EECS 151/251A Homework 5

Due Monday, March $5^{\text {th }}, 2018$

Problem 1: Timing

The data-path shown below is used in a simple processor.

The elements used in the design have the following timing characteristics. The worst case clock skew is 1 ns . For this problem you can ignore the delay in the controller.

	setup-time	clock-to-q	CL delay
regfile	2 ns	2 ns	-
register	1 ns	1 ns	-
mux	-	-	1 ns
ALU	-	-	5 ns

1. What is the minimum clock period for this design? Show your work.
2. Can you improve the clock frequency by rearranging the elements in the data-path (and adding more hardware if needed), but keeping the same function? If so, what is the new minimum clock period? Show your design.

Homework 5 Problem I Solutions.

For every path, add ins delay to account for the dockskewclock of receiver may be on extra ins away whin your data arrives.

Minimus dock period is ions from path (∞).

$$
\begin{aligned}
t_{c l h} & =t_{\text {shaw }}+t_{\text {ck } k-9, \text { rappee }}+t_{\text {max }}+t_{\text {ala }}+t_{\text {scop, rag. }} \\
& =1+2+1+5+1 \\
& =10 \mathrm{~ns}
\end{aligned}
$$

b)
$1+5+1+1+1=a_{\text {as }}$

One idea: insert registers between murres and the Ally; remove final reg.
New critical path is from operand register through Abl and mut and back to itself:

$$
\begin{aligned}
t_{\text {elk }} & =t_{\text {shew }}+t_{\text {dk-a, reg }}+t_{\text {anu }}+t_{\text {max }}+t_{\text {atp, reg }} \\
& =1+1+5+1+1 \\
& =9 \text { ns. }
\end{aligned}
$$

This extra red live
13 My mistake

Problem 2: Inverter Sizing

Part a

Size inverters INV1, INV2, and INV3 in the following circuit for minimum delay. Assume $C_{I N V 0}=$ $2 f F$ and $C_{L}=162 f F$ and that there is no interconnect capacitance.

Calculate fanout $F=\frac{C_{L}}{C_{I N V 0}}=81$
Since there are 4 stages, the optimal fanout per stage is $f=\sqrt[4]{F}=\sqrt[4]{81}=3$
Size each inverter relative to the first:
$C_{I N V 0}=2 f F$
$C_{I N V 1}=6 f F$
$C_{I N V 2}=18 \mathrm{fF}$
$C_{I N V 3}=54 f F$

Part b

What is the total delay from in to out in part a? Use the simple MOSFET switch model, and assume each inverter is sized such that $R_{O N, N}=R_{O N, P}$ and $V_{t h, N}=\left|V_{t h, P}\right|=\frac{V_{D D}}{2}$. Assume that gate capactiance C_{G} and the explicit load C_{L} are the only sources of capacitance. $R_{O N}$ for INVO is $2.4 k \Omega$
$\tau_{0}=R_{0} \cdot C_{1}=2.4 k \Omega \cdot 6 f F=14.4 p s$
$\tau_{1}=R_{1} \cdot C_{2}=\frac{R_{0}}{f} \cdot C_{2}=\frac{2.4 k \Omega}{3} \cdot 18 \mathrm{fF}=14.4 \mathrm{ps}$
$\tau_{2}=R_{2} \cdot C_{3}=\frac{R_{0}}{f^{2}} \cdot C_{2}=\frac{2.4 k \Omega}{9} \cdot 54 \mathrm{fF}=14.4 \mathrm{ps}$
$\tau_{3}=R_{3} \cdot C_{L}=\frac{R_{0}}{f^{3}} \cdot C_{2}=\frac{2.4 k \Omega}{27} \cdot 162 f F=14.4 \mathrm{ps}$
$t_{p}=\ln (2) \cdot\left(\tau_{0}+\tau_{1}+\tau_{2}+\tau_{3}\right) \approx 40.0 \mathrm{ps}$

Problem 3: Wires and Repeaters

You have two circuits on chip, A and B, that are physically located 10 mm (Manhattan distance) apart. With the following process parameters, design a chain of repeaters that minimizes the delay from A to B. Design the repeaters so that the rising and falling transitions are symmetrical. Do not worry about whether or not the signal is inverted; you may assume that the circuit B can invert the signal if needed. For your answer, include the device sizes in each repeater (including the driver inside A) and the dimensions of each wire segment.

Wire parameters:
$R_{\text {sheet }}=50 \mathrm{~m} \Omega / \square$
$C_{p p}=1.8 \mathrm{fF} / \mu m^{2}$
$C_{\text {fringe }}=0.01 \mathrm{fF} / \mu \mathrm{m}$
$W_{\text {min }}=50 \mathrm{~nm}$
Device parameters:
$R_{o n, n}=2 k \Omega \cdot \frac{L}{W}$
$R_{o n, p}=4 k \Omega \cdot \frac{L}{W}$
$\gamma=1$
$L_{\text {min }}=50 \mathrm{~nm}$
$W_{\text {min }}=100 \mathrm{~nm}$
$C_{\text {gate }}=200 \mathrm{fF} / \mu \mathrm{m}^{2}$
Start by calculating r and c :
Use a minimum length wire $W=W_{\text {min }}$
$r=R_{\text {sheet }} / W=50 \mathrm{~m} \Omega / \square / 50 \mathrm{~nm}=1 \Omega / \mu \mathrm{m}$
$c=C_{p p} * W+C_{\text {fringe }}=0.1 \mathrm{fF} / \mu \mathrm{m}$
Size a minumim inverter:
$W_{p}=200 \mathrm{~nm} W_{n}=100 \mathrm{~nm} L=50 \mathrm{~nm}$
And calculate the drive resistance and capacitance:
$R_{d}=R_{o n, n}=R_{o n, p}=2 k \Omega \cdot \frac{50 \mathrm{~nm}}{100 \mathrm{~nm}}=1 k \Omega$
$C_{d}=200 \mathrm{fF} \cdot(0.1 \mu \mathrm{~m} \cdot 0.05 \mu \mathrm{~m}+0.2 \mu \mathrm{~m} \cdot 0.05 \mu \mathrm{~m})=3.0 \mathrm{fF}$
Now calculate the optimum number of repeaters:
$m_{\text {opt }}=L \cdot \sqrt{\frac{0.38 \cdot r \cdot c}{0.69 \cdot R_{d} \cdot C_{d} \cdot(\gamma+1)}}$
$m_{\text {opt }}=10000 \mu \mathrm{~m} \cdot \sqrt{\frac{0.38 \cdot 1 \Omega / \mu \mathrm{m} \cdot 0.1 \mathrm{fF} / \mathrm{\mu m}}{0.69 \cdot 1000 \Omega \cdot 3.0 \mathrm{fF} \cdot 2}} \approx 30$
Now scale the inverters to size them optimally:
$s_{\text {opt }}=\sqrt{\frac{R_{d} \cdot c}{r \cdot C_{d}}}$
$s_{\text {opt }}=\sqrt{\frac{1000 \Omega \cdot 0.1 \mathrm{fF} / \mu m}{1 \Omega / \mu m \cdot 3.0 f F}} \approx 6$
$W_{n, \text { repeater }}=s_{\text {opt }} \cdot W_{n}=600 \mathrm{~nm}$
$W_{p, \text { repeater }}=s_{\text {opt }} \cdot W_{p}=1200 \mathrm{~nm}$
$L_{\text {crit }}=\frac{L}{m_{\text {opt }}}=\frac{10000 \mu m}{30} \approx 333 \mu m$

We can also solve this another way (as in the lecture slides):

$$
\begin{aligned}
& R_{N}=R_{\text {on }, n} \cdot L_{\text {min }}=2000 \Omega \cdot 0.05 \mu \mathrm{~m}=100 \Omega \cdot \mu \mathrm{~m} \\
& C_{\text {in }}=C_{\text {gate }} \cdot 3 \cdot L_{\text {min }}=200 \mathrm{fF} / \mu \mathrm{m}^{2} \cdot 3 \cdot 50 \mathrm{~nm}=30 \mathrm{fF} / \mu \mathrm{m} \\
& W_{\text {opt }}=\sqrt{\frac{R_{N} \cdot c}{r \cdot C_{\text {in }}}}=\sqrt{\frac{100 \Omega \cdot \mu \mathrm{~m} \cdot 0.1 \mathrm{fF} / \mu \mathrm{m}}{1 \Omega / \mu \cdot 30 \mathrm{fF} / \mu \mathrm{m}}} \approx 600 \mu \mathrm{~m}
\end{aligned}
$$

Note that this is $W_{\text {opt }}$ for the NMOS. The PMOS should be twice as large.

Problem 4: Power and Leakage

Consider an N-input NOR gate shown below with $V_{D D}=1 V, C_{L}=5 f F, C_{D}=2 f F / \mu m$. Assume $R_{O N, n}=0.2 m \Omega \cdot \mu m, R_{O N, p}=0.3 \mathrm{~m} \Omega \cdot \mu m, R_{O F F, n}=100 \mathrm{k} \Omega \cdot \mu m, R_{O F F, p}=1.5 \mathrm{M} \Omega \cdot \mu \mathrm{m}$ for the given device length. You may assume $N>2$ and you don't have to worry about extreme cases (i.e. an unreasonably large N).

a) Size the gate, using as a reference a symmetrically sized inverter with $W_{n}=1 \mu m$. Express your answer as a function of N .

Each NMOS has $1 \mu m$ width, each PMOS has $\frac{3}{2} N \mu m$ width.
b) Assume that the probability of an input being high is 0.5 (i.e., on any given clock cycle, each input is equally likely to be a 0 or a 1.) and that all inputs are independent. What is the probability that the output is high, $P($ Out $=1)$? What is the probability that the output is low, $P(O u t=0)$? What is the gate activity factor (i.e. the probability that the output will transition from low to high, $P_{0 \rightarrow 1}$)? (Again, you may express your answer as a function of N.)

$$
\begin{gathered}
P(\text { Out }=1)=P(\text { In } 1=0) \cdot P(\text { In } 2=0) \cdot \ldots \cdot P(\text { InN }=0)=\left(\frac{1}{2}\right)^{N} \Rightarrow P(\text { Out }=1)=\frac{1}{2^{N}} \\
P(\text { Out }=0)=1-P(\text { Out }=1) \Rightarrow P(\text { Out }=0)=\frac{2^{N}-1}{2^{N}} \\
a_{0 \rightarrow 1}=P_{0 \rightarrow 1}=P(\text { Out }=0) \cdot P(\text { Out }=1) \Rightarrow a_{0 \rightarrow 1}=\frac{2^{N}-1}{2^{2 N}}
\end{gathered}
$$

c) What is the dynamic power dissipation of the gate as a function of N , if the clock frequency is 3 GHz ? You may ignore the parasitic drain capacitance in the internal nodes of the PMOS stack, but not at the output.

$$
\begin{aligned}
P_{d y n} & =a_{0 \rightarrow 1} \cdot C_{L, T O T} \cdot V_{D D}^{2} \cdot f \\
& =\frac{2^{N}-1}{2^{2 N}}\left(N \cdot 1 \mu m \cdot C_{D}+\frac{3}{2} N u m \cdot C_{D}+C_{L}\right) \cdot 1^{2} V \cdot 3 G H z \\
& =\frac{2^{N}-1}{2^{2 N}} \cdot\left(\frac{5}{2} N \mu m \cdot 2 \frac{f F}{\mu m}+5 f F\right) \cdot 1 V \cdot 3 G H z \\
& =(N+1) \frac{\left(2^{N}-1\right)}{2^{2 N}} \cdot 15 \mu W
\end{aligned}
$$

d) EECS 251A Only. For the following three cases, calculate the leakage current. Express your answer as a function of N when needed. An approximate expression is perfectly fine as long as you explain and justify your assumptions/simplifications.

- All inputs are zero.

When all inputs are zero, the output is 1. All NMOS (in parallel) devices are leaking, so:

$$
I_{l e a k, t o t}=N \cdot \frac{V_{D D}}{R_{O F F, n} / 1 \mu m}=10 N \mu A
$$

- All inputs are 1.

When all inputs are 1 , the output is 0 . There is leakage through the stack of PMOS devices, so:

$$
I_{l e a k, t o t}=\frac{V_{D D}}{N \cdot R_{O F F, p} / 1.5 N \mu m}=1 \mu A
$$

- One of the inputs is 1 , and the rest are zero.

In this case, the output is also 0 . The stack of PMOS devices is leaking, but only one of them is OFF - the rest are ON.

$$
I_{l e a k, t o t}=\frac{V_{D D}}{(N-1) R_{O N, p} / 1.5 N \mu m+R_{O F F, p} / 1.5 N \mu m}
$$

For reasonable values of N , we can assume that $R_{O F F, p} / 1.5 N \mu m \gg(N-1) R_{O N, p} / 1.5 N \mu m$ so:

$$
I_{l e a k, t o t} \approx \frac{V_{D D}}{R_{O F F, p} / 1.5 N \mu m}=N \mu A
$$

Problem 5: Gate Delays

Part a

Using the transistor switch model, draw the output of the circuit below for a 0 to $V D D$ input step. Calculate the propagation delay in terms of the given parameters. Assume that $\left|V_{t h, p}\right|=V_{t h, n}=$ $V D D / 2$ and that $R_{o n, p}=R_{o n, n}$. You may ignore $R_{o f f}$.

The propagation delay $t_{p}=\ln (2) \cdot R_{o n} \cdot C$

Part b

Using the transistor switch model, draw the step response (0 to $V D D$) of the circuit below. Calculate the propagation delay in terms of the given parameters. Assume that $\left|V_{t h, p}\right|=V_{t h, n}=V D D / 2$ and that $R_{o n, p}=R_{o n, n}$. Assume that $C_{g s, p}=2 * C_{g s, n}$ and that $C_{g s}$ is the only significant source of capacitance. You may ignore $R_{o f f}$.

The propagation delay for the first stage $t_{p, 0}=\ln (2) \cdot R_{o n} \cdot 3 \cdot C_{g s}$
The propagation delay for the second stage $t_{p, 1}=\ln (2) \cdot R_{o n} \cdot C$
The total propagation delay is therfore $t_{p}=t_{p, 0}+t_{p, 1}=\ln (2) \cdot R_{o n} \cdot\left(3 \cdot C_{g s}+C\right)$

