EECS 151/251A Midterm 2 Review

- Noise margins
 - Definitions and calculations based on transfer curves
- Logic Delay
 - RC models of gate rise/fall times and logic delay
 - Effect of transistor sizing on gate delay
 - Transistor sizing and staging for driving large capacitive loads
- Logical Effort
 - Definitions and calculation of LE for logic gates
 - LE method for optimal transistor sizing in cascades logic
 - LE method with branching
- Wire Delay Modeling
 - Distributed RC
 - Buffer insertion and effect on delay
 - Elmore delay calculations
- Delays in master/slave flip-flops
- Effect of clock skew on max clock frequency
- Retiming for optimizing clock frequency
- Power & Energy
 - Formulation of dynamic and static power consumption in CMOS
 - Voltage scaling and parallelism and pipelining for improving energy efficiency
 - Other techniques for power savings: clock gating, power gating, use of
 - High V_t transistors
- MIPS single cycle and pipelined processor organizations
 - Forwarding and stalling for hazard resolution

- Data transfers and flow-control concepts
 - Valid/Ready interface
 - Unit decoupling with FIFOs
 - FIFO operation and implementation concepts
 - Clock synchronization basics (metastability issue and simple synchronizer circuit)
- Parallelism
 - Reduction trees
 - Pipelining computation graphs (with and without feedback)
 - C-slow technique for pipelining feedback paths
 - SIMD parallelism concept
- List Processor Design Example
 - From algorithm to datapath (and control)
 - performance optimizations
- SRAM & DRAM
 - Cell operation
 - Block organization and operation