31:0] product

);

reg [15:0] counter;

reg [31:0] accumulator;

/* Your code here */

endmodule

You can assume that the start input is pulsed for one clock cycle and after it is pulsed the arg1

and arg2 inputs are held stable until the done output goes high. Also assume that the logic driving



EECS 151/251A Homework 2 5

the multiplier is well behaved (it doesn’t toggle start until the multiplier is done with the last
computation).

module multiplier (

input clk, input start, output done,

input [15:0] arg1, input [15:0] arg2,

output [31:0] product

);

reg [15:0] counter;

reg [31:0] accumulator;

always @ (posedge clk)

if (start) counter <= 0;

else counter <= counter == arg2 ? counter : counter + 1;

always @ (posedge clk)

if (start) accumulator <= 0;

else accumulator <= counter == arg2 ? accumulator : accumulator + arg1;

assign done = counter == arg2;

assign product = accumulator;


