
VCS® MX/VCS MXi™ User
Guide
G-2012.09
September 2012

Comments?
E-mail your comments about this manual to:
vcs_support@synopsys.com.

mailto:vcs_support@synopsys.com

ii

Copyright Notice and Proprietary Information
Copyright © 2012 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AEON, AMPS, Astro, Behavior Extracting Synthesis Technology, Cadabra, CATS, Certify, CHIPit, CoMET,
Confirma, CODE V, Design Compiler, DesignWare, EMBED-IT!, Formality, Galaxy Custom Designer, Global
Synthesis, HAPS, HapsTrak, HDL Analyst, HSIM, HSPICE, Identify, Leda, LightTools, MAST, METeor, ModelTools,
NanoSim, NOVeA, OpenVera, ORA, PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL,
SNUG, SolvNet, Sonic Focus, STAR Memory System, Syndicated, Synplicity, the Synplicity logo, Synplify, Synplify
Pro, Synthesis Constraints Optimization Environment, TetraMAX, UMRBus, VCS, Vera, and YIELDirector are
registered trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, ARC, ASAP, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia, Columbia-CE, Cosmos,
CosmosLE, CosmosScope, CRITIC, CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon Access, Discovery, Eclypse, Encore,
EPIC, Galaxy, HANEX, HDL Compiler, Hercules, Hierarchical Optimization Technology, High-performance ASIC
Prototyping System, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Intelli, Jupiter, Jupiter-DP, JupiterXT,
JupiterXT-ASIC, Liberty, Libra-Passport, Library Compiler, Macro-PLUS, Magellan, Mars, Mars-Rail, Mars-Xtalk,
Milkyway, ModelSource, Module Compiler, MultiPoint, ORAengineering, Physical Analyst, Planet, Planet-PL, Polaris,
Power Compiler, Raphael, RippledMixer, Saturn, Scirocco, Scirocco-i, SiWare, Star-RCXT, Star-SimXT, StarRC,
System Compiler, System Designer, Taurus, TotalRecall, TSUPREM-4, VCSi, VHDL Compiler, VMC, and Worksheet
Buffer are trademarks of Synopsys, Inc.

Service Marks (sm)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

iii

Contents

1. Getting Started

Simulator Support with Technologies . 1-2

Setting Up the Simulator . 1-4

Verifying Your System Configuration 1-4

Obtaining a License . 1-5

Setting Up Your Environment. 1-7

Setting Up Your C Compiler. 1-8

Creating a synopsys_sim.setup File 1-8

The Concept of a Library In VCS MX. 1-10

Library Name Mapping . 1-11

Including Other Setup Files . 1-12

Using SYNOPSYS_SIM_SETUP Environment Variable . 1-12

Displaying Setup Information. 1-13

Displaying Design Information Analyzed Into a Library 1-14

Using the Simulator . 1-16

Basic Usage Model . 1-17

Default Time Unit and Time Precision . 1-18

iv

2. VCS MX Flow

Analysis . 2-2

Using vhdlan . 2-3

Commonly Used Analysis Options 2-3

Using vlogan . 2-6

Commonly Used Analysis Options 2-6

Analyzing the Design to Different Libraries 2-13

Elaboration . 2-13

Using vcs . 2-14

Commonly Used Options . 2-15

Simulation . 2-18

Interactive Mode . 2-18

Batch Mode . 2-19

Commonly Used Runtime Options. 2-19

3. Elaborating the Design

Compiling or Elaborating the Design in Debug Mode 3-1

Compiling or Elaborating the Design in Optimized Mode 3-2

Key Elaboration Features . 3-3

Initializing Verilog Memories and Registers 3-3

Use Model . 3-5

Overriding Generics and Parameters 3-6

Usage Model . 3-7

Checking for X and Z Values In Conditional Expressions . . . 3-8

Enabling the Checking . 3-9

Filtering Out False Negatives . 3-10

v

Cross Module References (XMRs) . 3-12

hdl_xmr Procedure and $hdl_xmr System Task. 3-13

Data Types Supported . 3-13

VHDL Referencing Verilog using hdl_xmr procedure. . . . 3-14

Verilog Referencing VHDL objects using $hdl_xmr 3-16

Usage Model . 3-17

$hdl_xmr Support for VHDL Variables 3-18

Datatype Support and Usage Examples 3-19

VCS MX V2K Configurations and Libmaps 3-24

Library Mapping Files . 3-25

Configurations . 3-26

Usage Model . 3-30

Example . 3-30

Using -liblist Option . 3-35

Evaluating the Active Events When Limiting the Exposure of Race
Conditions . 3-38

Lint Warning Message for Missing ‘endcelldefine 3-39

Error/Warning Message Control . 3-43

Controlling Error Messages . 3-45

Controlling Warning Messages . 3-45

Controlling Lint Messages . 3-47

Suppressing Lint, Warning, and Error Messages. 3-48

Error Conditions and Messages That Cannot Be Disabled 3-48

Using Message Control Options Together 3-49

Message Control Examples . 3-49

Obsolete Compile-Time Options for Controlling Messages 3-59

4. Simulating the Design

Using DVE. 4-2

vi

Using UCLI . 4-3

ucli2Proc Command. 4-5

Options for Debugging Using DVE and UCLI 4-6

Key Runtime Features. 4-8

Overriding Generics at Runtime. 4-8

Usage Model . 4-9

Passing Values from the Runtime Command Line 4-12

VCS MX Supports simv -f . 4-14

Limitations . 4-14

Specifying a Long Time Before Stopping The Simulation . . . 4-15

5. Diagnostics

Using Diagnostics . 5-2

Using –diag Option . 5-2

Using Smartlog . 5-4

Compile-time Diagnostics . 5-5

Libconfig Diagnostics. 5-5

Example . 5-5

Timescale Diagnostics . 5-8

Example . 5-8

Runtime Diagnostics . 5-12

Diagnostics for VPI/VHPI PLI Applications 5-12

Keeping the UCLI/DVE Prompt Active After a Runtime Error 5-15

UCLI Use Model . 5-15

DVE Use Model . 5-17

UCLI Usage Example. 5-19

vii

Limitations . 5-21

Diagnosing Quickthread Issues in SystemC 5-21

Quickthread Overruns Its Allocated Stack 5-22

Simulation Runs Out of Memory Due to Quickthread Stacks 5-23

Reducing or Turning Off Redzones 5-24

Post-processing Diagnostics . 5-25

Using the vpdutil Utility to Generate Statistics 5-25

The vpdutil Utility Syntax . 5-25

Options . 5-26

6. VCS Multicore Technology
Application Level Parallelism

VCS Multicore Technology Options. 6-30

Use Model for Assertion Simulation. 6-32

Use Model for Toggle and Functional Coverage 6-32

Use Model for VPD Dumping. 6-32

Running VCS Multicore Simulation . 6-33

Assertion Simulation . 6-33

Toggle Coverage . 6-34

Functional Coverage . 6-35

VPD File. 6-37

Parallel SAIF . 6-38

Customary SAIF System Function Entries. 6-38

Enabling Parallel SAIF. 6-39

Limitations . 6-39

viii

7. VPD, VCD, and EVCD Utilities

Advantages of VPD . 7-2

Dumping a VPD File . 7-3

Using System Tasks. 7-3

Enable and Disable Dumping. 7-4

Override the VPD Filename . 7-7

Dump Multi-dimensional Arrays and Memories 7-8

Using $vcdplusmemorydump . 7-17

Capture Delta Cycle Information 7-18

Dumping an EVCD File . 7-19

Limitations . 7-21

Post-processing Utilities . 7-23

The vcdiff Utility . 7-24

The vcdiff Utility Syntax . 7-25

The vcat Utility . 7-32

The vcat Utility Syntax . 7-32

Generating Source Files From VCD Files 7-36

Writing the Configuration File . 7-38

The vcsplit Utility . 7-42

The vcsplit Utility Syntax . 7-42

The vcd2vpd Utility . 7-46

Options for specifying EVCD options 7-47

The vpd2vcd Utility . 7-48

The Command File Syntax. 7-54

The vpdmerge Utility . 7-57

The vpdutil Utility . 7-61

ix

8. Performance Tuning

Compile-time Performance . 8-3

Incremental Compilation . 8-3

Compile Once and Run Many Times 8-4

Parallel Compilation. 8-4

Runtime Performance . 8-5

Using Radiant Technology . 8-5

Compiling With Radiant Technology. 8-6

Applying Radiant Technology to Parts of the Design 8-6

Improving Performance When Using PLIs. 8-15

Usage Model . 8-16

Impact on Performance . 8-19

Obtaining VCS Consumption of CPU Resources 8-20

Use Model . 8-20

Compile time . 8-20

Simulation Time . 8-21

9. Gate-level Simulation

SDF Annotation . 9-2

Using Unified SDF Feature . 9-2

Using $sdf_annotate System Task. 9-3

Using -xlrm Option for SDF Retain, Gate Pulse Propagation, and Gate
Pulse Detection Warning . 9-5

Using Optimistic Mode in SDF . 9-6

Using Gate Pulse Propagation . 9-7

Generating Warnings During Gate Pulses 9-8

x

Precompiling an SDF File . 9-9

Creating the Precompiled Version of the SDF file 9-9

SDF Configuration File . 9-10

Delay Objects and Constructs . 9-11

SDF Configuration File Commands 9-12

approx_command. 9-12

mtm_command. 9-13

scale_command . 9-14

SDF Example with Configuration File. 9-15

Delays and Timing. 9-17

Transport and Inertial Delays. 9-18

Different Inertial Delay Implementations 9-20

Enabling Transport Delays . 9-22

Pulse Control . 9-23

Pulse Control with Transport Delays 9-25

Pulse Control with Inertial Delays. 9-27

Specifying Pulse on Event or Detect Behavior 9-32

Specifying the Delay Mode . 9-36

Using the Configuration File to Disable Timing 9-38

Using the timopt Timing Optimizer . 9-38

Editing the timopt.cfg File . 9-41

Editing Potential Sequential Device Entries 9-41

Editing Clock Signal Entries . 9-42

 Using Scan Simulation Optimizer . 9-43

ScanOpt Config File Format . 9-44

ScanOpt Assumptions . 9-45

xi

Negative Timing Checks . 9-46

The Need for Negative Value Timing Checks 9-47

The $setuphold Timing Check Extended Syntax 9-52

Negative Timing Checks for Asynchronous Controls 9-55

The $recrem Timing Check Syntax 9-56

Enabling Negative Timing Checks . 9-58

Other Timing Checks Using the Delayed Signals 9-59

Checking Conditions . 9-63

Toggling the Notifier Register. 9-64

SDF Back-annotation to Negative Timing Checks. 9-65

How VCS MX Calculates Delays . 9-66

Using Multiple Non-overlapping Violation Windows. 9-68

Using VITAL Models and Netlists . 9-73

Validating and Optimizing a VITAL Model 9-73

Validating the Model for VITAL Conformance 9-74

Verifying the Model for Functionality 9-74

Optimizing the Model for Performance and Capacity. . . . 9-75

Re-Verifying the Model for Functionality. 9-76

Understanding Error and Warning Messages 9-76

Distributing a VITAL Model. 9-77

Simulating a VITAL Netlist . 9-78

Applying Stimulus . 9-78

Overriding Generic Parameter Values 9-78

Understanding VCS MX Error Messages. 9-80

Viewing VITAL Subprograms . 9-81

Timing Back-annotation . 9-81

VCS MX Naming Styles . 9-81

Negative Constraints Calculation (NCC) 9-82

xii

Simulating in Functional Mode . 9-83

Understanding VITAL Timing Delays and Error Messages . . 9-85

Negative Constraint Calculation (NCC) 9-85

Conformance Checks. 9-85

Error Messages . 9-88

10.Coverage

Code Coverage . 10-1

Functional Coverage . 10-2

Options For Coverage Metrics . 10-3

11. Using SystemVerilog

Usage Model . 11-2

Using UVM With VCS . 11-3

Update on UVM-1.0 . 11-4

Update on UVM-EA . 11-4

Natively Compiling and Elaborating UVM-1.0 11-5

Natively Compiling and Elaborating UVM-1.1a 11-5

Compiling the External UVM Library 11-6

Using the -ntb_opts uvm Option. 11-7

Explicitly Specifying UVM Files and Arguments 11-7

Accessing HDL Registers Through UVM Backdoor. 11-8

Generating UVM Register Abstraction Layer Code 11-9

Recording UVM Transactions . 11-10

UVM Template Generator (uvmgen) 11-11

Using Mixed VMM/UVM Libraries . 11-12

xiii

Migrating from OVM to UVM . 11-13

Where to Find UVM Examples. 11-14

Where to Find UVM Documentation 11-14

UVM-1.1a Documentation . 11-14

UVM-1.0 Documentation . 11-15

UVM-VMM Interop Documentation 11-15

Using VMM with VCS . 11-15

Using OVM with VCS . 11-16

Native Compilation and Elaboration of OVM 2.1.2 11-16

Compiling the External OVM Library 11-18

Using the -ntb_opts ovm Option. 11-18

Explicitly Specifying OVM Files and Arguments. 11-18

Recording OVM Transactions . 11-19

Running Native OVM Code in Partition Compile Flow. 11-21

Debugging SystemVerilog Designs . 11-23

Functional Coverage . 11-23

Newly implemented SystemVerilog Constructs 11-25

Support for Aggregate Methods in Constraints Using the “with”
Construct . 11-25

Debugging During Initialization SystemVerilog Static Functions and
Tasks in Module Definitions . 11-26

Explicit External Constraint Blocks . 11-30

Generate Constructs in Program Blocks 11-33

Error Condition for Using a Genvar Outside of its Generate Block
11-35

Randomizing Unpacked Structs. 11-36

xiv

Using the Scope Randomize Method std::randomize() . . 11-37

Using the Class Randomize Method randomize() . 11-41

Disabling and Re-enabling Randomization 11-44

Using In-line Random Variable Control 11-48

Limitation . 11-52

Making wait fork Statements Compliant with the SV LRM. . . 11-52

Making disable fork Statements Compliant with the SV LRM 11-55

Recently Implemented SystemVerilog Constructs. 11-56

The std::randomize() Function . 11-57

SystemVerilog Bounded Queues. 11-60

wait() Statement with a Static Class Member Variable. 11-61

Parameters and Localparams in Classes 11-62

SystemVerilog Math Functions . 11-62

Streaming Operators . 11-63

Packing (Used on RHS) . 11-63

Unpacking (Used on LHS) . 11-64

Packing and Unpacking . 11-64

Propagation and force Statement. 11-64

Error Conditions . 11-65

Structures with Streaming Operators 11-65

Extensions to SystemVerilog. 11-65

Unique/Priority Case/IF Final Semantic Enhancements 11-66

Using Unique/Priority Case/If with Always Block or Continuous
Assign . 11-67

Using Unique/Priority Inside a Function 11-70

System Tasks to Control Warning Messages. 11-73

Single-Sized Packed Dimension Extension. 11-74

xv

Covariant Virtual Function Return Types 11-77

Self Instance of a Virtual Interface . 11-78

UVM Example . 11-80

Error Condition for Using a Genvar Outside of its Generate Block 11-81

Exporting a SystemVerilog Package . 11-82

Use Model . 11-83

Backward Compatibility . 11-85

Using a Package in a SystemVerilog Module, Program, and Interface
Header . 11-87

12.Using OpenVera Native Testbench

Usage Model . 12-3

Example. 12-3

Usage Model . 12-6

Importing VHDL Procedures . 12-6

Exporting OpenVera Tasks. 12-8

 Using Template Generator . 12-9

Example . 12-10

Key Features . 12-22

Multiple Program Support . 12-22

Configuration File Model . 12-23

Configuration File . 12-23

Usage Model for Multiple Programs. 12-24

NTB Options and the Configuration File. 12-25

Separate Compilation of Testbench Files 12-27

Usage Model . 12-28

Example . 12-29

xvi

Class Dependency Source File Reordering. 12-29

Circular Dependencies . 12-31

Dependency-based Ordering in Encrypted Files 12-32

Using Encrypted Files . 12-32

Functional Coverage . 12-33

Using Reference Verification Methodology 12-33

Limitations . 12-35

13.Aspect Oriented Extensions

Aspect-Oriented Extensions in SV. 13-3

Processing of AOE as a Precompilation Expansion 13-5

Weaving advice into the target method 13-10

Pre-compilation Expansion details. 13-15

Precedence . 13-16

14.Using Constraints

Inconsistent Constraints . 14-2

Constraint Debug . 14-3

Partition . 14-4

Randomize Serial Number. 14-6

Solver Trace. 14-7

Constraint Profiler . 14-12

Test Case Extraction . 14-13

Using multiple +ntb_solver_debug arguments 14-15

Summary for +ntb_solver_debug. 14-15

+ntb_solver_debug=serial . 14-15

+ntb_solver_debug=trace. 14-16

xvii

+ntb_solver_debug=profile. 14-16

+ntb_solver_debug=extract . 14-16

Constraint Debug Using DVE . 14-16

Constraint Guard Error Suppression . 14-17

Error Message Suppression Limitations 14-18

Flattening Nested Guard Expressions 14-18

Pushing Guard Expressions into Foreach Loops 14-19

Array and XMR Support in std::randomize() 14-20

Error Conditions . 14-22

XMR Support in Constraints . 14-22

XMR Function Calls in Constraints . 14-24

State Variable Index in Constraints . 14-25

Runtime Check for State Versus Random Variables 14-25

Array Index . 14-26

Using Soft Constraints in SystemVerilog 14-26

Using Soft Constraints . 14-27

Soft Constraint Prioritization . 14-28

Within a Single Class . 14-28

Soft Constraints Defined in Classes Instantiated as rand Members in
Another Class. 14-29

Soft Constraints Inheritance Between Classes 14-31

Soft Constraints in AOP Extensions to a Class 14-32

Soft Constraints in View Constraints Blocks 14-34

Discarding Lower-Priority Soft Constraints 14-34

Using DPI Function Calls in Constraints 14-36

xviii

Invoking Non-pure DPI Functions from Constraints. 14-37

Using Foreach Loops Over Packed Dimensions in Constraints . 14-41

Memories with Packed Dimensions. 14-42

Single Packed Dimension . 14-42

Multiple Packed Dimensions . 14-42

MDAs with Packed Dimensions. 14-43

Single Packed Dimension . 14-43

Multiple Packed Dimensions . 14-43

Just Packed Dimensions . 14-43

The foreach Iterative Constraint for Packed Arrays. 14-44

Randomized Objects in a Structure. 14-46

15.Extensions for SystemVerilog Coverage

Support for Reference Arguments in get_coverage() 15-49

get_inst_coverage() method . 15-50

get_coverage() method . 15-50

Functional Coverage Methodology Using the SystemVerilog C/C++
Interface. 15-51

SystemVerilog Functional Coverage Flow 15-52

Covergroup Definition . 15-54

SystemVerilog (Covergroup for C/C++): covg.sv 15-55

C Testbench: test.c. 15-55

Approach #1: Passing Arguments by Reference 15-56

Approach #2: Passing Arguments by Value 15-56

Compile Flow . 15-56

Runtime . 15-57

C/C++ Functional Coverage API Specification 15-57

xix

16.OpenVera-SystemVerilog Testbench Interoperability

Scope of Interoperability . 16-2

Importing OpenVera types into SystemVerilog 16-3

Data Type Mapping . 16-6

Mailboxes and Semaphores . 16-7

Events . 16-9

Strings . 16-9

Enumerated Types . 16-10

Integers and Bit-Vectors . 16-12

Arrays . 16-13

Structs and Unions . 16-15

Connecting to the Design . 16-15

Mapping Modports to Virtual Ports. 16-15

Virtual Modports . 16-15

Importing Clocking Block Members into a Modport 16-16

Semantic Issues with Samples, Drives, and Expects 16-21

Notes to Remember . 16-22

Blocking Functions in OpenVera 16-22

Constraints and Randomization 16-22

Functional Coverage . 16-23

Usage Model . 16-24

Limitations . 16-25

17.Using SystemVerilog Assertions

Using SVAs in the HDL Design . 17-2

xx

Using Standard Checker Library . 17-2

Instantiating SVA Checkers in Verilog 17-3

Instantiating SVA Checkers in VHDL 17-4

Inlining SVAs in the Verilog Design . 17-6

Usage Model . 17-7

Inlining SVA in the VHDL design . 17-8

Usage Model . 17-9

Controlling SystemVerilog Assertions . 17-10

Elaboration and Runtime Options . 17-10

Assertion Monitoring System Tasks. 17-13

Using Assertion Categories . 17-17

Using System Tasks . 17-17

Using Attributes . 17-19

Stopping and Restarting Assertions By Category 17-21

Viewing Results . 17-31

Using a Report File . 17-31

Enhanced Reporting for SystemVerilog Assertions in Functions 17-32

Introduction . 17-32

Usage Model . 17-34

Name Conflict Resolution . 17-34

Checker and Generate Blocks. 17-34

Controlling Assertion Failure Messages 17-35

Introduction . 17-35

Options for Controlling Default Assertion Failure Messages . 17-36

Options to Control Termination of Simulation. 17-37

Option to Enable Compilation of OVA Case Pragmas 17-40

xxi

Enabling IEEE Std. 1800-2009 Compliant Features 17-41

Limitations . 17-41

18.Using Property Specification Language

Including PSL in the Design . 18-1

Examples . 18-2

Usage Model . 18-3

Examples . 18-4

PSL Assertions Inside VHDL Block Statements in Vunit 18-5

Introduction . 18-5

Use Model . 18-6

Limitations . 18-6

PSL Macro Support in VHDL. 18-8

Using the %for Construct . 18-8

Using the %if Construct . 18-11

Using Expressions with %if and %for Constructs 18-12

PSL Macro Support Limitations . 18-13

Using SVA Options, SVA System Tasks, and OV Classes 18-14

Limitations . 18-15

19.Using SystemC

Overview . 19-6

Verilog Design Containing Verilog/VHDL Modules and SystemC Leaf
Modules . 19-7

Usage Model . 19-8

xxii

Input Files Required. 19-9

Generating Verilog/VHDL Wrappers for SystemC Modules 19-10

Supported Port Data Types . 19-13

Example. 19-15

Compiling Interface Models with acc_user.h and vhpi_user.h 19-18

Controlling Time Scale and Resolution in a SystemC 19-19

Automatic adjustment of the time resolution 19-20

Setting time scale/resolution of Verilog or VHDL kernel. . 19-20

Setting time scale/resolution of SystemC kernel 19-21

Adding a Main Routine for Verilog-On-Top Designs 19-22

SNPS_REGISTER_SC_MAIN . 19-23

SystemC Designs Containing Verilog and VHDL Modules 19-24

Usage Model . 19-25

Input Files Required. 19-26

Generating a SystemC Wrapper for Verilog Modules . . . 19-27

Generating A SystemC Wrapper for VHDL Design 19-28

Example. 19-31

Elaboration Scheme . 19-34

SNPS_REGISTER_SC_MODULE 19-37

VHDL Design Containing Verilog/VHDL Modules and SystemC Leaf
Modules . 19-37

Usage Model . 19-38

Input Files Required. 19-39

Generating a Verilog/VHDL Wrapper for SystemC Modules 19-40

Example. 19-43

Use Model . 19-45

SystemC Only Designs . 19-45

xxiii

Usage Model . 19-46

Restrictions . 19-47

Supported and Unsupported UCLI/DVE and CBug Features 19-48

Controlling TimeScale Resolution . 19-49

Setting Timescale of SystemC Kernel 19-49

Automatic Adjustment of Time Resolution 19-50

Considerations for Export DPI Tasks. 19-51

Use syscan -export_DPI [function-name]. 19-51

Use syscan -export_DPI [Verilog-file]. 19-52

Use a Stubs File . 19-54

Using options -Mlib and -Mdir . 19-54

Specifying Runtime Options to the SystemC Simulation. 19-55

Using a Port Mapping File . 19-56

Automatic Creation of Portmap File . 19-58

Using a Data Type Mapping File . 19-59

Combining SystemC with Verilog Configurations 19-61

Verilog-on-top, SystemC and/or VHDL down. 19-61

Compiling a Verilog/SystemC design 19-62

Compiling a Verilog/SystemC+VHDL design 19-63

SystemC-on-top, Verilog and/or VHDL down. 19-64

Compiling a SystemC/Verilog design 19-66

 Compiling a SystemC/Verilog+VHDL design 19-67

Limitations . 19-67

 Parameters. 19-68

 Parameters in Verilog . 19-68

xxiv

Parameters in VHDL . 19-69

Parameters in SystemC. 19-69

Verilog-on-Top, SystemC-down . 19-70

VHDL-on-Top, SystemC-down. 19-71

SystemC-on-Top, Verilog or VHDL down. 19-72

Namespace . 19-73

 Parameter specification as vcs elaboration arguments 19-73

Debug . 19-74

Limitations . 19-74

Debugging Mixed Simulations Using DVE or UCLI. 19-75

Improved CBug Debugging Capabilities 19-76

Viewing sc_signal of User-defined struct in Waveform Window 19-76

Driver/Load Support for SystemC Designs in Post Processing 19-77

Transaction Level Interface . 19-78

Interface Definition File . 19-79

Generation of the TLI Adapters . 19-83

Transaction Debug Output. 19-84

Instantiation and Binding . 19-85

Supported Data Types of Formal Arguments. 19-88

Miscellaneous . 19-89

Delta-cycles. 19-89

Using a Customized SystemC Installation. 19-90

Compatibility with OSCI SystemC . 19-93

Compiling Source Files . 19-93

Using Posix threads or quickthreads. 19-93

xxv

VCS Extensions to SystemC Library. 19-94

Installing VG GNU Package . 19-100

Static and Dynamic Linking . 19-100

Static Linking in VCS MX . 19-100

Dynamic Linking in VCS MX (For C/C++ Files) 19-101

Dynamic Linking in VCS MX (For SystemC Files) 19-102

LD_LIBRARY_PATH Environment Variable 19-103

Limitations . 19-103

Verilog wrapper needed for pure VHDL-top-SystemC down
19-104

Incremental Compile of SystemC Source Files 19-105

Full Build from Scratch. 19-106

Full Incremental Build . 19-107

Partial Build with Object Files . 19-108

Partial Build with Shared Libraries . 19-109

Updating the Shared Library . 19-110

Using Different Libraries. 19-110

Partial Build Invoked with vcs. 19-111

Partial Build if Just One Shared Library is Updated 19-111

Adding or Deleting SC Source Files in Shared Library . . 19-112

Changing From a Shared Library Back to Object Files . . 19-112

Suppressing Automatic Dependency Checking. 19-112

Restrictions . 19-113

TLI Direct Access . 19-113

Accessing SystemC Members from SystemVerilog. 19-114

TLI Adaptor. 19-114

Instantiating the TLI adaptor in SV 19-114

xxvi

Direct Variable Access . 19-115

Calling SystemC Member Function 19-115

Arguments of Type char* used in Blocking Member Functions
19-117

Supported Data Types . 19-117

SC_FIFO . 19-120

Non-SystemC Classes . 19-121

Sub-classes . 19-122

Name Clashes . 19-123

Error Handling . 19-125

Compile Flow . 19-125

Syntax of TLI File . 19-126

Debug Flow . 19-129

Accessing Struct or Class Members of a SystemC Module from
SystemVerilog . 19-130

Enhancements to TLI for Providing Access to SystemC/C++ Class
Members from SystemVerilog. 19-131

Accessing Struct or Class Members of a SystemC Module Object
from SystemVerilog. 19-131

Accessing Generic C++ Struct or Class 19-135

Extensions of TLI Input File . 19-139

Invoking Pack or Unpack Adaptor Code Generation 19-140

Limitations . 19-141

Accessing Verilog Variables from SystemC. 19-141

Usage Model . 19-141

Access Functions . 19-142

Supported Data Types . 19-143

Usage Example . 19-144

Type Conversion Mechanism. 19-145

xxvii

Accessing SystemVerilog Functions and Tasks from SystemC
19-147

Introduction. 19-148

Usage Model . 19-148

Function Declaration Hierarchy . 19-149

Passing Arguments . 19-151

Supported Types . 19-152

Usage Example . 19-152

Compile Flow . 19-154

Usage Guidelines . 19-155

Limitations . 19-156

Accessing SystemC Members from SystemVerilog Using the
tli_get_<type> or tli_set_<type> Functions. 19-157

Using the tli_get_<type> and tli_set_<type> Functions . . 19-157

Prototypes of tli_get_<type> and tli_set_<type> Functions 19-158

Supported Data Types . 19-159

Member Variables . 19-162

Type Conversion Mechanism. 19-164

Compile Flow . 19-166

Generating C++ Struct Definition from SystemVerilog Class Definition
19-168

Use Model for Generating C++ Struct from SystemVerilog Class
19-169

Data Type Conversion from SystemVerilog to C++ 19-170

Example for Generating C++ Struct from SystemVerilog Class
19-171

Limitations . 19-172

Supporting Designs with Donut Topologies. 19-173

xx-

Exchanging Data Between SystemVerilog and SystemC Using Byte
Pack/Unpack . 19-175

Use Model . 19-176

Supported Data Types . 19-177

Unsupported Data Types . 19-177

Mapping of SystemC/C++ and SystemVerilog/VMM Data Types
19-178

Usage Examples . 19-183

Using the Pack Operator . 19-183

Using Unpack Operator . 19-184

Using Pack and Unpack Functions . 19-184

Using Code Generator . 19-187

Naming Convention . 19-188

Input Files. 19-188

Output Files . 19-190

Supported Data types for Automatic Code Generation . . 19-191

Correcting the Generated Files . 19-192

Compile Flow . 19-193

Usage Example for Code Generator 19-194

Using Direct Program Interface Based Communication 19-204

Limitations of Using DPI-based Communication Between Verilog and
SystemC. 19-205

Improving VCS-SystemC Compilation Speed Using Precompiled C++
Headers . 19-205

Introduction to Precompiled Header Files 19-206

Using Precompiled Header Files . 19-206

Example to Use the Precompiled Header Files 19-208

Invoking the Creation of Precompiled Header Files. 19-209

xxix

Limitations . 19-210

Limitations of syscan -prec 19-210

Limitations of using -prec with path 19-212

Limitations of Sharing Precompiled Header Files 19-212

Increasing Stack and Stack Guard Size 19-213

Increasing the Stack Size . 19-214

Increasing the Stack Guard Size 19-214

Guidelines to Diagnose Stack Overrun 19-215

Debugging SystemC Runtime Errors . 19-216

Debugging SystemC Kernel Errors . 19-216

Troubleshooting Your Elaboration Errors 19-217

Troubleshooting Your Runtime Errors 19-220

Function cbug_stop_here() . 19-222

Limitations . 19-224

Diagnosing Quickthread Issues . 19-224

Using HDL and SystemC Sync Loops. 19-225

The Coarse-Grained Sync Loop (blocksync) 19-225

The Fine-Grained Sync Loop (deltasync) 19-226

Run Time . 19-226

Alignment of Delta Cycles . 19-226

Example Syntax . 19-227

Restrictions . 19-227

Restrictions That No Longer Apply. 19-228

Newsync is Now Default . 19-228

Controlling Simulation Run From sc_main 19-229

Effect on end_of_simulation Callbacks 19-231

xxx

UCLI Save Restore Support for SystemC-on-top and Pure-SystemC
19-232

SystemC with UCLI Save and Restore Use Model 19-233

SystemC with UCLI Save and Restore Coding Guidelines . . 19-233

Saving and Restoring Files During Save and Restore. 19-235

Restoring the Saved Files from the Previous Saved Session 19-236

Limitations of UCLI Save Restore Support 19-236

Enabling Unified Hierarchy for VCS and SystemC 19-237

Using Unified Hierarchy Elaboration 19-237

Value Added by Option –sysc=unihier 19-240

Using the –sysc=show_sc_main Switch 19-241

SystemC Unified Hierarchy Flow Limitations 19-242

Aligning VMM and SystemC Messages 19-242

Introduction . 19-243

Use Model . 19-243

Changing Message Alignment Settings. 19-244

Mapping SystemC to VMM Severities 19-246

Filtering Messages. 19-246

Limitations . 19-249

UVM Message Alignment . 19-250

Enabling UVM Message Alignment . 19-250

Accessing UVM Report Object of SystemC Instance 19-254

Introducing TLI Adapters . 19-257

TLI Adapter Overview. 19-257

SystemC Adapters . 19-258

Global Package . 19-258

xxxi

User Package. 19-260

Use Model . 19-264

VMM Channel Interface (vmm_tlm_generic_payload) . . . 19-264

VMM TLM Interface (vmm_tlm_generic_payload) 19-267

VMM Channel/TLM Interface (Other data type) 19-270

SV Interface Other Than vmm_channel/vmm_tlm 19-270

 VMM Channel Interface Details. 19-271

VMM TLM Interface Details . 19-274

E .
xamples . 19-278

Example-1 . 19-279

Example-2 . 19-283

Example-3 . 19-286

Example-4 . 19-288

Example-5 . 19-290

Example-6 . 19-294

Example-7 . 19-297

Example-8 . 19-299

Example-9 . 19-301

Example-10 . 19-304

Using VCS UVM TLI Adapters . 19-308

Using the UVM TLI Adapters . 19-308

UVM TLM Interface . 19-308

UVM Analysis Interface . 19-310

Handling Multiple Subscribers . 19-312

UVM TLM Communication Examples 19-312

uvm_tlm_blocking Example . 19-312

uvm_tlm_nonblocking Example . 19-314

uvm_tlm_analysis Example . 19-316

xxxii

Modeling SystemC Designs with SCV . 19-318

SCV Library in VCS . 19-319

Use model . 19-319

msglog Extensions for Transaction Recording with SCV in VCS
19-320

Use Model . 19-320

Viewing SystemC sc_report_handler Messages from Log File
19-321

20.C Language Interface

Using PLI. 20-2

Writing a PLI Application . 20-3

Functions in a PLI Application . 20-4

Header Files for PLI Applications. 20-5

PLI Table File . 20-6

Syntax . 20-6

Using the PLI Table File . 20-19

Enabling ACC Capabilities. 20-20

Globally . 20-20

Using the Configuration File . 20-21

Selected ACC Capabilities . 20-24

PLI Access to Ports of Celldefine and Library Modules 20-28

Example . 20-29

Visualization in DVE . 20-31

Using VPI Routines . 20-32

Support for VPI Callbacks for Reasons cbForce and cbRelease
20-32

xxxii

Support for the vpi_register_systf Routine. 20-33

Integrating a VPI Application With VCS MX. 20-34

PLI Table File for VPI Routines . 20-36

Virtual Interface Debug Support. 20-36

Example . 20-37

Limitations . 20-40

Unimplemented VPI Routines . 20-40

Using VHPI Routines. 20-42

Diagnostics for VPI/VHPI PLI Applications 20-42

Using DirectC . 20-42

Using Direct C/C++ Function Calls . 20-44

How C/C++ Functions Work in a Verilog Environment. . . 20-46

Declaring the C/C++ Function . 20-47

Calling the C/C++ Function . 20-54

Storing Vector Values in Machine Memory. 20-55

Converting Strings . 20-58

Avoiding a Naming Problem. 20-61

Using Pass by Reference. 20-61

Using Direct Access. 20-62

Using the vc_hdrs.h File. 20-69

Access Routines for Multi-Dimensional Arrays 20-70

Using Abstract Access. 20-72

Using vc_handle. 20-72

Using Access Routines . 20-74

Summary of Access Routines . 20-118

Enabling C/C++ Functions. 20-123

Mixing Direct And Abstract Access 20-125

xxx-

Specifying the DirectC.h File . 20-125

Extended BNF for External Function Declarations 20-126

21.SAIF Support

Using SAIF Files with VCS MX . 21-2

SAIF System Tasks for Verilog or Verilog-Top Designs. 21-2

The Flows to Generate a Backward SAIF File 21-5

Generating an SDPD Backward SAIF File. 21-6

Generating a Non-SPDP Backward SAIF File 21-7

SAIF Calls That Can Be Used on VHDL or VHDL-Top Designs . 21-7

SAIF Support for Two-Dimensional Memories in v2k Designs . . 21-9

UCLI SAIF Dumping . 21-9

Criteria for Choosing Signals for SAIF Dumping 21-10

22.Encrypting Source Files

128-bit Advanced Encryption Standard . 22-1

Using Compiler Directives or Pragmas 22-2

Example . 22-3

Using Automatic Protection Options 22-5

gen_vcs_ip . 22-6

Syntax . 22-8

Analysis Options. 22-8

Exporting The IP . 22-9

Use Model . 22-9

IP Vendor . 22-9

xxxv

IP Generation . 22-10

IP User . 22-10

Licensing . 22-10

23. Integrating VCS MX with Vera

Setting Up Vera and VCS MX . 23-2

Using Vera with VCS MX. 23-3

Usage Model . 23-4

24.Using HSIM-VCS MX DKI Mixed-Signal Simulation

Environment Setup . 24-2

Usage Model . 24-3

Example. 24-4

25. Integrating VCS MX with NanoSim

Environment Setup . 25-3

Use Model . 25-4

Example. 25-5

26. Integrating VCS MX with XA

Introduction to VCS MX-XA . 26-2

Analyzing a Design. 26-3

Elaborating a Design . 26-3

Running the Simulation . 26-3

Setting up the Environment . 26-3

Use Model . 26-4

xxx-

Analyzing Netlists . 26-4

Elaborating the Design . 26-5

Simulating the Design . 26-5

Example. 26-5

27. Integrating VCS MX with Specman

Type Support . 27-2

Usage Flow . 27-4

Setting Up The Environment . 27-4

Specman e code accessing VHDL only. 27-5

Specman e Code Accessing Verilog Only 27-7

e code accessing both VHDL and Verilog 27-9

Guidelines for Specifying HDL Path or Tick Access with VCS MX-
Specman Interface . 27-12

Using specrun and specview. 27-13

Adding Specman Objects To DVE. 27-15

Version Checker for Specman. 27-17

Use Model . 27-17

28. Integrating VCS MX with Denali

Setting Up Denali Environment for VCS MX 28-1

Integrating Denali with VCS MX . 28-2

Usage Model . 28-2

Usage Model for VHDL Memory Models 28-3

Usage Model for Verilog Memory Models 28-4

xxx-

Execute Denali Commands at UCLI Prompt 28-5

29. Integrating VCS MX with Debussy

Using the Current Version of VCS MX with Novas 2010.07 Version 29-1

Setting Up Debussy . 29-2

Usage Model to Dump fsdb File. 29-2

Using VHDL Procedures or Verilog System Tasks. 29-4

Using UCLI . 29-5

Examples . 29-6

30. Integrating VCS with MVSIM Native Mode

Introduction to MVSIM. 30-1

MVSIM Native Mode in VCS . 30-2

References . 30-3

31.Migrating to VCS MX

Step 1: Setting Up The Environment . 31-3

Step 2: Analysis. 31-5

Step 3: Elaboration . 31-6

Step 4: Simulation . 31-7

Simulation Executable . 31-8

User Interface Commands. 31-8

Simulation Results . 31-9

Coding Style . 31-10

LRM Extensions . 31-11

xxx-

Appendix A. VCS MX Environment Variables

Setup Variables . A-1

Analysis Setup Variables . A-2

Compilation/Elaboration Setup Variables. A-5

Simulation Setup Variables . A-10

C Compilation and Linking Setup Variables. A-17

New Timescale Implementation. A-19

Understanding `timescale. A-20

Verilog only and Verilog Top Mixed Design A-24

VHDL only and VHDL Top Mixed Designs A-25

Setting up Simulator Resolution From Command Line . . A-26

Other Useful Timescale Related Switches A-28

Non compatible switches . A-30

Limitations . A-30

Optional Environment Variables . A-30

Appendix B. Analysis Utilities

The vhdlan Utility. B-1

Using Smart Order . B-7

Use Model . B-8

Limitations . B-10

The vlogan Utility. B-11

Appendix C. Elaboration Options

Option for Accessing Verilog Libraries C-4

Options for Incremental Compilation C-4

xxx-

Options for Help and Documentation. C-6

Options for SystemVerilog . C-6

Options for SystemVerilog Assertions C-7

Options to Enable Compilation of OVA Case Pragmas C-13

Options for Native Testbench. C-13

. C-18

Options for Initializing Memories and Registers with Random Values
C-18

Options for Using Radiant Technology. C-19

Options for 64-bit Compilation . C-19

 Options for Starting Simulation Right After Compilation C-20

Options for Specifying Delays and SDF Files C-20

Options for Compiling an SDF File . C-24

Options for Specify Blocks and Timing Checks C-24

Options for Pulse Filtering . C-25

Options for Negative Timing Checks C-27

Option to Specify Elaboration Options in a File C-28

Options for Compiling Runtime Options into the Executable . C-29

Options for PLI Applications . C-29

Options to Enable the VCS MX DirectC Interface C-33

Options for Flushing Certain Output Text File Buffers C-33

Options for Controlling Messages . C-34

Options for Cell Definition . C-36

Options for Licensing . C-38

Options for Controlling the Linker . C-38

Options for Controlling the C Compiler C-41

xl

Options for Source Protection . C-43

Options for Mixed Analog/Digital Simulation C-45

Unified Option to Change Generic and Parameter Values . . C-45

Checking for X and Z Values in Conditional Expressions . . . C-46

Options for Detecting Race Conditions C-46

Options to Specify the Time Scale . C-48

Options for Overriding Generics and Parameters C-49

General Options. C-52

Enable the VCS MX/SystemC Cosimulation Interface . . . C-52

TetraMAX . C-53

Allow Inout Port Connection Width Mismatches. C-53

Allow Zero or Negative Multiconcat Multiplier C-53

Specifying a VCD File. C-54

Enabling Dumping . C-54

Memories and Multi-Dimensional Arrays (MDAs) C-54

Specifying a Log File . C-55

Changing Source File Identifiers to Upper Case C-56

Specifying the Name of the Executable File. C-56

Returning The Platform Directory Name C-56

Maximum Donut Layers for a Mixed HDL Design C-56

Enabling feature beyond VHDL LRM C-57

Enable Loop Detect . C-57

Changing the Time Slot of Sequential UDP Output Evaluation
C-57

Gate-Level Performance . C-58

Option to Omit Compilation of Code Between Pragmas . C-58

xli

Appendix D. Simulation Options

Options for Simulating Native Testbenches D-2

Options for SystemVerilog Assertions D-10

Options to Control Termination of Simulation. D-19

Options for Enabling and Disabling Specify Blocks D-19

Options for Specifying When Simulation Stops D-20

Options for Recording Output . D-21

Options for Controlling Messages . D-21

Options for VPD Files . D-22

Options for VCD Files . D-25

Options for Specifying Delays . D-26

Options for Flushing Certain Output Text File Buffers D-28

Options for Licensing . D-29

Option to Specify User-Defined Runtime Options in a File . . D-29

Option for Initializing Integer Data Type Variables at Runtime D-30

General Options. D-32

Viewing the Compile-Time Options D-32

Recording Where ACC Capabilities are Used D-32

Suppressing the $stop System Task D-33

Enabling User-defined Plusarg Options D-33

Enabling feature beyond VHDL LRM D-33

Specifying acc_handle_simulated_net PLI Routine D-33

Appendix E. Verilog Compiler Directives and System Tasks

Compiler Directives . E-1

Compiler Directives for Cell Definition E-2

Compiler Directives for Setting Defaults E-2

xlii

Compiler Directives for Macros . E-3

Compiler Directives for Delays. E-5

Compiler Directives for Backannotating SDF Delay Values. . E-6

Compiler Directives for Source Protection E-6

Debugging Partially Encrypted Source Code E-7

Compiler Directives for Controlling Port Coercion E-8

General Compiler Directives . E-8

Compiler Directive for Including a Source File E-8

Compiler Directive for Setting the Time Scale E-8

Compiler Directive for Specifying a Library E-8

Compiler Directive for File Names and Line Numbers . . . E-9

Unimplemented Compiler Directives E-10

System Tasks and Functions. E-11

System Tasks for SystemVerilog Assertions Severity E-11

System Tasks for SystemVerilog Assertions Control E-11

System Tasks for SystemVerilog Assertions E-12

System Tasks for VCD Files . E-13

System Tasks for LSI Certification VCD and EVCD Files . . . E-15

System Tasks for VPD Files. E-18

System Tasks for SystemVerilog Assertions E-26

System Tasks for Executing Operating System Commands . E-27

System Tasks for Log Files . E-28

System Tasks for Data Type Conversions E-28

System Tasks for Displaying Information E-29

System Tasks for File I/O. E-30

System Tasks for Loading Memories E-32

xliii

System Tasks for Time Scale. E-33

System Tasks for Simulation Control E-34

System Tasks for Timing Checks. E-34

Timing Checks for Clock and Control Signals E-35

System Tasks for PLA Modeling . E-37

System Tasks for Stochastic Analysis E-37

System Tasks for Simulation Time. E-38

System Tasks for Probabilistic Distribution E-39

System Tasks for Resetting VCS MX. E-40

General System Tasks and Functions E-40

Checks for a Plusarg . E-40

SDF Files . E-41

Counting the Drivers on a Net . E-41

Depositing Values. E-41

Fast Processing Stimulus Patterns. E-41

Saving and Restarting The Simulation State E-42

Checking for X and Z Values in Conditional Expressions E-42

Calculating Bus Widths . E-43

Displaying the Method Stack . E-44

IEEE Standard System Tasks Not Yet Implemented E-46

1-1

Getting Started

1
Getting Started 1

VCS MX® is a compiled code simulator. It enables you to analyze,
compile, and simulate Verilog, VHDL, mixed-HDL, SystemVerilog,
OpenVera and SystemC design descriptions. It also provides you
with a set of simulation and debugging features to validate your
design. These features provide capabilities for source-level
debugging and simulation result viewing.

VCS MX accelerates complete system verification by delivering the
fastest and highest capacity Verilog, VHDL, and mixed HDL
simulation for RTL functional verification. The seamless support for
mixed-language simulation of VCS MX provides a high performance
solution to your IP integration problems and gate-level simulation.

This chapter includes the following sections:

• “Simulator Support with Technologies”

• “Setting Up the Simulator”

1-2

Getting Started

• “Using the Simulator”

• “Default Time Unit and Time Precision”

Simulator Support with Technologies

VCS MX supports the following IEEE standards:

• The Verilog language as defined in the Standard Verilog Hardware
Description Language (IEEE Std 1364).

• The VHDL Language as defined in the Standard VHDL Hardware
Description Language (IEEE VHDL 1076-1993).

• The IEEE Std 1800 language (with some exceptions) as defined
in SystemVerilog Language Reference Manual for VCS/VCS MX.

In addition to its standard Verilog, VHDL, and mixed HDL and
SystemVerilog compilation and simulation capabilities, VCS MX
includes the following integrated set of features and tools:

• SystemC - VCS MX / SystemC Co-simulation Interface enables
VCS MX and the SystemC modeling environment to work together
when simulating a system described in the Verilog, VHDL, and
SystemC languages. For more information, refer to “Using
SystemC” on page 1.

• Discovery Visualization Environment (DVE) — For more
information, refer to “Using DVE” on page 2.

• Unified Command-line Interface (UCLI) — For more information,
refer to “Using UCLI” on page 3.

1-3

Getting Started

• Built-In Coverage Metrics — a comprehensive built-in coverage
analysis functionality that includes condition, toggle, line,
finite-state-machine (FSM), path, and branch coverage. You can
use coverage metrics to determine the quality of coverage of your
verification test and focus on creating additional test cases. You
only need to compile once to run both simulation and coverage
analysis. For more information, refer to “Coverage” on page 1.

• DirectC Interface — this interface allows you to directly embed
user-created C/C++ functions within your Verilog design
description. This results in a significant improvement in
ease-of-use and performance over existing PLI-based methods.
VCS MX atomically recognizes C/C++ function calls and
integrates them for simulation, thus eliminating the need to
manually create PLI files.

VCS MX supports Synopsys DesignWare IPs, VCS MX Verification
Library, VMC models, Vera, HSIM, and NanoSim. For information on
integrating VCS MX with HSIM, refer to the HSIM-VCS DKI and
HSIM-VCS-MX DKI Mixed-Signal Simulation Application Note. For
information on integrating VCS MX with NanoSim, refer to the
Discovery AMS: Mixed-Signal Simulation User Guide available in the
NanoSim installation directory.

VCS MX can also be integrated with third-party tools such as
Specman, Debussy, Denali, and other acceleration and emulation
systems.

https://solvnet.synopsys.com/retrieve/customer/application_notes/attached_files/020408/dki_mixed_sig_app_note.pdf

1-4

Getting Started

Setting Up the Simulator

This section outlines the basic steps for preparing to run VCS MX. It
includes the following topics:

• “Verifying Your System Configuration”

• “Obtaining a License”

• “Setting Up Your Environment”

• “Setting Up Your C Compiler”

• “Creating a synopsys_sim.setup File”

• “Displaying Setup Information”

• “Displaying Design Information Analyzed Into a Library”

Verifying Your System Configuration

You can use the syschk.sh script to check if your system and
environment match the QSC requirements for a given release of a
Synopsys product. The QSC (Qualified System Configurations)
represents all system configurations maintained internally and tested
by Synopsys.

To check whether the system you are on meets the QSC
requirements, enter:

% syschk.sh

1-5

Getting Started

When you encounter any issue, run the script with tracing enabled to
capture the output and contact Synopsys. To enable tracing, you can
either uncomment the set -x line in the syschk.sh file or enter
the following command:

% sh -x syschk.sh >& syschk.log

Use syschk.sh -v to generate a more verbose output stream
including the exact path for various binaries used by the script, etc.
For example:

% syschk.sh -v

Note:
If you copy the syschk.sh script to another location before using
it, you must also copy the syschk.dat data file to the same
directory.

You can also refer to the "Supported Platforms and Products" section
of the VCS MX Release Notes for a list of supported platforms, and
recommended C compiler and linker versions.

Obtaining a License

You must have a license to run VCS MX. To obtain a license, contact
your local Synopsys Sales Representative. Your Sales
Representative will need the hostid for your machine.

To start a new license, do the following:

1. Verify that your license file is functioning correctly:

% lmcksum -c license_file_pathname

1-6

Getting Started

Running this licensing utility ensures that the license file is not
corrupt. You should see an "OK" for every INCREMENT statement
in the license file.

Note:
The snpslmd platform binaries and accompanying FlexLM utilities
are shipped separately and are not included with this distribution.
You can download these binaries as part of the Synopsys
Common Licensing (SCL) kit from the Synopsys Web Site at:

http://www.synopsys.com/cgi-bin/ASP/sk/smartkeys.cgi

2. Start the license server:

% lmgrd -c license_file_pathname -l logfile_pathname

3. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE
environment variable to point to the license file. For example:

% setenv LM_LICENSE_FILE /u/edatools/vcs/license.dat

or

% setenv SNPSLMD_LICENSE_FILE /u/edatools/vcs/
license.dat

Note:
- You can use SNPSLMD_LICENSE_FILE environment

variable to set licenses explicitly for Synopsys tools.

- If you set the SNPSLMD_LICENSE_FILE environment
variable, then VCS MX ignores the LM_LICENSE_FILE
environment variable.

Note:
A single VCS MX license (under Synopsys’ Common Licensing
Program) enables you to run Verilog-only, VHDL-only, or
mixed-HDL simulations.

1-7

Getting Started

Setting Up Your Environment

To run VCS MX, you need to set the following environment variables:

• $VCS_HOME environment variable

Set the environment variable VCS_HOME to the path where VCS
MX is installed as shown below:

% setenv VCS_HOME installation_path

• $PATH environment variable

Set your UNIX PATH variable to $VCS_HOME/bin as shown
below:

% set path = ($VCS_HOME/bin $path)

OR

% setenv PATH $VCS_HOME/bin:$PATH

• LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment
variable:

Set the license variable LM_LICENSE_FILE or
SNPSLMD_LICENSE_FILE to your license file as shown below:

% setenv LM_LICENSE_FILE Location_to_the_license_file

or

% setenv SNPSLMD_LICENSE_FILE /u/edatools/vcs/
license.dat

Note:
- You can use SNPSLMD_LICENSE_FILE environment

variable to set licenses explicitly for Synopsys tools.

1-8

Getting Started

- If you set the SNPSLMD_LICENSE_FILE environment
variable, then VCS MX ignores the LM_LICENSE_FILE
environment variable.

For additional information on environment variables, see Appendix
A, "VCS MX Environment Variables".

Setting Up Your C Compiler

On Solaris VCS MX requires a C compiler to compile the
intermediate files, and to link the executable file that you simulate.
Solaris does not include a C compiler, therefore, you must purchase
the C compiler for Solaris or use gcc. For Solaris, VCS MX assumes
the C compiler is located in its default location (/usr/ccs/bin).

RHEL32, RHEL64 and IBM RS/6000 AIX platforms all include a C
compiler, and VCS MX assumes the compiler is located in its default
location (/usr/bin).

You can specify a different C compiler using the environment
VCS_CC or the -cc compile-time option.

Creating a synopsys_sim.setup File

VCS MX uses the synopsys_sim.setup file to configure its
environment for VHDL and mixed-HDL designs. This file maps the
VHDL design library names to specific host directories, sets search
paths, and assigns values to simulation control variables.

When you invoke VCS MX, it looks for the synopsys_sim.setup
files in the following three directories with the same order:

• Master setup directory

1-9

Getting Started

The synopsys_sim.setup file in the $VCS_HOME/bin
directory contains default settings for your entire installation. VCS
MX reads this file first.

• Your home directory

VCS MX reads the setup file in your home directory second, if
present. The settings in this file take precedence over the
conflicting settings in your synopsys_sim.setup file in the
master setup directory, and carry over the rest.

• Your run directory

VCS MX reads the setup file in your design directory last. The
settings in this file take precedence over the conflicting settings
in your synopsys_sim.setup file in the master setup directory,
and the synopsys_sim.setup file in your home directory, and
will carry over the rest. You can use this file to customize the
environment for a particular design.

Note:
This is the directory you invoke and run VCS MX from; it is not
the directory where you store or generate your design files.

The key components of the setup file are the name mappings in the
design libraries and the variable assignments. Refer to the following
sections for additional information.

The following rules pertain to setup files:

• Blank lines are ignored.

• Physical directory names are case-sensitive.

• All commented lines begin with two dashes (--).

1-10

Getting Started

• The backslash character (\) is used for line continuation.

The following is a sample synopsys_sim.setup file:

--VCS MX setup file for ASIC
--Mapping default work directory

WORK > DEFAULT
DEFAULT : ./work

--Library Mapping

STATS_PKG : ./stat_work
MEM_PKG : ./mem_work

--Simulation variables

TIMEBASE = ps

The Concept of a Library In VCS MX

When you analyze a design, VCS MX stores the intermediate files in
a design library, also called as a logical library. This logical library is
pointed to a physical library, which is a physical directory in your
UNIX file system. You specify this mapping in the
synopsys_sim.setup file as shown below:

WORK > DEFAULT
DEFAULT : ./worklib

In the above example, WORK is the default logical library and is
mapped to the physical library worklib. With the above setting, by
default VCS MX stores all the intermediate files in the library work,
and it errors out if the library work does not exist in the specified
path.

1-11

Getting Started

Library Name Mapping

For flexibility in library naming, VCS MX allows you to create multiple
logical libraries each one pointing to a different physical library. The
syntax to map a logical library to a physical library is shown below:

logical_name : physical_name

Note:
Logical library names are case insensitive.

The following examples show two logical libraries ALU8 and ALU16
mapped to alu_8bit and alu_16bit physical libraries. During
analysis, you can use the -work option to analyze the files into the
respective libraries.

ALU8 : ./alu_8bit
ALU16 : ./alu_16bit

The VCS MX built-in standard libraries have the following default
name mappings:

IEEE : $VCS_HOME/$ARCH/packages/IEEE/lib
SYNOPSYS : $VCS_HOME/$ARCH/packages/synopsys/lib

In these default mappings, $ARCH is any one of the following -
sparcOS5, sparc64, linux, amd64, rs6000, hp32, suse32, or suse64.

Use these built-in libraries in your design, whenever possible, to get
maximum performance from VCS MX.

1-12

Getting Started

Including Other Setup Files

To include any other setup files, specify the following in the
synopsys_sim.setup file:

OTHERS = [filename]

Note that you cannot override the environment settings using this
file. In addition, files included in this manner can be nested up to 8
levels.

If VCS MX is unable to open the specified file, it exits with the
following error message:

Error: analysis preParsing vhdl-314
 snps_setup fatal error: (Severity SNPS SETUP USER
 FATAL) Cannot open included setup file "user_setup.file"

Using SYNOPSYS_SIM_SETUP Environment Variable

You can also specify a setup file to define VCS MX setup variables.
To do this, set the SYNOPSYS_SIM_SETUP variable to your setup file
as shown below:

% setenv SYNOPSYS_SIM_SETUP my_setup

Note that you can use any name for this setup file; you do not need
to use synopsys_sim.setup.

1-13

Getting Started

The settings in this file take precedence over conflicting settings in
any regular setup file in the current directory, home directory, or
installation directory, and is also searched during simulation. If the
file you specify in the SYNOPSYS_SIM_SETUP variable cannot be
opened, VCS MX issues the following message:

Warning: analysis preParsing vhdl-315
 snps_setup message: (Severity SNPS SETUP USER WARNING)
 Cannot open setup file "synopsys_sim.setup"

Displaying Setup Information

To list and display all current setup information in your
synopsys_sim.setup file, enter the following command at the
UNIX prompt:

% show_setup

The full syntax of the show_setup command is as follows:

% show_setup [-v] [-lib] [-help]

The show_setup command options are:

-v

Displays the version number and exits.

-lib

Displays the library mapping.

-help

Lists the options to show_setup.

1-14

Getting Started

The show_setup command lists setup information in alphabetical
order.

The following example uses show_setup to check if optimizations
are on for event simulation:

% show_setup | grep OPTIMIZE

The result of this command is:

OPTIMIZE = FALSE

Note:
The show_setup command shows the cumulative effect of
reading each of the three possible synopsys_sim.setup files.

Displaying Design Information Analyzed Into a Library

The llib executable displays the following information:

• Entity name, module name, architecture name, configuration
name, location of the source file, VCS MX version, and the
timestamp information as when the file was analyzed.

• All design unit names analyzed in the specified library.

• Architecture name of each entity and package body name of each
package.

By default, llib lists all design units analyzed into the default logical
library.

The syntax of llib is as follows:

% llib [-l] [-r] [-lib path] design_unit_name

1-15

Getting Started

The llib command options are:

-l

Displays entity name, architecture name, configuration name,
location of the source file, VCS MX version and the timestamp for
when the design file was analyzed.

-r

Displays architecture name of each entity, and package body
name of each package.

-lib path

Displays the list of design units, package name, and the
configuration name in the specified logical library.

design_unit_name

design_unit_name can be a module, entity, architecture,
package body, or a configuration.

Example

% llib -l ZERO

 Library: worklibs
 ENTITY ZERO
 Source file : /u/snps/vhdl/zero.vhd
 VCS[MX] Version : Y-2006.06-SP1-5
 Timestamp : Mon Aug 13 22:31:34 2007
 Library (four state only): worklibs

1-16

Getting Started

As illustrated in the example, the design unit ZERO is analyzed into
the worklibs logical library. The llib executable also provides the
location of the source file, VCS MX version used to analyze the
design unit, and the timestamp information.

Using the Simulator

VCS MX uses the following three basic steps to compile, elaborate
and simulate any Verilog, VHDL, and mixed HDL designs:

• Analyzing the Design

• Elaborating the Design

• Simulating the Design

Analyzing the design

VCS MX provides you with the vhdlan and vlogan executables to
analyze your VHDL and Verilog design code. vhdlan/vlogan
analyzes your design and stores the intermediate files in the design
or a work library.

By default, vhdlan is VHDL-93 compliant, and vlogan is Verilog-
95 compliant. However, you can switch to VHDL-87 or to Verilog
2000 syntax by using the option -vhdl87 with vhdlan. For more
information, see VCS MX Flow.

Elaborating the Design

VCS MX provides you with the vcs executable to elaborate the
design. This executable elaborates your design using the
intermediate files in the design or work library, generates the object

1-17

Getting Started

code, and statically links them to generate a binary simulation
executable, simv. For more information, see Chapter 2, "VCS MX
Flow".

Simulating the Design

Simulate your design by executing the binary simulation executable,
simv. For more information, see Chapter 2, "VCS MX Flow".

Basic Usage Model

Analysis

Always analyze Verilog before VHDL.

% vlogan [vlogan_options] file1.v file2.v
% vhdlan [vhdlan_options] file3.vhd file4.vhd

Note:

Specify the VHDL bottommost entity first, then move up in order.

Elaboration

% vcs [compile_options] design_unit

The design_unit can be one of the following:

module

Verilog top module name.

entity

VHDL top entity name.

entity__archname

1-18

Getting Started

Name of the top entity and architecture to be simulated. By
default, archname is the most recently analyzed architecture.

cfgname

Name of the top-level event configuration to be simulated.

Simulation

% simv [run_options]

Default Time Unit and Time Precision

The default time unit for Verilog and SystemVerilog simulation is
1 ns.

The default time precision for Verilog and SystemVerilog simulation
is 1 ns.

For VHDL simulation there is no concept of a default time unit and
delay values, for example, must have a unit name or unit of
measurement, for example:

wait for 10.123123 ns;

The default time precision for an entirely VHDL design is specified
with the TIME_RESOLUTION 1 ns entry in the synopsys_sim.setup
file in the VCS MX installation (see “Creating a synopsys_sim.setup
File”).

The default time precision for the VHDL part of a mixed HDL design
is the smallest or finest of these two:

1-19

Getting Started

• What is specified with the TIME_RESOLUTION entry in the
synopsys_sim.setup file (see “Creating a synopsys_sim.setup
File”)

• The smallest time precision from the Verilog or SystemVerilog part
of the design.

You can override the default time precision with the -time_res
elaboration option.

2-1

VCS MX Flow

2
VCS MX Flow 1

Simulating a design using VCS MX involves three basic steps:

• “Analysis”

• “Elaboration”

• “Simulation”

VCS MX uses the same three steps to compile any design
irrespective of the HDL, HVL, and other supported technologies
used. For information on supported technologies, refer to “Simulator
Support with Technologies” on page 2.

2-2

VCS MX Flow

Analysis

Analysis is the first step to simulate your design. In this phase, you
analyze your VHDL, Verilog, SystemVerilog, and OpenVera files
using vhdlan or vlogan, accordingly. The following includes a few
example command lines to analyze your design files:

Analyzing your VHDL files:
% vhdlan [vhdlan_options] file1.vhd file2.vhd

Analyzing your Verilog files:
% vlogan [vlogan_options] file1.v file2.v

Analyzing your SystemVerilog files:
% vlogan -sverilog [vlogan_options] file1.sv file2.sv
file3.v

For the complete usage model, refer to “Using SystemVerilog” on
page 1.

Analyzing your OpenVera files:
% vlogan -ntb [vlogan_options] file1.vr file2.vr file3.v

For the complete usage model, refer to Chapter 12, "Using
OpenVera Native Testbench".

Analyzing your SystemVerilog and OpenVera files:
% vlogan -sverilog -ntb [vlogan_options] file1.sv file2.vr
file3.v

Note, that you can analyze SystemVerilog files or OpenVera files
along with other Verilog files in the same vlogan command line as
shown in the examples above. Unless it is required, you do not need
to separately analyze these files.

2-3

VCS MX Flow

In the analysis phase, VCS MX checks the design for the syntax
errors. In this phase, VCS MX generates the intermediate files
required for elaboration and saves these files in the design or work
library pointed to by your default logical library. For information on
library mapping, refer to “The Concept of a Library In VCS MX” . You
can tell VCS MX to save these intermediate files in a different library
by using the -work option with the vhdlan or vlogan executables.

Before you analyze your design using vhdlan or vlogan, ensure
that the library mappings are defined in the synopsys_sim.setup
file, and that the specified physical library for the logical library exists.
If the physical directory does not exist, VCS MX exits with an error
message.

VCS MX has vhdlan and vlogan to analyze VHDL and Verilog
design files, respectively. The following sections describe the usage
of these two executables and some of the commonly used options.

Using vhdlan

The vhdlan executable analyzes your VHDL design files and stores
the generated intermediate files in the design or work library. The
syntax for the vhdlan executable is as follows:

% vhdlan [vhdlan_options] VHDL_filename_list

Commonly Used Analysis Options

This section lists some of the commonly used vhdlan options. For
a complete list of options, see the appendix entitled “Elaboration
Options.”

2-4

VCS MX Flow

Command Options
-help

Prints usage information for vhdlan.

-nc

Suppresses the Synopsys copyright message.

-q

Suppresses all vhdlan messages.

-version

Prints the version number of vhdlan and exits without running
analysis.

-full64

Analyzes the design for 64-bit simulation.

-work library

Maps a design library name to the logical library name WORK,
which receives the output of vhdlan. Mapping with this
command-line option overrides any assignment of WORK to
another library name in the setup file.

library can also be a physical path that corresponds to a logical
library name defined in the setup file.

-vhdl87

Lets you analyze non-portable VHDL code that contains object
names that are now VHDL-93 reserved words by default. VCS
MX is VHDL-93 compliant.

2-5

VCS MX Flow

-output outfile

Redirects standard output from VCS MX analysis (that usually
goes to the screen) to the file you specify as outfile.

-xlrm

Enables VHDL features beyond those described in LRM.

-f filename

Specifies a file that contains a list of source files. You should
specify bottom most VHDL entity first, and then move up in order.

-functional_vital

Specifies generating code for functional VITAL simulation mode.

-l filename

Specifies a log file where VCS MX records the analyzer
messages.

-no_functional_vital

Specifies generating code for full-timing VITAL simulation mode.

VHDL_filename_list

Specifies the VHDL source file names to be analyzed. If you do
not provide an extension, .vhd is assumed.

Note:
The maximum identifier name length is 250 for package, package
body and configuration names. The combined length of an entity
name plus architecture name must not exceed 250 characters as
well. All other VHDL identifier names and string literals do not

have a limitation.

2-6

VCS MX Flow

-init_std_logic

You can now initialize all uninitialized VHDL signals, ports and
variables of the data type STD_LOGIC/STD_ULOGIC (scalar/
vector) with a given 9-value. A VHDL signal or variable of this
type can take on the following values – ‘U’, ‘X’, '0', '1', 'Z', 'W', 'L',
'H', '-'.

You can supply the value at vhdlan command line option as
illustrated below:

vhdlan hello.vhd -init_std_logic 0

You can also initialize the value in synopsys_sim_setup file

In the synopsys_sim_setup file, you can set the value to any one
of the nine values to the variable INIT_STD_lOGIC. For
example, INIT_STD_lOGIC=0. To create a
synopsys_sim_setup file, see “Creating a
synopsys_sim.setup File” on page 8.

Using vlogan

Like vhdlan, the vlogan executable analyzes your Verilog design
files and stores the generated intermediate files in the design or work
library. The syntax for the vhdlan executable is as follows:

% vlogan [vlogan_options] Verilog_filename_list

Commonly Used Analysis Options

This section lists some of the commonly used vlogan options. For
a complete list of options, see the appendix entitled “Compile-time
Options”.

2-7

VCS MX Flow

Command Options
-help

Prints usage information for vlogan.

-nc

Suppresses the Synopsys copyright message.

-q

Suppresses all vlogan messages.

-f filename

Specifies a file that contains a list of source files.

Note:
The maximum line length in the specified file filename should
be less than 1024 characters. VCS MX truncates the line
exceeding this limit, and issues a warning message.

-full64

Analyzes the design for 64-bit simulation.

-ignore keyword_argument

Suppresses warning messages depending on which keyword
argument is specified. The keyword arguments are as follows:

unique_checks

Suppresses warning messages about unique if and unique
case statements.

priority_checks

2-8

VCS MX Flow

Suppresses warning messages about priority if and
priority case statements.

all

Suppresses warning messages about unique if, unique
case, priority if and priority case statements.

-l filename

Specifies a log file where VCS MX records the analyzer
messages.

-ntb

Enables the use of the OpenVera testbench language constructs
described in the OpenVera Language Reference Manual: Native
Testbench.

-ntb_define macro

Specifies any OpenVera macro name on the command line. You
can specify multiple macro names using the plus (+) character.

-ntb_filext .ext

Specifies an OpenVera file name extension. You can specify
multiple file name extensions using the plus (+) character.

-ntb_incdir directory_path

Specifies the include directory path for OpenVera files. You can
specify multiple include directories using the plus (+) character.

-ova_file filename

2-9

VCS MX Flow

Identifies filename as an assertion file. It is not required if the
file name ends with .ova. For multiple assertion files, repeat this
option with each file.

-sverilog

Enables the analysis of SystemVerilog source code.

-sv_pragma

Tells VCS MX to compile the SystemVerilog Assertions code that
follows the sv_pragma keyword in a single line or multi-line
comment.

-timescale=time_unit/time_precision

This option enables you to specify the timescale for the source
files that don’t contain ‘timescale compiler directive and precede
the source files that do.

Do not include spaces when specifying the arguments to this
option.

-v library_file

Specifies a Verilog library file to search for module definitions.

-y library_directory

Specifies a Verilog library directory to search for module
definitions.

-work library

2-10

VCS MX Flow

Maps a design library name to the logical library name WORK,
which receives the output of vlogan. Mapping with the command-
line option overrides any assignment of WORK to another library
name in the setup file.

+define+macro

Defines a text macro. Test for this definition in your Verilog source
code using the ‘ifdef compiler directive.

+libext+extension+

Specifies that VCS MX search only for files with the specified file
name extensions in a library directory. You can specify more than
one extension, separating the extensions with the plus (+)
character. For example, +libext+.v+.V+ specifies searching
for files with either the .v or .V extension in a library. The order
in which you add file name extensions to this option does not
specify an order in which VCS MX searches files in the library with
these file name extensions.

+lint=[no]ID|none|all

Enables messages that tell you when your Verilog code contains
something that is bad style, but is often used in designs.

+incdir+directory

Specifies the directories that contain the files you specified with
the ‘include compiler directive. You can specify more that one
directory, separating each path name with the “+” character.

+notimingchecks

Suppresses timing checks in specify blocks.

+nospecify

2-11

VCS MX Flow

Suppresses module path delays and timing checks in specify
blocks.

+nowarnTFMPC

Suppress the Too few module port connections warning
messages during Verilog Compilation.

+systemverilogext+ext

Specifies a file name extension for SystemVerilog source files. If
you use a different file name extension for the SystemVerilog part
of your source code and you use this option, the –sverilog
option has to be omitted.

+verilog2001ext+ext

Specifies a file name extension for Verilog 2001 source files.

+verilog1995ext+ext

Specifies a file name extension for Verilog 1995 files. Using this
option allows you to write Verilog 1995 code that would be invalid
in Verilog 2001 or SystemVerilog code, such as using Verilog 2001
or SystemVerilog keywords, like localparam and logic, as
names.

+warn

Enables or disables warning messages.

Verilog_source_filename

Specifies the name of the Verilog source file.

2-12

VCS MX Flow

Note:
The following options are parse-only options and should be used
only with vlogan:

-ignore unique_checks|priority_checks|all
-ntb_define macro
-ntb_filext .ext
-sv_pragma
-sverilog
-v library_file
-y library_directory
+define+macro
+incdir+[directory]
+lint=[no]ID|none|all
+libext+extension+
+nospecify
+notimingcheck
+nowarnTFMPC
+no_notifier
+systemverilogext+ext
+verilog1995ext+ext
+verilog2001ext+ext
+warn

VCS MX issues an error message and exits, if you use any of the
above options during elaboration.

2-13

VCS MX Flow

Analyzing the Design to Different Libraries

You can analyze your design to different libraries using the
-work option with either the vhdlan or vlogan executable.
However, to use this feaure, you need to map the required logical
libraries to physical libraries. For information on mapping the
libraries, see the section entitled, “Library Name Mapping” .

With the -work option, you can specify either the logical library
name or the physical library name, specified in your
synopsys_sim.setup file as shown below:

% vhdlan -work libname1 VHDL_filename_list
% vlogan -work libname1 Verilog_filename_list

The above command lines analyze your VHDL files and Verilog files,
and saves the intermediate files in the libname1 library. VCS MX
will now be able to resolve all VHDL files having:

library libname1;
use libname1.all;

Elaboration

Elaborating is the second step to simulate your design. In this phase,
using the intermediate files generated during analysis, VCS MX
builds the instance hierarchy and generates a binary executable
simv. This binary executable is later used for simulation.

In this phase, you can choose to elaborate the design either in
optimized mode or in debug mode. Runtime performance of VCS MX
is based on the mode you choose and the level of flexibility required

2-14

VCS MX Flow

during simulation. Synopsys recommends you use full-debug or
partial-debug mode until the design correctness is achieved, and
then switch to optimized mode.

In optimized mode, also called batch mode, VCS MX delivers the
best compile-time and runtime performance for a design. You
typically choose optimized mode to run regressions, or when you do
not require extensive debug capabilities. For more information, see
“Compiling or Elaborating the Design in Optimized Mode” .

You compile the design in debug mode, also called interactive mode,
when you are in the initial phase of your development cycle, or when
you need more debug capabilities or tools to debug the design
issues. In this mode, the performance will not be the best that VCS
MX can deliver. However, using some of the compile-time options,
you can compile your design in full-debug or partial-debug mode to
get maximum performance in debug mode. For more information,
see “Compiling or Elaborating the Design in Debug Mode” .

Using vcs

The syntax to use vcs is shown below:

% vcs [elab_options] [libname.]design_unit

libname

The library name where you analyzed your top module, entity, or
the configuration. If not specified, VCS MX looks for the specified
design_unit in the DEFAULT library specified in the
synopsys_sim.setup file. See “Creating a
synopsys_sim.setup File” for more information.

Here, the design_unit can be one of the following:

2-15

VCS MX Flow

module

Verilog top module name.

entity

VHDL top entity name.

entity__archname

Name of the top entity and architecture to be simulated. By
default, archname is the most recently analyzed architecture.

cfgname

Name of the top-level configuration.

Commonly Used Options

This section lists some of the commonly used vcs options. For a
complete list of options, see the appendix on Compile-Time options.

Options for Help and Documentation
-h or -help

Lists descriptions of the most commonly used VCS MX compile
and runtime options.

-doc

Displays the VCS MX documentation in your system’s default web
browser.

-ID

2-16

VCS MX Flow

Returns useful information such as VCS MX version and build
date, VCS MX compiler version (same as VCS MX), and your
work station name, platform, and host ID (used in licensing).

Options for Licensing
-licqueue

Tells VCS MX to wait for a network license if none is available.

Options for Accessing Verilog Libraries
-lib library1[:library2:library3:...]

Specifies the library search order for unresolved module or entity
definitions.

Options for 64-bit Elaboration
-full64

Enables elaboration and simulation in 64-bit mode.

Option to Specify Elaboration Options in a File
-file filename

Specifies a file containing elaboration options.

Options for Discovery Visual Environment and UCLI
-gui

When used at elaboration time, always starts DVE at runtime.

For information on DVE, see the DVE User Guide. For information
on UCLI, see the UCLI User Guide.

2-17

VCS MX Flow

Options for Starting Simulation Right After Elaboration
-R

Runs the executable file immediately after VCS MX links it
together.

Options for Changing Generics and Parameter Values
-gfile cmdfile

Overrides the default values for design generics or parameters
by using values from the file cmdfile. The cmdfile file is an
include file that contains assign commands targeting design
generics.

For more information on overriding generics and parameters, see
“Overriding Generics and Parameters” .

Options for Controlling Messages
-notice

Enables verbose diagnostic messages.

-q

Quiet mode; suppresses messages such as those about the C
compiler VCS MX is using, the source files VCS MX is parsing,
the top-level modules, or the specified timescale.

-V

Verbose mode; compiles verbosely. The compiler driver program
prints the commands it executes as it runs the C compiler,
assembler, and linker.

Specifying a Log File
-l filename

2-18

VCS MX Flow

Specifies a file where VCS MX records elaboration messages. If
you also enter the -R option, VCS MX records messages from
both elaboration and simulation in the same file.

Simulation

During elaboration, using the intermediate files generated, VCS MX
creates a binary executable, simv. You can use simv to run the
simulation. Based on how you elaborate the design, you can run
your simulation the following ways:

• Interactive mode

• Batch mode

For information on elaborating the design, refer to the “Elaboration”
section.

Interactive Mode

You elaborate your design in interactive mode, also called debug
mode, in the initial phase of your design cycle. In this phase, you
require abilities to debug the design issues using a GUI or through
the command line. To debug using a GUI, you can use the Discovery
Verification Environment (DVE), and to debug through the
command-line interface, you can use the Unified Command-line
Interface (UCLI).

2-19

VCS MX Flow

Note:
To simulate the design in the interactive mode, you must elaborate
the design using the -debug or -debug_all compile-time
options. For information on elaborating the design, refer to the
“Elaboration” section.

Batch Mode

You elaborate your design in batch mode, also called as optimized
mode, when most of your design issues are resolved. In this phase,
you will be more interested to achieve better performance to run
regressions, and with minimum debug abilities.

Note:
The runtime performance reduces if you use -debug or
-debug_all. Use these options only when you require runtime
debug abilities.

The following command line simulates the design in batch mode:

% simv

Commonly Used Runtime Options

Use the following command line to simulate the design:

% executable [runtime_options]

By default, VCS MX generates the binary executable simv.
However, you can use the compile-time option, -o with the vcs
command line to generate the binary executable with the specified
name.

2-20

VCS MX Flow

For a complete list of options, see “Simulation Options” .

3-1

Elaborating the Design

3
Elaborating the Design 1

This chapter describes the following sections:

• “Compiling or Elaborating the Design in Debug Mode”

• “Compiling or Elaborating the Design in Optimized Mode”

• “Key Elaboration Features”

Compiling or Elaborating the Design in Debug Mode

Debug mode, also called interactive mode, is typically used (but not
limited to):

• During your initial phase of the design, when you need to debug
the design using debug tools like DVE, or UCLI.

• If you are using PLIs.

3-2

Elaborating the Design

• If you use the UCLI commands to force a signal, to write into a
registers/nets

VCS MX has the following compile-time options for debug mode:

-debug_pp, -debug, and -debug_all

The following examples show how to compile the design in full and
partial debug modes.

Elaborating the design in partial debug mode

% vcs -debug [compile_options] TOP
Elaborating the design in full debug mode

% vcs -debug_all [compile_options] TOP

For information on DVE or UCLI, see the DVE User Guide and UCLI
User Guide respectively.

Compiling or Elaborating the Design in Optimized Mode

Optimized mode is used when your design is fully-verified for design
correctness, and is ready for regressions. VCS MX runtime
performance is best in this mode when VCS MX optimizes a design.

For more information on performance, refer to the chapter entitled,
Chapter 8, "Performance Tuning".

Note:
The runtime performance reduces if you use the -debug or
-debug_all options. Use these options only when you require
runtime debug capabilities.

3-3

Elaborating the Design

Key Elaboration Features

This section describes the following features in detail with a usage
model and an example:

• “Initializing Verilog Memories and Registers”

• “Overriding Generics and Parameters”

• “Checking for X and Z Values In Conditional Expressions”

• “Cross Module References (XMRs)”

• “VCS MX V2K Configurations and Libmaps”

• “Evaluating the Active Events When Limiting the Exposure of
Race Conditions”

• “Lint Warning Message for Missing ‘endcelldefine”

• “Error/Warning Message Control”

Initializing Verilog Memories and Registers

You can use the following option to initialize all bits of your Verilog
memories and registers:

+vcs+initreg+random

Initializes all state variables (reg data type), registers defined in
sequential UDPs, and memories including MDAs (reg data type)
in the design, to random logic 0 or 1, at time zero.

For more information on +vcs+initreg+random option, see
“Options for Initializing Memories and Registers with Random
Values” .

3-4

Elaborating the Design

Note:
This option allows you to initialize to specific value (0 or 1) or
random value with specific seed at runtime. For more
information on using this option at runtime, see “Options for
Initializing Memories and Registers with Random Values at
Runtime” .

Note:
+vcs+initreg+ options work only for the Verilog portion of the
design.

The +vcs+initreg option initializes regular memories and multi-
dimensional arrays of the reg data type also. For example:

reg [7:0] mem [7:0][15:0];

The +vcs+initreg option does not initialize registers (variables)
and multi-dimensional arrays of any other data type.

To prevent race conditions, avoid the following when you use these
options:

• Assigning initial values to a reg in their declaration when the value
you assign is not the same as the value specified with the
+vcs+initreg option.

For example:

reg [7:0] r1=8’b01010101;

• Assigning values to regs or memory elements at simulation time
0 when the value you assign is not the same as the value specified
with the +vcs+initreg option.

3-5

Elaborating the Design

For example:

initial
begin
mem[1][1]=8’b00000001;

Use Model

Analysis

% vlogan [vlogan_options] file4.v file5.v file6.v
% vhdlan [vhdlan_options] file3.vhd file2.vhd file1.vhd

Note:
Specify the VHDL bottommost entity first, then move up in order.

Elaboration

% vcs +vcs+initreg+random [other_vcs_options] top_cfg/
entity/module

Simulation

% simv +vcs+initreg+0|1|random|<seed> [simv_options]

For information on the +vcs+initreg+0|1|random|<seed>
option, see +vcs+initreg+random and “Options for Initializing
Memories and Registers with Random Values at Runtime” .

The +vcs+initreg feature helps in reducing the amount of time
spent on initialization related issues in gate level simulations. At time
0, all (un-initialized) reg data types get the default value of X which
is an undeterministic and unknown state of the design. This X can
propagate during the simulation and can cause unexpected behavior
in gate level simulations. You can use the +vcs+initreg feature to
initialize all bits of Verilog memories and variables in the design.

3-6

Elaborating the Design

Note:
This feature is targeted to initialize variable data types in gate level
simulations (includes UDP variables). As such, initialization of
variables in RTL constructs such as named blocks, structures, or
in user-defined tasks/ or unctions is not supported.

Overriding Generics and Parameters

VCS MX allows you to override both generic or parameter values in
the design using the compile-time option, -gfile cmd.txt.

Here, cmd.txt is an include file containing assign commands to
override the generic or parameter values. The syntax of this file is as
follows:

assign value generics/parameters

Note:
You can also override generics at runtime. See, "Using DVE".

Using this option, you can override any generic or parameter of the
following datatypes:

• Integer

• Real

• String

You can also specify more than one generic or parameter in the
same line as shown below:

assign 1 g1 g2

For example:

3-7

Elaborating the Design

The usage model to override the default value of a generic "WIDTH"
in your top-level VHDL file to "16", is as follows:

% vhdlan top.vhd mem.vhd
% vcs top -gfile gen.txt
% simv

The include gen.txt file contains:

% cat gen.txt
 assign 16 WIDTH

Similarly, you can use the same assign commands to override the
parameters in the Verilog modules as shown in the following
example:

module top();
parameter filename="mem.txt"
initial
 $display("The filename is %s", filename);
endmodule

You can override the default value of the parameter "filename" in the
above example, to "mem2.txt", as shown below:

% vhdlan top.v
% vcs top -gfile param.txt
% simv

The include param.txt file contains:

% cat param.txt
 assign "mem2.txt" filename

Usage Model

Analysis

% vlogan [vlogan_options] file4.v file5.v

3-8

Elaborating the Design

% vhdlan [vhdlan_options] file3.vhd file2.vhd file1.vhd

Note:
Specify the VHDL bottommost entity first, then move up in order.

Elaboration

% vcs [vcs_options] top_cfg/entity/module -gfile cmd.txt

Simulation

% simv [simv_options]

Checking for X and Z Values In Conditional Expressions

The -xzcheck compile-time option tells VCS MX to display a
warning message when it evaluates a conditional expression and
finds it to have an X or Z value.

A conditional expression is of the following types or statements:

• A conditional or if statement:

if(conditional_exp)
 $display("conditional_exp is true");

• A case statement:

case(conditional_exp)
 1’b1: sig2=1;
 1’b0: sig3=1;
 1’bx: sig4=1;
 1’bz: sig5=1;
endcase

• A statement using the conditional operator:

reg1 = conditional_exp ? 1’b1 : 1’b0;

3-9

Elaborating the Design

The following is an example of the warning message that VCS MX
displays when it evaluates the conditional expression and finds it to
have an X or Z value:

warning ’signal_name’ within scope hier_name in file_name.v:
line_number to x/z at time simulation_time

VCS MX displays this warning every time it evaluates the conditional
expression to have an X or Z value, not just when the signal or
signals in the expression transition to an X or Z value.

VCS MX does not display a warning message when a sub-
expression has the value X or Z, but the conditional expression
evaluates to a 1 or 0 value. For example:

r1 = 1’bz;
r2 = 1’b1;
if ((r1 && r2) || 1’b1)
 r3 = 1;

In this example, the conditional expression always evaluates to a
value of 1. Therefore, VCS MX does not display a warning message.

Enabling the Checking

The -xzcheck compile-time option globally checks all the
conditional expressions in the design and displays a warning
message every time it evaluates a conditional expression to have an
X or Z value. You can suppress or enable these warning messages
on selected modules using $xzcheckoff and $xzcheckon
system tasks. For more details on $xzcheckoff and $xzcheckon
system tasks, see “Checking for X and Z Values in Conditional
Expressions” on page 42.

3-10

Elaborating the Design

The -xzcheck compile-time option has an optional argument to
suppress the warning for glitches evaluating to X or Z value.
Synopsys calls these glitches as false negatives. See “Filtering Out
False Negatives” on page 10.

Filtering Out False Negatives

By default, if a signal in a conditional expression transitions to an X
or Z value and then to 0 or 1 in the same simulation time step, VCS
MX displays the warning.

Example 1

In this example, VCS MX displays the warning message when reg
r1 transitions from 0 to X to 1 during simulation time 1.

Example 3-1 False Negative Example

module test;
reg r1;

initial
begin
r1=1'b0;
#1 r1=1'bx;

#0 r1=1'b1;
end

always @ (r1)
begin
if (r1)
 $display("\n r1 true at %0t\n",$time);
else
 $display("\n r1 false at %0t\n",$time);
end
endmodule

3-11

Elaborating the Design

Example 2

In this example, VCS MX displays the warning message when reg
r1 transitions from 1 to X during simulation time 1.

Example 3-2 False Negative Example

module test;
reg r1;

initial
begin
r1=1'b0;
#1 r1<=1'b1;
r1=1'bx;
end
always @ (r1)
begin
if (r1)
 $display("\n r1 true at %0t\n",$time);
else
 $display("\n r1 false at %0t\n",$time);
end

endmodule

If you consider these warning messages to be false negatives, use
the nofalseneg argument to the -xzcheck option to suppress the
messages.

For example:

% vlogan example.v
% vcs test -xzcheck nofalseneg

If you compile and simulate example1 or example2 with the
-xzcheck elaboration option, but without the nofalseneg
argument, VCS MX displays the following warning about signal r1
transitioning to an X or Z value:

3-12

Elaborating the Design

r1 false at 0
Warning: 'r1' within scope test in source.v: 13 goes to x/
z at time 1

 r1 false at 1

 r1 true at 1

If you compile and simulate the examples shown earlier in this
chapter, Example 1 or Example 2, with the
-xzcheck elaboration option and the nofalseneg argument, VCS
MX does not display the warning message.

Cross Module References (XMRs)

Verilog enables you to access any internal signal from any other
hierarchical block without having to route it through the user
interface.

VHDL does not have the language support to allow you to access
internal signals from any other hierarchical block. Therefore, it is not
possible to either assign or test the value of a signal deep in the
design hierarchy without defining it in a global package, and then
referencing it in a hierarchical block where it is used.

The hdl_xmr procedure (in VHDL code) and $hdl_xmr system
task enables you to access the internal signals in a mixed HDL
design and Verilog only. Therefore, you can handle the signals in the
VHDL database. In a mixed HDL or Verilog only environment, you
can access VHDL or Verilog signals across language boundaries
using this feature.

The hdl_xmr procedure and $hdl_xmr system task work only
when the source and destination objects match in both type and size.

3-13

Elaborating the Design

hdl_xmr Procedure and $hdl_xmr System Task

hdl_xmr procedure and $hdl_xmr system task creates a
permanent bond between the two objects, called source and
destination. Each time an event occurs on the source object, the
destination object is assigned a new value of the source object. It is
important to note that if the destination object has other sources, like
an assignment statement, the last event value (from hdl_xmr/
$hdl_xmr or the assignment statement) is assigned to the
destination object, thus overwriting the previous value.

When an hdl_xmr procedure or a $hdl_xmr system task is
executed, the source and destination objects are bound together
until the end of the simulation. Therefore, it is important that
hdl_xmr/$hdl_xmr calls are specified in the code only once.

Note:
- All these following delimiters are supported. "/", ".", ":" except

for a pure VHDL design where you cannot use “.” as a delimiter.

- For mixed HDL designs, you must use the -debug option for
$hdl_xmr system task to work.

Data Types Supported

hdl_xmr and $hdl_xmr supports the following data types:

• Scalars, vectors, bit selects and part selects (slices) are supported
for both the objects. Global VHDL signals are also supported.

• The following types of VHDL signals are supported with their
corresponding Verilog types;

- Integer

3-14

Elaborating the Design

- Bit and Bit vector

- Enumerated datatypes

- String

- std_logic/std_ulogic/std_logic_vector/std_ulogic_vector

In case of an integer type, a Verilog type of size 32, for example,
reg[31:0], is allowed as a matching type. Similarly for a packed struct
std_logic_vector/std_ulogic_vector is allowed as a matching type.

• The following SystemVerilog datatypes are supported across
VCS MX boundary- shortint, int, longint, byte, bit, logic, reg.

The following table lists the supported SystemVerilog datatypes with
their matching VHDL datatypes.

VHDL Referencing Verilog using hdl_xmr procedure

Syntax

hdl_xmr("source_object" , "destination_object",
[verbosity]);

source_object

Table 3-1 SystemVerilog datatypes with their matching VHDL datatypes

SystemVerilog
Data Types

Integer Integer
Subtype

Bit vector std_logic
vector

std_ulogic
vector

Shortint No No Yes Yes Yes

Int Yes Yes Yes Yes Yes

Longint No No Yes Yes Yes

Bit array Yes Yes Yes Yes Yes

Logic array Yes Yes Yes Yes Yes

Integer Yes Yes Yes Yes Yes

3-15

Elaborating the Design

source_object can be a VHDL signal or a Verilog register or
net. An absolute path or a relative path to the object can be
specified.

Note:
Use an absolute path instead of a relative path, if the source
node resides in VHDL part of the code or if the hierarchical path
has a VHDL layer.

destination_object

destination_object could be a VHDL signal or a verilog
register. An absolute path or a relative path to the object can be
specified.

Note:
Use an absolute path instead of a relative path, if the hierarchical
path contains a VHDL layer. Verilog net type as a destination
object is not supported.

verbosity

Third optional argument to the hdl_xmr call is a verbosity index.
If the argument is not specified then the default value is '0',
otherwise possible integer values are '0' or '1'. Value '0' indicates
no verbosity, and value ‘1’ enables verbosity. If you specify ‘1’,
then every time a value of the source object is copied onto the
destination object, a message is displayed.

Note:
To use the hdl_xmr procedure, you should include the XMR
package in your VHDL source code as shown below:

Library Synopsys;
Use Synopsys.hdl_xmr_pkg.all;

3-16

Elaborating the Design

You can call the hdl_xmr procedure concurrently or within a
process having no sensitivity list and a wait, at the end of the process
block, as shown in the following example:

hdl_xmr(":vh:vl:cout0",":vh:coutin_xmr");
hdl_xmr("/vh/vl/cout0","/vh/in[3]", 1);

Verilog Referencing VHDL objects using $hdl_xmr

Syntax

$hdl_xmr("source_object" , "destination_object",
 [verbosity]);

source_object

source_object could be a vhdl signal or a verilog register or
net. An absolute path or a relative path to the object can be
specified.

Note:
Use absolute path instead of relative path, if the source node
resides in VHDL part of the code or if the hierarchical path has
a VHDL layer.

destination_object

destination_object could be a vhdl signal or a verilog
register. An absolute path or a relative path to the object can be
specified.

3-17

Elaborating the Design

Note:
Use absolute path instead of relative path, if the hierarchical path
contains a VHDL layer. Verilog net type as a destination object is
not supported.

verbosity

Third optional argument to the hdl_xmr call is a verbosity index.
If the argument is not specified then the default value is '0',
otherwise possible integer values are '0' or '1'. Value '0' indicates
no verbosity. When verbosity is desired, that is '1' is the third
argument, then every time when the value of the source object is
copied on to the destination object a message is displayed.

You can use $hdl_xmr system task as shown in the following
example:

initial begin
$hdl_xmr("vl.vh.clk", "vl.vclk");
$hdl_xmr("/vl/vh/reset_n", "/vl/vrst_n[0]", 0);
$hdl_xmr("vl:vh:state[3:0]", "vl:state[4:7]", 1);
end

Usage Model

Analysis

% vlogan [vlogan_options] file4.v file5.v file6.v
% vhdlan [vhdlan_options] file3.vhd file2.vhd file1.vhd

Note:
Specify the VHDL bottom most entity first, then move up in order.

Elaboration

% vcs [vcs_options] -debug top_cfg/entity/module

3-18

Elaborating the Design

Simulation

% simv [simv_options]

$hdl_xmr Support for VHDL Variables

VCS MX supports the usage of VHDL objects of type, variable, in the
$hdl_xmr system task. This support enables you to use VHDL
variables, as source or destination, in $hdl_xmr (not hdl_xmr in
VHDL side) call.

Use Model

 In Verilog source, you should call $hdl_xmr as:

$hdl_xmr (<”source variable”>, <”destination
signal”>, <verbosity_value>)

$hdl_xmr (<”source signal”>, <”destination
variable”>, <verbosity_value>)

You can specify the source variable and the destination variable in a
relative or absolute path. The last integer value, verbosity_value, is
optional. It is only used for verbosity. The variable object is the VHDL
object.

To enable the support for $hdl_xmr with VHDL variables, you must
use one of the following compile-time options:

• vcs <top> -debug -vdbg_watch

• vcs <top> -debug_all

3-19

Elaborating the Design

Note:
- In VHDL variables, you must pass the -vdbg_watch option

along with the -debug option. If you are using the
-debug_all option, then there is no need to pass the
-vdbg_watch option.

- For mixed HDL designs, you must use the -debug option for
$hdl_xmr system task to work.

Datatype Support and Usage Examples

Table 3-2 Datatype Support and Usage Examples

Verilog Data Types VHDL Data Types for Variable

reg bit/std_logic/std_ulogic

vhdl record elements.Datatypes for
record elements can be bit/ std_logic /
std_ulogic

3-20

Elaborating the Design

module tb;

reg r1,r2;
reg [0:3] r3,r4;

leaf inst1();

initial
begin
$hdl_xmr("inst1.r1","r1",1);
$hdl_xmr("r2”,inst1.r2",1);
$hdl_xmr("inst1.r1","r3[1:1]",1);
$hdl_xmr("r4[1:1]”,inst1.r2",1);
$hdl_xmr("inst1.rec.r1","r1",1);
$hdl_xmr("r2”,inst1.rec.r2",1);
$hdl_xmr("inst1.rec.r1","r3[1:1]",1)
;
$hdl_xmr("r4[1:1]”,inst1.rec.r2",1);
end

endmodule

entity leaf is
end leaf;

architecture beh of leaf is

type pkt is
record
r1 : bit;
r2 : std_logic;
end record;

shared variable rec : pkt ;
shared variable r1 : std_logic ;
shared variable r2 : std_ulogic
;

begin
end;

reg vector bit_vector/std_logic_vector/signed/
unsigned/integer/natural

vhdl record elements. Datatypes for
record elements can be bit_vector/
std_logic_vector/signed/ unsigned/
integer/natural

Verilog Data Types VHDL Data Types for Variable

3-21

Elaborating the Design

module tb;

reg [31:0] r1,r2,r3,r4;

leaf inst1();

initial
begin
$hdl_xmr("inst1.r1","r1",1);
$hdl_xmr("r2”,inst1.r2",1);
$hdl_xmr("inst1.r1[15:0]","r3[31:16]
",1);
$hdl_xmr("r4[15:0]”,inst1.r2[15:0]",
1);
$hdl_xmr("inst1.rec.r1","r1",1);
$hdl_xmr("r2”,inst1.rec.r2",1);
$hdl_xmr("r4[3:0]”,inst1.rec.r2[3:0]
",1);
end

endmodule

entity leaf is
end leaf;

architecture beh of leaf is

type pkt is
record
r1 : natural;
r2 : std_logic_vector(31 downto
0);
end record;

shared variable rec : pkt;
shared variable r1,r2 :
std_logic_vector(31 downto 0):
begin
end;

reg mda vhdl mda. Base datatype for array
elements can be bit/std_logic/
std_ulogic/bit_vector/

std_logic_vector/integer/natural

Verilog Data Types VHDL Data Types for Variable

3-22

Elaborating the Design

module tb;

reg [31:0] r1,r2,r3 [0:7]

reg [31:0] r4;

leaf inst1();

initial
begin
$hdl_xmr("inst1.r1","r1",1);
$hdl_xmr("r2”,inst1.r2",1);
$hdl_xmr("inst1.r3","r3",1);
$hdl_xmr("r4”,inst1.r2[1]",1);
$hdl_xmr("inst1.r1[2]","r4",1);
$hdl_xmr("r2[2]”,inst1.r2[2]",1);
end

endmodule

entity leaf is
end leaf;

architecture beh of leaf is

type ram is array(0 to 7) of
std_logic_vector(31 downto 0);
type ram1 is array(0 to 7) of
bit_vector(31 downto 0);
type ram2 is array(0 to 7) of
natural;

shared variable r1 : ram;
shared variable r2 : ram1;
shared variable r3 : ram2;

begin
end;

real

real

real mda

Note : Verilog real vectors are not supported.

vhdl real

real field of vhdl record

real mda

Verilog Data Types VHDL Data Types for Variable

3-23

Elaborating the Design

module tb;

real r1 [0:7];
real r2;

leaf inst1();

initial
begin
$hdl_xmr("inst1.r1","r1",1);
$hdl_xmr("r2”,inst1.r2",1);
$hdl_xmr("r2”,inst1.r1[1]",1);
$hdl_xmr("inst1.r1[1]","r2",1);

end

endmodule

entity leaf is
end leaf;

architecture beh of leaf is

type ram is array(0 to 7) of
real;

shared variable r1 : ram;
shared variable r2 : real;

begin
end;

packed struct

array of packed struct

Data types for elements of packed struct :

reg/logic

reg/logic vector

real

vhdl record

array of vhdl records

Data types for elements of vhdl record:

bit/std_logic/std_ulogic

bit_vector/std_[u]logic_vector/signed/
unsigned/natural/integer

real

Verilog Data Types VHDL Data Types for Variable

3-24

Elaborating the Design

VCS MX V2K Configurations and Libmaps

Library mapping files are an alternative to the defacto standard way
of specifying Verilog library directories and files with the -v, -y, and
+libext+ext analysisoptions and the ‘uselib compiler
directive.

Configurations use the contents of library mapping files to specify
what source code to use to resolve instances in other parts of your
source code.

module tb;

typedef struct packed {reg [31:0] t
; reg [15:0] b;} st;

st r1,r2;
st r3 [0:1];

leaf inst1();

initial
begin
$hdl_xmr("r2","inst1.r2",1);
$hdl_xmr("inst1.r1","r1",1);
$hdl_xmr("inst1.r3","r3",1);
$hdl_xmr("inst1.r3[1]","r3[1]",1);
$hdl_xmr("inst1.r3[0]","r1",1);
$hdl_xmr("r2","inst1.r3[1]");
end

endmodule

entity leaf is
end leaf;

architecture beh of leaf is

type rec is
record
a1 : integer ;
a2 : bit_vector(15 downto 0);
end record;

shared variable r1,r2 : rec;

type arr is array(0 to 1) of rec;
shared variable r3 : arr;

begin
end beh;

Verilog Data Types VHDL Data Types for Variable

3-25

Elaborating the Design

Library mapping and configurations are described in Std 1364-2001
IEEE Verilog Hardware Description Language. There is additional
information on SystemVerilog in Std 1800-2009 IEEE Standard for
SystemVerilog - Unified Hardware Design, Specification, and
Verification Language.

It specifies that SystemVerilog interfaces can be assigned to logical
libraries.

Library Mapping Files

A library mapping file enables you to specify logical libraries and
assign source files to these libraries. You can specify one or more
logical libraries in the library mapping file. If you specify more than
one logical library, you are also specifying the search order VCS MX
uses to resolve instances in your design.

The following is an example of the contents of a library mapping file:

library lib1 /net/design1/design1_1/*.v;
library lib2 /net/design1/design1_2/*.v;

Note:
Path names can be absolute or relative to the current directory
that contains the library mapping file.

In this example library mapping file, there are two logical libraries.
VCS MX searches the source code assigned to lib1 first to resolve
module instances (or user-defined primitive or SystemVerilog
interface instances) because that logical library is listed first in the
library mapping file.

3-26

Elaborating the Design

When you use a library mapping file, source files that are not
assigned to a logical library in this file are assigned to the default
logical library named work.

You specify the library mapping file with the -libmap during
analysis.

Resolving ‘include Compiler Directives

The source file in a logical library might include the ‘include
compiler directive. If so, you can include the -incdir option on the
line in the library mapping file that declares the logical library, for
example:

library gatelib /net/design1/gatelib/*.v -incdir /
net/
design1/spec1lib, /net/design1/spec2lib;

Note:
The -incdir option specified in the library mapping file overrides
the +incdir option specified in the VCS command line.

Configurations

Verilog 2001 configurations are sets of rules that specify what source
code is used for particular instances.

Verilog 2001 introduces the concept of configurations and it also
introduces the concept of cells. A cell is like a VHDL design unit. A
module definition is a type of cell, as is a user-defined primitive.
Similarly, a configuration is also a cell. A SystemVerilog interface and
testbench program block are also types of cells.

Configurations do the following:

3-27

Elaborating the Design

• Specify a library search order for resolving cell instances (as does
a library mapping file)

• Specifies overrides to the logical library search order for specified
instances

• Specifies overrides to the logical library search order for all
instances of specified cells

You can define a configuration in a library mapping file or in any type
of Verilog source file outside the module definition as shown in the
Example on page 30.

Configurations can be mapped to a logical library just like any other
type of cell.

Configuration Syntax

A configuration contains the following statements:

config config_identifier;
design [library_identifier.]cell_identifier;
config_rule_statement;
endconfig

Where:

config

Is the keyword that begins a configuration.

config_identifier

Is the name you enter for the configuration.

design

Is the keyword that starts a design statement for specifying the
top of the design.

3-28

Elaborating the Design

[library_identifier.]cell_identifier;

Specifies the top-level module (or top-level modules) in the design
and the logical library for this module (modules).

config_rule_statement

Zero, one, or more of the following clauses: default, instance,
or cell.

endconfig

Is the keyword that ends a configuration.

The default Clause

The default clause specifies the logical libraries in which to search
to resolve a default cell instance. A default cell instance is an
instance in the design that is not specified in a subsequent
instance or cell clause in the configuration.

You specify these libraries with the liblist keyword. The following
is an example of a default clause:

default liblist lib1 lib2;

This default clause specifies resolving default instances in the
logical libraries names lib1 and lib 2.

Note:
- Do not enter a comma (,) between logical libraries.

- The default logical library work, if not listed in the list of logical
libraries, is appended to the list of logical libraries and VCS MX
searches the source files in work last.

3-29

Elaborating the Design

The instance Clause

The instance clause specifies something about a specific
instance. What it specifies depends on the use of the liblist or
use keywords:

liblist

Specifies the logical libraries to search to resolve the instance.

use

Specifies that the instance is an instance of the specified cell in
the specified logical library.

The following are examples of instance clauses:

instance top.dev1 liblist lib1 lib2;

This instance clause tells VCS MX to resolve instance top.dev1
with the cells assigned to logical libraries lib1 and lib2;

instance top.dev1.gm1 use lib2.gizmult;

This instance clause tells VCS MX that top.dev1.gm1 is an
instance of the cell named gizmult in logical library lib2.

The cell Clause

A cell clause is similar to an instance clause except that it
specifies something about all instances of a cell definition instead of
specifying something about a particular instance. What it specifies
depends on the use of the liblist or use keywords:

liblist

3-30

Elaborating the Design

Specifies the logical libraries to search to resolve all instances of
the cell.

use

The specified cell’s definition is in the specified library.

Usage Model

Analysis

% vlogan -libmap libmap.v [vlogan_options] file1.v \
 file2.v
% vhdlan [vhdlan_options] file3.vhd file2.vhd file1.vhd

Note:
Specify the VHDL bottommost entity first, then move up in order.

Elaboration

% vcs [vcs_options] top_cfg/entity/config

Simulation

% simv [sim_options]

Example

A design can have more than one configuration. You can, for
example, define a configuration that specifies the source code you
use in particular instances in a subhierarchy, then you can define a
configuration for a higher level of the design.

For example, you have a design with VHDL-top design with the top
entity as "top" instantiating a Verilog-top module "sub_top". This
Verilog module "sub_top" further instantiates a VHDL entity "sub1"
and the VHDL entity "sub1" instantiates VHDL entities, "sub2"
"sub3" as shown below:

3-31

Elaborating the Design

Figure 3-1

Now suppose, you have the Verilog version of the entities "sub1"
and "sub2" and wish to compile and simulate the design with Verilog
version of "sub1" and VHDL version of "sub2". You can achieve this
by defining configuration blocks in the Verilog source file outside the
module definition or in a separate file as shown below:

To bind the Verilog version of "sub1", define a configuration block in
top.v (outside the module definition) as shown below:

//---top.v---
Module sub_top (...);
u_sub1 sub1 (...;
endmodule

config top_cfg;
 design work.top;
 instance top.u_sub1 use work.sub1_cfg:config
endconfig

or in a separate file as shown below:

config top_cfg;
 design work.top;
 instance top.u_sub1 use work.sub1_cfg:config

sub_top (Verilog)

sub1 (VHDL)

sub3 (VHDL)sub2 (VHDL)

top (Verilog)

3-32

Elaborating the Design

endconfig

To bind the VHDL version of "sub2", define a configuration block in
sub1.v (outside the module definition) as shown below:

//---sub1.v---
Module sub1(...);
u_sub2 sub2 (...);
u_sub3 sub3 (...);
endmodule

config sub1_cfg;
 design work.sub1;
 instance sub1.u_sub2 use work.CFG_SUB2_BEH:config
endconfig

or in a separate file as shown below:

config sub1_cfg;
 design work.sub1;
 instance sub1.u_sub2 use work.CFG_SUB2_BEH:config
endconfig

The VHDL files sub2.vhd and sub3.vhd are as shown below:

---Sub2.vhd---
Entity SUB2 is
 Port (...);
End SUB2;

Architecture BEH of SUB2 is
Begin
 Process
 ...
 End process;
End BEH;

Configuration work.CFG_SUB2_BEH of SUB2 is
 For BEH

3-33

Elaborating the Design

 End for;
End CFG_SUB2_BEH;
---Sub3.vhd---
Entity SUB3 is
 Port (...);
End SUB3;
Architecture BEH of SUB3 is
Begin
 Process
 ...
 End process;
End BEH;

Configuration work.CFG_SUB3_BEH of SUB3 is
 For BEH

 End for;
End CFG_SUB3_BEH;

The usage model for the above example is shown below:

Analysis

% vlogan top.v sub1.v -libmap libmap.v

% vhdlan sub2.vhd sub3.vhd

Note:
Specify the VHDL bottommost entity first, then move up in order.

Elaboration

% vcs top

Simulation

% simv

Supported Features

VCS MX V2K configuration supports the following features:

3-34

Elaborating the Design

• Verilog configurations in MX design can configure Verilog
instances and boundary VHDL instances (that is, VHDL entity
instantiations in a Verilog module). However, the Verilog
configuration cannot configure any sub tree below the VHDL
instance in a Verilog module. To configure the sub tree below the
boundary VHDL instances, a separate verilog configuration must
be instantiated in the VHDL design unit.

• Supports direct or component instantiation. It also supports
Verilog configuration specification within VHDL.

• The instance resolution happens based on the resolution rules
applicable for the instantiating unit. For example, if the unit is in
Verilog, then Verilog rules apply, or if the unit is in VHDL, then
VHDL rules apply.

• VHDL design can have multiple Verilog instances with same
module name, but with different implementations. They should be
analyzed into different logical libraries.

• VHDL design can instantiate Verilog configuration like VHDL
configuration. However, v2k config and the Verilog module that it
is configuring must be analyzed in same logical library as per
parent VHDL rules.

• All config rules in Verilog configuration for binding instances are
supported.

• While resolving v2k config, the library resolution happens as per
the rules mentioned in the v2k LRM section 13.3.1.5. The library
order in the synopsys_sim.setup file for searching the Verilog
or VHDL cell will be ignored.

Limitations of Configurations

In the current implementation V2K configurations have the following
limitations:

3-35

Elaborating the Design

• Verilog configuration cannot have VHDL dut in the design
statement.

• Verilog configurations cannot configure pure VHDL design.

• The hierarchical path in the instance based rule of v2k config
cannot go through the VHDL instance. The hierarchical path
should be pure Verilog with target Verilog or VHDL instance.

• Direct instantiation of the Verilog config inside a VHDL generate
statement is not supported.

• The SystemC with Verilog configurations is not supported for
VHDL top design topology.

• Separate compile flow is not supported with Verilog configuration
used in MX design.

• Array of instances is not supported.

Using -liblist Option

You can specify the -liblist option at elaboration time as follows:

 -liblist logic_lib1+logic_lib2+

It specifies the library search order for unresolved module or entity
definitions. If a library is listed only in the synopsys_sim.setup
file, and not after -liblist, then it will not be searched.

In the absence of V2K config, -liblist passed to vcs restricts the
search for module definition only to the libraries passed along with
-liblist. VCS won't search the synopsys_sim.setup libraries.

In the following example, –liblist library L2 is used to find the
instance top.l1.l2.

3-36

Elaborating the Design

Example

cat level1.v

module level1;
 level2 l2();
 initial $display("%l %m level1 (design)");

endmodule

cat file.v

module level1;

 level2 l2();

 initial $display("%l %m level1 (library)");

endmodule

module level2;
 initial $display("%l %m level2 (library)");
 level3 l3();
endmodule

cat file1.v

module level3;

 initial $display("%l %m level3 (library)");

endmodule

cat dummy.v

module dummy;
 level1 l();
endmodule

3-37

Elaborating the Design

cat dummy1.v

module dummy;
 level3 l();
endmodule

cat top.v

module top;

 level1 l1();

endmodule

cat topcfg.v

config topcfg;
 design L1.top;
 instance top.l1 liblist L3;
 default liblist L2 L1;
endconfig

cat synopsys_sim.setup
WORK > DEFAULT
DEFAULT : ./work
L1 : ./lib1
L2 : ./lib2
L3 : ./lib3

cat run

vlogan -sverilog level1.v -work L3
vlogan -sverilog dummy1.v -v file1.v -work L3
vlogan -sverilog dummy.v -v file.v -work L2
vlogan -sverilog file1.v -work L2

3-38

Elaborating the Design

vlogan -sverilog top.v -work L1
vlogan -sverilog topcfg.v -work L1
vcs L1.topcfg -config_verbose -libmap_verbose -liblist L2

Evaluating the Active Events When Limiting the
Exposure of Race Conditions

VCS MX uses the +evalorder option to evaluate the active events
when limiting the exposure of race conditions present in the design.

VCS MX divides the active events in the following categories:

• Combinational events: evaluates combinational logic such as
gates, continuous assigns, and combinational UDPs.

• Behavioral events: evaluates behavioral logic such as always
blocks, initial blocks, tasks, etc.

VCS MX first evaluates all the events in the combinational queue,
and evaluates the events in the behavioral queue. If the behavioral
events trigger more combinational events, VCS MX evaluates them
only after the events in the behavioral queue are evaluated. This
masks the race conditions happening at the boundaries of the
combinational and behavioral parts of the design.

In this example, VCS MX without the +evalorder option will
process the continuous assign statement after the statement q = 0
or add it to the active events queue for later processing. Therefore,
$display will show either 0 or X as the value of p.

module eval();
wire p;
reg q;
 assign p = q;
 initial
 begin

3-39

Elaborating the Design

 #1 q = 0;
 $display(“Value of p is %b”, p);
 end
endmodule

With the +evalorder option, VCS MX changes the scheduling of
the continuous assignment to happen after all events in the initial
block are done. Therefore, $display will always display the
previous value of p, which is X.

Lint Warning Message for Missing ‘endcelldefine

You can tell VCS MX to display a lint warning message if your Verilog
or SystemVerilog code contains a ‘celldefine compiler directive
without a corresponding ‘endcelldefine compiler directive and
vice versa.

You enable this warning message with the +lint=CDUB or VCS MX
vlogan command line option. The CDUB argument stands for
“compiler directives unbalanced.”

The examples in this section show the warning message and the
source code that results in its display.

Example 3-3 Source Code with Missing ‘endcelldefine

`celldefine
module mod;
endmodule

In this example there is no corresponding ‘endcelldefine
compiler directive.

In VCS MX two-step flow, if you enter the following vcs command
line:

3-40

Elaborating the Design

vcs exp1.v +lint=CDUB

VCS MX displays the following Lint warning message:

Lint-[CDUB] Compiler directive unbalanced
exp1.v, 1
 Unbalanced compiler directive is detected : `celldefine
 has no matching `endcelldefine.
 Please make sure that all directives are balanced.

In VCS MX, vlogan also displays this lint warning message when you
enter the following command line:

vlogan exp1.v +lint=CDUB

The source code in Example 3-4 does not display this warning
message when you include the +lint=CDUB.

Example 3-4 Source Code with ‘celldefine and ‘endcelldefine

`celldefine
module mod;
endmodule
`endcelldefine

It doesn’t display the warning message because there is an
‘endcelldefine compiler directive after the ‘celldefine
compiler directive in the source code.

Instead of the ‘endcelldefine compiler directive you can
substitute the ‘resetall compiler directive, as shown in Example
3-5.

Example 3-5 Source Code with ‘celldefine and ‘resetall

`celldefine
module mod;
endmodule

3-41

Elaborating the Design

`resetall

The source code in both Example 3-4 and Example 3-5 do not result
in the warning message when you include the +lint=CDUB option.

Also with the +lint=CDUB option, if your source code contains an
‘endcelldefine compiler directive without the preceding and
corresponding ‘celldefine compiler directive, you see a similar
warning message.

Example 3-6 ‘endcelldefine Without a Preceding and Corresponding
‘celldefine

module mod;
endmodule
`endcelldefine

With the +lint=CDUB option, this source code results in the
following lint warning message:

Lint-[CDUB] Compiler directive unbalanced
exp6.v, 3
 Unbalanced compiler directive is detected : ̀ endcelldefine
 has no matching `celldefine.
 Please make sure that all directives are balanced.

With the +lint=CDUB option, it is not just that the number of
‘endcelldefine compiler directives must be equal to the number
of ‘celldefine compiler directives. The ‘endcelldefine
compiler directive must follow the ‘celldefine compiler directive
before there is another ‘celldefine compiler directive.

Example 3-7 Equal Number of ‘celldefine and ‘endcelldefine But Not in the
Required Sequence

`celldefine \\ line 1
module mod;
endmodule

3-42

Elaborating the Design

`celldefine
module schmodule;
endmodule

`endcelldefine

`endcelldefine \\ line 11

In Example 3-7 the number of ‘celldefine compiler directives
matches the number of ‘endcelldefine compiler directives, but
they are not in a corresponding sequence, and so result in the
following lint warning messages:

Lint-[CDUB] Compiler directive unbalanced
exp5.v, 1
 Unbalanced compiler directive is detected : `celldefine
 has no matching `endcelldefine.
 Please make sure that all directives are balanced.

Lint-[CDUB] Compiler directive unbalanced
exp5.v, 11
 Unbalanced compiler directive is detected : ̀ endcelldefine
 has no matching `celldefine.
 Please make sure that all directives are balanced.

Limitation

The ‘celldefine/‘endcelldefine compiler directives must be
matched serially. Recursive ‘celldefine/‘endcelldefine
directives are not supported with the +lint=CDUB option and
keyword argument, for example:

Example 3-8 Recursive ‘celldefine/‘endcelldefine compiler directives

‘celldefine
‘celldefine
module dev (...,...);
.

3-43

Elaborating the Design

.

.
endmodule
‘endcelldefine
‘endcelldefine

Example 3-8 shows redundant and unnecessary ‘celldefine and
‘endcelldefine compiler directives, but does not prevent
compilation. The +lint=CDUB option and keyword argument
triggers the Lint compiler directives unbalanced message when VCS
MX reads another ‘celldefine directive before reading an
‘endcelldefine directive,

Error/Warning Message Control

This release includes the new -error and -suppress options, and
revises the +lint and +warn options, to control error and warning
messages. With them you can:

• disable the display of any lint, warning or error messages

• disable the display of specific messages

• limit the display of specific messages to a maximum number that
you specify

See “Obsolete Compile-Time Options for Controlling Messages” for
the options they replace.

To control the display of specific messages you will need the
message ID. A messages ID is the character string in a messages
between the square brackets [], as shown in Figure 3-2.

3-44

Elaborating the Design

Figure 3-2 Message IDs

The message ID in Figure 3-2 is MFACF.

The new compile-time options for controlling messages and their
syntax are as follows:

-error=[no]message_ID[:max_number],...|none|all

-error=all,noWarn_ID|noLint_ID

+warn=[no]message_ID[:max_number],...|none|all

+lint=[no]message_ID[:max_number],...|none|all

-suppress[=message_ID,...]

These compile-time options and their arguments are described in the
following sections:

• “Controlling Error Messages”

• “Controlling Lint Messages”

• “Suppressing Lint, Warning, and Error Messages”

• “Error Conditions and Messages That Cannot Be Disabled”

• “Using Message Control Options Together”

Warning-[MFACF] Missing flag argument
 Argument for flag 'verboseLevel' is missing in config statement, it will be
 ignored.
 Config file : error_id0_id1.cfg, starting at line 4.

message ID

3-45

Elaborating the Design

Controlling Error Messages

You can control error messages with the -error option in the
following ways:

• Limit the number of occurrences of an error message to a number
you specify. You do so by specifying the message ID as an
argument to the -error option along with the specified maximum
number of occurrences.

• Disable the display of all error messages which are downgradable
with the none argument .

• Enables the display of all error/warnings/lint messages with the
all argument to the -error option. Warning/line will be
upgraded to error and will be displayed.

Upgrading Lint and Warning Messages to Error Messages

If you enter the message ID for a warning or lint message as an
argument to the -error option, VCS MX upgrades the condition
causing the warning or lint message to an error condition and an
error message.

Controlling Warning Messages

Like error messages, you can control warning messages with the
+warn option in the following ways:

• Limit the number of occurrences of a warning message to a
number you specify. You do so by specifying the message ID as
an argument to the +warn option along with the specified
maximum number of occurrences.

3-46

Elaborating the Design

• Disable the display of a particular warning message by entering
the keyword no as an argument and appending to this keyword
the message ID, for example:

+warn=noTFIPC

This option disables the display of the error message with the
TFIPC message ID.

Important:
Do not enter a maximum number of occurrences, even if 0, if also
appending the no keyword to the message ID.

• Disable the display of all warning messages with the none
argument to the +warn option.

• Enable the display of all warning messages with the all argument
to the +warn option.

Upgrading Lint Messages to Warning Messages

Important:
- All lint/warning messages are suppressable. But only some of

the error messages can be downgraded or suppressed.

- You cannot downgrade all error conditions and messages to a
warning condition and message. Entering a message ID for an
error message that can’t be downgraded as an argument to the
+warn option results in VCS MX ignoring the message ID and
displaying a warning message similar to the following:

Warning-[CSMC] Cannot set message count
 Failed to set display count for message id 'TFAFTC'
because cannot set count
 for non-warning ID in '+warn' switch.
 Specified count is ignored.

3-47

Elaborating the Design

For an example of this warning see “Example 4: An Error Message
That Can’t Be Controlled” .

This warning message was in response to the following +warn
option:

+warn=TFAFTC:2

When TFATFC is the ID for the following error message:

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 9
"wrFld4(.bus(1));"
 The above function/task call is not done with sufficient
arguments.

Controlling Lint Messages

Like error and warning messages, you can control lint messages
with the +lint option in the following ways:

• You can limit the number of occurrences of a lint message to a
number you specify. You do so by specifying the message ID as
an argument to the +lint option along with the specified
maximum number of occurrences.

You can enter a maximum of 0 to disable any display of the
message specified by the message ID, see “Example 2: Reducing
the number of lint messages” .

Important:
Do not enter a maximum number of occurrences, even if 0, if also
appending the no keyword to the message ID.

• Disable the display of all lint messages with the none argument
to the +lint option.

3-48

Elaborating the Design

• Enable the display of all lint messages with the all argument to
the +lint option.

Important:

You cannot downgrade an error or warning condition and message
to a lint condition and message.

Suppressing Lint, Warning, and Error Messages

The -suppress option suppresses lint, warning, and error
messages. The -supress option with no argument should
suppress all warnings/lint and downgradable error messages

If you enter a message ID argument, and the message is
downgradable, VCS MX does not display that message. You can
enter the ID for any lint, warning, or downgradable error message.

The -suppress option gives you a message control option that
takes a higher precedence that the -error, +warn, or +lint
options when you enter more that one of these options, see “Using
Message Control Options Together” .

Error Conditions and Messages That Cannot Be
Disabled

Some error conditions always terminate compilation without creating
an executable and cannot be controlled or suppressed by the
-error or -suppress options.

• syntax errors

• fatal error messages, those from error conditions that immediately
halt compilation

3-49

Elaborating the Design

Using Message Control Options Together

If you are entering more than one of these message control options,
you will need to know their precedence when used together. The
order of precedence is as follows, from highest to lowest:

1. The -suppress option with no arguments, suppresses all
possible messages and cannot be overridden by another
message control option.

2. The none argument has a higher precedence than specifying all
or a message ID.

3. The order on the vcs command line

The following options and arguments have the same intrinsic
precedence:

Because they have equal intrinsic precedence, the order on the vcs
command line determines relative precedence, and so the first of
these options on the command line has the least precedence and the
last of these has the most.

Message Control Examples

The following examples show how to use these options.

-suppress=messageID

-error=messageID:max -error=all

 +warn=essageID:max +warn=all

 +lint=essageID:max +lint=all

3-50

Elaborating the Design

Example 1: Reducing the number of warning messages

If we have small system verilog source file named as
diff_clk_wosvaext.sv with the following content,

1 module top #(Pa = 1);
2 bit a , c, clk;
3 wand b1;
4 wand c1;
5
6 clocking cb2 @(posedge clk);
7 endclocking
8
9 sequence S2();
10 @(cb2)
$past($past(a,,$stable($isunknown(1'bx),@(negedge
clk)),@(posedge clk)),,$sampled(a),@(negedge clk));
11 endsequence
12
13 property P1();
14 @(cb2 , posedge clk iff($stable(b1,@(posedge clk))))
$stable($past(b1,,,@(posedge clk)),@(negedge clk));
15 endproperty
16
17 A1: assume property (@(S2) S2);
18 A2: assume property (@(S2) P1());
19 A3: assume property (@(cb2) disable iff($stable(c1)) P1);
20 A4: assume property (@(cb2) disable
iff($sampled($past(c1,,,@(clk)))) first_match (S2));
21
22 sequence S3();
23 @(cb2) S2() ##1 @(negedge clk) $stable(b1 || $sampled(c1),
@(posedge clk));
24 endsequence
25
26 A5: cover property (@(S2) S3);
27 initial begin
28 a = 1;
29 repeat (20)
30 #5 clk = !clk;
31 end
32 endmodule

3-51

Elaborating the Design

If we compile the above system Verilog file with following command,

vcs -sverilog diff_clk_wosvaext.sv

VCS MX displays following warning messages:

Warning-[SVA-LCDNAWPSC] Lead and property/sequence clocks
differ
diff_clk_wosvaext.sv, 17
top
 Leading clock of expression does not agree with property/
sequence clock.
 Leading clock will be applied.
 property/sequence clock: S2
 leading clock: posedge clk

Warning-[SVA-LCDNAWPSC] Lead and property/sequence clocks
differ
diff_clk_wosvaext.sv, 18
top
 Leading clock of expression does not agree with property/
sequence clock.
 Leading clock will be applied.
 property/sequence clock: S2
 leading clock: top.cb2,posedge clk iff $stable(b1,
@(posedge clk))

Warning-[SVA-LCDNAWPSC] Lead and property/sequence clocks
differ
diff_clk_wosvaext.sv, 19
top
 Leading clock of expression does not agree with property/
sequence clock.
 Leading clock will be applied.
 property/sequence clock: posedge clk
 leading clock: top.cb2,posedge clk iff $stable(b1,
@(posedge clk))

3-52

Elaborating the Design

Warning-[SVA-LCDNAWPSC] Lead and property/sequence clocks
differ
diff_clk_wosvaext.sv, 26
top
 Leading clock of expression does not agree with property/
sequence clock.
 Leading clock will be applied.
 property/sequence clock: S2
 leading clock: posedge clk

VCS MX displays the same warning four times, if we want to control
the number of warning messages, we can use the compile time
option +warn=warn_ID:n...

For example

vcs -sverilog +warn=SVA-LCDNAWPSC:1 diff_clk_wosvaext.sv

VCS MX limits the warning messages to one.

Warning-[SVA-LCDNAWPSC] Lead and property/sequence clocks
differ
diff_clk_wosvaext.sv, 17
top
 Leading clock of expression does not agree with property/
sequence clock.
 Leading clock will be applied.
 property/sequence clock: S2
 leading clock: posedge clk

Example 2: Reducing the number of lint messages

If we have small SystemVerilog source file named as top.sv with
the following content,

1 `celldefine
2 module sub;
3 endmodule
4
5 `celldefine

3-53

Elaborating the Design

6 module sub1;
7 endmodule
8
9 `celldefine
10 module top;
11 sub inst();
12 sub1 inst1();
13 endmodule

By default all lint messages are disabled if we want to enable the lint
message we need to use the compile time option +lint=lint_ID.
For example:

vcs -sverilog +lint=CDUB top.sv

VCS MX displays the following lint messages during compilation.

Lint-[CDUB] Compiler directive unbalanced
top.sv, 1
 Unbalanced compiler directive is detected : `celldefine
has no matching
 `endcelldefine.
 Please make sure that all directives are balanced.

Lint-[CDUB] Compiler directive unbalanced
top.sv, 5
 Unbalanced compiler directive is detected : `celldefine
has no matching
 `endcelldefine.
 Please make sure that all directives are balanced.

Lint-[CDUB] Compiler directive unbalanced
top.sv, 9
 Unbalanced compiler directive is detected : `celldefine
has no matching
 `endcelldefine.
 Please make sure that all directives are balanced.

3-54

Elaborating the Design

If we want to control the number of lint messages printed in the
compile time we can use +lint=lint_ID:n... For example:

vcs -sverilog +lint=CDUB:1 top.sv

Now VCS MX controls the number of lint messages printed to one:

Lint-[CDUB] Compiler directive unbalanced
top.sv, 1
 Unbalanced compiler directive is detected : `celldefine
has no matching
 `endcelldefine.
 Please make sure that all directives are balanced

Example 3: Upgrading Multiple Warnings to One Error

If we had a Verilog file named tfpic.v with the following contents:

module top();
wire a,b,c;
child child_position_instance(a,b);
child child_name_instance(.b(b));
endmodule

module child(input a, input b, input c);
endmodule

Notice that module child has three input ports, but the module
instantiation statements have only two or one port connection.

If we compile this source file without message control:

vcs tfpic.v

VCS MX displays the following during compilation:

Warning-[TFIPC] Too few instance port connections
 The following instance has fewer port connections than the
module definition

3-55

Elaborating the Design

 "tfipc.v", 3: child child_position_instance(a, b);

Warning-[TFIPC] Too few instance port connections
 The following instance has fewer port connections than the
module definition
 "tfipc.v", 4: child child_name_instance(.b (b));

Warning-[TFIPC] Too few instance port connections
 The following instance has fewer port connections than the
module definition
 "tfipc.v", 4: child child_name_instance(.b (b));

If we recompile specifying that message ID TFIPC is upgraded to an
error, and display this error message no more that once:

vcs tfpic.v -error=TFIPC:1

VCS MX displays:

Error-[TFIPC] Too few instance port connections
 The following instance has fewer port connections than the
module definition
 "tfipc.v", 3: child child_position_instance(a, b);

1 error

Example 4: An Error Message That Can’t Be Controlled

If we had a Verilog file named tfatf_err.v with the following contents:

module top;
 task wrFld4(input string fldName, input int bus = 0,input
string fldName2);
 $display("In wrFld4");
 endtask

3-56

Elaborating the Design

 task wrFld4_2(input int bus = 0,input string fldName);
 $display("In wrFld4");
 endtask
 initial begin
 wrFld4(.bus(1)); // this is line 9
 wrFld4(,1); // 10
 wrFld4_2(.bus(1)); // 11
 end
endmodule

Task wrFld4 has three input ports. Task wrFld4_2 has two input
ports, but the task enabling statements for them have only one
connection.

VCS MX displays the following during compilation:

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 9
"wrFld4(.bus(1));"
 The above function/task call is not done with sufficient
arguments.

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 10
"wrFld4(, 1);"
 The above function/task call is not done with sufficient
arguments.

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 10
top, "wrFld4(, 1);"
 The above function/task call is not done with sufficient
arguments.

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 11
top, "wrFld4_2(1);"

3-57

Elaborating the Design

 The above function/task call is not done with sufficient
arguments.

The error message with the ID TFAFTC displays four times. If we
recompile while specifying that tis error message display only once:

vcs tfatc_err.v -sverilog -error=TFAFTC:1

VCS MX displays:

Warning-[CSMC] Cannot set message count
 Failed to set display count for message id 'TFAFTC' because
it cannot be
 suppressed.
 Specified count is ignored.

Parsing design file 'tfatc_err.v'

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 9
"wrFld4(.bus(1));"
 The above function/task call is not done with sufficient
arguments.

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 10
"wrFld4(, 1);"
 The above function/task call is not done with sufficient
arguments.

Error-[TFAFTC] Too few arguments to function/task call
tfatc_err.v, 10
top, "wrFld4(, 1);"
 The above function/task call is not done with sufficient
arguments.

Error-[TFAFTC] Too few arguments to function/task call

3-58

Elaborating the Design

tfatc_err.v, 11
top, "wrFld4_2(1);"
 The above function/task call is not done with sufficient
arguments.

1 warning
4 errors

None of the error messages are disabled and there is a warning
saying that VCS MX can’t limit the display of the message.

Example 5: Syntax Using the -suppress option

If we have SystemVerilog file example.sv with the following
content:

1 module top;
2 wire [5:0]data;
3 longint result,result1,result2,result3,result4;
4 assign data = 6'h2345;
5 initial
6 begin
7 result = $clog2(4294967296); //2 ** 32
8 result4 = $clog2(2147483648); //2 ** 31
9 result3 = $clog2(1073741824); //2 ** 30
10 result1=2**16;
11 result2=result1*result1;
12 $display("clog: %0d result2 %0d \n",result,result2);
13 $display("clog3: %0d \n",result3);
14 $display("clog43: %0d \n",result4);
15 end
16 endmodule

If we compile this file normally:

vcs -sverilog exmaple.sv

VCS MX display following warning messages:

3-59

Elaborating the Design

Warning-[TMBIN] Too many bits in Based Number
example.sv, 4
 The specified width is '6' bits, actually got '16' bits.
 The offending number is : '2345'.

Warning-[DCTL] Decimal constant too large
example.sv, 7
 Decimal constant is too large to be handled in compilation.
 Absolute value 4294967296 should be smaller than
2147483648.

Warning-[DCTL] Decimal constant too large
example.sv, 8
 Decimal constant is too large to be handled in compilation.
 Absolute value 2147483648 should be smaller than
2147483648.

If we are using -supress option with the command line all warning
messages will suppressed.

For example if we are using:

vcs -sverilog -suppress example.sv

The -suppress option suppresses all warning/lint/downgradable
error messages.

Obsolete Compile-Time Options for Controlling
Messages

The +vcs+error compile-time option is replaced by the -error
option. In this release using +vcs+error results in the following
warning:

Warning-[RNME_OPT] Renamed option found
 Option ‘+vcs+error’ has been renamed to ‘-error’. Future

3-60

Elaborating the Design

 releases of VCS may not accept ‘+vcs+error’.

Similarly, the -no_error compile-time option is obsolete and using
it results in the following error message:

Warning-[OBSLFLGS] Obsolete flag(s) used
 The flag(s) '-no_error' is(are) obsolete and will not be
supported after
 this release. Please use '-error=no<ID>' instead.
 Please contact vcs_support@synopsys.com or call VCS
Customer Support at
 1-800-VERILOG for any questions about obsolete switches.

4-1

Simulating the Design

4
Simulating the Design 1

This chapter describes the following:

• “Using DVE”

• “Using UCLI”

• “Key Runtime Features”

As described in the section “Simulation” on page 18, you can
simulate your design in either interactive or batch mode. To simulate
your design in interactive mode, you need to use DVE or UCLI. To
simulate your design in batch mode, refer to the section entitled,
“Batch Mode” on page 19.

4-2

Simulating the Design

Using DVE

DVE provides you with a graphical user interface to debug your
design. Using DVE, you can debug the design in interactive mode or
in post-processing mode. You must use the same version of VCS MX
and DVE to ensure problem-free debugging of your simulation.

In the interactive mode, apart from running the simulation, DVE
allows you to do the following:

• View waveforms

• Trace Drivers and loads

• Schematic and Path Schematic view

• Compare waveforms

• Execute UCLI/Tcl commands

• Set line, time, event, etc breakpoints

• Perform line stepping

However, in post-processing mode, a VPD/VCD/EVCD file is created
during simulation, and you use DVE to:

• View waveforms

• Trace Drivers and loads

• Schematic and Path Schematic view

• Compare waveforms

Use the following command to invoke the simulation in interactive
mode using DVE:

4-3

Simulating the Design

% simv -gui

Use the following command to invoke DVE in post-processing mode:

% dve -vpd [VPD/EVCD_filename]

Note:
The interactive mode of DVE is not supported, when you are
running VCS MX slave mode simulation.

For information on generating a VPD/EVCD dump file, see “VPD,
VCD, and EVCD Utilities” on page 1.

For more information on using DVE, click this link Discovery Visual
Environment User Guide if you are using the VCS Online
Documentation.

If you are using the PDF interface, click this link dve_ug.pdf to view
the DVE User Guide PDF document.

Using UCLI

Unified Command-line Interface (UCLI) provides a common set of
commands for interactive simulation. UCLI is the default command-
line interface for batch mode debugging in VCS MX.

UCLI commands are based on Tcl, therefore you can use any Tcl
command with UCLI. You can also write Tcl procedures and execute
them at the UCLI prompt. Using UCLI commands, you can do the
following:

• Control the simulation

• Dump a VPD file

4-4

Simulating the Design

• Save/Restore the simulation state

• Force/Release a signal

• Debug the design using breakpoints, scope/thread information,
built-in macros

UCLI commands are built based on Tcl. Therefore, you can execute
any Tcl command or procedures at the UCLI prompt. This provides
you with more flexibility to debug the design in interactive mode. The
following command starts the simulation from the UCLI prompt:

% simv [simv_options] -ucli

When you execute the above command, VCS MX takes you to the
UCLI command prompt. To invoke UCLI, ensure that you specify the
-debug_pp, -debug, or -debug_all options during . You can
then use the -ucli option at runtime to enter the UCLI prompt at
time 0 as shown:

% simv -ucli
ucli%

At the ucli prompt, you can execute any UCLI command to debug or
run the simulation. You also can specify the list of required UCLI
commands in a file, and source it to the UCLI prompt or specify the
file as an argument to the runtime option, -do, as shown below:

% simv -ucli
ucli% source file.cmds

% simv -ucli -do file.cmds

Note:
UCLI is not supported when you are running VCS MX slave mode
simulation.

4-5

Simulating the Design

Note:
You can use the -ucli flag at runtime even if you have NOT
used some form of -debug switches during compilation. This is
called a "mini UCLI" feature, where full power of Tcl is now
provided with just run and quit UCLI commands.

Note the following behavioral changes when UCLI is the default
command-line interface:

• The -s switch is no longer allowed in simv.

• If you are unable to migrate the flow to use UCLI instead of CLI,
contact VCS Support.

• Command line flags, such as simv -i or -do, only accept UCLI
commands.

• Interrupting the simulation using Ctrl+C takes you to UCLI
prompt by default for debugging your designs.

• ucli>"Include file options (-i or -do) expects a UCLI script by
default.

%> simv -ucli -i ucli_script.inc

ucli2Proc Command

There are a few scenarios after UCLI became the default command
line interface, which may require using of the -ucli2Proc switch:

• In SystemC designs, you need to add the -ucli2Proc command
if you want to call 'cbug' in batch mode (ucli). VCS issues a warning
message if you do not add this command.

4-6

Simulating the Design

• When you issue a restore command inside a -i/-do/source, you
need to pass the -ucli2Proc. This situation is only applicable
when there are commands following the restore commands that
need to be executed in the do script.

• Any usage of start/restart/finish/config "endofsim"
from UCLI needs the -ucli2Proc command.

For more information about UCLI, click the link Unified Command-
line Interface (UCLI) if you are using the VCS Online Documentation.

If you are using the PDF interface, click the link ucli_ug.pdf to view
the UCLI User Guide PDF document.

Options for Debugging Using DVE and UCLI

-debug_pp

Gives best performance with the ability to generate the VPD/VCD
file for post-process debug. It is the recommended option for post-
process debug.

It enables read/write access and callbacks to design nets, memory
callback, assertion debug, VCS DKI, and VPI routine usage. You
can also run interactive simulation when the design is compiled
with this option, but certain capabilities are not enabled. It does
not provide force net and reg capabilities. Set value and time
breakpoints are permissible, but line breakpoints cannot be set.

4-7

Simulating the Design

-debug

Gives average performance and debug visibility/control i.e more
visibility/control than –debug_pp and better performance than –
debug_all. It provides force net and reg capabilities in addition
to all capabilities of the –debug_pp option. Similar to the –
debug_pp option, with the –debug option also you can set value
and time breakpoints, but not line breakpoints.

-debug_all

Gives the most visibility/control and you can use this option
typically for debugging with interactive simulation. This option
provides the same capabilities as the –debug option, in addition
it adds simulation line stepping and allows you to track the
simulation line-by-line and setting breakpoints within the source
code. With this option, you can set all types of breakpoints (line,
time, value, event etc).

-ucli

Forces runtime to go into UCLI mode, by default.

-gui

When used at compile time, starts DVE at runtime.

+vpdfile+filename

Specifies the name of the generated VPD file. You can also use
this option for post-processing where it specifies the name of the
VPD file.

+vpdfileswitchsize+number_in_MB

Specifies a size for the vpd file. When the vpd file reaches this
size, VCS closes this file and opens a new one with the same size.

4-8

Simulating the Design

Key Runtime Features

Key runtime features includes:

• “Overriding Generics at Runtime”

• “Passing Values from the Runtime Command Line”

• “Specifying a Long Time Before Stopping The Simulation”

Overriding Generics at Runtime

Using the -g, -gen or -generics runtime option, you can change
the following types of VHDL generics at runtime:

• Any generic that stays in VHDL and is not propagated directly or
indirectly into Verilog.

• Any generic that does not shape the tree or define the widths of
ports through MX boundary.

• Generics like delays, file names and timing checks control.

The usage model is as follows:

% simv -g generics_file

The -g, -gen or -generics option, takes a command file as an
argument. You need to specify the hierarchical path of the generic,
and the new value to override. A sample generics_file is shown
below:

% cat generics_file

assign 1 /TOP/LEN

4-9

Simulating the Design

assign "OK.dat" /TOP/G1/vhdl1/FILE_NAME
assign (4 ns) /TOP/G1/VHDL1/delay
assign 16 /TOP/width

assign 4 /TOP/add_width

Usage Model

Analysis

% vlogan [vlogan_options] file1.v file2.v
% vhdlan [vhdlan_options] file3.vhd file2.vhd file1.vhd

Note:
Specify the VHDL bottommost entity first, then move up in order.

Elaboration

% vcs [vcs_options] top_cfg/entity/config

Simulation

% simv [sim_options] -g cmd.file

Example

Consider the following example:

--spmem.vhd---

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_signed.All;

ENTITY spmem IS
generic (add_width : integer := 3;
 delay : time := 2 ns;
 file_name : string := "empty.dat";
 WIDTH : integer := 8);

4-10

Simulating the Design

 PORT (
 clk : IN std_logic;
 reset : IN std_logic;
 add : IN std_logic_vector(add_width -1 downto 0);
 Data_In : IN std_logic_vector(WIDTH -1 DOWNTO 0);
 Data_Out : OUT std_logic_vector(WIDTH -1 DOWNTO 0);
 WR : IN std_logic);
END spmem;

ARCHITECTURE spmem_v1 OF spmem IS

 TYPE data_array IS ARRAY (integer range <>) OF
 std_logic_vector(7 DOWNTO 0);

SIGNAL data : data_array(0 to (2** add_width));

BEGIN -- spmem_v1

PROCESS (clk, reset)
BEGIN -- PROCESS

 IF (reset = '0') THEN
 data_out <= (OTHERS => 'Z');

 ELSIF clk'event AND clk = '1' THEN
 IF (WR = '0') THEN
 data(conv_integer(add)) <= data_in after delay;
 END IF;
 data_out <= data(conv_integer(add));
 END IF;

END PROCESS;

END spmem_v1;

--TOP.vhd---

library IEEE;
use IEEE.std_logic_1164.all;

entity top is

4-11

Simulating the Design

 generic (add_width : integer := 3;
 delay : time := 2 ns;
 file_name : string := "empty.dat";
 WIDTH : integer := 8;
 LEN : integer := 1);

 PORT (
 clk : IN std_logic;
 reset : IN std_logic;
 add : IN std_logic_vector(add_width -1 downto 0);
 Data_In : IN std_logic_vector(WIDTH -1 DOWNTO 0);
 Data_Out : OUT std_logic_vector(WIDTH -1 DOWNTO 0);
 WR : IN std_logic);
END top;

architecture top_arch of top is
component spmem
generic (add_width : integer := 3;
 delay : time := 2 ns;
 file_name : string := "empty.dat";
 WIDTH : integer := 8);
 PORT (
 clk : IN std_logic;
 reset : IN std_logic;
 add : IN std_logic_vector(add_width -1 downto 0);
 data_In : IN std_logic_vector(WIDTH -1 DOWNTO 0);
 data_Out : OUT std_logic_vector(WIDTH -1 DOWNTO 0);
 WR : IN std_logic);
END component;

begin -- top_arch

G1: if LEN=1 generate
 INST1 : spmem generic map (add_width,delay,file_name,width)
 port map (clk,reset,add,data_in,data_out,wr);
end generate G1;

G2: if LEN=2 generate
 INST2 : spmem generic map (add_width,delay,file_name,width)
 port map (clk,reset,add,data_in,data_out,wr);
end generate G2;

4-12

Simulating the Design

end top_arch;

In the above example, you can override the generics at runtime. The
usage model is as follows:

Analysis

% vhdlan spec_mem.vhd TOP.vhd

Note:
Specify the VHDL bottommost entity first, then move up in order.

Elaboration

% vcs TOP

Simulation

% simv -g generics_file

The generics_file is shown below:

assign 1 /TOP/LEN
assign "OK.dat" /TOP/G1/INST1/FILE_NAME
assign (4 ns) /TOP/G1/INST1/delay
assign 16 /TOP/width
assign 4 /TOP/add_width

As per the generics_file, VCS MX overrides the generics LEN,
width, and add_width in the TOP.vhd file, and FILE_NAME and
delay generics defined in the spmem.vhd file.

Passing Values from the Runtime Command Line

The $value$plusargs system function can pass a value to a
signal from the simv runtime command line using a plusarg. The
syntax is as follows:

4-13

Simulating the Design

integer = $value$plusargs("plusarg_format",signalname);

The plusarg_format argument specifies a user-defined runtime
option for passing a value to the specified signal. It specifies the text
of the option and the radix of the value that you pass to the signal.

The following code example contains this system function:

module valueplusargs;
reg [31:0] r1;
integer status;

initial
begin
$monitor("r1=%0d at %0t",r1,$time);
#1 r1=0;
#1 status=$value$plusargs("r1=%d",r1);
end
endmodule

If you enter the following simv command line:

% simv +r1=10

The $monitor system task displays the following:

r1=x at 0
r1=0 at 1
r1=10 at 2

4-14

Simulating the Design

VCS MX Supports simv -f

You can use the simv -f runtime option to specify user-defined
arguments in a file. These arguments are those that you specify on
the simv command line. This command option now works well for all
your mixed HDL designs, pure VHDL, as well as your pure Verilog
designs.

Limitations

• Nested file inclusion is not supported.

• Environment expansion is not supported.

• Complex string options are not supported.

• You cannot specify multiple options on the same line.This is
illustrated in the below example:

- %simv -f <filename.f>

filename.f

-ova_report
-lca
-cm_name foo
...

...

4-15

Simulating the Design

Specifying a Long Time Before Stopping The Simulation

You can use the +vcs+stop+time runtime option to specify the
simulation time when VCS halts simulation. This works if the time

value you specify is less than 232 or 4,294,967,296. You can also use
the +vcs+finish+time runtime option to specify when VCS either

halts or ends simulation, provided that the time value is less than 232.

For time values greater than 232, you must follow a special
procedure that uses two arguments with the +vcs+stop or
+vcs+finish runtime options, as shown below:

+vcs+stop+<first argument>+<second argument>

+vcs+finish+<first argument>+<second argument>

This procedure is as follows:

For example, if you want a time value of 10,000,000,000 (10 billion):

1. Divide the large time value by 232.

In this example:

2. Narrow down this quotient to the nearest whole number. This
whole number is the second argument.

In this example, you would narrow down to 2.

3. Multiply 232 with the second argument (that is, 2), and then
subtract the obtained result from the large time value (that is,

subtract 2 X 232 from the large time value), as shown below:

4-16

Simulating the Design

10,000,000,000-(2*4,294,967,296)=(1,410,065,408)

This difference is the first argument.

You now have the first and second argument. Therefore, in this
example, to specify stopping simulation at time 10,000,00,000, you
would enter the following runtime option:

+vcs+stop+1410065408+2

VCS MX can do some of this work for you by using the following
source code:

module wide_time;
time wide;
initial
begin
wide = 64’d10_000_000_000;
$display(“Hi=%0d, Lo=%0d”, wide[63:32], wide[31:0]);
end
endmodule

VCS MX displays:

Hi=2,Lo=1410065408

 5-1

Diagnostics

5
Diagnostics 1

This chapter covers various diagnostic tools and provides
instructions on how to use these tools.

The following tasks are covered in this chapter:

• “Using Diagnostics” on page 2

• “Compile-time Diagnostics” on page 5

• “Runtime Diagnostics” on page 12

• “Post-processing Diagnostics” on page 25

5-2

Diagnostics

Using Diagnostics

This section describes the following topics:

• “Using –diag Option”

• “Using Smartlog”

Using –diag Option

Use the –diag option to enable the libconfig/timescale diagnostic
messages at compile-time and VPI/VHPI diagnostic messages at
runtime. The –diag option supports compile-time diagnostics on the
vcs command-line and runtime diagnostics on the simv command-
line.

Syntax

Below is the syntax of the –diag option:

–diag <diag_arg>[,diag_arg][,diag_arg]..

Where, diag_arg is a diagnostic argument. Table 5-1 lists the
supported diagnostic arguments.

 5-3

Diagnostics

Table 5-1 Supported Diagnostic Arguments

Argument Use Model Description

libconfig vcs –diag libconfig Enables the library binding
diagnostics. For more information, see
“Libconfig Diagnostics” .

timescale vcs –diag timescale Enables timescale diagnostics. For
more information, see “Timescale
Diagnostics” .

vpi simv –diag vpi Enables VPI diagnostics. For more
information, see “Diagnostics for VPI/
VHPI PLI Applications” .

vhpi simv –diag vhpi Enables VHPI diagnostics. For more
information, see “Diagnostics for VPI/
VHPI PLI Applications” .

all
vcs -diag all Enables the libconfig and

timescale diagnostics.

simv -diag all Enables the vpi and vhpi
diagnostics.

help vcs -diag help

simv -diag help

Displays the following help message:
Usage for -diag flag: -diag
<option>,<option>,...
Options:
all Enable all diagnostics
help Display this message
libconfig Library binding
diagnostics (compile time)
timescale Timescale
diagnostics (compile time)
vpi VPI diagnostics
(simulation time)
vhpi VHPI diagnostics
(simulation time)

5-4

Diagnostics

Using Smartlog

DVE Smartlog provides log analysis (diagnostic information) for
each line in the log file. It takes the compile log and simulation log
created by VCS and summarizes the data into reports. Smartlog
provides the diagnostic information in a separate log file known as a
smartlog file. Following are the main features of Smartlog:

• Hyperlink the log occurrences to the Source View

• Highlights the words, namely, Error, Warning, and so on, in
different colors

• Displays the selected message within a blue rectangle

For more information, refer to the Using Smartlog section of the
Discovery Visual Environment User Guide category in the VCS
Online Documentation.

 5-5

Diagnostics

Compile-time Diagnostics

This section describes the following topics:

• “Libconfig Diagnostics”

• “Timescale Diagnostics”

Libconfig Diagnostics

You can use the libconfig option, as shown below, to enable
libconfig diagnostics:

vcs –diag libconfig

This option provides the library binding diagnostics at compile-time.
It generates physical mappings of user-defined libraries and the
default work library specified by VCS.

For each VHDL/Verilog instance, this option generates the instance
name, location, binding rule, and entity-architecture pair/module to
which it is bound.

Example

Consider the following test case:

leaf.vhd
===========
entity leaf is
end entity leaf;

architecture behv of leaf is
begin

5-6

Diagnostics

end architecture;

mid.vhd
=================
entity mid is
end entity mid;

architecture behv of mid is
 component leaf
 end component leaf;
begin
 a0: leaf;
end architecture;

top.v
============
module top();

 mid inst1 ();
endmodule

Perform the following commands:

vhdlan leaf.vhd -work lib1
vhdlan mid.vhd -work lib1
vlogan top.v -work lib2
vcs top -diag libconfig -l log

Following is the output:

Setup library mapping:
 DEFAULT : /remote/vtghome13/diag/./work/
 LIB1 : /remote/vtghome13/diag/./lib/
 LIB2 : /remote/vtghome13/diag/./lib/
Work logical library name set to 'DEFAULT'.
Default library search order:
 DEFAULT
 LIB1

 5-7

Diagnostics

 instance: LIB1.top
 "/remote/vtghome13/diag/top.v", 1
 rule: Top Module
 module: LIB1.top
 "/remote/vtghome13/diag/top.v", 1

Top Level Modules:
 top
 instance: top.inst1
 "/remote/vtghome13/diag/top.v", 3
 rule: Direct Instantiation
entity: LIB1.MID
 "/remote/vtghome13/diag/mid.vhd", 3
 architecture: BEHV
 "/remote/vtghome13/diag/mid.vhd", 6

 instance: top.inst1.A0
 "/remote/vtghome13/diag/mid.vhd", 10
 rule: Default Binding
 entity: LIB1.LEAF
 "/remote/vtghome13/diag/leaf.vhd", 4
 architecture: BEHV
 "/remote/vtghome13/diag/leaf.vhd", 7

Note:
- If VCS option -l is specified, the output is dumped into the

corresponding text log file.

- If VCS option -sml is also specified, smart log output will also
be dumped into the corresponding smart log file. For more
information, refer to the Using Smartlog section of the Discovery
Visual Environment User Guide category in the VCS Online
Documentation.

5-8

Diagnostics

Timescale Diagnostics

You can use the timescale option, as shown below, to enable
timescale diagnostics:

vcs –diag timescale

This option generates timescale diagnostic message for each
module during VCS elaboration phase.

This allows you to understand how VCS has scaled delays in its
design, and helps to quickly identify, localize and fix the timescale
issues.

Note:
- The output will be printed on the STDOUT by default.

- If VCS option -l is specified, the output is dumped into the
corresponding text log file.

- If VCS option -sml is also specified, smart log information will
also be dumped into the corresponding smart log file. For more
information, refer to the Using Smartlog section of the Discovery
Visual Environment User Guide category in the VCS Online
Documentation.

Example

Example 1: Module has `timescale

Consider the following test case test.v, which contains module
test with `timescale as 1ns/1ns:

`timescale 1ns/1ns
module test;

 5-9

Diagnostics

initial
$printtimescale;
endmodule

Enabling timescale diagnostics at elaboration time using –diag
timescale:

vcs test.v -diag timescale

Following is the output:

Parsing design file 'test.v'
Top Level Modules:
 test
TimeScale is 1ns/1ns
module 'test' gets time unit '1ns' from source code '/remote/
vgscratch7/timescale_diag/tests/cft/sva_bind/ll_svb/
Source/test.v', 1
module 'test' gets time precision '1ns' from source code '/
remote/vgscratch7/timescale_diag/tests/cft/sva_bind/
ll_svb/Source/test.v', 1
Starting vcs inline pass...
1 module and 0 UDP read.
recompiling module test
if [-x ../simv]; then chmod -x ../simv; fi
g++ -o ../simv -melf_i386 -m32 -Wl,-whole-archive -
Wl,-no-whole-archive _vcsobj_1_1.o 5NrI_d.o
…
../simv up to date

From the above output, you can figure out which module gets what
timescale at elaboration, and also the reason why and from where
the module got that timescale.

module 'test' gets time unit '1ns' from source code '/remote/
vgscratch7/timescale_diag/tests/cft/sva_bind/ll_svb/
Source/test.v', 1
module 'test' gets time precision '1ns' from source code '/
remote/vgscratch7/timescale_diag/tests/cft/sva_bind/
ll_svb/Source/test.v', 1

5-10

Diagnostics

In the above example, as mentioned `timescale 1ns/1ns on
line# 1, so module has got the timeunit of 1ns and timeprecision
of 1ns.

Example 2: Passing -timescale from vcs command-line

Consider the following testcase test.v:

module test;
initial
$printtimescale;
endmodule

Perform the following command:

vcs test.v -diag timescale -timescale=1ns/1ns

Following is the output:

Parsing design file test.v
Top Level Modules:
 test
TimeScale is 1ns/1ns
module 'test' gets time unit '1ns' from vcs command option
module 'test' gets time precision '1ns' from vcs command
option
Starting vcs inline pass...
1 module and 0 UDP read.
recompiling module test
if [-x ../simv]; then chmod -x ../simv; fi
g++ -o ../simv -melf_i386 -m32 -Wl,-whole-archive -
Wl,-no-whole-archive _vcsobj_1_1.o 5NrI_d.o
…
../simv up to date

In the below command, you are passing timescale at elaboration
using the –timescale option.

vcs test.v -diag timescale -timescale=1ns/1ns

 5-11

Diagnostics

 So the diagnostics message printed on the output is:

module 'test' gets time unit '1ns' from vcs command option
module 'test' gets time precision '1ns' from vcs command
option

5-12

Diagnostics

Runtime Diagnostics

This section describes the following topics:

• “Diagnostics for VPI/VHPI PLI Applications”

• “Keeping the UCLI/DVE Prompt Active After a Runtime Error”

• “Diagnosing Quickthread Issues in SystemC”

Diagnostics for VPI/VHPI PLI Applications

As per LRM, VPI/VHPI remain silent when an error occurs. The
application checks for error status to report an error. If error detection
mechanisms are not in place, the C code of the application must be
modified and recompiled. In addition, you may need to recompile the
HDL code, if required.

However, you can use the following new runtime diagnostics options
to make the PLI application to report errors without code
modification:

• –diag vpi

• –diag vhpi

Furthermore, reporting provides you the information related to the
HDL code context, where applicable, to help fix problems with a
faster turnaround time.

Note:
- If VCS option -l is specified, the output is dumped into the

corresponding text log file.

 5-13

Diagnostics

- If VCS option -sml is also specified, smart log information will
also be dumped into the corresponding smart log file. For more
information, refer to the Using Smartlog section of the Discovery
Visual Environment User Guide category in the VCS Online
Documentation.

For example, consider the following test case tokens.v:

Example 5-1 tokens.v

module top;
 reg r;

 initial begin
 #5;
 $putValue("sys_top.rst", 1'b1);

 #1 $finish;
 end
endmodule

module sys_top;
 wire rst;

 assign db.A = rst;
endmodule

module db;

 wire Y;
 wire A;

 my_buf b1(Y, A);

 initial begin
 end
endmodule

module my_buf(Y, A);
 output Y;

5-14

Diagnostics

 input A;

 buf #5 (Y, A);
endmodule

Compile the tokens.v code shown in Example 5-1, as follows:

% vcs -sverilog +vpi -P value.tab value.c tokens.v

Run the tokens.v code, as follows:

simv -diag vpi

Here, the user application tries to write a value on the sys_top.rst
signal, but there is no write permission enabled on sys_top. So VPI
generates an error message and prints the HDL information, as
follows:

 5-15

Diagnostics

Keeping the UCLI/DVE Prompt Active After a Runtime
Error

VCS now allows you to debug an unexpected error condition by not
exiting and keeping active the UCLI or DVE prompt for debugging
commands.

In previous releases, when there was a runtime error condition the
simulation exited. Starting this release the DVE or UCLI command
prompt remains active when there is an error condition, allowing you
to examine the current simulation state (the simulation stack,
variable values, and so on) so you can debug the error condition.

UCLI Use Model

If simv is executed from the UCLI, follow the below steps to enable
this feature:

1. Specify the following UCLI configuration command in a Tcl file (
see Example 5-3) or in $HOME/.synopsys_ucli_prefs.tcl file:

config -onfail enable [failure_type]

Where the failure_type is optional. It allows you to specify the
failure type. Table 5-1 lists the types of failures which are normally
observed during an unexpected runtime error.

5-16

Diagnostics

Table 5-2 Types of Failures

Note:
- You can divide configuration of onfail into multiple

configuration commands.

- You can use the config -onfail disable configuration
command to disable this feature.

Example

The following command enables you to catch for system faults,
DT.* errors, and NOA errors:

config -onfail enable sysfault {error DT.*}
{error NOA}

You can also specify the above command as three different
configuration commands:

config -onfail enable sysfault
config -onfail enable {error DT.*}
config -onfail enable {error NOA}

2. Use the following UCLI command to get a UCLI prompt when a
runtime error occurs:

% simv –ucli -i file_name.tcl

Failure Type Failure Description

sysfault Assertion or signal (including segfault)

{error <regex>} Error for which the tag matches regex. The tag of an error can
be seen in the error message (Error-[TAG]).

fatal Fatal error for which VCS currently dumps a stack trace.

all All failures (default)

 5-17

Diagnostics

or

simv –ucli

ucli% do file_name.tcl

Where file_name.tcl is the Tcl file that contains the
config -onfail enable command and run script (see
Example 5-3).

Note:
You must run the simulation using the run command by
specifying it in a Tcl file. You can also specify the
config -onfail enable command in the same Tcl file, but
instead, if you use simv –ucli at the UNIX prompt to run the
simulation, then UCLI exits when there is a failure.

Automating User Actions on Failure

You can create the onfail routine to automate some actions (like
printing specific message, collecting data into a file, and so on) when
an unexpected crash happens during runtime. You can create this
routine in your script or in the .synopsys_ucli_prefs.tcl file.

If you declare this routine, and the onfail configuration is enabled,
then simv will call the onfail routine before going into the UCLI
prompt. If you do not want to go into the UCLI prompt, you can call
the UCLI exit command from that routine.

DVE Use Model

By default, DVE enables the onfail configuration on all types of
failures.

5-18

Diagnostics

DVE systematically enables the onfail config on all error types. In
previous versions, if there is error or failure, simv stops, and many
DVE functionalities like expand hierarchy, show data for a given
module (if not already loaded before the simv crash), create
schematic, do not work, especially when DVE is running with the
preference option “Use simulation as design debug library in
interactive.”

From this version, If you enable the onfail config, simv stays active
and continue to respond to DVE queries. Therefore, all the features
mentioned in the previous paragraph continue to work. Also, DVE
shows the location of the error with the simulation pointer (yellow
arrow in the source view), and the stack pane shows the current HDL
stack. You can use value annotation to obtain signal values in order
to debug the issue.

Figure 5-1 The DVE Prompt After a Runtime Error

 5-19

Diagnostics

UCLI Usage Example

Consider the following test case test.v. This code causes simv to
exit during simulation:

Example 5-2 UCLI Prompt on Error Test Case (test.v)

module test;
 class Packet;
 int _a;

 function void set (int a);
 _a = a;
 endfunction
 endclass

 initial begin
 Packet pkt;
 reg a;
 pkt.set(a);
 end
endmodule

Compile the test.v file:

% vcs -sverilog -debug_all test.v

If you run the above test case using the simv -ucli command,
then VCS generates the following NOA error message:

5-20

Diagnostics

Figure 5-2 NOA Error Message

Create the following Tcl file to catch the above error and analyze it
inside an onfail routine:

Example 5-3 Tcl File (test.tcl)

onfail {
 set err_msg "Stopped in "
 append err_msg [scope]
 puts $err_msg
}
config -onfail enable {error NOA}
run

Run the test.tcl file using the following command to keep the
UCLI prompt active after the NOA error, as shown in Figure 5-3:

simv -ucli -i test.tcl

 5-21

Diagnostics

Figure 5-3 Viewing the UCLI Prompt After Failure

The onfail routine is executed after the NOA error is generated.

Limitations

• You cannot specify an onfail routine to be executed on error in
DVE.

Diagnosing Quickthread Issues in SystemC

VCS is now equipped with a better mechanism to report VCS
runtime crashes caused by certain problems with quickthreads used
during VCS runtime. You will get clear feedback as to what went
wrong and which thread is causing the crash thereby enabling you
to take specific action to circumvent the issue.

Note: VCS reports these error messages for the DPI crashes also,
not just SystemC.

VCS reports these runtime crashes in the following two scenarios:

5-22

Diagnostics

• A quickthread overruns its allocated stack

• Simulation runs out of memory due to quickthread stacks

Note:The default stack size has been changed from 60KB to 1MB
while the default stackguard size has been changed from 4KB to
16KB from this release onwards.

Quickthread Overruns Its Allocated Stack

If a quickthread overruns its allocated stack, then it will probably try
to read/write into its redzone. This causes an SEGV with the
following diagnostic message. Here is an example:

 Error-[VCS-QTHREAD-OVERRUN] Stack of quickthread maybe too
small
 The simulation received a fatal segmentation violation
signal SEGV and will end, because it accessed protected stack
guard memory. This memory belongs to the thread
'top.ref_model_0.cpu.ALU'. It is likely, but not certain
that a stack overflow in this thread caused the segmentation
violation (SEGV). It may also be caused by a different,
unknown problem and the quickthread is not related.
The suspected quickthread belongs to SystemC domain.
Its stack has a size of 60 K bytes and is located from address
'0x800a00000' to '0x800a0efff'.
Its redzone has a size of 4 K bytes and is located from
address '0x800a0f000' to '0x800a0ffff'.
The SEGV happened at address '0x800a0f004' which is 5 bytes
into the redzone.
Increase the stack size for this thread and check whether
this solves the problem. This can be done by calling the
stack_size() method within the SC_CTOR. Alternatively, start
the simulation with 'simv -sysc=stacksize:10M'. See the VCS
user guide, chapter SystemC for more information.

A similar message will be printed if the redzone belongs to the stack
of a DPI thread.

 5-23

Diagnostics

Limitations

The VCS-QTHREAD-OVERRUN diagnostic applies only to
quickthreads. It is not available if you use POSIX threads in SystemC
by defining environment SYSC_USE_PTHREADS.

Simulation Runs Out of Memory Due to Quickthread
Stacks

Each quickthread allocates memory for its stack. Simv may run out
of memory due to this. When allocation of memory for a SystemC
stack of a quickthread fails, a message like the following is printed:

Error-[SC-VCS-QTHREAD-ALLOC] Thread memory allocation
failed
 The creation of thread 'top.sc_thread_04' in the SystemC
domain failed
 because its stack of 64MB could not be allocated. Currently,
149MB stack
 memory are allocated by 95 threads.

 Details about stack allocation:
 (sorted by size in decreasing order)
 32MB total (31.9MB stack + 19.9KB guard) in
SystemC:top.sc_thread_05
 16MB total (15.9MB stack + 19.9KB guard) in
SystemC:top.sc_thread_06
 8.01MB total (7.99MB stack + 19.9KB guard) in
SystemC:top.sc_thread_07
 (~50 lines removed, we show approx. 50..60 stack frames
, ordered by size, largest first)
 ...(truncated)...
 Total: 149MB qthread stack memory used in 95 threads.

 If this was a 32 bit simulation, consider a 64 bit
simulation. You can also
 decrease the stack size for other threads. This can be
done by calling the
 stack_size() method within the SC_CTOR. Alternatively,
start the simulation

5-24

Diagnostics

 with e.g. 'simv -sysc=stacksize:500k'. See the VCS user
guide, chapter Using SystemC for more information.

Reducing or Turning Off Redzones

You can decrease the number of redzones or turn them off altogether
in case if the number of quickthreads you are using is exceedingly
large. For instance, if the quickthreads are reaching the limit set in
your OS, then some of the operations may fail. To avoid such a
situation, you may want to decrease the number of the redzones or
turn them off completely. Though the diagnostic support will not be
there when a particular thread overruns its stack, you would still
increase the chances of running your simulation without any issues.

You can use the following environment variable to either decrease
the number of redzones or turn them off completely. To decrease the
number of redzones, you must set the following environment
variable to a value greater than 2000 and less than 30000. For
example:

setenv SNPS_VCS_SYSC_RESERVED_MAP_COUNT 10000

Setting the above environment variable to a value higher than 30000
will turn off the redzones completely.

 5-25

Diagnostics

Post-processing Diagnostics

This section describes the following topic:

• “Using the vpdutil Utility to Generate Statistics”

Using the vpdutil Utility to Generate Statistics

The vpdutil utility generates statistics about the data in the vpd file.
The utility takes a single vpd file as input. You can specify options to
this utility to query at design, module, instance, and node levels.

This utility supports time ranges and input lists for query on more
than one object. Output will be in ascii to stdout with option to redirect
to an output file.

The vpdutil Utility Syntax

The syntax of the vpdutil utility is as follows:

vpdutil <input_vpd_file>
 [-help]
 [-vc_info]
 [-tree [-lvl <level>][-source]]
 [-vc_info_detail]
 [-info]
 [-design]
 [-find_forces]
 [-start <Time> -end <Time>]
 [-find_glitches]
 [output_file_name]

5-26

Diagnostics

Options

-h/help

Displays the options to be used with the vpdutil application.

output_file_name

Writes the output of vpdutil application to a file instead of stdout.

Options for VPD File Information
-info

Prints the basic information present in the header of vpd file.

Options for Design Information
-design

Prints statistics about static design hierarchy in vpd.

-tree

Prints the full hierarchy tree in the vcd-like (not vcd compatible)
format.

-lvl <level>

Print the tree with the hierarchy depth=level.

-source

Prints source file/line data to tree.

Options for Value Change Information
-vc_info

 5-27

Diagnostics

Displays information for the value changes information with
number of dump off events, force events, glitch events, and repeat
count events.

-vc_info_detail

Prints the detailed value change summary statistics about given
vpd file.

-find_forces

Displays forces on node and the times when forces occurred.

-start <Time> -end <Time>

Enables the collection of value change data between start time to
end time.

-find_glitches

Print the list of nodes with glitches and the time when glitches
occurred, if the glitch capturing was enabled during the simulation.

6-29

VCS Multicore Technology Application Level Parallelism

6
VCS Multicore Technology
Application Level Parallelism 1

VCS Multicore Technology takes advantage of the computing power
of multiple processors in one machine to improve simulation
turnaround time.

Use the following VCS Multicore Technology options in a simulation:

• Assertion simulation

• Toggle coverage

• Multicore functional coverage

• VPD dumping

• SAIF dumping

6-30

VCS Multicore Technology Application Level Parallelism

VCS Multicore Technology Options

You use the VCS -parallel option to invoke parallel compilation.
The syntax is:

vcs filename(s).v -parallel [+mulitcore_option(s)]
[-parallel+show_features][-o multicore_executable_name]
[vcs-options]

These options and properties are as follows:

-parallel
When used without VCS Multicore options, -parallel enables all
VCS Multicore Technology options. When used with VCS
Multicore options, -parallel enables only those option
specified.

This option is available at compile-time only.

fc[=NCONS]
This compile-time option enables multicore Functional
Coverage, and with NCONS specifies the number of PFC
consumers. NCONS can be changed at run time. For example,

 vcs -parallel+fc ...
 vcs -parallel+fc=3 ...

+sva[=NCONS]
This compile-time option enables multicore SVA, and with
NCONS specifies the number of multicore SVA consumers.
NCONS can be changed at run time.

+saif
Enables SAIF file dumping, see “Parallel SAIF” .

6-31

VCS Multicore Technology Application Level Parallelism

+tgl[=NCONS]
Enables multicore Toggle Coverage, and specifies the number
of multicore toggle coverage consumers. To enable the use of
the same executable for both serial and parallel runs, use this
option at runtime.

NCONS specifies the number of multicore SVA consumers. For
ALP, NCONS can be changed at run time.

+vpd[=NCONS]
Enables multicore VCD+ Dumping. NCONS specifies the
number of multicore SVA consumers. For ALP, NCONS can
be changed at run time

[-o multicore_executable_name]
Using the VCS -o option to specify the simulation executable
binary filename allows work on multiple simultaneous VCS
Multicore compiles and runs. VCS Multicore-specific data is
stored in a directory executable_name.pdaidir. The default path
name is simv.pdaidir.

Note:
If [NCONS] is not specified, the default is 1 client. For ALP,
NCONS can be changed at run time.

-parallel+show_features
Displays enabled VCS Multicore features. Note that you must
enter the -parallel option with +show_features

Examples:

-parallel+vpd is equal to -parallel+vpd=1
-parallel+tgl is equal to -parallel+tgl=1

VCS Multicore option examples:

 vcs -parallel+fc -o psimv
 vcs -parallel+vpd+fc -parallel+tgl -o par_simv

6-32

VCS Multicore Technology Application Level Parallelism

 vcs -parallel+design=part.cfg+sva

Use Model for Assertion Simulation

1. Run VCS Multicore compilation specifying the sva option.

2. Run VCS Multicore simulation.

Use Model for Toggle and Functional Coverage

1. Run VCS Multicore compilation specifying the VCS Multicore tgl
option and coverage metric options for toggle coverage, and/or
the VCS Multicore fc option for functional coverage. You can
optionally specify the number of consumers for each.

2. Run the simulation to generate coverage results.

3. Generate coverage result reports.

Use Model for VPD Dumping

1. Run VCS Multicore compilation specifying the vpd option.

2. Run the simulation to generate the VPD file.

6-33

VCS Multicore Technology Application Level Parallelism

Running VCS Multicore Simulation

VCS Multicore Technology takes advantage of the computing power
of multiple processors to improve simulation turnaround time

You can generate results for one of all the following VCS Multicore
Technology options in a simulation:

• Assertion simulation

• Toggle coverage

• Functional coverage

• VPD file generation

Assertion Simulation

You can process only assertion level results or assertion level results
along with other VCS Multicore options.

1. Compile using the VCS Multicore -parallel option, the assertion
compilation option or options, and other VCS Multicore and VCS
options.

vcs filename(s).v -parallel+[sva[=NCONS]]
[-ntb_opts] [multicore_options vcs_options

2. Run the simulation with VCS and VCS Multicore run-time options.

simv

6-34

VCS Multicore Technology Application Level Parallelism

Toggle Coverage

Generate results for only toggle coverage or toggle coverage along
with other results by compiling the design with VCS Multicore options
that include the +tgl option and VCS coverage metrics options. You
can use the +count option to report total executed transactions.
After generating coverage results, you can examine them using the
Unified Report Generator.

Note:
To enable the use of the same executable for both serial and
parallel runs, use this option at runtime.

tgl[+count]

 Report total executed transactions.

1. Compile using the VCS Multicore -parallel option, coverage
option or options, and other VCS Multicore and VCS options.

vcs filename(s).v -parallel+tgl[=NCONS] -cm tgl
[multicore_options] [vcs_options]

2. Run the simulation to generate coverage results.

simv -vdb tgl [vcs_options]

3. Generate coverage result reports:

urg -dir coverage_directory.vdb urg_options

Example

In this example, toggle coverage results only are generated and the
URG report is produced in the default HTML format.

% vcs -cm_tgl mda -q -cm_dir pragmaTest1.vdb -cm tgl -
sverilog -parallel+tgl=2 pragmaTest1.v
% simv -vdb tgl

6-35

VCS Multicore Technology Application Level Parallelism

% urg -dir pragmaTest1.vdb

Results can then be examined in your default browser.

Functional Coverage

Generate results for only functional coverage or functional coverage
along with other results by compiling the design with VCS Multicore
options that include the +fc option and VCS coverage metrics
options. After generating coverage results, you can examine them
using the Unified Report Generator.

1. Compile using the VCS Multicore -parallel option, coverage
option or options, and other VCS Multicore and VCS options.

vcs filename(s).v -sverilog -parallel+fc[=NCONS]
[parallel_vcs_options] [vcs_options]

2. Run the simulation to generate coverage results.

simv

6-36

VCS Multicore Technology Application Level Parallelism

3. Generate coverage result reports:

urg -dir coverage_directory.vdb urg_options

Example

In this example, functional coverage results only are generated and
the URG report is produced in the default HTML format.

% vcs iemIntf.v -sverilog -parallel+fc=2
% simv -covg_cont_on_error
% $urg -dir simv.vdb
% cat urgReport/gr*
%

Results can then be examined in your default browser.

6-37

VCS Multicore Technology Application Level Parallelism

VPD File

You can enable VCS Multicore VPD+ Dumping and specify the
number of VCS Multicore VPD+ consumers using the VCS Multicore
vpd option. To enable the use of the same executable for both serial
and parallel runs, use this option at runtime.

Note:
When used with multiple consumers, VPD file size blow up might
be an issue. Use -parallel+vpd_buffer=<N>, where
N=256, 512 etc.

1. Compile using the VCS Multicore -parallel option with the
vpd[=NCONS] option, and other VCS Multicore and VCS options.

vcs filename(s).v -debug_pp -parallel+vpd[=NCONS]
[multicore_options] [vcs_options]

2. Run the simulation.

simv

You can post-process the results with the generated +VPD
database.

Example

In this example, a VPD+ file with three specified consumers is
generated.

% vcs -debug_pp -parallel+vpd=3 design.v
% simv

6-38

VCS Multicore Technology Application Level Parallelism

Parallel SAIF

SAIF is Switching Activity Interchange Format, a file format for
Power Compiler. VCS writes or dumps SAIF files for it.

Parallel SAIF is a feature to improve runtime performance. Parallel
SAIF uses the VCS Multicore Application Level Parallelism (ALP)
capability for multicore machines. In it Parallel SAIF uses a
consumer or slave process to write or dump SAIF files while the
simulation is run by the producer or master process.

Serial SAIF dumping, that is having VCS write SAIF files without
using the advantage of a multiple processor machine, is of course
still supported.

You specify Parallel SAIF with the -parallel+saif compile-time
or runtime option.

Customary SAIF System Function Entries

Like in serial SAIF, Parallel SAIF first requires you to enter the
following system functions in your Verilog code:

$set_toggle_region

$toggle_start

$toggle_reset

$toggle_stop

$toggle_report

6-39

VCS Multicore Technology Application Level Parallelism

$set_gate_level_monitoring

Forward SAIF file read mode is not supported in Parallel SAIF so do
not enter the following system functions:

$read_lib_saif

$read_rtl_saif

Enabling Parallel SAIF

You enable Parallel SAIF with the -parallel+saif=1 or just
-parallel+saif compile-time or runtime option.

If you enabled Parallel SAIF at compile-time and want to disable it at
runtime, you can do so with the -parallel+saif=0 runtime
option.

Limitations

Parallel SAIF has the following limitations:

• Parallel SAIF is not implemented for VCS Multicore Design Level
Parallelism (DLP).

• Parallel SAIF only works with one consumer or slave process, so
for example specifying more than one slave process such as
entering -parallel+saif=2 results in an error condition.

• SAIF file read mode is not implemented for Parallel SAIF.

6-40

VCS Multicore Technology Application Level Parallelism

• Multiple $toggle_start system tasks are not supported in
Parallel SAIF. Only full dump mode is supported, which is one
$toggle_start and $toggle_stop system task. Entering
multiple $toggle_start system tasks in Parallel SAIF is an
error condition.

7-1

VPD, VCD, and EVCD Utilities

7
VPD, VCD, and EVCD Utilities 1

This chapter describes the following:

• “Advantages of VPD”

• “Dumping a VPD File”

• “Dump Multi-dimensional Arrays and Memories”

• “Dumping an EVCD File”

• “Post-processing Utilities”

VCS MX allows you to save your simulation history in the following
formats:

• Value Change Dumping (VCD)

VCD is the IEEE Standard for Verilog designs. You can save your
simulation history in VCD format by using the $dumpvars Verilog
system task.

7-2

VPD, VCD, and EVCD Utilities

• VCDPlus Dumping (VPD)

VPD is a Synopsys propriety dumping technology. VPD has many
advantages over the standard VCD ASCII format. See
“Advantages of VPD” for more information. To dump a VPD file,
use the $vcdpluson Verilog system task. See “Dumping a VPD
File” for more information.

• Extended VCD (EVCD)

EVCD dumps only the port information of your design. See
“Dumping an EVCD File” for more information.

VCS MX also provides several post-processing utilities to:

• Convert VPD to VCD

• Convert VCD to VPD

• Merge VPD Files

Advantages of VPD

VPD offers the following significant advantages over the standard
VCD ASCII format:

• Provides a compressed binary format that dramatically reduces
the file size as compared to VCD and other proprietary file formats.

• The VPD compressed binary format dramatically reduces the
signal load time.

• Allows data collection for signals or scopes to be turned on and
off during a simulation run, therefore, dramatically improving
simulation runtime and file size.

7-3

VPD, VCD, and EVCD Utilities

• Can save source statement execution data. This allows instant
replay of source execution in the DVE Source Window.

To optimize VCS MX performance and VPD file size, consider the
size of the design, the RAM memory capacity of your workstation,
swap space, disk storage limits, and the methodology used in the
project.

Dumping a VPD File

You can save your simulation history in VPD format in the following
ways:

• “Using System Tasks” - For Verilog designs.

• “Using UCLI” - For VHDL, Verilog, and mixed designs.

• “Using DVE” - See the Discovery Visual Environment User Guide.

Using System Tasks

VCS MX provides Verilog system tasks to:

• “Enable and Disable Dumping”

• “Override the VPD Filename”

• “Dump Multi-dimensional Arrays and Memories”

• “Capture Delta Cycle Information”

7-4

VPD, VCD, and EVCD Utilities

Enable and Disable Dumping

You can use the Verilog system task $vcdpluson and
$vcdplusoff to enable and disable dumping the simulation history
in VPD format.

Note:
The default VPD filename is vcdplus.vpd. However, you can
use $vcdplusfile to override the default filename, see
“Override the VPD Filename” .

$vcdpluson

The following displays the syntax for $vcdpluson:

$vcdpluson (level|"LVL=integer",scope*,signal*);

Usage:

level |LVL=integer_variable

Specifies the number of hierarchy scope levels to descend to
record signal value changes (a zero value records all scope
instances to the end of the hierarchy; the default is zero).

You can also specify the number of hierarchy scope levels using
"LVL=integer_variable". In this example, the
integer_variable specifies the level to descend to record
signal value changes.

scope

Specifies the name of the scope in which to record signal value
changes (the default is all).

7-5

VPD, VCD, and EVCD Utilities

signal

Specifies the name of the signal in which to record signal value
changes (the default is all).

Note:
In the syntax, * indicates that the argument can have a list of more
than one value (for scopes or signals).

Example 1: Record all signal value changes.

‘timescale 1ns/1ns
module test ();
...

initial
$vcdpluson;

...
endmodule

When you simulate the above example, VCS MX saves the
simulation history of the whole design in vcdplus.vpd. For
information on the use model to simulate the design, see “Basic
Usage Model” on page 17.

Example 2: Record signal value changes for scope
test.risc1.alureg and all levels below it.

‘timescale 1ns/1ns
module test ();
...

risc1 risc(...);

initial
$vcdpluson(test.risc1.alureg);

...

7-6

VPD, VCD, and EVCD Utilities

endmodule

When you simulate the previous example, VCS MX saves the
simulation history of the instance alureg, and all instances below
alureg in vcdplus.vpd.

$vcdplusoff

The $vcdplusoff task stops recording the signal value changes
for specified scopes or signals.

The following displays the syntax for vcdplusoff:

$vcdplusoff (level|"LVL=integer",scope*,signal*);

Example 1: Turn recording off.

‘timescale 1ns/1ns
module test ();
...
initial
 begin
 $vcdpluson; // Enable Dumping
 #5 $vcdplusoff; //Disable Dumping after 5ns
 ...
 end
...
endmodule

The above example, enables dumping at 0ns, and disables dumping
after 5ns.

Example 2: Stop recording signal value changes for scope
test.risc1.alu1.

‘timescale 1ns/1ns
module test ();
...
initial
 begin

7-7

VPD, VCD, and EVCD Utilities

 $vcdpluson; // Enable Dumping
 $vcdplusoff(test.risc1.alu1); //Does not dump signal value
 //changes in test.risc1.alu1
 ...
 end
...
endmodule

The above example, enables dumping on the entire design.
However, $vcdplusoff disables dumping the instance alu1 and
instances below alu1.

Note:
If multiple $vcdpluson commands cause a given signal to be
saved, the signal will continue to be saved until an equivalent
number of $vcdplusoff commands are applied to the signal.

Override the VPD Filename

By default, $vcdpluson writes the simulation history in the
vcdplus.vpd file. However, you can override the default filename
by using the system task $vcdplusfile, as shown below:

$vcdplusfile ("filename.vpd");
$vcdpluson();

Note:
You must use $vcdpluson after specifying $vcdplusfile, as
shown above, to override the default filename.

Example:

‘timescale 1ns/1ns
module test ();
...
initial
 begin

7-8

VPD, VCD, and EVCD Utilities

 $vcdplusfile("my.vpd"); //Dumps signal value changes
 //in my.vpd
 $vcdpluson; // Enable Dumping
 ...
 end
...
endmodule

The above example writes the signal value changes of the whole
design in my.vpd.

Dump Multi-dimensional Arrays and Memories

This section describes system tasks and functions that provide
visibility into multi-dimensional arrays (MDAs).

There are two ways to view MDA data:

• The first method, which uses the $vcdplusmemon and
$vcdplusmemoff system tasks, records data each time an MDA
has a data change.

Note:
You should use the elaboration option +memcbk to use these
system tasks.

• The second method, which uses the $vcdplusmemorydump
system task, stores data only when the task is called.

Syntax for Specifying MDAs

Use the following syntax to specify MDAs using the
$vcdplusmemon, $vcdplusmemoff, and
$vcdplusmemorydump system tasks:

system_task(Mda [, dim1Lsb [, dim1Rsb [, dim2Lsb [, dim2Rsb

7-9

VPD, VCD, and EVCD Utilities

[, ... dimNLsb [, dimNRsb]]]]]]);

Usage:

system_task

Name of the system task (required). It can be $vcdplusmemon,
$vcdplusmemoff, or $vcdplusmemorydump.

Mda

Name of the MDA to be recorded. It must not be a part select. If
there are no other arguments, then all elements of the MDA are
recorded to the VPD file.

dim1Lsb

Name of the variable that contains the left bound of the first
dimension. This is an optional argument. If there are no other
arguments, then all elements under this single index of this
dimension are recorded.

dim1Rsb

Name of the variable that contains the right bound of the first
dimension. This is an optional argument.

Note:
The dim1Lsb and dim1Rsb arguments specify the range of the
first dimension to be recorded. If there are no other arguments,
then all elements under this range of addresses within the first
dimension are recorded.

dim2Lsb

This is an optional argument with the same functionality as
dim1Lsb, but refers to the second dimension.

7-10

VPD, VCD, and EVCD Utilities

dim2Rsb

This is an optional argument with the same functionality as
dim1Rsb, but refers to the second dimension.

dimNLsb

This is an optional argument that specifies the left bound of the
Nth dimension.

dimNRsb

This is an optional argument that specifies the right bound of the
Nth dimension.

Note that MDA system tasks can take 0 or more arguments, with the
following caveats:

• No arguments: The whole design is traversed and all memories
and MDAs are recorded.

Note that this process may cause significant memory usage, and
simulation drag.

• One argument: If the object is a scope instance, all memories/
MDAs contained in that scope instance and its children will be
recorded. If the object is a memory/MDA, that object will be
recorded.

Examples

This section provides examples and graphical representations of
various MDA and memory declarations using the $vcdplusmemon
and $vcdplusmemoff tasks.

7-11

VPD, VCD, and EVCD Utilities

In this example, mem01 is a three-dimensional array. It has 3x3x3
(27) locations; each location is 8 bits in length, as shown in
Figure 7-1.

module tb();
...
reg [3:0] addr1L, addr1R, addr2L, addr2R, addr3L, addr3R;

reg [7:0] mem01 [1:3] [4:6] [7:9]

...
endmodule

Example 1: To dump all elements to the VPD File

module test();
...
initial
$vcdplusmemon(mem01);
 // Records all elements of mem01 to the VPD file.
...
endmodule

In the above example, $vcdplusmemon dumps the entire mem01
MDA.

7-12

VPD, VCD, and EVCD Utilities

Figure 7-1 reg [7:0] mem01 [1:3] [4:6] [7:9]

Example 2: Removed variable 'addr1L' and replaced it with
constant in the system task

module test();
...
initial
 begin
 $vcdplusmemon(mem01, 2);
 // Records elements mem01[2][4][7] through mem01[2][6][9]
 ...
 end
...
endmodule

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

Dimension 1

1

2

3

Dimension 2

4 5 6
Dimension 3

7

8

9

Note: Unlimited
dimensions can be

1

2

3

1

2

3

7-13

VPD, VCD, and EVCD Utilities

The elements highlighted by the in the following Figure 7-2,
illustrate this example.

Figure 7-2 $vcdplusmemon(mem01, addr1L)

Example 3: Removed variable 'addr1L','addr1R' and replaced
them with constants in the system task

module test();
...
initial
 begin
 $vcdplusmemon(mem01, 2, 3);
 // Records elements mem01[2][4][7] through mem01[3][6][9]
 ...
 end
..
endmodule

1

2

3

1

2

3

Starting bound:

Ending
bound:mem0

9

1

2

3 [76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

8
[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

7

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

4 5 6

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

7-14

VPD, VCD, and EVCD Utilities

The elements highlighted by the in the following Figure 7-3,

illustrate this example.

Figure 7-3 $vcdplusmemon(mem01, addr1L, addr1R)

Example 4: Removed variable 'addr1L','addr1R','addr2L' and
replaced them with constants in the system task

module test();
...
initial
 begin
 $vcdplusmemon(mem01, 2, 2, 5);
 // Records elements mem01[2][5][7] through mem01[2][5][9]
 ...
 end

Starting bound:

Ending
bound:mem0

9

1

2

3

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

8

1

2

3 [76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

1

2

3

7

[76543210] [76543210] [76543210]

4 5 6

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

7-15

VPD, VCD, and EVCD Utilities

...
endmodule

The elements highlighted by the in the following Figure 7-4,

illustrate this example.

Figure 7-4 $vcdplusmemon(mem01, addr1L, addr1R, addr2L)

Example 5: Removed variable
'addr1L','addr1R','addr2L','addr2R','addr3L','addr3R' and
replaced them with constants in the system task

module test();
...
initial
 begin
 $vcdplusmemon(mem01, 2, 2, 5, 5, 8, 8);

Starting bound: mem01[2][5][7]

Ending
bound:

[76543210] [76543210] [76543210]

9

1

2

3

[76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

8

1

2

3

[76543210] [76543210] [76543210]

1

2

3

7

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

4 5 6

[76543210] [76543210] [76543210]

7-16

VPD, VCD, and EVCD Utilities

 // Either command records element mem01[2][5][8]
 ...
 end
...
endmodule

The elements highlighted by the in the following Figure 7-5

illustrate this example.

7-17

VPD, VCD, and EVCD Utilities

Figure 7-5 $vcdplusmemon(mem01, addr1L, addr1R, addr2L, addr2R,
addr3L, addr3R)

Using $vcdplusmemorydump

The $vcdplusmemorydump task dumps a snapshot of memory
locations. When the function is called, the current contents of the
specified range of memory locations are recorded (dumped).

You can specify to dump the complete set of multi-dimensional array
elements only once. You can specify multiple element subsets of an
array using multiple $vcdplusmemorydump commands, but they
must occur in the same simulation time. In subsequent simulation

Selected
element:mem

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

9

1

2

3

[76543210] [76543210]

[76543210] [76543210] [76543210]

8

1

2

3

[76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

1

2

3

4 5 6

7

[76543210] [76543210] [76543210]

7-18

VPD, VCD, and EVCD Utilities

times, $vcdplusmemorydump commands must use the initial set of
array elements or a subset of those elements. Dumping elements
outside the initial specifications results in a warning message.

Capture Delta Cycle Information

You can use the following VPD system tasks to capture and display
delta cycle information in the Waveform Window.

$vcdplusdeltacycleon

The $vcdplusdeltacycleon task enables reporting of delta cycle
information from the Verilog source code. It must be followed by the
appropriate $vcdpluson/$vcdplusoff tasks.

Glitch detection is automatically turned on when VCS MX executes
$vcdplusdeltacycleon unless you have previously used
$vcdplusglitchon/off. Once you use $vcdplusglitchon/
off, DVE allows you explicit control of glitch detection.

Syntax:

$vcdplusdeltacycleon;

Note:
Delta cycle collection can start only at the beginning of a time
sample. The $vcdplusdeltacycleon task must precede the
$vcdpluson command to ensure that delta cycle collection will
start at the beginning of the time sample.

$vcdplusdeltacycleoff

The $vcdplusdeltacycleoff task turns off reporting of delta
cycle information starting at the next sample time.

7-19

VPD, VCD, and EVCD Utilities

Glitch detection is automatically turned off when VCS MX executes
$vcdplusdeltacycleoff unless you have previously used
$vcdplusglitchon/off. Once you use $vcdplusglitchon/
off, DVE allows you explicit control of glitch detection.

Syntax:

$vcdplusdeltacycleoff;

Dumping an EVCD File

EVCD dumps the signal value changes of the ports at the specified
module instance. You can dump an EVCD file, using the following
system tasks:

$lsi_dumpports

For LSI certification of your design, this system task specifies
recording a simulation history file that contains the transition times
and values of the ports in a module instance.

This simulation history file for LSI certification contains more
information than the VCD file specified by the $dumpvars system
task. The information in this file includes strength levels and
whether the test fixture module (test bench) or the Device Under
Test (the specified module instance or DUT) is driving a signal’s
value.

Syntax:

$lsi_dumpports(module_instance,"filename");

7-20

VPD, VCD, and EVCD Utilities

Example:

$lsi_dumpports(top.middle1,"dumpports.dmp");

Instead, if you would prefer to have the $lsi_dumpports system
task generate an extended VCD (EVCD) file, include the
+dumpports+ieee runtime option.

$dumpports

Creates an EVCD file as specified in IEEE Standard 1364-2001
pages 339-340. You can, for example, input a EVCD file into
TetraMAX for fault simulation. EVCD files are similar to the
simulation history files generated by the $lsi_dumpports
system task for LSI certification, but there are differences in the
internal statements in the file. Further, the EVCD format is a
proposed IEEE standard format whereas the format of the LSI
certification file is specified by LSI.

Syntax:

$dumpports(module_instance,[module_instance,]"f
ilename");

Example:

$dumpports(top.middle1, "dumpports.evcd");

If your source code contains a $dumpports system task and you
want it to generate simulation history files for LSI certification,
include the +dumpports+lsi runtime option.

7-21

VPD, VCD, and EVCD Utilities

Limitations

Following are the limitations for EVCD dumping using $dumpports
or UCLI command dump –type EVCD:

Unsupported Port Types

• For Verilog DUT:

- Ports can only be of type Verilog-2001. SystemVerilog type
ports are not allowed. VCS generates a warning message, if it
finds any unsupported port type.

- SystemVerilog complex types (including MDAs, dynamic
arrays, associative arrays, queues, and so on) are not
supported, and not legal in LRM. Interface or virtual interface
is not supported.

• For ports connected to CCN (tran/rtran) directly or
hierarchically:

- They are only supported with $dumpports in the Verilog
source, and must be known at compile-time. They are not
supported with dump –type EVCD UCLI command.

• For VHDL DUT:

- Ports can only be of type STD_LOGIC, STD_ULOGIC,
STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR, BIT,
BIT_VECTOR, BOOLEAN. Any user-defined type or sub-type
of the above types is supported.

Complex types like aggregates, MDA, or enums are not
allowed as port or port drivers, and a warning message will be
generated if such constructs are found.

7-22

VPD, VCD, and EVCD Utilities

- Ports having type with user-defined resolution functions in
VHDL are not supported.

Unsupported DUT Types

• DUT cannot be SV program, interface, SystemC, Spice, or
Verilog-A.

Unsupported Driver Types

• Since tran gates divide a net into different segments, the EVCD
behavior might be different in presence of XMR drivers.

• $deposit, force –deposit (UCLI command) associated with
EVCD port is not supported. They are not true drivers, and LRM
is silent about the intended behavior.

• If drivers of port are in encrypted region, they are ignored.

• Drivers through virtual interface/nested interface and so on, are
not supported.

• High-conn logical expressions are not supported.

SystemC Support

• Each SystemC module is treated like a Verilog shell, and multiple
drivers cannot be detected inside SystemC.

• SystemC is not supported as a DUT.

Note:
- All forces will be considered as TB regardless of where the

force is applied from (TB, DUT, or UCLI).

7-23

VPD, VCD, and EVCD Utilities

- EVCD port associated with SDF timing may not be properly
handled. LRM does not specify how the delay has to be
handled for various scenarios (whether to add delay on driver
side for EVCD and so on).

In case of SDF, value is not same for different net segments
of the same net (there is a delay) and whether they should
be treated as same net or different net for EVCD purpose.
Current behavior is all net segments are treated as part of
the same net, all drivers are reported, and driver value
change is reported as it occurs in core simulation.

Post-processing Utilities

VCS MX provides you with the following utilities to process VCD and
VPD files. You can use these utilities to perform the following
conversions:

• VPD file to a VCD file

• VCD file to a VPD file

• Merge a VPD file

Note:
All utilities are available in $VCS_HOME/bin.

This section describes these utilities in the following sections:

• “The vcdiff Utility”

• “The vcat Utility”

• “The vcsplit Utility”

7-24

VPD, VCD, and EVCD Utilities

• “The vcd2vpd Utility”

• “The vpd2vcd Utility”

• “The vpdmerge Utility”

• “The vpdutil Utility”

The vcdiff Utility

The vcdiff utility compares two dump files and reports any
differences it finds. The dump file can be of type VCD, EVCD or a
VPD.

Note:
The vcdiff utility cannot compare dump files of different type.

Dump files consist of two sections:

• A header section that reflects the hierarchy (or some subset) of
the design that was used to create the dump file.

• A value change section, which contains all of the value changes
(and times when those value changes occurred) for all of the
signals referenced in the header.

The vcdiff utility always performs two diffs. First, it compares the
header sections and reports any signals/scopes that are present in
one dump file but are absent in the other.

The second diff compares the value change sections of the dump
files, for signals that appear in both dump files. The

 utility determines value change differences based on the final value
of the signal in a time step.

7-25

VPD, VCD, and EVCD Utilities

The vcdiff Utility Syntax

The syntax of the vcdiff utility is as follows:

vcdiff first_dump_file second_dump_file
[-noabsentsig] [-absentsigscope scope] [-absentsigiserror]
[-allabsentsig][-absentfile filename][-matchtypes] [-
ignorecase]
[-min time] [-max time] [-scope instance] [-level
level_number]
[-include filename] [-ignore filename] [-strobe time1 time2]
[-prestrobe] [-synch signal] [-synch0 signal] [-synch1
signal]
[-when expression] [-xzmatch] [-noxzmatchat0]
[-compare01xz] [-xumatch] [-xdmatch] [-zdmatch] [-zwmatch]
[-showmasters] [-allsigdiffs] [-wrapsize size]
[-limitdiffs number] [-ignorewires] [-ignoreregs]
[ingorereals]
[-ignorefunctaskvars][-ignoretiming units] [-
ignorestrength]
[-geninclude [filename]] [-spikes]

Options for Specifying Scope/Signal Hierarchy

The following options control how the vcdiff utility compares the
header sections of the dump files:

-noabsentsig

Does not report any signals that are present in one dump file but
are absent in the other.

-absentsigscope [scope]

Reports only absent signals in the given scope.

-absentfile [file]

Prints the full path names of all absent scopes/signals to the given
file, as opposed to stdout.

7-26

VPD, VCD, and EVCD Utilities

-absentsigiserror

If this option is present and there are any absent signals in either
dump file, then vcdiff returns an error status upon completion
even if it doesn’t detect any value change differences. If this option
is not present, absent signals do not cause an error.

-allabsentsig

Reports all absent signals. If this option is not present, by default,
vcdiff reports only the first 10 absent signals.

-ignorecase

Ignores the case of scope/signal names when looking for absent
signals. In effect, it converts all signal/scope names to uppercase
before comparison.

-matchtypes

Reports mismatches in signal data types between the two dump
files.

Options for Specifying Scope(s) to be Value Change Diffed

By default, vcdiff compares the value changes for all signals that
appear in both dump files. The following options limit value change
comparisons to specific scopes.

-scope [scope]

Changes the top-level scope to be value change diffed from the
top of the design to the indicated scope. Note, all child scopes/
signals of the indicated scope will be diffed unless modified by the
-level option (below).

-level N

7-27

VPD, VCD, and EVCD Utilities

Limits the depth of scope for which value change diffing occurs.
For example, if -level 1 is the only command-line option, then
vcdiff diffs the value changes of only the signals in the top-level
scope in the dump file.

-include [file]

Reports value change diffs only for those signals/scopes given in
the specified file. The file contains a set of full path specifications
of signals and/or scopes, one per line.

-ignore [file]

Removes any signals/scopes contained in the given file from
value change diffing. The file contains a set of full path
specifications of signals and/or scopes, one per line.

Note:

The vcdiff utility applies the -scope/-level options first. It then
applies the -include option to the remaining scopes/signals,
and finally applies the -ignore option.

Options for Specifying When to Perform Value Change Diffing

The following options limit when vcdiff detects value change
differences:

-min time

Specifies the starting time (in simulation units) when value change
diffing is to begin (by default, time 0).

-max time

7-28

VPD, VCD, and EVCD Utilities

Specifies the stopping time (in simulation units) when value
change diffing will end. By default, this occurs at the latest time
found in either dump file.

-strobe first_time delta_time

Only checks for differences when the strobe is true. The strobe
is true at first_time (in simulation units) and then every
delta_time increment thereafter.

-prestrobe

Used in conjunction with -strobe, tells vcdiff to look for
differences just before the strobe is true.

-when expression

Reports differences only when the given when expression is true.
Initially this expression can consist only of scalar signals,
combined with and, or, xor, xnor, and not operators and
employ parentheses to group these expressions. You must fully
specify the complete path (from root) for all signals used in
expressions. Note, operators may be either Verilog style (&, |, ^,
~^, ~) or VHDL (and, or, xor, xnor, not).

-synch signal

Checks for differences only when the given signal changes value.
In effect, the given signal is a "clock" for value change diffing,
where diffs are only checked for on transitions (any) of this signal.

-synch0 signal

As -sync (above) except that it checks for diffs when the given
signal transitions to ’0’.

-synch1

7-29

VPD, VCD, and EVCD Utilities

As -sync (above) except that it checks for diffs only when the
given signal transitions to ’1’.

Note:

The -max, -min and -when options must all be true in order for
vcdiff to report a value change difference.

Options for Filtering Differences

The following options filter out value change differences that are
detected under certain circumstances. For the most part, these
options are additive.

-ignoretiming time

Ignores the value change when the same signal in one of the VCD
files has a different value from the same signal in the other VCD
file for less than the specified time. This is to filter out signals that
have only slightly different transition times in the two VCD files.
The vcdiff utility reports a change when there is a transition to
a different value in one of the VCD files and then a transition back
to a matching value in that same file.

-ignoreregs

Does not report value change differences on signals that are of
type register.

-ignorewires

Does not report value change differences on signals that are of
type wire.

 -ignorereals

7-30

VPD, VCD, and EVCD Utilities

Does not report value change differences on signals that are of
type real.

-ignorefunctaskvars

Does not report value change differences on signals that are
function or task variables.

-ignorestrength (EVCD only)

EVCD files contain a richer set of signal strength and directional
information than VCD or even VPD files. This option ignores the
strength portion of a signal value when checking for differences.

-compare01xz (EVCD only)

Converts all signal state information to equivalent 4-state values
(0, 1, x, z) before difference comparison is made (EVCD files
only). Also ignores the strength information.

-xzmatch

Equates x and z values.

-xumatch (9-state VPD file only)

Equates x and u (uninitialized) values.

-xdmatch (9-state VPD file only)

Equates x and d (dontcare) values.

-zdmatch (9-state VPD file only)

Equates z and d (dontcare) values.

-zwmatch (9-state VPD file only)

7-31

VPD, VCD, and EVCD Utilities

Equates z and w (weak 1) values. In conjunction with -xzmatch
(above), this option causes x and z value to be equated at all
times EXCEPT time 0.

Options for Specifying Output Format

The following options change how value change differences are
reported.

-allsigdiffs

By default, vcdiff only shows the first difference for a given signal.
This option reports all diffs for a signal until the maximum number
of diffs is reported (see -limitdiffs).

 -wrapsize columns

Wraps the output of vectors longer than the given size to the next
line. By default, this value is 64.

-showmasters (VCD, EVCD files only)

Shows collapsed net masters. VCS can split a collapsed net into
several sub-nets when this has a performance benefit. This option
reports the master signals when the master signals (first signal
defined on a net) are different in the two dump files.

-limitdiffs number_of_diffs

By default, vcdiff stops after the first 50 diffs are reported. This
option overrides that default. Setting this value to 0 causes
vcdiff to report all diffs.

-geninclude filename

7-32

VPD, VCD, and EVCD Utilities

Produces a separate file of the given name in addition to the
standard vcdiff output. This file contains a list of signals that
have at least one value change difference. The format of the file
is one signal per line. Each signal name is a full path name. You
can use this file as input to the vcat tool with vcat’s -include
option.

-spikes

A spike is defined as a signal that changes multiple times in a
single time step. This option annotates with #’s the value change
differences detected when the signal spikes (glitches). It keeps
and reports a total count of such diffs.

The vcat Utility

The format of a VCD or a EVCD file, although a text file, is written to
be read by software and not by human designers. VCS includes the
vcat utility to enable you to more easily understand the information
contained in a VCD file.

The vcat Utility Syntax

The vcat utility has the following syntax:

vcat VCD_filename [-deltaTime] [-raw] [-min time] [-max time]
[-scope instance_name] [-level level_number]
[-include filename] [-ignore filename] [-spikes] [-noalpha]
[-wrapsize size] [-showmasters] [-showdefs] [-showcodes]
[-stdin] [-vgen]

Here:

-deltaTime

7-33

VPD, VCD, and EVCD Utilities

Specifies writing simulation times as the interval since the last
value change rather than the absolute simulation time of the signal
transition. Without -deltaTime a vcat output looks like this:

--- TEST_top.TEST.U4._G002 ---
 0 x
 33 0
 20000 1
 30000 x
 30030 z
 50030 x
 50033 1
 60000 0
 70000 x
 70030 z

With -deltaTime a vcat output looks like this:

--- TEST_top.TEST.U4._G002 ---
 0 x
 33 0
 19967 1
 10000 x
 30 z
 20000 x
 3 1
 9967 0
 10000 x
 30 z

-raw

Displays “raw” value changed data, organized by simulation time,
rather than signal name.

-min time

Specifies a start simulation time from which vcat begins to display
data.

-max time

7-34

VPD, VCD, and EVCD Utilities

Specifies an end simulation time up to which vcat displays data.

-scope instance_name

Specifies a module instance. The vcat utility displays data for all
signals in the instance and all signals hierarchically under this
instance.

-level level_number

Specifies the number of hierarchical levels for which vcat displays
data. The starting point is either the top-level module or the
module instance you specify with the -scope option.

-include filename

Specifies a file that contains a list of module instances and signals.
The vcat utility only displays data for these signals or the signals
in these module instances.

-ignore filename

Specifies a file that contains a list of module instances and signals.
However, the vcat utility does NOT display data for these signals
or the signals in these module instances.

-spikes

Indicates all zero-time transitions with the >> symbol in the
leftmost column. In addition, prints a summary of the total number
of spikes seen at the end of the vcat output. The following is an
example of the new output:

 --- DF_test.logic.I_348.N_1 ---
 0 x
 100 0
 120 1
 >>120 0

7-35

VPD, VCD, and EVCD Utilities

 4000 1
 12000 0
 20000 1

 Spikes detected: 5

-noalpha

By default vcat displays signals within a module instance in
alphabetical order. This option disables this ordering.

-wrapsize size

Specifies value displays for wide vector signals, how many bits to
display on a line before wrapping to the next line.

-showmasters

Specifies showing collapsed net masters.

-showdefs

Specifies displaying signals but not their value changes or the
simulation time of these value changes.

-showcodes

Specifies displaying the signal’s VCD file identifier code.

-stdin

Enables you to use standard input, such as piping the VCD file
into vcat, instead of specifying the filename.

-vgen

7-36

VPD, VCD, and EVCD Utilities

Generates from a VCD file two types of source files for a module
instance: one that models how the design applies stimulus to the
instance, and the other that models how the instance applies
stimulus to the rest of the design. See “Generating Source Files
From VCD Files” on page 36.

The following is an example of the output from the vcat utility:

vcat exp1.vcd

exp1.vcd: scopes:6 signals:12 value-changes:13

--- top.mid1.in1 ---
 0 1

--- top.mid1.in2 ---
 0 xxxxxxxx
 10000 00000000

--- top.mid1.midr1 ---
 0 x
 2000 1

--- top.mid1.midr2 ---
 0 x
 2000 1

In this output, for example, you see that signal top.mid1.midr1 at
time 0 had a value of X and at simulation time 2000 (as specified by
the $timescale section of the VCD file, which VCS derives from
the time precision argument of the ‘timescale compiler directive)
this signal transitioned to 1.

Generating Source Files From VCD Files

The vcat utility can generate Verilog and VHDL source files that are
one of the following:

7-37

VPD, VCD, and EVCD Utilities

• A module definition that succinctly models how a module instance
is driven by a design, that is, a concise testbench module that
instantiates the specified instance and applies stimulus to that
instance the way the entire design does. This is called testbench
generation.

• A module definition that mimics the behavior of the specified
instance to the rest of the design, that is, it has the same output
ports as the instance and in this module definition the values from
the VCD file are directly assigned to these output ports. This is
called module generation.

Note:
The vcat utility can only generate these source files for instances
of module definitions that do not have inout ports.

Testbench generation enables you to focus on a module instance,
applying the same stimulus as the design does, but at faster
simulation because the testbench is far more concise than the entire
design. You can substitute module definitions at different levels of
abstraction and use vcdiff to compare the results.

Module generation enables you to use much faster simulating
“canned” modules for a part of the design to enable the faster
simulation of other parts of the design that need investigation.

The name of the generated source file from testbench generation
begins with testbench followed by the module and instance names
in the hierarchical name of the module instance, separated by
underscores. For example testbench_top_ad1.v.

7-38

VPD, VCD, and EVCD Utilities

Similarly, the name of the generated source file from module
generation begins with moduleGeneration followed by the
module and instance names in the hierarchical name of the module
instance, separated by underscores. For example
moduleGeneration_top_ad1.v.

You enable vcat to generate these files by doing the following:

1. Writing a configuration file.

2. Running vcat with the -vgen command-line option.

Writing the Configuration File

The configuration file is named vgen.cfg by default and vcat looks
for it in the current directory. This file needs three types of information
specified in the following order:

1. The hierarchical name of the module instance.

2. Specification of testbench generation with the keyword
testbench or specification of module generation with the
keyword moduleGeneration.

3. The module header and the port declarations from the module
definition of the module instance.

You can use Verilog comments in the configuration file.

The following is an example of a configuration file:

Example 7-1 Configuration File
top.ad1
testbench
//moduleGeneration
module adder (out,in1,in2);

7-39

VPD, VCD, and EVCD Utilities

input in1,in2;
output [1:0] out;

You can use a different name and location for the configuration file.
In order to do this, you must enter it as an argument to the -vgen
option. For example:

vcat filename.vcd -vgen /u/design1/vgen2.cfg

Example 7-2 Source Code

Consider the following source code:

module top;
reg r1,r2;
wire int1,int2;
wire [1:0] result;

initial
begin
$dumpfile("exp3.vcd");
$dumpvars(0,top.pa1,top.ad1);
#0 r1=0;
#10 r2=0;
#10 r1=1;
#10 r2=1;
#10 r1=0;
#10 r2=0;
#10 r1=1;
#10 r2=1;
#10 r1=0;
#10 r2=0;
#10 r1=1;
#10 r2=1;
#10 r1=0;
#10 r2=0;
#100 $finish;
end

passer pa1 (int1,int2,r1,r2);

7-40

VPD, VCD, and EVCD Utilities

adder ad1 (result,int1,int2);
endmodule

module passer (out1,out2,in1,in2);
input in1,in2;
output out1,out2;

assign out1=in1;
assign out2=in2;
endmodule

module adder (out,in1,in2);
input in1,in2;
output [1:0] out;

reg r1,r2;
reg [1:0] sum;

always @ (in1 or in2)
begin
r1=in1;
r2=in2;
sum=r1+r2;
end
assign out=sum;
endmodule

Notice that the stimulus from the testbench module named test
propagates through an instance of a module named passer before
it propagates to an instance of a module named adder. The vcat
utility can generate a testbench module to stimulate the instance of
adder in the same exact way but in a more concise and therefore
faster simulating module.

If we use the sample vgen.cfg configuration file in Example 7-1
and enter the following command line:

vcat filename.vcd -vgen

7-41

VPD, VCD, and EVCD Utilities

The generated source file, testbench_top_ad1.v, is as follows:

module tbench_adder ;
wire [1:0] out ;
reg in2 ;
reg in1 ;
initial #131 $finish;
initial $dumpvars;
initial begin
 #0 in2 = 1’bx;
 #10 in2 = 1’b0;
 #20 in2 = 1’b1;
 #20 in2 = 1’b0;
 #20 in2 = 1’b1;
 #20 in2 = 1’b0;
 #20 in2 = 1’b1;
 #20 in2 = 1’b0;
end
initial begin
 in1 = 1’b0;
 forever #20 in1 = ~in1 ;
end
adder ad1 (out,in1,in2);
endmodule

This source file uses significantly less code to apply the same
stimulus with the instance of module passer omitted.

If we revise the vgen.cfg file to have vcat perform module
generation, the generated source file,
moduleGeneration__top_ad1.v, is as follows:

module adder (out,in1,in2) ;
input in2 ;
input in1 ;
output [1:0] out ;
reg [1:0] out ;
initial begin
 #0 out = 2’bxx;
 #10 out = 2’b00;

7-42

VPD, VCD, and EVCD Utilities

 #10 out = 2’b01;
 #10 out = 2’b10;
 #10 out = 2’b01;
 #10 out = 2’b00;
 #10 out = 2’b01;
 #10 out = 2’b10;
 #10 out = 2’b01;
 #10 out = 2’b00;
 #10 out = 2’b01;
 #10 out = 2’b10;
 #10 out = 2’b01;
 #10 out = 2’b00;
end
endmodule

Notice that the input ports are stubbed and the values from the VCD
file are assigned directly to the output port.

The vcsplit Utility

The vcsplit utility generates a VCD, EVCD, or VPD file that contains
a selected subset of value changes found in a given input VCD,
EVCD, or VPD file (the output file has the same type as the input file).
You can select the scopes/signals to be included in the generated file
either via a command-line argument, or a separate "include" file.

The vcsplit Utility Syntax

The vcsplit utility has the following syntax:

vcsplit [-o output_file] [-scope selected_scope_or_signal]
[-include include_file] [-min min_time] [-max max_time]
[-level n] [-ignore ignore_file] input_file [-v] [-h]

Here:

7-43

VPD, VCD, and EVCD Utilities

-o output_file

Specifies the name of the new VCD/EVCD/VPD file to be
generated. If output_file is not specified, vcsplit creates the
file with the default name vcsplit.vcd.

-scope selected_scope_or_signal

Specifies a signal or scope whose value changes are to be
included in the output file. If a scope name is given, then all signals
and sub-scopes in that scope are included.

-include include_file

Specifies the name of an include file that contains a list of signals/
scopes whose value changes are to be included in the output file.

The include file must contain one scope or signal per line. Each
presented scope/signal must be found in the input VCD, EVCD,
or VPD file. If the file contains a scope, and separately, also
contains a signal in that scope, vcsplit includes all the signals in
that scope, and issues a warning.

Note:
If you use both -include and -scope options, vcsplit uses all
the signals and scopes indicated.

input_file

Specifies the VCD, EVCD, or VPD file to be used as input.

7-44

VPD, VCD, and EVCD Utilities

Note:
If the input file is either VCD or EVCD, and it is not specified,
vcsplit takes its input from stdin. The vcsplit utility has this stdin
option for VCD and EVCD files so that you can pipe the output
of gunzip to this tool. If you try to pipe a VPD file through stdin,
vcsplit exits with an error message.

-min min_time

Specifies the time to begin the scan.

-max max_time

Specifies the time to stop the scan.

-ignore ignore_file

Specifies the name of the file that contains a list of signals/scopes
whose value changes are to be ignored in the output file.

If you specify neither include_file nor
selected_scope_or_signal, then vcsplit includes all the
value changes in the output file except the signals/scopes in the
ignore_file.

If you specify an include_file and/or a
selected_scope_or_signal, vcsplit includes all value
changes of those signals/scopes that are present in the
include_file and the selected_scope_or_signal but
absent in ignore_file in the output file. If the ignore_file
contains a scope, vcsplit ignores all the signals and the scopes
in this scope.

-level n

7-45

VPD, VCD, and EVCD Utilities

Reports only n levels hierarchy from top or scope. If you specify
neither include_file nor selected_scope_or_signal,
vcsplit computes n from the top level of the design. Otherwise, it
computes n from the highest scope included.

-v

Displays the current version message.

-h

Displays a help message explaining usage of the vcsplit utility.

Note:
In general, any command-line error (such as illegal arguments)
that VCS detects causes vcsplit to issue an error message and
exit with an error status. Specifically:

- If there are any errors in the -scope argument or in the
include file (such as a listing a signal or scope name that does
not exist in the input file), VCS issues an error message, and
vcsplit exits with an error status.

- If VCS detects an error while parsing the input file, it reports
an error, and vcsplit exits with an error status.

- If you do not provide either a -scope, -include or
-ignore option, VCS issues an error message, and vcsplit
exits with an error status.

Limitations

• MDAs are not supported.

• Bit/part selection for a variable is not supported. If this usage is
detected, the vector will be regarded as all bits are specified.

7-46

VPD, VCD, and EVCD Utilities

The vcd2vpd Utility

The vcd2vpd utility converts a VCD file generated using $dumpvars
or UCLI dump commands to a VPD file.

The syntax is as shown below:

vcd2vpd [-bmin_buffer_size] [-fmax_output_filesize] [-h]
[-m] [-q] [+] [+glitchon] [+nocompress] [+nocurrentvalue]
[+bitrangenospace] [+vpdnoreadopt] [+dut+dut_sufix]
[+tf+tf_sufix] vcd_file vpd_file

Usage:

-b<min_buffer_size>

Minimum buffer size in KB used to store Value Change Data
before writing it to disk.

-f<max_output_filesize>

Maximum output file size in KB. Wrap around occurs if the
specified file size is reached.

-h

Translate hierarchy information only.

-m

Give translation metrics during translation.

-q

Suppress printing of copyright and other informational messages.

+deltacycle

Add delta cycle information to each signal value change.

7-47

VPD, VCD, and EVCD Utilities

+glitchon

Add glitch event detection data.

+nocompress

Turn data compression off.

+nocurrentvalue

Do not include object's current value at the beginning of each
VCB.

+bitrangenospace

Support non-standard VCD files that do not have white space
between a variable identifier and its bit range.

+vpdnoreadopt

Turn off read optimization format.

Options for specifying EVCD options

+dut+dut_sufix

Modifies the string identifier for the Device Under Test (DUT) half
of the split signal. Default is "DUT".

+tf+tf_sufix

Modifies the string identifier for the Test-Fixture half of the split
signal. Default is "TF".

+indexlast

Appends the bit index of a vector bit as the last element of the
name.

7-48

VPD, VCD, and EVCD Utilities

vcd_file

Specify the vcd filename or use "-" to indicate VCD data to be read
from stdin.

vpd_file

Specify the VPD file name. You can also specify the path and the
filename of the VPD file, otherwise, the VPD file will be generated
with the specified name in the current working directory.

The vpd2vcd Utility

The vpd2vcd utility converts a VPD file generated using the system
task $vcdpluson or UCLI dump commands to a VCD or EVCD file.

The syntax is as shown below:

vpd2vcd [-h] [-q] [-s] [-x] [-xlrm] [+zerodelayglitchfilter]
[+morevhdl] [+start+value] [+end+value] [+splitpacked]
[+dumpports+instance] [-f cmd_filename] vpd_file vcd_file

Here:

-h

Translate hierarchy information only.

-q

Suppress the copyright and other informational messages.

-s

Allow sign extension for vectors. Reduces the file size of the
generated vcd_file.

7-49

VPD, VCD, and EVCD Utilities

-x

Expand vector variables to full length when displaying $dumpoff
value blocks.

-xlrm

Convert uppercase VHDL objects to lowercase.

+zerodelayglitchfilter

Zero delay glitch filtering for multiple value changes within the
same time unit.

+morevhdl

Translates the VHDL types of both directly mappable and those
that are not directly mappable to verilog types.

Note:
This switch may create a non-standard VCD file.

+start+time

Translate the value changes starting after the specified start time.

+end+time

Translate the value changes ending before the specified end time.

Note:
Specify both start time and end time to translate the value
changes occuring between start and end time.

+dumpports+instance

7-50

VPD, VCD, and EVCD Utilities

Generate an EVCD file for the specified module instance. If the
path to the specified instance contains escaped identifiers, then
the full path must be enclosed in single quotes.

-f cmd_filename

Specify a command file containing commands to limit the design
converted to VCD or EVCD. See the “The Command File Syntax”
section for more information.

+splitpacked

Use this option to change the way packed structs and arrays are
reported in the output VCD file. It does the following:

- Treats a packed structure the same as an unpacked structure
and dumps the value changes of each field.

Consider the following example:

typedef logic [1:0] t_vec;

typedef struct packed {
 t_vec f_vec_b;
} t_ps_b;

module test();
 t_ps_b var_ps_b;
endmodule

The VCD file created in the previous example is as follows:

$scope module test $end
$scope fork var_ps_b $end
$var reg 2 ! f_vec_b [1:0] $end
$upscope $end
$upscope $end

7-51

VPD, VCD, and EVCD Utilities

- Treats a packed MDA as an unpacked MDA except for the inner
most dimensions.

Consider the following example:

typedef logic [1:0] t_vec;

module test();
 t_vec [3:2] var_vec;
endmodule

The VCD file created in the previous example is as follows:

$scope module test $end
$var reg 2 % var_vec[3] [1:0] $end
$var reg 2 & var_vec[2] [1:0] $end
$upscope $end

- Expands all packed arrays defined in a packed struct.

Consider the following example:

typedef logic [1:0] t_vec;

typedef struct packed {
 t_vec f_vec;
 t_vec [3:2][1:0] f_vec_array;
 } t_ps;

module test();
 t_ps var_ps;
endmodule

The VCD file created in the previous example is as follows:

$scope module test $end
$scope fork var_ps $end
$var reg 2 ' f_vec [1:0] $end
$var reg 2 (f_vec_array[3][1] [1:0] $end
$var reg 2) f_vec_array[3][0] [1:0] $end

7-52

VPD, VCD, and EVCD Utilities

$var reg 2 * f_vec_array[2][1] [1:0] $end
$var reg 2 + f_vec_array[2][0] [1:0] $end
$upscope $end
$upscope $end

- Expands all dimensions of a packed array defined in a packed
struct.

Consider the following example:

typedef logic [1:0] t_vec;

typedef struct packed {
 t_vec f_vec;
 t_vec [3:2][1:0] f_vec_array;
 } t_ps;

module test();
 t_ps [1:0] var_paps;
endmodule

The VCD file created in the previous example is as follows:

$scope module test $end
$scope fork var_paps[1] $end
$var reg 2 ' f_vec [1:0] $end
$var reg 2 (f_vec_array[3][1] [1:0] $end
$var reg 2) f_vec_array[3][0] [1:0] $end
$var reg 2 * f_vec_array[2][1] [1:0] $end
$var reg 2 + f_vec_array[2][0] [1:0] $end
$upscope $end
$scope fork var_paps[0] $end
$var reg 2 , f_vec [1:0] $end
$var reg 2 - f_vec_array[3][1] [1:0] $end
$var reg 2 . f_vec_array[3][0] [1:0] $end
$var reg 2 / f_vec_array[2][1] [1:0] $end
$var reg 2 0 f_vec_array[2][0] [1:0] $end
$upscope $end
$upscope $end

7-53

VPD, VCD, and EVCD Utilities

- Expands and prints the value of each member of a packed
union.

Consider the following example:

module testit;

 typedef logic [1:0] t_vec;

typedef union packed {
 t_vec f_vec;
 struct packed {
 logic f_a;
 logic f_b;
 } f_ps;
} t_pu_v;
typedef union packed {
 struct packed {
 logic f_a;
 logic f_b;
 } f_ps;
 t_vec f_vec;
} t_pu_s;
 t_pu_v var_pu_v;
 t_pu_s var_pu_s;
endmodule

The VCD file created in the previous example is as follows:

$scope module testit $end
$scope fork var_pu_v $end
$var reg 2 - f_vec [1:0] $end
$scope fork f_ps $end
$var reg 1 . f_a $end
$var reg 1 / f_b $end
$upscope $end
$upscope $end
$scope fork var_pu_s $end
$scope fork f_ps $end
$var reg 1 0 f_a $end
$var reg 1 1 f_b $end

7-54

VPD, VCD, and EVCD Utilities

$upscope $end
$var reg 2 2 f_vec [1:0] $end
$upscope $end
$upscope $end

The Command File Syntax

Using a command file, you can generate:

• A VCD file for the whole design or for the specified instances.

• Only the port information for the specified instances.

• An EVCD file for the specified instances.

Note the following before writing a command file:

• All commands must start as the first word in the line, and the
arguments for these commands should be written in the same
line. For example:

dumpvars 1 adder4

• All comments must start with “//”. For example:

//Add your comment here
dumpvars 1 adder4

• All comments written after a command, must be preceded by a
space. For example:

dumpvars 1 adder4 //can write your comment here

A command file can contain the following commands:

dumpports instance [instance1 instance2]

7-55

VPD, VCD, and EVCD Utilities

Specify an instance for which an EVCD file has to be generated.
You can generate an EVCD file for more than one instance by
specifying the instance names separated by a space. You can
also specify multiple dumpports commands in the same
command file.

dumpvars [level] [instance instance1 instance2
....]

Specify an instance for which a VCD file has to be generated.
[level] is a numeric value indicating the number of levels to
traverse down the specified instance. If not specified, or if the
value specified is "0", then all the instances under the specified
instance will be dumped.

You can generate a VCD file for more than one instance by
specifying the instance names separated by a space. You can
also specify multiple dumpvars commands in the same
command file.

If this command is not specified or the command has no
arguments, then a VCD file will be generated for the whole design.

dumpvcdports [level] instance [instance1 instance2
....]

Specify an instance whose port values are dumped to a VCD file.
[level] is a numeric value indicating the number of levels to
traverse down the specified instance. If not specified, or if the
value specified is "0", then the port values of all the instances
under the specified instance will be dumped.

7-56

VPD, VCD, and EVCD Utilities

You can generate a dump file for more than one instance by
specifying the instance names separated by a space. You can
also specify multiple dumpvcdports commands in the same
command file.

Note:
dumpvcdports splits the inout ports of type wire into two
separate variables:

- one shows the value change information driven into the port.
VCS adds a suffix _DUT to the basename of this variable.

- the other variable shows the value change information driven
out of the port. VCS adds a suffix _TB to the basename of this
variable.

dutsuffix DUT_suffix

Specify a string to change the suffix added to the variable name
that shows the value change date driven out of the inout port. The
default value is _DUT. The suffix can also be enclosed within
double quotes.

tbsuffix TB_suffix

Specify a string to change the suffix added to the variable name
that shows the value change date driven into the inout port. The
default value is _TB. The suffix can also be enclosed within
double quotes.

starttime start_time

Specify the start time to start dumping the value change data to
the VCD file. If this command is not specified, the start time will
be the start time of the VPD file.

7-57

VPD, VCD, and EVCD Utilities

Note:
Only one +start command is allowed in a command file.

endtime end_time

Specify the end time to stop dumping the value change data to
the VCD file. If this command is not specified, the end time will be
the end time of the VPD file.

Note:
Only one +end command is allowed in a command file, and
must be equal to or greater than the start time.

Limitations
• dumpports is mutually exclusive with either the dumpvars or

dumpvcdports commands. The reason for this is that
dumpports generates an EVCD file while both dumpvars and
dumpvcdports generates standard VCD files.

• Escaped identifiers must include the trailing space.

• Any error parsing the file will cause the translation to terminate.

The vpdmerge Utility

Using the vpdmerge utility, you can merge different VPD files storing
simulation history data for different simulation times, or parts of the
design hierarchy into one large VPD file. For example in the DVE
Wave view in Figure 7-6, there are three signal groups for the same
signals in different VPD files.

7-58

VPD, VCD, and EVCD Utilities

Figure 7-6 DVE Wave Window with Signal Groups from Different VPD Files

Signal group test is from a VPD file from the first half of a
simulation, signal group test_1 is from a VPD file for the second
half of a simulation, and signal group test_2 is from the merged
VPD file.

The syntax is as shown below:

vpdmerge [-h] [-q] [-hier] [-v] -o merged_VPD_filename
input_VPD_filename input_VPD_filename ...

Usage:

-h

Displays a list of the valid options and their purpose.

-o merged_VPD_filenames

Specifies the name of the output merged VPD file. This option is
required.

-q

7-59

VPD, VCD, and EVCD Utilities

Specifies quiet mode, disables the display of most output to the
terminal.

-hier

Specifies that you are merging VPD files for different parts of the
design, instead of the default condition, without this option, which
is merging VPD files from different simulation times.

-v

Specifies verbose mode, enables the display of warning and error
messages.

Restrictions

The vpdmerge utility includes the following restrictions:

• To read the merged VPD file, DVE must have the same or later
version than that of the vpdmerge utility.

• VCS must have written the input VPD files on the same platform
as the vpdmerge utility.

• The input VPD files cannot contain delta cycle data (different
values for a signal during the same time step).

• The input VPD files cannot contain named events.

• The merged line stepping data does not always accurately replay
scope changes within a time step.

• If you are merging VPD files from different parts of the design,
using the -hier option, the VPD files must be used for distinctly
different parts of the design, they cannot contain information for
the same scope.

7-60

VPD, VCD, and EVCD Utilities

• You cannot use the vpdmerge option on two vpd files, which are
created based on timing, for both timing & hierarchy (using the -
hier option) based merging.

Limitations

The verbose option -v may not display error or warning messages
in the following scenarios:

• If the reference signal completely or coincidentally overlaps the
compared signal.

• During hierarchy merging, if the design object already exists in
the merged file.

During hierarchy merging, the -hier option may not display error
or warning messages in the following scenarios.

• If the start and end times of the two dump files are the same.

• If the datatype of the hierarchical signal in the dump files do not
match.

Value Conflicts

If the vpdmerge utility encounters conflicting values for the same
signal, with the same hierarchical name, in different input VPD files,
it does the following when writing the merged VPD file:

• If the signals have the same end time, vpdmerge uses the values
from the first input VPD file that you entered on the command line.

• If the signals have different end times, vpdmerge uses the values
for the signal with the greatest end time.

In cases where there are value conflicts, the -v option displays
messages about these conflicts.

7-61

VPD, VCD, and EVCD Utilities

The vpdutil Utility

The vpdutil utility generates statistics about the data in the vpd file.
The utility takes a single vpd file as input. You can specify options to
this utility to query at design, module, instance, and node levels.

This utility supports time ranges and input lists for query on more
than one object. Output will be in ascii to stdout with option to redirect
to an output file.

For more information, see “Using the vpdutil Utility to Generate
Statistics” .

8-1

Performance Tuning

8
Performance Tuning 1

VCS MX delivers the best performance during both compile-time and
runtime by reducing the size of the simulation executable, and the
amount of memory consumed for elaboration and simulation. By
default, it is optimized for the following types of designs:

• Designs with many layers of hierarchy

• Gate-level designs

• Structural RTL-level designs - Using libraries where the cells are
RTL-level code

• Designs with extensive use of timing such as delays, timing
checks, and SDF back annotation, particularly to
INTERCONNECT delays

However, depending on the phase of your design cycle, you can fine-
tune VCS MX for a better compile-time and runtime performance.

8-2

Performance Tuning

This chapter describes the following sections:

• Analysis-time Performance

During analysis, you can analyze all of both Verilog and VHDL
files in a single command line. For example, perform the following
to analyze Verilog files:

% vlogan file1.v file2.v file3.v

For additional information, see the section entitled, “Analysis” .

• Compile-time Performance

Compile-time performance plays a very important role when you
are in the initial phase of your design development cycle. In this
phase, you may want to modify and recompile the design to
observe the behavior. Since, this phase involves lot many
recompiling cycles, achieving a faster compilation is important.
For additional information, see the section entitled, “Compile-time
Performance” .

• Runtime Performance

Runtime performance is important in regression phase or in the
final phase of the design development cycle. For additional
information, see the section entitled, “Runtime Performance” .

• Obtaining VCS Consumption of CPU Resources

You can now capture the CPU resource statistics for compilation
and simulation using the switch -reportstats. For more
information, see “Obtaining VCS Consumption of CPU
Resources”

8-3

Performance Tuning

Compile-time Performance

You can improve compile-time performance in the following ways:

• “Incremental Compilation”

• “Compile Once and Run Many Times”

• “Parallel Compilation”

Incremental Compilation

During elaboration, VCS MX builds the design hierarchy. By default,
when you recompile the design, VCS MX compiles only those design
units that have changed since the last elaboration. This is called
incremental compilation.

The incremental compilation feature is the default in VCS MX. It
triggers recompilation of design units under the following conditions:

• Changes in the command-line options.

• Change in the target of a hierarchical reference.

• Change in the ports of a design unit.

• Change in the functional behavior of the design.

• Change in a compile-time constant such as a parameter/generic.

The following conditions do not cause VCS MX to recompile a
module:

• Change of time stamp of any source file.

• Change in file name or grouping of modules in any source file.

8-4

Performance Tuning

• Unrelated change in the same source file.

• Nonfunctional changes such as comments or white space.

Compile Once and Run Many Times

The VCS MX usage model is devised in such a way that you can
create a single binary executable and execute it many times avoiding
the elaboration step for all but the first run. For information on the
VCS MX usage model, see “Using the Simulator” on page 16.

For example, you can use this feature in the following scenarios:

• Use VCS MX runtime features, like passing values at runtime, to
modify the design, and simulate it without re-elaborating. For
information on runtime features, see Chapter 4, "Simulating the
Design".

• Run the same test with different seeds.

• Create a softlink of the executable and the .daidir or .db.dir
directory in a different directory, to run multiple simulations in
parallel.

Parallel Compilation

You can improve the compile-time performance by specifying the
number of parallel processes VCS MX can launch for the native code
generation phase of the elaboration. You should specify this using
the compile-time option -j[no_of_processes], as shown below:

% vcs -j[no_of_processes] [options] top_entity/module/
config

8-5

Performance Tuning

Note:
Parallel compilation applies only for the Verilog portion of the
design.

For example, the following command line will fork off two parallel
processes to generate a binary executable:

% vcs -j2 top

Runtime Performance

VCS MX runtime performance is based on the following:

• Coding Style (see VCS MX Modeling and Coding Style Guide).

• Access to the internals of your design at runtime, using PLIs,
UCLI, debugging using GUI, dumping waveforms etc.

This section describes the following to improve the runtime
performance:

• “Using Radiant Technology”

• “Improving Performance When Using PLIs”

Using Radiant Technology

VCS MX Radiant Technology applies performance optimizations to
the Verilog portion of your design while VCS MX compiles your
Verilog source code. These Radiant optimizations improve the
simulation performance of all types of designs from behavioral, RTL
to gate-level designs. Radiant Technology particularly improves the

8-6

Performance Tuning

performance of functional simulations where there are no timing
specifications or when delays are distributed to gates and
assignment statements.

Compiling With Radiant Technology

Radiant Technology optimizations are not enabled by default. You
enable them using the compile-time options:

+rad

Specifies using Radiant Technology

+optconfigfile

Optional. Specifies applying Radiant Technology optimizations to
part of the design using a configuration file as described below:

Applying Radiant Technology to Parts of the Design

The configuration file enables you to apply Radiant optimizations
selectively to different parts of your design. You can enable or
disable Radiant optimizations for all instances of a module, specific
instances of a module, or specific signals.

You specify the configuration file with the +optconfigfile
compile-time option. For example:

+optconfigfile+file_name

Note:
The configuration file is a general purpose file that has other
purposes, such as specifying ACC write capabilities. Therefore,
to enable Radiant Technology optimizations with a configuration
file, you must also include the +rad compile-time option.

8-7

Performance Tuning

The Configuration File Syntax

The configuration file contains one or more statements that set
Radiant optimization attributes, such as enabling or disabling
optimization on a type of design object, such as a module definition,
a module instance, or a signal.

The syntax of each type of statement is as follows:

module {list_of_module_identifiers} {list_of_attributes};

or

instance
{list_of_module_identifiers_and_hierarchical_names}
{list_of_attributes};

or

tree [(depth)] {list_of_module_identifiers}
{list_of_attributes};

Usage:

module

Keyword that specifies that the attributes in this statement apply
to all instances of each module in the list, specified by module
identifier.

list_of_module_identifiers

A comma separated list of module identifiers enclosed in curly
braces: { }

list_of_attributes

A comma separated list of Radiant optimization attributes
enclosed in curly braces: { }

8-8

Performance Tuning

instance

Keyword that specifies that the attributes in this statement apply
to:

- All instances of each module in the list specified by module
identifier.

- All module instances in the list specified by their hierarchical
names.

- The individual signals in the list specified by their hierarchical
names.

list_of_module_identifiers_and_hierarchical_nam
es

A comma separated list of module identifiers, hierarchical
names of module instances, or signals enclosed in curly braces:
{ }

Note:
Follow the Verilog syntax for signal names and hierarchical
names of module instances.

tree

Keyword that specifies that the attributes in this statement apply
to all instances of the modules in the list, specified by module
identifier, and also apply to all module instances hierarchically
under these module instances.

depth

8-9

Performance Tuning

An integer that specifies how far down the module hierarchy,
from the specified modules, you want to apply Radiant
optimization attributes. You can specify a negative value. A
negative value specifies descending to the leaf level and
counting up levels of the hierarchy to apply these attributes.
This specification is optional. Enclose this specification in
parentheses: ()

The valid Radiant optimization attributes are as follows:

noOpt

Disables Radiant optimizations on the module instance or signal.

noPortOpt

Prevents port optimizations such as optimizing away unused ports
on a module instance.

Opt

Enables all possible Radiant optimizations on the module instance
or signal.

PortOpt

Enables port optimizations such as optimizing away unused ports
on a module instance.

Statements can use more than one line and must end with a
semicolon.

Verilog style comments characters /* comment */ and //
comment can be used in the configuration file.

8-10

Performance Tuning

Configuration File Statement Examples

The following are examples of statements in a configuration file.

module statement example

module {mod1, mod2, mod3} {noOpt, PortOpt};

This module statement example disables Radiant optimizations for
all instances of modules mod1, mod2, and mod3, with the exception
of port optimizations.

multiple module statement example

module {mod1, mod2} {noOpt};
module {mod1} {Opt};

In this example, the first module statement disables radiant
optimizations for all instances of modules mod1 and mod2 and then
the second module statement enables Radiant optimizations for all
instances of module mod1. VCS MX processes statements in the
order in which they appear in the configuration file so the enabling of
optimizations for instances of module mod1 in the second statement
overrides the first statement.

instance statement example

instance {mod1} {noOpt};

In this example, mod1 is a module identifier so the statement
disables Radiant optimizations for all instances of mod1. This
statement is the equivalent of:

module {mod1} {noOpt};

module and instance statement example

module {mod1} {noOpt};
instance {mod1.mod2_inst1.mod3_inst1,
mod1.mod2_inst1.reg_a} {noOpt};

8-11

Performance Tuning

In this example, the module statement disables Radiant
optimizations for all instances of module mod1.

The instance statement disables Radiant optimizations for the
following:

• Hierarchical instance mod1.mod2_inst1.mod3_inst1

• Hierarchical signal mod1.mod2_inst1.reg_a

first tree statement example

tree {mod1,mod2} {Opt};

This example is for a design with the following module hierarchy:

The statement enables Radiant Technology optimizations for the
instances of modules mod1 and mod2 and for all the module
instances hierarchically under these instances.

module mod1
mod1_inst1

module mod11
mod11_inst1

module mod12
mod12_inst1

module mod111
mod111_inst1

module mod1111
mod1111_inst1

module top

module mod2
mod2_inst1

module mod21
mod21_inst1

module mod3
mod3_inst1

Radiant Technology optimizations
apply to this part of the design

8-12

Performance Tuning

second tree statement example

tree (0) {mod1,mod2} {Opt};

This modification of the previous tree statement includes a depth
specification. A depth of 0 means that the attributes apply no further
down the hierarchy than the instances of the specified modules,
mod1 and mod2.

A tree statement with a depth of 0 is the equivalent of a module
statement.

third tree statement example

You can specify a negative value for the depth value. If you do this,
specify ascending the hierarchy from the leaf level. For example:

tree (-2) {mod1, mod3} {Opt};

module mod1
mod1_inst1

module mod11
mod11_inst1

module mod12
mod12_inst1

module mod111
mod111_inst1

module mod1111
mod1111_inst1

module top

module mod2
mod2_inst1

module mod21
mod21_inst1

module mod3
mod3_inst1

Radiant Technology
optimizations apply
to this part of the
design

8-13

Performance Tuning

This statement specifies looking down the module hierarchy under
the instances of modules mod1 and mod3 to the leaf level and
counting up from there. (Leaf level module instances contain no
module instantiation statements.)

In this example, the instances of mod1111, mod12, and mod3 are at
a depth of -1 and the instances of mod111 and mod1 are at a depth
of -2. The attributes do not apply to the instance of mod11 because
it is at a depth of -3.

fourth tree statement example

You can disable Radiant optimizations at the leaf level under
specified modules. For example:

tree(-1) {mod1, mod2} {noOpt};

This example disables optimizations at the leaf level, the instances
of modules mod1111, mod12, and mod21, under the instances of
modules mod1 and mod2.

module mod1
mod1_inst1

module mod11
mod11_inst1

module mod12
mod12_inst1

module mod111
mod111_inst1

module mod1111
mod1111_inst1

module top

module mod2
mod2_inst1

module mod21
mod21_inst1

module mod3
mod3_inst1

Radiant Technology
optimizations apply
to these parts of the
design

8-14

Performance Tuning

Known Limitations

Radiant Technology is not applicable to all simulation situations.
Some features of VCS MX are not available when you use Radiant
Technology.

These limitations are:

• Back-annotating SDF Files

You cannot use Radiant Technology if your design back-annotates
delay values from either a compiled or an ASCII SDF file at
runtime.

• SystemVerilog

Radiant Technology does not work with SystemVerilog design
construct code. For example, structures and unions, new types
of always blocks, interfaces, or things defined in $root.

The only SystemVerilog constructs that work with Radiant
Technology are SystemVerilog assertions that refer to signals with
Verilog-2001 data types, not the new data types in SystemVerilog.

Potential Differences in Coverage Metrics

VCS MX supports coverage metrics with Radiant Technology and
you can enter both the +rad and -cm compile-time options.
However, Synopsys does not recommend comparing coverage
between two simulation runs when only one simulation was compiled
for Radiant Technology.

The Radiant Technology optimizations, though not changing the
simulation results, can change the coverage results.

8-15

Performance Tuning

Compilation Performance With Radiant Technology

Using Radiant Technology incurs longer incremental compile times
because the analysis performed by Radiant Technology occurs
every time you recompile the design even when only a few modules
have changed. However, VCS MX only performs the code
generation phase on the parts of the design that have actually
changed. Therefore, the incremental compile times are longer when
you use Radiant Technology but shorter than a full recompilation of
the design.

Improving Performance When Using PLIs

As mentioned earlier, the runtime performance is reduced when you
have PLIs accessing the design. In some cases, you may have ACC
capabilities enabled on all the modules in the design, including those
which actually do not require them. These scenarios will
unnecessarily reduce the runtime performance. Ideally the
performance can be improved if you are able to control the access
rights of the PLIs. However, this may not be possible in many
situations. In this situation, you can use the +vcs+learn+pli
runtime option.

+vcs+learn+pli tells VCS MX to write a new tab file with the ACC
capabilities enabled on the modules/scopes which actually need
them during runtime. Now, during recompile, along with your original
tab file, you can pass the new tab file using the compile-time option,
+applylearn+[tabfile], so that the next simulation will have a
better runtime. Therefore, this is a two-step process:

• Using the runtime option +vcs+learn+pli

• Using the elaboration option +applylearn+[tabfile] during
recompile. You do not have to reanalyze the files in this step.

8-16

Performance Tuning

The usage model and an example is shown below:

Usage Model

Step1: Using the runtime option +vcs+learn+pli.

Analysis

% vlogan [vlogan_options] file1.v file2.v
% vhdlan [vhdlan_options] file3.vhd file2.vhd file1.vhd

Note:
Specify the VHDL bottommost entity first, then move up in order.

Elaboration

% vcs [vcs_options] top_cfg/entity/module

Simulation

% simv [sim_options] +vcs+learn+pli

Step2: Using the elaboration option +applylearn+[tabfile].

Elaboration

% vcs [vcs_options] +applylearn+[tabfile] top_cfg/entity/
module

8-17

Performance Tuning

Simulation

% simv [sim_options]

Consider the above example, and your pli.tab file is as follows:

% cat pli.tab

 ///// MY TAB FILE/////
 acc=rw:*

The above tab file will enable ACC read/write capabilities on all the
modules in the design. However, in this example you are only
interested in having ACC read/write capabilities on the jkl module
only.

The usage model to invoke +vcs+learn+pli is as follows:

Step 1: Using the +vcs+learn+pli runtime option.

TB_TOP (VHDL)

TOP (Verilog)

ALPHA (VHDL)

ABC (VHDL) DEF (Verilog)

MNO (VHDL)

BETA (Verilog)

GHI (VHDL) JKL (Verilog)

8-18

Performance Tuning

Analysis

% vlogan def.v jkl.v beta.v top.v
% vhdlan mno.vhd abc.vhd alpha.vhd ghi.vhd tb_top.vhd

Note:
Specify the VHDL bottommost entity first, then move up in order.

Elaboration

% vcs TB_TOP -P pli.tab pli.c

Simulation

% simv +vcs+learn+pli

By default, the use of the +vcs+learn+pli option creates a
pli_learn.tab file in the current working directory. You can see
that the pli_learn.tab file has ACC capabilities enabled on only
the jkl module.

% cat pli_learn.tab

 ////////////////// SYNOPSYS INC ////////////////
// PLI LEARN FILE
// AUTOMATICALLY GENERATED BY VCS(TM) LEARN MODE
//
acc=rw:jkl
 //SIGNAL string:rw

Now, you can use the new tab file during elaboration to achieve a
better runtime performance. The usage model is as shown below:

Step 2: Using the elaboration option +applylearn+[tabfile].

Elaboration

% vcs TB_TOP -P pli.tab +applylearn+pli_learn.tab pli.c

8-19

Performance Tuning

Simulation

% simv

Impact on Performance

Options like -debug_pp, -debug, and -debug_all disable VCS
MX optimizations and also impact the performance. The -debug_pp
option has less performance impact than the -debug or
-debug_all options. The following table describes these options
and their performance impact:

See the section “Compiling or Elaborating the Design in Debug
Mode” on page 1 for more information.

Note that using extensive user interface commands, like force or
release at runtime, will have an huge impact on the performance.

To improve the performance, Synopsys recommends you to convert
these user interface commands to HDL files and to elaborate and
simulate them along with the design.

Table 8-1 Performance Impact of -debug_pp, -debug, and -debug_all

Options Description

-debug_pp Use this option to generate a dump file. You can also use this option
to invoke UCLI and DVE with some limitations. This has less
performance impact when compared to -debug or -debug_all

-debug Use this option if you want to use the force command at the UCLI
prompt, and for more debug capabilities.

-debug_all This option enables all debug capabilities, and therefore will have
a huge performance impact.

8-20

Performance Tuning

Contact Synopsys Support Center (vcs_support@synopsys.com) or
your Synopsys Application Consultant for further assistance.

Obtaining VCS Consumption of CPU Resources

You can now capture the CPU resource statistics for compilation and
simulation using the switch -reportstats.

Use Model

You can specify this option at compile time as well as runtime or both
depending on your requirement.

For example:

%vcs –reportstats
or
%simv -reportstats

Note:This option is supported only on RHEL32 and RHEL64
platforms. If you attempt to use this option on other platforms,
VCS issues a warning and then continues.

When you specify this option at compile time, VCS prints out the
following information.

Compile time

Compilation Performance Summary
===============================
vcs started at : Sat Nov 12 11:02:38 2011
Elapsed time : 4 sec
CPU Time : 3.0 sec
Virtual memory size : 361.7 MB

mailto:vcs_support@synopsys.com

8-21

Performance Tuning

Resident set size : 141.7 MB
Shared memory size : 79.7 MB
Private memory size : 62.1 MB
Major page faults : 0
===============================

The details of the above report are as follows:

• VCS start time

• Elapsed real time: wall clock time from VCS start to VCS end.

• CPU time: Accumulated user time + system time from all
processes spawned from VCS.

• Peak virtual memory size summarized from all the contributing
processes at specific time points.

• Sum of resident set size from all the contributing processes at
specific time points.

• Sum of shared memory from all the contributing processes at
specific time points.

• Sum of Private memory from all the contributing processes at
specific time points.

• Major fault accumulated from all processes spawned from VCS.

Simulation Time

Specifying this option at compile time and runtime, VCS prints out
both the compile time and simulation time data:

Simulation time sample report data

Simulation Performance Summary
==============================
Simulation started at : Sat Nov 12 11:02:43 2011

8-22

Performance Tuning

Elapsed Time : 1 sec
CPU Time : 0.1 sec
Virtual memory size : 152.2 MB
Resident set size : 106.5 MB
Shared memory size : 21.2 MB
Private memory size : 85.3 MB
Major page faults : 0
==============================

If you specify the option only runtime and not at compile time, VCS
prints only runtime data at runtime.

9-1

Gate-level Simulation

9
Gate-level Simulation 1

This chapter contains the following sections:

• “SDF Annotation”

• “Precompiling an SDF File”

• “SDF Configuration File”

• “Delays and Timing”

• “Using the Configuration File to Disable Timing”

• “Using the timopt Timing Optimizer”

• “Using Scan Simulation Optimizer”

• “Negative Timing Checks”

• “Using VITAL Models and Netlists”

9-2

Gate-level Simulation

SDF Annotation

The OVI Standard Delay File (SDF) specification provides a
standard ASCII file format for representing and applying delay
information. VCS MX supports the OVI versions 1.0, 1.1, 2.0, 2.1,
and 3.0 of this specification.

In the SDF format a tool can specify intrinsic delays, interconnect
delays, port delays, timing checks, timing constraints, and pulse
control (PATHPULSE).

When VCS MX reads an SDF file it “back-annotates” delay values to
the design, that is, it adds delay values or changes the delay values
specified in the source files.

Following are ways to back-annotate the delays specified in the SDF
file:

• “Using Unified SDF Feature”

• “Using $sdf_annotate System Task”

• “Using -xlrm Option for SDF Retain, Gate Pulse Propagation, and
Gate Pulse Detection Warning”

Using Unified SDF Feature

Unified SDF feature allows you to back-annotate the SDF delays
using the following elaboration option:

-sdf min|typ|max:instance_name:file.sdf

9-3

Gate-level Simulation

Analysis

% vlogan [vlogan_options] file2.v file3.v
% vhdlan [vhdlan_options] file4.vhd file5.vhd

Note:
The VHDL bottommost entity first, then move up in order.

Elaboration

% vcs -sdf min|typ|max:instance_name:file.sdf \
 [elab_options] top_cfg/entity/module

Simulation

% simv [run_options]

For more information, see “Options for Specifying Delays and SDF
Files”

See, $VCS_HOME/doc/examples/timing/mx_unified_sdf
directory for an example.

Using $sdf_annotate System Task

You can use the $sdf_annotate system task to back-annotate
delay values from an SDF file to your Verilog design.

The syntax for the $sdf_annotate system task is as follows:

$sdf_annotate ("sdf_file"[, module_instance]
[,"sdf_configfile"][,"sdf_logfile"][,"mtm_spec"]
[,"scale_factors"][,"scale_type"]);

Where:

"sdf_file"

9-4

Gate-level Simulation

Specifies the path to the SDF file.

module_instance

Specifies the scope where back-annotation starts. The default is
the scope of the module instance that calls $sdf_annotate.

"sdf_configfile"

Specifies the SDF configuration file. For more information on the
SDF configuration file, refer to the “SDF Configuration File”
section.

"sdf_logfile"

Specifies the SDF log file to which VCS MX sends error messages
and warnings. By default, VCS MX displays no more than ten
warning and ten error messages about back-annotation and
writes no more than that in the log file you specify with the -l
option. However, if you specify an SDF log file with this argument,
the SDF log file receives all messages about back-annotation.
You can also use the +sdfverbose runtime option to enable the
display of all back-annotation messages.

"mtm_spec"

Specifies which delay values of min:typ:max triplets VCS MX
back-annotates. Specify "MINIMUM", "TYPICAL", "MAXIMUM"
or "TOOL_CONTROL" (default).

"scale_factors"

Specifies the multiplier for the minimum, typical and maximum
components of delay triplets. It is a colon separated string of three
positive, real numbers "1.0:1.0:1.0" by default.

9-5

Gate-level Simulation

"scale_type"

Specifies the delay value from each triplet in the SDF file for use
before scaling. Possible values: "FROM_TYPICAL",
"FROM_MIMINUM", "FROM_MAXIMUM", "FROM_MTM" (default).

The usage model to simulate a design using $sdf_annotate is the
same as the basic usage model as shown below:

Analysis

% vlogan [vlogan_options] file2.v file3.v
% vhdlan [vhdlan_options] file4.vhd file5.vhd

Note:
The VHDL bottommost entity first, then move up in order.

Elaboration

% vcs [elab_options] top_cfg/entity/module

Simulation

% simv [run_options]

See “Options for Specifying Delays and SDF Files” on page 20.

Using -xlrm Option for SDF Retain, Gate Pulse
Propagation, and Gate Pulse Detection Warning

The following sections explain how to use the new features added
under the -xlrm option:

• “Using Optimistic Mode in SDF”

• “Using Gate Pulse Propagation”

• “Generating Warnings During Gate Pulses”

9-6

Gate-level Simulation

Using Optimistic Mode in SDF

Currently, when you use the -sdfretain option, SDF retain is
visible whenever there is a change in related inputs.

When you specify the -sdfretain option with -xlrm
alt_retain, SDF retain is visible only when there is a change in
the output. This new behavior is called optimistic mode. For
example, consider the following Verilog code:

and u(qout,d1,d2);

specify
 (d1 => qout) = (10); //RETAIN (6)
 (d2 => qout) = (10);
endspecify

The corresponding SDF entry is:

(IOPATH d1 qout (RETAIN (6))(10))
(IOPATH d2 qout (10))

The default output for the above example is:

time= 10 , d1=0,d2=0, qout=0
time= 100 , d1=1,d2=0, qout=0
time= 106 , d1=1,d2=0, qout=x // since input d1 change at
100, VCS propagate "x" to qout
time= 110 , d1=1,d2=0, qout=0
= 200 , d1=0,d2=0, qout=0
time= 206 , d1=0,d2=0, qout=x // since input d1 change at
200, VCS propagate "x" to qout
time= 210 , d1=0,d2=0, qout=0
time= 300 , d1=0,d2=1, qout=0
time= 400 , d1=1,d2=1, qout=0
time= 406 , d1=1,d2=1, qout=x
time= 410 , d1=1,d2=1, qout=1

9-7

Gate-level Simulation

The output using the -xlrm alt_retain option (new behavior) is:

time= 10 , d1=0,d2=0, qout=0
time= 100 , d1=1,d2=0, qout=0 // since there is no logic
change on "qout", no retain "x" seen
time= 200 , d1=0,d2=0, qout=0
time= 300 , d1=0,d2=1, qout=0
time= 400 , d1=1,d2=1, qout=0
time= 406 , d1=1,d2=1, qout=x // since there is logic change
on "qout", retain "x" propagated
time= 410 , d1=1,d2=1, qout=1

Using Gate Pulse Propagation

Using the -xlrm gd_pulseprop option, VCS always propagates
a gate pulse, even when the pulse width is equal to the gate delay.
For example, consider the following Verilog code:

module dut(qout,dinA,dinB);
output qout;
input dinA;
input dinB;

xor #10 inst(qout,dinA,dinB);

endmodule

Under the -xlrm gd_pulseprop option, if the pulse width on a
gate is equal to the gate delay, VCS always propagates the pulse as
shown below:

0 qout=x, dinA=1 dinB=1
10 qout=0, dinA=0 dinB=1
20 qout=1, dinA=0 dinB=0
30 qout=0, dinA=0 dinB=1
40 qout=1, dinA=0 dinB=0
50 qout=0, dinA=0 dinB=0

9-8

Gate-level Simulation

Generating Warnings During Gate Pulses

Using the -xlrm gd_pulsewarn option, VCS generates a warning
when it detects that the width of a pulse is identical to the gate delay.
For example, consider the following Verilog code:

module dut(qout,dinA,dinB);
output qout;
input dinA;
input dinB;

xor #10 inst(qout,dinA,dinB);
endmodule

Under the -xlrm gd_pulsewarn option, if the pulse width on a
gate is equal to the gate delay, VCS generates the following warning
message:

0 qout=x, dinA=1 dinB=1

Warning-[PWIWGD] Pulse Width Identical With Gate Delay
verilogfile.v, 42
top.mid_inst.dut_inst
At time 10, pulse width identical with gate delay "10" is
detected

 10 qout=0, dinA=0 dinB=1

 20 qout=1, dinA=0 dinB=0

9-9

Gate-level Simulation

Precompiling an SDF File

Whenever you compile your design, if your design backannotates
SDF data, VCS parses either the ASCII text SDF file or the
precompiled version of the ASCII text SDF file that VCS can make
from the original ASCII text SDF file. VCS does this even if the SDF
file is unchanged and already compiled into a binary version by a
previous compilation, and even when you are using incremental
compilation and the parts of the design backannotated by the SDF
file are unchanged.

VCS can parse the precompiled SDF file much faster than it can
parse the ASCII text SDF file, so for large SDF files it’s a good idea
to have VCS create a precompiled version of the SDF file.

Creating the Precompiled Version of the SDF file

To create the precompiled version of the SDF file, include the
+csdf+precompile option on the vcs command line.

By default, the +csdf+precompile option creates the precompiled
SDF file in the same directory as the ASCII text SDF file and
differentiates the precompiled version by appending "_c" to its
extension. For example, if the /u/design/sdf directory contains a
design1.sdf file, using the +csdf+precompile option creates
the precompiled version of the file named design1.sdf_c in the /
u/design/sdf directory.

After you have created the precompiled version of the SDF file, you
no longer need to include the +csdf+precompile option on the
vcs command line unless there is a change in the SDF file.
Continuing to include it, however, such as in a script that you run
every time you compile your design, would have no effect when the

9-10

Gate-level Simulation

precompiled version is newer than the ASCII text SDF file, but would
create a new precompiled version of the SDF file whenever the
ASCII text SDF file changes. Therefore this option is intended to be
used in scripts for compiling your design.

When you recompile your design, VCS finds the precompiled SDF
file in the same directory as the SDF file specified in the
$sdf_annotate system task. You can also specify the precompiled
SDF file in the $sdf_annotate system task. The
+csdf+precompile option also supports zipped SDF.

SDF Configuration File

You can use the configuration file to control the following on a
module type basis, as well as a global basis:

• min:typ:max selection

• Scaling

• MIPD (module-input-delay) approximation policy for cases of
‘overlapping’ annotations to the same input port.

Additionally, there is a mapping command you can use to redirect the
target of IOPATH and TIMINGCHECK statements from the scope of the
INSTANCE to a specific IOPATH or TIMINGCHECK in its sub hierarchy
for all instances of a specified module type.

9-11

Gate-level Simulation

Delay Objects and Constructs

The mapping from SDF statements to simulation objects in VCS MX
is fixed, as shown in Table 9-1.

Table 9-1 VCS MX Simulation Delay Objects/Constructs

SDF Constructs VCS MX Simulation Object

Delays

PATHPULSE module path pulse delay

GLOBALPATHPULSE module path pulse reject/error delay

IOPATH module path delay

PORT module input port delay

INTERCONNECT module input port delay or,
intermodule path delay when
+multisource_int_delays
specified

NETDELAY module input port delay

DEVICE primitive and module path delay
Timing-checks

SETUP $setup timing-check limit

HOLD $hold timing-check limit

SETUPHOLD $setup and $hold timing-check
limit

RECOVERY $recovery timing-check limit

SKEW $skew timing-check limit

WIDTH $width timing-check limit

PERIOD $period timing-check limit

NOCHANGE ignored

PATHCONSTRAINT ignored

SUM ignored

DIFF ignored

9-12

Gate-level Simulation

SDF Configuration File Commands

This section explains the following commands used in SDF
configuration files, with syntax and examples.

• approx_command

• mtm_command

• scale_command

approx_command

The INTERCONNECT_MPID keyword selects the INTERCONNECT
delays in the SDF file that are mapped to MIPDs in VCS MX. It can
specify one of the following to VCS MX:

MINIMUM
Annotates, to the MIPD for the input or inout port instance, the
shortest delay of all the INTERCONNECT delay value entries in
the SDF file that specify a connection to the input or inout port.

MAXIMUM
Annotates, to the MIPD for the input or inout port instance, the
longest delay of all the INTERCONNECT delay value entries in
the SDF file that specify a connection to the input or inout port.

AVERAGE
Annotates, to the MIPD for the input or inout port instance, the
average delay of all the INTERCONNECT delay value entries in
the SDF file that specify a connection to the input or inout port.

SKEWCONSTRAINT ignored

Table 9-1 VCS MX Simulation Delay Objects/Constructs

SDF Constructs VCS MX Simulation Object

9-13

Gate-level Simulation

LAST
Annotates, to the MIPD for the input or inout port instance, the
delays in the last INTERCONNECT entry in the SDF file that
specifies a connection to the input or inout port.

The default approximation is MAXIMUM.

Syntax:

INTERCONNECT_MIPD = MINIMUM | MAXIMUM | AVERAGE | LAST;

Example:

INTERCONNECT_MIPD=LAST;

mtm_command

Annotates the minimum, typical, or maximum delay value. Specifies
one of the following keywords:

MINIMUM
Annotates the minimum delay value

TYPICAL
Annotates the typical delay value

MAXIMUM
Annotates the maximum delay value

TOOL_CONTROL
Delay value is determined by the command line options of the
Verilog tool (+mindelays, +typdelays, or +maxdelays)

The default for min_typ_max is TOOL_CONTROL.

Syntax:

MTM = MINIMUM | TYPICAL | MAXIMUM | TOOL_CONTROL;

9-14

Gate-level Simulation

Example:

MTM=MAXIMUM;

scale_command

• SCALE_FACTORS - Set of three real number multipliers that
scale the timing information in the SDF file to the minimum, typical,
and maximum timing information that is backannotated to the
Verilog tool. The multipliers each represent a positive real number,
for example 1.6:1.4:1.2

• SCALE_TYPE - Selects one of the following keywords to scale
the timing specification in the SDF file to the minimum, typical,
and maximum timing that is backannotated to the Verilog tool:

FROM_MINIMUM
Scales from the minimum timing specification in the SDF file.

FROM_TYPICAL
Scales from the typical timing specification in the SDF file.

FROM_MAXIMUM
Scales from the maximum timing specification in the SDF file.

FROM_MTM
Scales directly from the minimum, typical, and maximum timing
specifications in the SDF file.

Syntax:

SCALE_FACTORS = number : number : number;
SCALE_TYPE = FROM_MINIMUM | FROM_TYPICAL | FROM_MAXIMUM |
FROM_MTM;

Example:

 SCALE_FACTORS=100:0:9;

9-15

Gate-level Simulation

 SCALE_TYPE=FROM_MTM;
 SCALE_FACTORS=1.1:2.1:3.1;
 SCALE_TYPE=FROM_MINIMUM;

SDF Example with Configuration File

The following example uses the VCS MX SDF configuration file
sdf.cfg:

// test.v - test sdf annotation
`timescale 1ns/1ps
module test;
initial begin

$sdf_annotate("./test.sdf",test, "./sdf.cfg",,,,);
end
wire out1,out2;
wire w1,w2;
reg in;
reg ctrl,ctrlw;
sub Y (w1,w2,in,in,ctrl,ctrl);
sub W (out1,out2,w1,w2,ctrlw,ctrlw);
initial begin

$display(" i c ww oo");
$display("ttt n t 12 12");
$monitor($realtime,,,in,,ctrl,,w1,w2,,out1,out2);

end
initial begin

ctrl = 0;// enable
ctrlw = 0;
in = 1'bx; //stabilize at x;
#100 in = 1; // x-1
#100 ctrl = 1; // 1-z
#100 ctrl = 0; // z-1
#100 in = 0; // 1-0
#100 ctrl = 1; // 0-z
#100 ctrl = 0; // z-0
#100 in = 1'bx; // 0-x
#100 ctrl = 1; // x-z
#100 ctrl = 0; // z-x
#100 in = 0; // x-0

9-16

Gate-level Simulation

#100 in = 1; // 0-1
#100 in = 1'bx; // 1-x

end
endmodule
`celldefine
module sub(o1,o2,i1,i2,c1,c2);
output o1,o2;
input i1,i2;
input c1,c2;
bufif0 Z(o1,i1,c1);
bufif0 (o2,i2,c2);
specify

(i1,c1 *> o1) = (1,2,3,4,5,6);
// 01 = 1, 10 = 2, 0z = 3, z1 = 4, 1z = 5, z0 = 6
if (i2==1'b1) (i2,c2 *> o2) = (7,8,9,10,11,12);

 // 01 = 7, 10 = 8, z1 = 10, 1z = 11, z0 = 12
endspecify
subsub X ();
endmodule
`endcelldefine
module subsub(oa,ob,ib,ia);
input ia,ib;output oa,ob;
specify

(ia *> oa) = 99.99;
(ib *> ob) = 2.99;

endspecify
endmodule

SDF File: test.sdf
(DELAYFILE
(SDFVERSION "3.0")
(DESIGN "sdftest")
(DATE "July 14, 1997")
(VENDOR "Synopsys")
(PROGRAM "manual")
(VERSION "4.0")
(DIVIDER .)
(VOLTAGE)
(PROCESS "")
(TEMPERATURE)
(TIMESCALE 1 ns)
(CELL (CELLTYPE "sub")

9-17

Gate-level Simulation

(INSTANCE *)
(DELAY (ABSOLUTE
(IOPATH i1 o1
(10:11:12)(13:14:15)(16:17:18)(19:20:21)(22:23:24)(25:26:2
7))
(COND (i2==1) (IOPATH i2 o2
(10:11:12)(13:14:15)(16:17:18)(19:20:21)(22:23:24)(25:26:2
7)))
))
)
)
SDF Configuration File: sdf.cfg
PATHPULSE=IGNORE;
INTERCONNECT_MIPD=MAXIMUM;
MTM=TOOL_CONTROL;
SCALE_FACTORS=100:0:9;
SCALE_TYPE=FROM_MTM;
MTM = TYPICAL;
SCALE_TYPE=FROM_MINIMUM;
SCALE_FACTORS=1.1:2.1:3.1;

MODULE sub {
SCALE_TYPE=FROM_MTM;
SCALE_FACTORS=1:2:3;
MTM=MINIMUM;
MAP_INNER = X;
(i1 *> o1) = IGNORE;
(i1 *> o1) = ADD { (ia *> oa); }
(i1 *> o1) = ADD { (ib *> ob); }
if (i2==1) (i2 *> o2) = ADD { (ib *> ob); }
}

Delays and Timing

This section describes the following topics:

• “Transport and Inertial Delays”

9-18

Gate-level Simulation

• “Pulse Control”

• “Specifying the Delay Mode”

Transport and Inertial Delays

Delays can be categorized into transport and inertial delays.

Transport delays allow all pulses that are narrower than the delay to
propagate through. For example, Figure 9-1 shows the waveforms
for an input and output port of a module that models a buffer with a
module path delay of seven time units between these ports. The
waveform on top is that of the input port and the waveform
underneath is that of the output port. In this example, you have
enabled transport delays for module path delays and specified that
a pulse three time units wide can propagate through. For an
explanation on how this is done, see “Enabling Transport Delays” on
page 22 and “Pulse Control” on page 23.

Figure 9-1 Transport Delay Waveforms

At time 0, a pulse three time units wide begins on the input port. This
pulse is narrower than the module path delay of seven time units, but
this pulse propagates through the module and appears on the output

9-19

Gate-level Simulation

port after seven time units. Similarly, another narrow pulse begins on
the input port at time 3 and it also appears on the output port seven
time units later.

You can apply transport delays on all module path delays and all
SDF INTERCONNECT delays back-annotated to a net from an SDF
file. For more information on SDF back-annotation, see “SDF
Annotation” .

Inertial delays, in contrast, filter out all pulses that are narrower than
the delay. Figure 9-2 shows the waveforms for the same input and
output ports when you have not enabled transport delays for module
path delays.

Figure 9-2 Inertial Delay Waveforms

The pulse that begins at time 0 that is three time units wide does not
propagate to the output port because it is narrower than the seven
time unit module path delay. Neither does the narrow pulse that
begins at time 3. Note that the wide pulse that begins at time 6 does
propagate to the output port.

Gates, switches, MIPDs, and continuous assignments only have
inertial delays, which are the default type of delay for module path
delays and INTERCONNECT delays back-annotated from an SDF
file to a net.

9-20

Gate-level Simulation

Different Inertial Delay Implementations

For compatibility with the earlier generation of Verilog simulators,
inertial delays have two different implementations, one for primitives
(gates, switches and UDPs), continuous assignments, and MIPDs
(Module Input Port Delays) and the other for module path delays and
INTERCONNECT delays back-annotated from an SDF file to a net.
For more details on SDF back-annotation, see “SDF Annotation” .
There is also a third implementation that is for module path and
INTERCONNECT delays and pulse control, see “Pulse Control” on
page 23.

Inertial Delays for Primitives, Continuous Assignments, and
MIPDs

Both implementations were devised to filter out narrow pulses but
the one for primitives, continuous assignments, and MIPDs can
produce unexpected results. For example, Figure 9-3 shows the
waveforms for nets connected to the input and output terminals of a
buf gate with a delay of five time units.

In this implementation there can never be more than one scheduled
event on an output terminal. To filter out narrow pulses, the trailing
edge of a pulse can alter the value change but not the transition time
of the event scheduled by the leading edge of the pulse if the event
has not yet occurred.

9-21

Gate-level Simulation

Figure 9-3 Gate Terminal Waveforms

In the example illustrated in Figure 9-3, the following occurs:

1. At time 3 the input terminal changes to 0. This is the leading edge
of a three time unit wide pulse. This event schedules a value
change to 0 on the output terminal at time 8 because there is a
#5 delay specification for the gate.

2. At time 6 the input terminal toggles to 1. This implementation
keeps the scheduled transition on the output terminal at time 8
but alters the value change to a value of 1.

3. At time 8 the output terminal transitions to 1. This transition might
be unexpected because all pulses on the input have been
narrower than the delay, but this is how this implementation works.
There is now no event scheduled on the output and a new event
can now be scheduled.

4. At time 9 the input terminal toggles to 0 and the implementation
schedules a transition of the output to 0 at time 14.

5. At time 12 the input terminal toggles to 1 and the value change
scheduled on the output at time 14 changes to a 1.

6. At time 14 the output is already 1 so there is no value change.
The narrow pulse on the input between time 9 and 12 is filtered
out. This implementation was devised for these narrow pulses.
There is now no event scheduled for the output.

9-22

Gate-level Simulation

7. At time 15 the input toggles to 0 and this schedules the output to
toggle to 0 at time 20.

Inertial Delays for Module Path Delays and INTERCONNECT
Delays

The implementation of inertial delays for module path delays and
SDF INTERCONNECT delays is as follows: if the event scheduled
by the leading edge of a pulse is scheduled for a later simulation
time, or in other words, has not yet occurred, then the event
scheduled by the trailing edge at the end of the specified delay and
at a new simulation time, replaces the event scheduled by the
leading edge. All narrow pulses are filtered out.

Note:
- SDF INTERCONNECT delays follow this implementation if you

include the +multisource_int_delays compile-time
option. If you do not include this option, VCS MX uses an MIPD
to model the SDF INTERCONNECT delay and the delay uses
the inertial delay implementation for MIPDs.

- VCS enables more complex and flexible pulse control
processing when you include the +pulse_e/number and
+pulse_r/number options. See “Pulse Control” on page 23.

Enabling Transport Delays

Transport delays are never the default delay.

You can specify transport delays on module path delays with the
+transport_path_delays compile-time option. For this option to
work, you must also include the +pulse_e/number and
+pulse_r/number compile-time options. See “Pulse Control” on
page 23.

9-23

Gate-level Simulation

You can specify transport delays on a net to which you back-
annotate SDF INTERCONNECT delays with the
+transport_int_delays compile-time option. For this option to
work, you must also include the +pulse_int_e/number and
+pulse_int_r/number compile-time options. See “Pulse Control”
on page 23.

The +pulse_e/number, +pulse_r/number, +pulse_int_e/
number, and +pulse_int_r/number options define specific
thresholds for pulse width, which allow you to tell VCS to filter out
only some of the pulses and let the other pulses through. See “Pulse
Control” on page 23.

Pulse Control

So far we’ve seen that with pulses narrower than a module path or
INTERCONNECT delay, you have the option of filtering all of them
out by using the default inertial delay or allowing all of them to
propagate through, by specifying transport delays. VCS also
provides a third option - pulse control. MX With pulse control you
can:

• Allow pulses that are slightly narrower than the delay to propagate
through.

• Have VCS MX replace even narrower pulses with an X value pulse
on the output and display a warning message.

• Have VCS MX then filter out and ignore pulses that are even
narrower that the ones for which it propagates an X value pulse
and displays an error message.

9-24

Gate-level Simulation

You specify pulse control with the +pulse_e/number and
+pulse_r/number compile-time options for module path delays
and the +pulse_int_e/number and +pulse_int_r/number
compile-time options for INTERCONNECT delays.

The +pulse_e/number option’s number argument specifies a
percentage of the module path delay. VCS MX replaces pulses
whose widths that are narrower than the specified percentage of the
delay with an X value pulse on the output or inout port and displays
a warning message.

Similarly, the +pulse_int_e/number option’s number argument
specifies a percentage of the INTERCONNECT delay. VCS MX
replaces pulses whose widths are narrower than the specified
percentage of the delay with an X value pulse on the inout or output
port instance that is the load of the net to which you back-annotated
the INTERCONNECT delay. It also displays a warning message.

The +pulse_r/number option’s number argument also specifies a
percentage of the module path delay. VCS MX filters out the pulses
whose widths are narrower than the specified percentage of the
delay. With these pulses there is no warning message; VCS MX
simply ignores these pulses.

Similarly, the +pulse_int_r/number option’s number argument
specifies a percentage of the INTERCONNECT delay. VCS MX
filters out pulses whose widths are narrower than the specified
percentage of the delay. There is no warning message with these
pulses.

You can use pulse control with transport delays (see “Pulse Control
with Transport Delays” on page 25) or inertial delays (see “Pulse
Control with Inertial Delays” on page 27).

9-25

Gate-level Simulation

When a pulse is narrow enough for VCS MX to display a warning
message and propagate an X value pulse, you can set VCS to do
one of the following:

• Place the starting edge of the X value pulse on the output, as soon
as it detects that the pulse is sufficiently narrow, by including the
+pulse_on_detect compile-time option.

• Place the starting edge on the output at the time when the rising
or falling edge of the narrow pulse would have propagated to the
output. This is the default behavior.

See “Specifying Pulse on Event or Detect Behavior” on page 32.

Also when a pulse is sufficiently narrow to display a warning
message and propagate an X value pulse, you can have VCS MX
propagate the X value pulse but disable the display of the warning
message with the +no_pulse_msg runtime option.

Pulse Control with Transport Delays

You specify transport delays for module path delays with the
+transport_path_delays, +pulse_e/number, and
+pulse_r/number options. You must include all three of these
options.

You specify transport delays for INTERCONNECT delays on nets
with the +transport_int_delays, +pulse_int_e/number,
and +pulse_int_r/number options. You must include all three of
these options.

If you want VCS MX to propagate all pulses, no matter how narrow,
specify a 0 percentage. For example, if you want VCS MX to replace
pulses that are narrower than 80% of the delay with an X value pulse

9-26

Gate-level Simulation

(and display a warning message) and filter out pulses that are
narrower than 50% of the delay, enter the +pulse_e/80 and
+pulse_r/50 or +pulse_int_e/80 and +pulse_int_r/50
compile-time options.

Figure 9-4 shows the waveforms for the input and output ports for an
instance of a module that models a buffer with a ten time unit module
path delay. The vcs command line contains the following
compile-time options:

+transport_path_delays +pulse_e/80 +pulse_r/50

Figure 9-4 Pulse Control with Transport Delays

In the example illustrated in Figure 9-4 the following occurs:

1. At time 20, the input port toggles to 1.

2. At time 29, the input port toggles to 0 ending a nine time unit wide
value 1 pulse on the input port.

3. At time 30, the output port toggles to 1. The nine time unit wide
value 1 pulse that began at time 20 on the input port is propagating
to the output port because we have enabled transport delays and
nine time units is more than 80% of the ten time unit module path
delay.

9-27

Gate-level Simulation

4. At time 39, the input port toggles to 1 ending a ten time unit wide
value 0 pulse. Also, at time 39 the output port toggles to 0. The
ten time unit wide value 0 pulse that began at time 29 on the input
port is propagating to the output port.

5. At time 46, the input port toggles to 0 ending a seven time unit
wide value 1 pulse.

6. At time 49, the output port transitions to X. The seven time unit
wide value 1 pulse that began at time 39 on the input port has
propagated to the output port, but VCS MX has replaced it with
an X value pulse because seven time units is less than 80% of
the module path delay. VCS issues a warning message in this
case.

7. At time 56, the input port toggles to 1 ending a ten time unit wide
value 0 pulse. Also, at time 56, the output port toggles to 0. The
ten time unit wide value 0 pulse that began at time 46 on the input
port is propagating to the output port.

8. At time 60, the input port toggles to 0 ending a four time unit wide
value 1 pulse. Four time units is less than 50% of the module path
delay, therefore, VCS MX filters out this pulse and no indication
of it appears on the output port.

Pulse Control with Inertial Delays

You can enter the +pulse_e/number and +pulse_r/number or
+pulse_int_e/number and +pulse_int_r/number options
without the +transport_path_delays or
+transport_int_delays options. If you do this, you are
specifying pulse control for inertial delays on module path delays and
INTERCONNECT delays.

9-28

Gate-level Simulation

There is a special implementation of inertial delays with pulse control
for module path delays and INTERCONNECT delays. In this
implementation, value changes on the input can schedule two
events on the output.

The first of these two scheduled events always causes a change on
the output. The type of value change on the output is determined by
the following:

• If the first event is scheduled by the leading edge of a pulse whose
width is equal to or wider than the percentage specified by the
+pulse_e/number option, the value change on the input
propagates to the output.

• If the pulse is not wider than the percentage specified by the
+pulse_e/number option, but is wider that the percentage
specified by the +pulse_r/number option, the value change is
replaced by an X value.

• If the pulse is not wider than the percentage specified by the
+pulse_r/number option, the pulse is filtered out.

The second scheduled event is always tentative. If another event
occurs on the input before the first event occurs on the output, that
additional event on the input cancels the second scheduled event
and schedules a new second event.

Figure 9-5 shows the waveforms for the input and output ports for an
instance of a module that models a buffer with a ten time unit module
path delay. The vcs command line contains the following
compile-time options:

+pulse_e/0 +pulse_r/0

9-29

Gate-level Simulation

In this example, specifying 0 percentages means that the trailing
edge of all pulses can change the second scheduled event on the
output. Specifying 0 does not mean that all pulses propagate to the
output because this implementation has its own way of filtering out
short pulses.

Figure 9-5 Pulse Control with Inertial Delays

In the example illustrated in Figure 9-5 the following occurs:

1. At time 20, the input port transitions to 0. This schedules a
transition to 0 on the output port at time 30, ten time units later as
specified by the module path delay. This is the first scheduled
event on the output port. This event is not tentative, it will occur.

2. At time 23, the input port toggles to 1. This schedules a transition
to 1 on the output port at time 33. This is the second scheduled
event on the output port. This event is tentative.

3. At time 26, the input port toggles to 0. This cancels the current
scheduled second event and replaces it by scheduling a transition
to 0 at time 36. The first scheduled event is a transition to 0 at
time 30 so the new second scheduled event isn’t really a transition
on the output port. This is how this implementation filters out
narrow pulses.

4. At time 29, the input port toggles to 1. This cancels the current
scheduled second event and replaces it by scheduling a transition
to 1 at time 39.

9-30

Gate-level Simulation

5. At time 30, the output port transitions to 0. The second scheduled
event on the output becomes the first scheduled event and is
therefore no longer tentative.

6. At time 39, the output port toggles to 1.

Typically, however, you will want to specify that VCS MX replace or
reject certain narrow pulses. Figure 9-6 shows the waveforms for the
input and output ports for an instance of the same module with a ten
time unit module path delay. The vcs command line contains the
following compile-time options:

+pulse_e/60 +pulse_r/40

Figure 9-6 Pulse Control with Inertial Delays and a Narrow Pulses

In the example illustrated in Figure 9-6 the following occurs:

1. At simulation time 20, the input port transitions to 0. This
schedules the first event on the output port, a transition to 0 at
time 30.

2. At simulation time 30, the input port toggles to 1. This schedules
the output port to toggle to 1 at time 40. Also, at simulation time
30, the output port transitions to 0. It doesn’t matter which of these
events happened first. At the end of this time there is only one
scheduled event on the output.

9-31

Gate-level Simulation

3. At simulation time 36, the input port toggles to 0. This is the trailing
edge of a six time unit wide value 1 pulse. The pulse is equal to
the width specified with the +pulse_e/60 option so VCS MX
schedules a second event on the output, a value change to 0 on
the output at time 46.

4. At simulation time 40, the output toggles to 1 so now there is only
one event scheduled on the output, the value change to 0 at time
46.

5. At simulation time 46, the input toggles to 1 scheduling a transition
to 1 at time 56 on the output. Also at time 46, the output toggles
to 0. There is now only one event scheduled on the output.

6. At time 50, input port toggles to 0. This is the trailing edge of a
four time unit wide value 1 pulse. The pulse is not equal to the
width specified with the +pulse_e/60 option, but is equal to the
width specified with the +pulse_r/40 option, therefore, VCS MX
changes the first scheduled event from a change to 1 to a change
to X at time 56 and schedules a second event on the output, a
transition to 0 at time 60.

7. At time 56, the output transitions to X and VCS MX issues a
warning message.

8. At time 60, the output transitions to 0.

Pulse control sometimes blurs the distinction between inertial and
transport delays. In this example, the results would have been the
same if you also included the +transport_path_delays option.

9-32

Gate-level Simulation

Specifying Pulse on Event or Detect Behavior

Asymmetric delays, such as different rise and fall times for a module
path delay, can cause schedule cancellation problems for pulses.
These problems persist when you specify transport delay and can
persist for a wide range of percentages that you specify for the pulse
control options.

For example, for a module that models a buffer, if you specify a rise
time of 4 and a fall time of 6 for a module path delay, a narrow value
0 pulse can cause scheduling problems, as illustrated in Figure 9-7.

Figure 9-7 Asymmetric Delays and Scheduling Problems

In this example, you include the +pulse_e/100 and +pulse_r/0
options. The scheduling problem is that the leading edge of the pulse
on the input, at time 10, schedules a transition to 0 on the output at
time 16; but the trailing edge, at time 11, schedules a transition to 1
on the output at time 15.

Obviously, the output has to end up with a value of 1 so VCS MX
can’t allow the events scheduled at time 15 and 16 to occur in
sequence; if it did, the output would end up with a value of 0. This
problem persists when you enable transport delays and whenever
the percentage specified in the +pulse_r/number option is low
enough to enable the pulse to propagate through the module.

9-33

Gate-level Simulation

To circumvent this problem, when a later event on the input
schedules an event on the output that is earlier than the event
scheduled by the previous event on the input, VCS MX cancels both
events on the output.

This ensures that the output ends up with the proper value, but what
it doesn’t do is indicate that something happened on the output
between times 15 and 16. You might want to see an error message
and an X value pulse on the output indicating there was an undefined
event on the output between these simulation times. You see this
message and the X value pulse if you include the
+pulse_on_event compile-time option, specifying pulse on event
behavior, as illustrated in Figure 9-8. Pulse on event behavior calls
for an X value pulse on the output after the delay and when there are
asymmetrical delays scheduling events on the output that would be
canceled by VCS MX, to output an X value pulse between those
events instead.

Figure 9-8 Using +pulse_on_event

In most cases where the +pulse_e/number and +pulse_r/
number options already create X value pulses on the output, also
including the +pulse_on_event option to specify pulse on event
behavior will make no change on the output.

Pulse on detect behavior, specified by the +pulse_on_detect
compile-time option, displays the leading edge of the X value pulse
on the output as soon as events on the input, controlled by the

9-34

Gate-level Simulation

+pulse_e/number and +pulse_r/number options, schedule an
X value pulse to appear on the output. Pulse on detect behavior
differs from pulse on event behavior in that it calls for the X value
pulse to begin before the delay elapses. Figure 9-9 illustrates pulse
on detect behavior.

Figure 9-9 Using +pulse_on_detect

In this example, by including the +pulse_on_detect option, VCS
MX causes the leading edge of the X value pulse on the output to
begin at time 11 because of an unusual event that occurred on the
output between times 15 and 16 because of the rise at simulation
time 11.

Using pulse on detect behavior can also show you when VCS MX
has scheduled multiple events for the same simulation time on the
output by starting the leading edge of an X value pulse on the output
as soon as VCS MX has scheduled the second event.

For example, a module that models a buffer has a rise time module
path delay of 10 time units and a fall time module path delay of 4 time
units.

Figure 9-10 shows the waveforms for the input and output port when
you include the +pulse_on_detect option.

9-35

Gate-level Simulation

Figure 9-10 Pulse on Detect Behavior Showing Multiple Transitions

In the example illustrated in Figure 9-10 the following occurs:

1. At simulation time 0 the input port transitions to 0 scheduling the
first event on the output, a transition to 0 at time 4.

2. At time 4 the output transitions to 0.

3. At time 10 the input transitions to 1 scheduling a transition to 1
on the output at time 20.

4. At time 16 the input toggles to 0 scheduling a second event on
the output at time 20, a transition to 0. This event also is the trailing
edge of a six time unit wide value 1 pulse so the first event changes
to a transition to X. There is more than one event for different value
changes on the output at time 20, so VCS MX begins the leading
edge of the X value pulse on the output at this time.

5. At time 20 the output toggles to 0, the second scheduled event
at this time.

If you did not include the +pulse_on_detect option, or substituted
the +pulse_on_event option, you would not see the X value pulse
on the output between times 16 and 20.

Pulse on detect behavior does not just show you when asymmetrical
delays schedule multiple events on the output. Other kinds of events
can cause multiple events on the output at the same simulation time,
such as different transition times on two input ports and different

9-36

Gate-level Simulation

module path delays from these input ports to the output port. Pulse
on detect behavior would show you an X value pulse on the output
starting when the second event was scheduled on the output port.

Specifying the Delay Mode

It is possible for a module definition to include module path delay that
does not equal the cumulative delay specifications in primitive
instances and continuous assignment statements in that path.
Example 9-1 shows such a conflict.

Example 9-1 Conflicting Delay Modes

‘timescale 1 ns / 1 ns
module design (out,in);
output out;
input in;
wire int1,int2;

assign #4 out=int2;

buf #3 buf2 (int2,int1),
 buf1 (int1,in);

specify
(in => out) = 7;
endspecify
endmodule

In Example 9-1, the module path delay is seven time units, but the
delay specifications distributed along that path add up to ten time
units.

9-37

Gate-level Simulation

If you include the +delay_mode_path analysis option, VCS MX
ignores the delay specifications in the primitive instantiation and
continuous assignment statements and uses only the module path
delay. In Example 9-1, it would use the seven time unit delay for
propagating signal values through the module.

If you include the +delay_mode_distributed analysis option,
VCS MX ignores the module path delays and uses the delay in the
delay specifications in the primitive instantiation and continuous
assignment statements. In Example 9-1, it uses the ten time unit
delay for propagating signal values through the module.

There are other modes that you can specify:

• If you include the +delay_mode_unit analysis option, VCS MX
ignores the module path delays and changes the delay
specification in all primitive instantiation and continuous
assignment statements to the shortest time precision argument
of all the ‘timescale compiler directives in the source code. (The
default time unit and time precision argument of the ‘timescale
compiler directive is 1 s). In Example 9-1 the ‘timescale
compiler directive has a precision argument of 1 ns. VCS MX
might use this 1 ns as the delay, but if the module definition is
used in a larger design and there is another ‘timescale
compiler directive in the source code with a finer precision
argument, then VCS MX uses the finer precision argument.

• If you include the +delay_mode_zero analysis option, VCS MX
changes all delay specifications and module path delays to zero.

• If you include none of the compile-time options described in this
section, when, as in Example 9-1, the module path delay does
not equal the distributed delays along the path, VCS MX uses the
longer of the two.

9-38

Gate-level Simulation

Using the Configuration File to Disable Timing

You can use the VCS MX configuration file to disable module path
delays, specify blocks, and timing checks for module instances that
you specify as well as all instances of module definitions that you
specify. You use the instance, module, and tree statements to do this
just as you do for applying Radiant Technology. See “The
Configuration File Syntax” on page 7 for details on how to do this.
The attribute keywords for timing are as follows:

noIopath

Specifies disabling the module path delays in the specified module
instances.

noSpecify

Specifies disabling the specify blocks in the specified module
instances.

noTiming

Specifies disabling the timing checks in the specified module
instances.

Using the timopt Timing Optimizer

The timopt timing optimizer can yield large speedups for full-timing
gate-level designs. The timopt timing optimizer makes its
optimizations based on the clock signals and sequential devices that
it identifies in the design. timopt is particularly useful when you use
SDF files because SDF files can’t be used with Radiant Technology
(+rad).

9-39

Gate-level Simulation

You enable timopt with the +timopt+clock_period
compile-time option, where the argument is the shortest clock period
(or clock cycle) of the clock signals in your design. For example:

+timopt+100ns

This options specifies that the shortest clock period is 100ns.

timopt first displays the number of sequential devices that it finds
in the design and the number of these sequential devices to which it
might be able to apply optimizations. For example:

Total Sequential Elements : 2001
Total Sequential Elements 2001, Optimizable 2001

timopt then displays the percentage of identified sequential
devices to which it can actually apply optimizations followed by
messages about the optimization process.

TIMOPT optimized 75 percent of the design
Starting TIMOPT Delay optimizations
Done TIMOPT Delay Optimizations
DONE TIMOPT

The next step is to simulate the design and see if the optimizations
applied by timopt produce a satisfactory increase in performance.
If you are not satisfied there are additional steps that you can take to
get more optimizations from timopt.

If timopt was able to identify all the clock signals and all the
sequential devices with an absolute certainty it simply applies its
optimizations. If timopt is uncertain about a number of clock
signals and sequential devices then you can use the following
process to maximize timopt optimizations:

9-40

Gate-level Simulation

1. timopt writes a configuration file named timopt.cfg in the
current directory that lists the signals and sequential devices that
it finds questionable.

2. You review and edit this file, validating that the signals in the file
are, or are not, clock signals and that the module definitions in it
are, or are not, sequential devices. If you do not need to make
any changes in the file, go to step 5. If you do make changes, go
to step 3.

3. Compile your design again with the +timopt+clock_period
compile-time option.

timopt will make the additional optimizations that it did not make,
because it was unsure of the signals and sequential devices in
the timopt.cfg file that it wrote during the first compilation.

4. Look at the timopt.cfg file again:

- If timopt wrote no new entries for potential clock signals or
sequential devices, go to step 5.

- If timopt wrote new entries, but you make no changes to the
new entries, go to step 5.

- If you make modifications to the new entries, return to step 3.

5. timopt does not need to look for any more clock signals and it
can assume that the timopt.cfg file correctly specifies clock signal
and sequential devices. At this point, it just needs to apply the
latest optimizations. Compile your design one more time,
including the +timopt compile-time option, but without its
+clock_period argument.

9-41

Gate-level Simulation

6. You now simulate your design using timopt optimizations.
timopt monitors the simulation and makes its optimizations
based on its analysis of the design and information in the
timopt.cfg file. During simulation, if it finds that its
assumptions are incorrect, for example the clock period for a clock
signal is incorrect, or there is a port for asynchronous control on
a module for a sequential device, timopt displays a warning
message similar to the following:

+ Timopt Warning: for clock testbench.clockgen..clk:
TimePeriod 50ns Expected 100ns

Editing the timopt.cfg File

When editing the timopt.cfg file, first edit the potential sequential
device entries. Edit the potential clock signal only when you have
made no changes to the entries for sequential devices.

Editing Potential Sequential Device Entries

The following is an example of sequential devices that timopt was
not sure of:

// POTENTIAL SEQUENTIAL CELLS
// flop {jknpn} {,};
// flop {jknpc} {,};
// flop {tfnpc} {,};

You can remove the comment marks for the module definitions that
are, in fact, model sequential devices and which provide the clock
port, clock polarity, and optionally asynchronous ports.

A modified list might look like the following:

flop { jknpn } { CP, true};

9-42

Gate-level Simulation

flop { jknpc } { CP, true, CLN};
flop { tfnpc } { CP, true, CLN};

In this example, CP is the clock port and the keyword true indicates
that the sequential device is triggered on the posedge of the clock
port and CLN is an asynchronous port.

If you uncomment any of these module definitions, then timopt
might identify additional clock signals that drive these sequential
devices. To enable timopt to do this:

1. Remove the clock signal entries from the timopt.cfg file.

2. Recompile the design with the same +timopt+clock_period
compile-time option.

timopt will write new clock signal entries in the timopt.cfg file.

Editing Clock Signal Entries

The following is an example of the clock signal entries:

clock {
 // test.badClock , // 1
 test.goodClock // 2000
} {100ns};

These clock signals have a period of 100ns or longer. This time
value comes from the +clock_period argument that you added to
the +timopt compile-time option when you first compiled the
design. The entry for the signal test.badClock is commented out
because it connects to a small percentage of the sequential devices
in the design. In this instance, it is only 1 of the 2001 sequential
devices that it identified in the design. The entry for the signal

9-43

Gate-level Simulation

test.goodClock is not commented out because it connects to a
large percentage of the sequential devices. In this instance, it is
2000 of the 2001 sequential devices in the design.

If a commented out clock signal is a clock signal that you want
timopt to use when it optimizes the design in a subsequent
compilation, then remove the comment characters preceding the
signal’s hierarchical name.

 Using Scan Simulation Optimizer

The Scan Simulation Optimizer (ScanOpt) yields large speed-ups
when used with Serial Scan DFT simulations. The optimizations are
done based on the scan cells that are identified in the design. This
optimization is applicable only on the Serial Scan DFT designs,
using scan flops built with the MUX-FLOP combination.

This optimization can be enabled by using the
-scanopt=<clock_period> compile-time option, where the
clock_period argument is the shortest clock period (or clock
cycle) of the clock signals in the design. For example, you must use
-scanopt=100ns for a shortest clock period of 100ns.

The optimizer applies its optimization after the scan flops in the
design are identified. There is an option for providing all the scan
flops in the design through a configuration file scanopt.cfg in the
current directory. This can be used if the optimizer fails to identify the
scan flops, thereby not producing a satisfactory performance
improvement.

9-44

Gate-level Simulation

For example, for a design with shortest clock period of 100ns, you
can supply the list of scan flops in the file scanopt.cfg using the
format specified in the following section, and then use the following
compile-time option.

-scanopt=100ns,cfg

This enables the optimizer to pick up the scan flops specified in the
configuration file and use for its optimization.

The optimizer also determines the length of the scan chain(s) on its
own. If there are multiple scan chains, the minimal scan length is
chosen for optimizations.

ScanOpt Config File Format

The following format must be used for specifying a scan flop:

BEGIN_FLOP <scan_cell_name>
 BEGIN_PORT
 Q_PORT <q_port_name>
 [QN_PORT <qn_port_name>]
 D_PORT <d_port_name>
 TI_PORT <ti_port_name>
 TE_PORT <te_port_name>
 END_PORT
END_FLOP

The section between BEGIN_FLOP and END_FLOP corresponds to
one particular scan flop. The field <scan_cell_name>
corresponds to the name of scan flop (scan cell). Multiple sections
can be used to specify multiple scan flops.

The section between BEGIN_PORT and END_PORT corresponds to
ports of the scan flop. Specifying Q_PORT, D_PORT, TI_PORT, and
TE_PORT are mandatory, whereas QN_PORT could be optional.

9-45

Gate-level Simulation

ScanOpt Assumptions

Combinational Path Delays

By default, the optimizer assumes that the worst case delay for any
combinational path in the design is not more than five times the
shortest clock period and applies the optimizations. The following
banner is printed at the compile time to indicate this assumption to
you:

“ScanOpt assumes that no combinational path has worst-case delay
more than 5 clock period. Please use,
”-scanopt=<clock_period>,cdel=<overriding_value>” to override the
assumed value”

For example, for a design with shortest clock period of 100ns, if the
default value of 5 is to be overridden with a value of 10, you can use
the following compile-time option.

-scanopt=100ns,cdel=10

Length of Test Cycles

The optimizer assumes that the simulation remains in the test mode
for at least the scan chain length times the shortest clock period. Any
violation of this assumption is automatically detected during the
simulation, and the following error message is displayed quitting the
simulation.

“Error: Simulation has been aborted due to fatal violation of ScanOpt
assumptions. Please refer to the documentation for more details. To
get around this error, please rerun simulation with “-noscanopt”
switch”

9-46

Gate-level Simulation

For example, if the inferred length of scan chain in the design is 5000
and the short clock period is 100ns, then the Test enable signal(s)
should remain in test mode for at least 500000ns (that is, 5000 *
100ns).

Note:
The -noscanopt option can be used at runtime, thereby
avoiding re-compilation of the design.

Negative Timing Checks

Negative timing checks are either $setuphold timing checks with
negative setup or hold limits, or $recrem timing checks with
negative recovery or removal limits.

This following sections describe their purpose, how they work, and
how to use them:

• “The Need for Negative Value Timing Checks”

• “The $setuphold Timing Check Extended Syntax”

• “The $recrem Timing Check Syntax”

• “Enabling Negative Timing Checks”

• “Checking Conditions”

• “Toggling the Notifier Register”

• “SDF Back-annotation to Negative Timing Checks”

• “How VCS MX Calculates Delays”

• “Using Multiple Non-overlapping Violation Windows”

9-47

Gate-level Simulation

The Need for Negative Value Timing Checks

The $setuphold timing check defines a timing violation window of
a specified amount of simulation time before and after a reference
event, such as a transition on some other signal, for example, a clock
signal, in which a data signal must remain constant. A transition on
the data signal, called a data event, during the specified window is a
timing violation. For example:

$setuphold (posedge clock, data, 10, 11, notifyreg);

In this example, VCS MX reports the timing violation if there is a
transition on signal data less that 10 time units before, or less than
11 time units after, a rising edge on signal clock. When there is a
timing violation, VCS MX toggles a notify register, in this example,
notifyreg. You could use this toggling of a notify register to output
an X value from a device, such as a sequential flop, when there is a
timing violation.

9-48

Gate-level Simulation

Figure 9-11 Positive Setup and Hold Limits

In this example, both the setup and hold limits have positive values.
When this occurs, the violation window straddles the reference
event.

There are cases where the violation window cannot straddle the
reference event at the inputs of an ASIC cell. Such a case occurs
when:

• The data event takes longer than the reference event to propagate
to a sequential device in the cell

• Timing must be accurate at the sequential device

• You need to check for timing violations at the cell boundary

It also occurs when the opposite is true, that is, when the reference
event takes longer than the data event to propagate to the sequential
device.

setup
limit

hold
limit

violation window

reference
event

data
event

data
event

clock

data

010 11

9-49

Gate-level Simulation

When this happens, use the $setuphold timing check in the
top-level module of the cell to look for timing violations when signal
values propagate to that sequential device. In this case, you need to
use negative setup or hold limits in the $setuphold timing check.

Figure 9-12 ASIC Cell with Long Propagation Delays on Reference Events

When this occurs, the violation window shifts at the cell boundary so
that it no longer straddles the reference event. It shifts to the right
when there are longer propagation delays on the reference event.
This right shift requires a negative setup limit:

$setuphold (posedge clock, data, -10, 31, notifyreg);

Figure 9-13 illustrates this scenario.

causes

long

delay

causes short delay

clock

data

clk

d

q

9-50

Gate-level Simulation

Figure 9-13 Negative Setup Limit

In this example, the $setuphold timing check is in the specify block
of the top-level module of the cell. It specifies that there is a timing
violation if there is a data event between 10 and 31 time units after
the reference event on the cell boundary.

This is giving the reference event a “head start” at the cell boundary,
anticipating that the delays on the reference event will allow the data
events to “catch up” at the sequential device inside the cell.

Note:
When you specify a negative setup limit, its value must be less
than the hold limit.

setup
limit

hold
limit

violation window

reference
event

data
event

data
event

clock

data

0 10 31

9-51

Gate-level Simulation

Figure 9-14 ASIC Cell with Long Propagation Delays on Data Events

The violation window shifts to the left when there are longer
propagation delays on the data event. This left shift requires a
negative hold limit:

$setuphold (posedge clock, data, 31, -10, notifyreg);

Figure 9-15 illustrates this scenario.

Figure 9-15 Negative Hold Limit

In this example, the $setuphold timing check is in the specify block
of the top-level module of the cell. It specifies that there is a timing
violation if there is a data event between 31 and 10 time units before
the reference event on the cell boundary.

causes

long

delay

causes short delay
clock

data

clk

d

q

setup
limit

hold
limit

violation window

reference
event

data
event

data
event

clock

data

031 10

9-52

Gate-level Simulation

This is giving the data events a “head start” at the cell boundary,
anticipating that the delays on the data events will allow the
reference event to “catch up” at the sequential device inside the cell.

Note:
When you specify a negative hold limit, its value must be less than
the setup limit.

To implement negative timing checks, VCS MX creates delayed
versions of the signals that carry the reference and data events and
an alternative violation window where the window straddles the
delayed reference event.

You can specify the names of the delayed versions by using the
extended syntax of the $setuphold system task, or by allowing
VCS to MX name them internally.

The extended syntax also allows you to specify expressions for
additional conditions that must be true for a timing violation to occur.

The $setuphold Timing Check Extended Syntax

The $setuphold timing check has the following extended syntax:

$setuphold(reference_event, data_event, setup_limit,
hold_limit, notifier, [timestamp_cond, timecheck_cond,
delayed_reference_signal, delayed_data_signal]);

The following additional arguments are optional:

timestamp_cond

This argument specifies the condition which determines whether
or not VCS MX reports a timing violation.

9-53

Gate-level Simulation

In the setup phase of a $setuphold timing check, VCS MX
records or “stamps” the time of a data event internally so that when
a reference event occurs, it can compare the times of these events
to see if there is a setup timing violation. If the condition specified
by this argument is false, VCS MX does not record or “stamp” the
data event so there cannot be a setup timing violation.

Similarly, in the hold phase of a $setuphold timing check, VCS
MX records or “stamps” the time of a reference event internally
so that when a data event occurs, it can compare the times of
these events to see if there is a hold timing violation. If the
condition specified by this argument is false, VCS MX does not
record or “stamp” the reference event so there cannot be a hold
timing violation.

timecheck_cond

This argument specifies the condition which determines whether
or not VCS MX reports a timing violation.

In the setup phase of a $setuphold timing check, VCS MX
compares or “checks” the time of the reference event with the time
of the data event to see if there is a setup timing violation. If the
condition specified by this argument is false, VCS MX does not
make this comparison and so there is no setup timing violation.

Similarly, in the hold phase of a $setuphold timing check, VCS
MX compares or “checks” the time of a data event with the time
of a reference event to see if there is a hold timing violation. If the
condition specified by this argument is false, VCS MX does not
make this comparison and so there is no hold timing violation.

delayed_reference_signal

The name of the delayed version of the reference signal.

9-54

Gate-level Simulation

delayed_data_signal

The name of the delayed version of the data signal.

The following example demonstrates how to use the extended
syntax:

$setuphold(ref, data, -4, 10, notifr1, stampreg===1, , d_ref,
 d_data);

In this example, the timestamp_cond argument specifies that reg
stampreg must equal 1 for VCS MX to “stamp” or record the times
of data events in the setup phase or “stamp” the times of reference
events in the hold phase. If this condition is not met, and stamping
does not occur, VCS MX will not find timing violations no matter what
the time is for these events. Also in the example, the delayed
versions of the reference and data signals are named d_ref and
d_data.

You can use these delayed signal versions of the signals to drive
sequential devices in your cell model. For example:

module DFF(D,RST,CLK,Q);
input D,RST,CLK;
output Q;
reg notifier;
DFF_UDP d2(Q,dCLK,dD,dRST,notifier);
specify
 (D => Q) = 20;
 (CLK => Q) = 20;
 $setuphold(posedge CLK,D,-5,10,notifier,,,dCLK,dD);
 $setuphold(posedge CLK,RST,-8,12,notifier,,,dCLK,
 dRST);
endspecify
endmodule

primitive DFF_UDP(q,clk,data,rst,notifier);
output q; reg q;

9-55

Gate-level Simulation

input data,clk,rst,notifier;

table
// clock data rst notifier state q
// ------------------------------
 r 0 0 ? : ? : 0 ;
 r 1 0 ? : ? : 1 ;
 f ? 0 ? : ? : - ;
 ? ? r ? : ? : 0 ;
 ? * ? ? : ? : - ;
 ? ? ? * : ? : x ;
endtable
endprimitive

In this example, the DFF_UDP user-defined primitive is driven by the
delayed signals dClk, dD, dRST, and the notifier reg.

Negative Timing Checks for Asynchronous Controls

The $recrem timing check is used for checking how close
asynchronous control signal transitions are to clock signals. Similar
to the setup and hold limits in $setuphold timing checks, the
$recrem timing check has recovery and removal limits. The
recovery limit specifies how much time must elapse after a control
signal toggles from its active state before there is an active clock
edge. The removal limit specifies how much time must elapse after
an active clock edge before the control signal can toggle from its
active state.

In the same way a reference signal, such as a clock signal and data
signal can have different propagation delays from the cell boundary
to a sequential device inside the cell, there can be different

9-56

Gate-level Simulation

propagation delays between the clock signal and the control signal.
For this reason, there can be negative recovery and removal limits in
the $recrem timing check.

The $recrem Timing Check Syntax

The $recrem timing check syntax is very similar to the extended
syntax for $setuphold:

$recrem(reference_event, data_event, recovery_limit,
removal_limit, notifier, [timestamp_cond, timecheck_cond,
delayed_reference_signal, delayed_data_signal]);

reference_event

Typically the reference event is the active edge on a control signal,
such as a clear signal. Specify the active edge with the posedge
or negedge keyword.

data_event

Typically, the data event occurs on a clock signal. Specify the
active edge on this signal with the posedge or negedge keyword.

recovery_limit

Specifies how much time must elapse after a control signal, such
as a clear signal toggles from its active state (the reference event),
before there is an active clock edge (the data event).

removal_limit

Specifies how much time must elapse after an active clock edge
(the data event), before the control signal can toggle from its active
state (the reference event).

9-57

Gate-level Simulation

notifier

A register whose value VCS MX toggles when there is a timing
violation.

timestamp_cond

This argument specifies the condition which determines whether
or not VCS MX reports a timing violation.

In the recovery phase of a $recrem timing check, VCS MX
records or “stamps” the time of a reference event internally so that
when a data event occurs it can compare the times of these events
to see if there is a recovery timing violation. If the condition
specified by this argument is false, VCS MX does not record or
“stamp” the reference event so there cannot be a recovery timing
violation.

Similarly, in the removal phase of a $recrem timing check, VCS
MX records or “stamps” the time of a data event internally so that
when a reference event occurs, it can compare the times of these
events to see if there is a removal timing violation. If the condition
specified by this argument is false, VCS MX does not record or
“stamp” the data event so there cannot be a removal timing
violation.

timecheck_cond

This argument specifies the condition which determines whether
or not VCS MX reports a timing violation.

9-58

Gate-level Simulation

In the recovery phase of a $recrem timing check, VCS MX
compares or “checks” the time of the data event with the time of
the reference event to see if there is a recovery timing violation.
If the condition specified by this argument is false, VCS MX does
not make this comparison and so there is no recovery timing
violation.

Similarly, in the removal phase of a $recrem timing check, VCS
MX compares or “checks” the time of a reference event with the
time of a data event to see if there is a removal timing violation.
If the condition specified by this argument is false, VCS MX does
not make this comparison and so there is no removal timing
violation.

delayed_reference_signal

The name of the delayed version of the reference signal, typically
a control signal.

delayed_data_signal

The name of the delayed version of the data signal, typically a
clock signal.

Enabling Negative Timing Checks

To use a negative timing check you must include the +neg_tchk
compile-time option when you compile your design. If you omit this
option, VCS MX changes all negative limits to 0.

If you include the +no_notifier compile-time option with the
+neg_tchk option, you only disable notifier toggling. VCS MX still
creates the delayed versions of the reference and data signals and
displays timing violation messages.

9-59

Gate-level Simulation

Conversely, if you include the +no_tchk_msg compile-time option
with the +neg_tchk option, you only disable timing violation
messages. VCS MX still creates the delayed versions of the
reference and data signals and toggles notifier regs when there are
timing violations.

If you include the +neg_tchk compile-time option but also include
the +notimingcheck or +nospecify compile-time options, VCS
MX does not compile the $setuphold and $recrem timing checks
into the simv executable. However, it does create the signals that
you specified in the delayed_reference_signal and
delayed_data_signal arguments, and you can use these to
drive sequential devices in the cell. Note that there is no delay on
these "delayed" arguments and they have the same transition times
as the signals specified in the reference_event and
data_event arguments.

Similarly, if you include the +neg_tchk compile-time option and
then include the +notimingcheck runtime option instead of the
compile-time option, you disable the $setuphold and $recrem
timing checks that VCS MX compiled into the executable. At compile
time, VCS MX creates the signals that you specified in the
delayed_reference_signal and delayed_data_signal
arguments, and you can use them to drive sequential devices in the
cell, but the +notimingcheck runtime option disables the delay on
these “delayed” versions.

Other Timing Checks Using the Delayed Signals

When you enable negative timing limits in the $setuphold and
$recrem timing checks, and have VCS MX create delayed versions
of the data and reference signals, by default the other timing checks

9-60

Gate-level Simulation

also use the delayed versions of these signals. You can prevent the
other timing checks from doing this with the +old_ntc compile-time
option.

Having the other timing checks use the delayed versions of these
signals is particularly useful when the other timing checks use a
notifier register to change the output of the sequential element to X.

Example 9-2 Notifier Register Example for Delayed Reference and Data
Signals

`timescale 1ns/1ns

module top;
 reg clk, d;
 reg rst;
 wire q;

 dff dff1(q, clk, d, rst);

 initial begin
$monitor($time,,clk,,d,,q);
rst = 0; clk = 0; d = 0;
#100 clk = 1;
#100 clk = 0;
#10 d = 1;
#90 clk = 1;
#1 clk = 0; // width violation
#100 $finish;

 end
endmodule

module dff(q, clk, d, rst);
 output q;
 input clk, d, rst;
 reg notif;

 DFF_UDP(q, d_clk, d_d, d_rst, notif);

 specify

9-61

Gate-level Simulation

$setuphold(posedge clk, d, -10, 20, notif, , , d_clk,
 d_d);

$setuphold(posedge clk, rst, 10, 10, notif, , , d_clk,
 d_rst);

$width(posedge clk, 5, 0, notif);
 endspecify
endmodule

primitive DFF_UDP(q,data,clk,rst,notifier);
output q; reg q;
input data,clk,rst,notifier;

table
// clock data rst notifier state q
// ------------------------------
 r 0 0 ? : ? : 0 ;
 r 1 0 ? : ? : 1 ;
 f ? 0 ? : ? : - ;
 ? ? r ? : ? : 0 ;
 ? * ? ? : ? : - ;
 ? ? ? * : ? : x ;
endtable
endprimitive

In this example, if you include the +neg_tchk compile-time option,
the $width timing check uses the delayed version of signal clk,
named d_clk, and the following sequence of events occurs:

1. At time 311, the delayed version of the clock transitions to 1,
causing output q to toggle to 1.

2. At time 312, the narrow pulse on the clock causes a width
violation:

"test1.v", 31: Timing violation in top.dff1
$width(posedge clk:300, : 301, limit: 5);

9-62

Gate-level Simulation

The timing violation message looks like it occurs at time 301, but
you do not see it until time 312.

3. Also at time 312, reg notif toggles from X to 1. This changes
output q from 1 to X. There are no subsequent changes on output
q.

Figure 9-16 Other Timing Checks Using the Delayed Versions

If you include both the +neg_tchk and +old_ntc compile-time
options, the $width timing check does not use the delayed version
of signal clk, causing the following sequence of events to occur:

1. At time 301, the narrow pulse on signal clk causes a width
violation:

"test1.v", 31: Timing violation in top.dff1
$width(posedge clk:300, : 301, limit: 5);

2. Also at time 301, the notifier reg named notif toggles from X to
1. In turn, this changes the output q of the user-defined primitive
DFF_UDP and module instance dff1 from 0 to X.

3. At time 311, the delayed version of signal clk, named d_clk,
reaches the user-defined primitive DFF_UDP, thereby changing
the output q to 1, erasing the X value on this output.

9-63

Gate-level Simulation

Figure 9-17 Other Timing Checks Not Using the Delayed Versions

The timing violation, as represented by the X value, is lost to the
design. If a module path delay that is greater than ten time units was
used for the module instance, the X value would not appear on the
output at all.

For this reason, Synopsys does not recommend using the
+old_ntc compile-time option. It exists only for unforeseen
circumstances.

Checking Conditions

VCS MX evaluates the expressions in the timestamp_cond and
timecheck_cond arguments either when there is a value change
on the original reference and data signals at the cell boundary, or
when the value changes propagate from the delayed versions of
these signals at the sequential device inside the cell. It decides when
to evaluate the expressions depending on which signals are the
operands in these expressions. Note the following:

9-64

Gate-level Simulation

• If the operands in these expressions are neither the original nor
the delayed versions of the reference or data signals, and if these
operands are signals that do not change value between value
changes on the original reference and data signals and their
delayed versions, then it does not matter when VCS MX evaluates
these expressions.

• If the operands in these expressions are delayed versions of the
original reference and data signals, then you want VCS to
evaluate these expressions when there are value changes on the
delayed versions of the reference and data signals. VCS MX does
this by default.

• If the operands in these expressions are the original reference
and data signals and not the delayed versions, then you want VCS
MX to evaluate these expressions when there are value changes
on the original reference and data signals. To specify evaluating
these expressions when the original reference and data signals
change value, include the +NTC2 compile-time option.

Toggling the Notifier Register

VCS MX waits for a timing violation to occur on the delayed versions
of the reference and data signals before toggling the notifier register.
Toggling means the following value changes:

• X to 0

• 0 to 1

• 1 to 0

VCS MX does not change the value of the notifier register if you have
assigned a Z value to it.

9-65

Gate-level Simulation

SDF Back-annotation to Negative Timing Checks

You can back-annotate negative setup and hold limits from SDF files
to $setuphold timing checks and negative recovery and removal
limits from SDF files to $recrem timing checks, if the following
conditions are met:

• You included the arguments for the names of the delayed
reference and data signals in the timing checks.

• You compiled your design with the +neg_tchk compile-time
option.

• For all $setuphold timing checks, the positive setup or hold limit
is greater than the negative setup or hold limit.

• For all $recrem timing checks, the positive recovery or removal
limit is greater than the negative recovery or removal limit.

As documented in the OVI SDF3.0 specification:

• TIMINGCHECK statements in the SDF file back-annotate timing
checks in the model which match the edge and condition
arguments in the SDF statement.

• If the SDF statement specifies SCOND or CCOND expressions, they
must match the corresponding timestamp_cond or
timecheck_cond in the timing check declaration for back-
annotation to occur.

• If there is no SCOND or CCOND expressions in the SDF statement,
all timing checks that otherwise match are back-annotated.

9-66

Gate-level Simulation

How VCS MX Calculates Delays

This section describes how VCS MX calculates the delays of the
delayed versions of reference and data signals. It does not describe
how you use negative timing checks; it is supplemental material
intended for users who would like to read more about how negative
timing checks work in VCS MX.

VCS MX uses the limits you specify in the $setuphold or $recrem
timing check to calculate the delays on the delayed versions of the
reference and data signals. For example:

$setuphold(posedge clock,data,-10,20, , , , del_clock,
 del_data);

This specifies that the propagation delays on the reference event (a
rising edge on signal clock), are more than 10 but less than 20 time
units more than the propagation delays on the data event (any
transition on signal data).

So when VCS MX creates the delayed signals, del_clock and
del_data, and the alternative violation window that straddles a
rising edge on del_clock, VCS MX uses the following relationship:

20 > (delay on del_clock - delay on del_data) > 10

There is no reason to make the delays on either of these delayed
signals any longer than they have to be so the delay on del_data
is 0 and the delay on del_clock is 11. Any delay on del_clock
between 11 and 19 time units would report a timing violation for the
$setuphold timing check.

9-67

Gate-level Simulation

Multiple timing checks, that share reference or data events, and
specified delayed signal names, can define a set of delay
relationships. For example:

$setuphold(posedge CP,D,-10,20, notifier, , ,
 del_CP, del_D);
$setuphold(posedge CP,TI,20,-10, notifier, , ,
 del_CP, del_TI);
$setuphold(posedge CP,TE,-4,8, notifier, , ,
 del_CP, del_TE);

In this example:

• The first $setuphold timing check specifies the delay on
del_CP is more than 10 but less than 20 time units more than
the delay on del_D.

• The second $setuphold timing check specifies the delay on
del_TI is more than 10 but less than 20 time units more than
the delay on del_CP.

• The third $setuphold timing check specifies the delay on
del_CP is more than 4 but less than 8 time units more than the
delay on del_TE.

Therefore:

• The delay on del_D is 0 because its delay does not have to be
more than any other delayed signal.

• The delay on del_CP is 11 because it must be more than 10 time
units more than the 0 delay on del_D.

9-68

Gate-level Simulation

• The delay on del_TE is 4 because the delay on del_CP is 11.
The 11 makes the possible delay on del_TE larger than 3, but
less than 7. The delay cannot be 3 or less, because the delay on
del_CP is less than 8 time units more that the delay on del_TE.
VCS makes the delay 4 because it always uses the shortest
possible delay.

• The delay on del_TI is 22 because it must be more than 10 time
units more that the 11 delay on del_CP.

In unusual and rare circumstances, multiple $setuphold and
$recrem timing checks, including those that have no negative limits,
can make the delays on the delayed versions of these signals
mutually exclusive. When this happens, VCS MX repeats the
following procedure until the signals are no longer mutually
exclusive:

1. Sets one negative limit to 0.

2. Recalculates the delays of the delayed signals.

Using Multiple Non-overlapping Violation Windows

The +overlap compile-time option enables accurate simulation of
multiple violation windows for the same two signals when the
following conditions occur:

• The violation windows are specified with negative delay values
that are back-annotated from an SDF file.

• The violation windows do not converge or overlap.

When these conditions are met, the default behavior of VCS MX is
to replace the negative delay values with zeros so that the violation
windows overlap. Consider the following code example:

9-69

Gate-level Simulation

‘timescale 1ns/1ns
module top;
reg in1, clk;
wire out1;

FD1 fd1_1 (.d(in1), .cp(clk), .q(out1));

initial
begin
 $sdf_annotate("overlap1.sdf");
in1 = 0;
 #45 in1=1;
end

initial
begin
 clk=0;
 #50 clk = 1;
 #50 clk = 0;
end
endmodule

module FD1 (d, cp, q);
input d, cp;
output q;
wire q;
reg notifier;
reg q_reg;

always @(posedge cp)
q_reg = d;

assign q = q_reg;

specify
 $setuphold(posedge cp, negedge d, 40, 30, notifier);
 $setuphold(posedge cp, posedge d, 20, 10, notifier);
endspecify
endmodule

9-70

Gate-level Simulation

The SDF file contains the following to back-annotate negative delay
values:

(CELL
 (CELLTYPE "FD1")
 (INSTANCE top.fd1_1)
 (TIMINGCHECK
 (SETUPHOLD (negedge d) (posedge cp) (40) (-30))
 (SETUPHOLD (posedge d) (posedge cp) (20) (-10))
)
)

So the timing checks are now:

$setuphold(posedge cp, negedge d, 40, -30, notifier);
$setuphold(posedge cp, posedge d, 20, -10, notifier);

The violation windows and the transitions that occur on signals
top.fd1_1.cp and top.fd1_1.d are shown in Figure 9-18.

9-71

Gate-level Simulation

Figure 9-18 Non-Overlapping Violation Windows

The $setuphold timing checks now specify:

• A violation window for a falling edge on signal d between 40 and
30 time units before a rising edge on signal cp

• A violation window for a rising edge on signal d between 20 and
10 time units before a rising edge on signal cp

The testbench module top applies stimulus so that the following
transitions occur:

1. A rising edge on signal d at time 45

2. A rising edge on signal cp at time 50

setup
limit

hold
limit

violation

reference
event

data
event

cp

d

040 1020

window

30

setup
limit

hold
limit

violation
window

5

for falling
edge on d

for rising
edge on d

time before
reference event

5010 403020 45simulation time

9-72

Gate-level Simulation

The rising edge on signal d at time 45 is not inside the violation
window for a rising edge on signal d. If you include the +overlap
compile-time option, you will not see a timing violation. This behavior
is desired because there is no transition in the violation windows so
VCS MX should not display a timing violation.

The +overlap option tells VCS MX not to change the violation
windows, just like it would if the windows overlapped.

If you omit the +overlap option, VCS MX does what simulators
traditionally do, which is both pessimistic and inaccurate:

1. During compilation, VCS MX replaces the -30 and -10 negative
delay values in the $setuphold timing checks with 0 values. It
displays the following warning:

Warning: Negative Timing Check delays did not converge,
Setting minimum constraint to zero and using approximation
solution (
"sourcefile",line_number_of__second_timing_check)

VCS MX alters the violation windows:

- For the falling edge, the window starts 40 time units before the
reference event and ends at the reference event.

- For the rising edge, the window starts 20 time units before the
reference event and also ends at the reference event.

VCS MX alters the windows so that they overlap or converge.

2. During simulation, at time 50 (reference event), VCS MX displays
the timing violation message:

"sourcefile.v", line_number_of_second_timing_check:
Timing violation in top.fd1_1
 $setuphold(posedge cp:50 posedge d:45, limits (20,0)
);

9-73

Gate-level Simulation

The rising edge on signal d is in the altered violation window for
a rising edge on d that starts 20 time units before the reference
event and now ends at the reference event. The rising edge on
signal d occurs five time units before the reference event.

Using VITAL Models and Netlists

You use VCS MX to validate and optimize a VHDL initiative toward
ASIC libraries (VITAL) model and to simulate a VITAL-based netlist.
Typically, library developers optimize the VITAL model, and
designers simulate the VITAL-based netlist.

The library developer uses a single ASIC cell from the system,
verifies its correctness, and optimizes that single cell. The designer
simulates large numbers of cells, organized in a netlist, by applying
test vectors and timing information.

This section describes how to validate and optimize a VITAL model
and how to simulate a VITAL netlist. It contains the following
sections:

• “Validating and Optimizing a VITAL Model”

• “Simulating a VITAL Netlist”

• “Understanding VITAL Timing Delays and Error Messages”

Validating and Optimizing a VITAL Model

The library developer performs the following tasks:

• Validates the model for VITAL conformance

9-74

Gate-level Simulation

• Verifies the model for functionality

• Optimizes the model for performance and capacity

• Re-verifies the model for functionality

The following sections describe each of these tasks in detail.

Validating the Model for VITAL Conformance

Library developers can use the vhdlan utility to validate the
conformance of the VHDL design units to VITAL 95 IEEE
specifications, according to level 0 or level 1, as specified in the
model.

The vhdlan utility checks the VITAL design units for conformance
when you set the VITAL attribute on the entity (VITAL_Level0) and
architecture (VITAL_Level1) to TRUE. The vhdlan utility does not
check the design unit for VITAL conformance if the attribute is set to
FALSE.

Verifying the Model for Functionality

After validating the model for VITAL conformance, library developers
use the binary executable to verify the model’s functions. The
functional verification includes checking the following:

• Timing values for the cell, including hazard detection

• Correct operation of the timing constraints and violation detection

• Other behavioral aspects of the cell according to specifications

9-75

Gate-level Simulation

Optimizing the Model for Performance and Capacity

Library developers use vhdlan to analyze the VHDL design units to
optimize the model for simulation. The vhdlan utility checks the
design unit for VITAL conformance before performing any
optimization.

To optimize the design units, perform the following steps:

1. Set the VITAL attribute on the entity (VITAL_Level0) and on the
architecture (VITAL_Level1) to TRUE.

When you optimize architectures that have the VITAL_Level1
attribute set to TRUE, visibility into the cell is lost and the cell is
marked as PRIVATE. Ports and generics remain visible.

2. Use either the OPTIMIZE variable in the setup file or the
-optimize option on the vhdlan command line as follows:

- Set the OPTIMIZE variable in the setup file.

Table 9-2 lists the legal values of the variable, the design unit
type, and the results of each setting.

Table 9-2 Optimize Variable Values

Variable Values Design Unit
Type

Result

OPTIMIZE TRUE Non-VITAL The vhdlan utility does not perform any
optimization.

OPTIMIZE TRUE VITAL The vhdlan utility performs the optimization
on design units that are VITAL conformant.

OPTIMIZE FALSE Non-VITAL The vhdlan utility does not perform any
optimization.

OPTIMIZE FALSE VITAL The vhdlan utility does not perform
optimization on design unit regardless of its
VITAL conformance status (default).

9-76

Gate-level Simulation

- Use the -optimize option on the vhdlan command line. The
command-line option overrides the setting in the
synopsys_sim.setup file.

Re-Verifying the Model for Functionality

After validating and then optimizing the cell, library developers
reverify the results against expected results. The optimizations
performed by VCS MX typically result in correct code.

Understanding Error and Warning Messages

If the VITAL conformance checks for a design unit fail, VCS MX
issues an error message and stops the optimization of the design
unit. Simulation files (.sim and .o files) are not created, and
simulation is not possible for this design unit until the model is
changed to conform to VITAL specifications.

If VCS MX reports a warning message, the optimization stops only if
the message is related to the VITAL architecture, otherwise the
optimization continues. Simulation files are generated, and you can
simulate the design units.

Table 9-3 lists the status of optimization and simulation file
generation based on the type of messages that VCS MX issues.

Table 9-3 Analyzer Status Messages

VITAL Attribute Message Types Optimization Simulation Files
Level 0 (entity) error stops not created
Level 1 (architecture) error stops not created
Level 0 (entity) warning continues created
Level 1 (architecture) warning stops created

9-77

Gate-level Simulation

For a complete list of conformance checking error messages, see
“VITAL Error Messages for Level 0 Conformance Issues” on page 89
and “VITAL Error Messages for Level 1 Conformance Issues” on
page 90.

When analyzing VITAL models, you can relax VITAL conformance
violation errors to a warnings, by setting RELAX_CONFORMANCE
variable in synopsys_sim.setup file to TRUE. This value of this
variable by default is FALSE.

Distributing a VITAL Model

VITAL library developers (usually, ASIC vendors) can distribute
models (ASIC library) to designers in any of the following formats:

• A VHDL source file

After conformance checking and verification, you can distribute
the cell library in source format. The library is unprotected, but it
is portable.

• An encrypted VHDL source file

You can distribute the encrypted file similar to the VHDL source
file. Because the encryption algorithms are generally not public
and the code is protected, models are not portable to other
simulators.

• Simulation files (the .sim and .o files)

The cell is analyzed and optimized by the ASIC vendor. The library
is protected and is not portable to other simulators or simulator
versions.

9-78

Gate-level Simulation

For the VHDL file and the encrypted VHDL source file formats, the
designer can perform the final compilation to optimize the library
object codes by using the -optimize option. ASIC vendors can
provide designers with a script specifying the correct compilation
procedure.

Simulating a VITAL Netlist

A VITAL-based netlist consists of instances of VITAL cells. There are
no VITAL specific or other restrictions on the location of such cells in
the netlist, nor are there restrictions regarding the quantity or ratio of
such cells in relation to other VHDL descriptions.

To simulate a VITAL netlist, simply invoke the binary executable.

Applying Stimulus

You apply the input stimulus for the VITAL netlist using the same
method and format that you use to apply it for any other netlist. For
example, you can use WIF, text input/output, or a testbench.

Overriding Generic Parameter Values

You can override the VITAL generic values in the following ways:

• Using synopsys_sim.setup file variables

• Using the elaboration option -gv generic_name=value

The following table describes the SYNOPSYS_SIM.SETUP variables
and the corresponding generic and values allowed:

9-79

Gate-level Simulation

Table 9-4 Timing Constraint and Hazard Flags

For example:

The following setting in your synopsys_sim.setup file performs
timing checks:

Force_TimingChecksOn_To = TRUE

Use the corresponding command line to set the generic:

% vcs top -gv TimingChecksOn=TRUE

These flags override the value of VITAL generic parameters. The
flags have no effect if the model does not use the generic parameter.
The generics XOn and MsgOn are parameters to VITAL timing and
path delay subprograms.

synopsys_sim.setup
Variables

Generics Legal
Values

Result

Force_TimingChecksOn_TO TimingChecksOn TRUE Timing checks are performed.

FALSE Timing checks are disabled for that
cell.

AsIs User-specified value of the generic
is not modified. This is the default.

Force_XOn_TO XOn TRUE X’s are generated with violations.
FALSE X generation is disabled for that

cell.
AsIs User-specified value of the generic

is not modified. This is the default.
Force_MsgOn_TO MsgOn TRUE Messages are reported on

violations.
FALSE Timing messages are disabled for

that cell.
AsIs User-specified value of the generic

is not modified. This is the default.

9-80

Gate-level Simulation

Understanding VCS MX Error Messages

VCS MX reports two types of errors: system errors and model/netlist
errors.

System Errors

VCS MX reports a system error if any of the following conditions
occur:

• If there are any negative timing values after all timing values are
imported and negative constraint calculations (NCC) are
performed.

All the adjusted timing values must be positive or zero (>=0) after
all timing values are imported and NCC is performed. If an
adjusted value is negative, NCC issues a warning message and
uses zero instead.

Use the man vss-297 and man vss-298 command to get more
information about NCC error messages.

• If you try to “look-into” the parts of the model that are invisible.

This is because the visibility is limited in VITAL cells that have
been optimized and the cells are marked as PRIVATE.

Model and Netlist Errors

A VITAL model in a VITAL netlist can generate several kinds of
errors. The most important are hazard and constraint violations, both
of which are associated with a violation of the timing model. The
format of such errors is defined by the VITAL standard (in VHDL
packages).

9-81

Gate-level Simulation

Viewing VITAL Subprograms

You cannot view or access VITAL subprograms. The VITAL
packages are built-in. Any reference to a VITAL subprogram
(functions or procedures) or any other item in the VITAL packages is
converted by VCS MX to a built-in representation.

Timing Back-annotation

A VITAL netlist can import timing information from a VHDL
configuration or an SDF file.

• A VHDL configuration

VHDL allows the use of a configuration block to override the
values of generics specified in the entity declaration. This is done
during analysis of the design.

• SDF file

VITAL netlist can import an SDF 3.0 version file. The VITAL
standard defines the mapping for SDF 3.0 and the subset
supported.

VCS MX Naming Styles

VCS MX automatically determines what naming style is used
according to the cell:

• For conformance checked VITAL cells (that is, VITAL entities with
the VITAL_Level0 attribute set to TRUE), VCS MX uses VITAL
naming styles.

• For non-VITAL conformance checked cells, VCS MX uses the
Synopsys naming style (or the style described in SDF naming file).

9-82

Gate-level Simulation

Note:
VCS MX ignores the SDFNAMINGSTYLE variable in the setup
file when determining the naming style.

Negative Constraints Calculation (NCC)

Adjusting the cell timing values and converting the negative values
follows the elaboration and back-annotation phases. VCS MX
follows these steps to prepare the design units for simulation:

1. Design Elaboration

Elaboration is a VHDL step, the design is created and is ready for
the simulation run.

2. Back-annotation of timing delay values

Timing values are imported, and the value of generic parameters
are updated. VITAL models that support NCC accept back-
annotation information as in any other cell.

3. Conversion of the negative constraint values

The value of generic parameters is modified to conform to the
NCC algorithm, and negative constraint values are converted to
zero or positive.

VCS MX automatically performs NCC only when the
VITAL_Level0 attribute is set to TRUE for the VITAL entity and
the internal clock delay generic (ticd) or internal signal delay
generic (tisd) is set.

VCS MX does not run NCC on design units that have a non-VITAL
design type, but you can simulate them.

9-83

Gate-level Simulation

4. Running the simulation.

Simulating in Functional Mode

By default, VCS MX generates code that provides the flexibility of
choosing functional or regular VITAL simulation when simulation is
run. You can use the -novitaltiming runtime option to get
functional VITAL simulation; otherwise, you get regular, full-timing
VITAL simulation. You can also use -functional_vital with
vhdlan to get full functional VITAL simulation.

Choosing the VITAL simulation mode at analysis time provides a
better performance than choosing the mode at runtime, because it
eliminates the runtime check for the functional VITAL simulation
mode. The trade-off is that you must reanalyze your VITAL sources
if you want to switch between functional and timing simulation.
Therefore, you should add the appropriate option to the vhdlan
command line after you determine which simulation mode gives the
best performance while preserving correct simulation results.

Using the -novitaltiming runtime option eliminates all
timing-related aspects from the simulation of VITAL components.
With this option, VCS MX eliminates the following timing-related
aspects: wire delays, path delays, and timing checks, and assigns
0-delay to all outputs. The elimination of timing from the simulation
of the VITAL components significantly improves the performance of
event simulations.

By specifying -no_functional_vital for vhdlan, you get full
timing VITAL simulation without the ability to use functional VITAL at
runtime.

9-84

Gate-level Simulation

However, if your design depends on one or more of the timing-
related aspects, you can try reanalyzing the VITAL source files with
one or more of the following options, depending on the timing-related
or functional capabilities that you need to preserve:

-keep_vital_ifs

This option turns off some of the aggressive novitaltiming
optimizations related to if statements in Level 0 VITAL cells.

-keep_vital_path_delay

This option preserves the calls to VitalPathDelay. Use this
switch to preserve correct functionality of non-zero assignments
to the outputs.

-keep_vital_wire_delay

This option preserves the calls to VitalWireDelay. Use this switch
to preserve correct functionality of delays on the inputs.

-keep_vital_signal_delay

This option preserves the calls to VitalSignalDelay. Use this
switch to preserve correct functionality of delays on signals.

-keep_vital_timing_checks

This option preserves the timing checks within the VITAL cell.

-keep_vital_primitives

This option preserves calls to VITAL primitive subprograms.

9-85

Gate-level Simulation

Understanding VITAL Timing Delays and Error
Messages

This section describes how VCS MX calculates negative timing
constraints during elaboration. This section also lists the error
messages that the vhdlan utility generates while checking design
units for VITAL conformance.

Negative Constraint Calculation (NCC)

VITAL defines the special generics ticd, tisd, tbpd, SignalDelay
Block, and equations to adjust the negative setup and hold time and
related IOPATH delays.

For VITAL models, NCC adjusts the timing generics for the ticd or
tisd generic. The ticd delay is calculated based on SETUP and
RECOVERY time. Therefore, NCC resets the original ticd delay in
VITAL cells.

Conformance Checks

For VITAL conformance, VCS MX checks the design units that have
the VITAL_Level0 or VITAL_Level1 attribute set to TRUE (if the
attributes are set to FALSE, VCS MX issues a warning). The only
result of the conformance checking from VCS MX is the error
messages.

VCS MX performs the following checks:

• Type checking

• Syntactic and semantic checks

9-86

Gate-level Simulation

Type Checks

VCS MX checks and verifies the type for generics, restricted
variables, timing constraints, delays, and ports.

VITAL_Level0 timing generics are checked for type and name. The
decoded name can only belong to a finite predefined set { tpd, tsetup,
thold, trecovery, ...}.

Table 9-5 shows the VITAL delay type names for the generics and
the corresponding class for VITAL_Level0 design units.

Table 9-5 Delay Type Name and Corresponding Design Unit Class

VCS MX checks for the existence of the ports to which the generic
refers. For vector subtypes, it checks the index dimensionally.

Table 9-6 contains a list of the predefined timing generics. When
VCS MX finds any port names while checking the generic names, it
verifies the type of the generic name.

Generic Type Name Class
Time VITAL simple delay type
VitalDelayType VITAL simple delay type
VitalDelayArrayType VITAL simple delay type
VitalDelayType01 VITAL transition delay type
VitalDelayType01Z VITAL transition delay type
VitalDelayType01ZX VITAL transition delay type
VitalDelayArrayType01 VITAL transition delay type
VitalDelayArrayType01Z VITAL transition delay type
VitalDelayArrayType01ZX VITAL transition delay type

9-87

Gate-level Simulation

Table 9-6 Predefined Timing Generics

VITAL_level0 control generics are only checked for type as shown in
Table 9-7.

Table 9-7 Type Checks for Control Generics

Syntactic and Semantic Checks

Before conformance checking, VHDL grammar checks are
performed. VITAL is a subset of VHDL, so any further checks are
actually semantic checks.

Prefix Name Ports VITAL type
tpd <InPort><OutPort> VITAL delay type
tsetup <TestPort><RefPort> simple delay type
thold <TestPort><RefPort> simple delay type
trecovery <TestPort><RefPort> simple delay type
tremoval <TestPort><RefPort> simple delay type
tperiod <InPort> simple delay type
tpw <InPort> simple delay type
tskew <Port1><Port2> simple delay type
tncsetup <TestPort><RefPort> simple delay type
tnchold <TestPort><RefPort> simple delay type
tipd <InPort> VITAL delay type
tdevice <InstanceName>[OutPort] VITAL delay type
ticd <ClockPort> simple delay type
tisd <InPort><ClockPort> simple delay type
tbpd <InPort><OutPort><ClockPort> VITAL delay type

Name Type
InstancePath String
TimingChecksOn Boolean
Xon Boolean
MsgOn Boolean

9-88

Gate-level Simulation

Error Messages

The error messages are grouped into different classes according to
the type of error or the hierarchy of error as shown in Table 9-8.

Table 9-8 Error Message Classes

Error messages have the following features:

• Display the description and location information separately.

• Display an error prefix with entity and architecture, type of error,
severity level, file name, line number and the offending line from
the source.

• Display only user-helpful information.

• Denote the name of the preceding reference as %s. For example,
port%s means that the name of the port should appear at the
output.

• Are one-liners for grep/awk retrieval from the log file

• Are numbered as follows: E-VTL001, W-VTL002, ...

Error Class Error Prefix
Syntax VITAL error
Type VITAL error
Context VITAL error
Parameter VITAL error
Illegal Value VITAL error
Entity Error
Package
Usage
Architecture Level 0
Architecture Level 1
1. Constraints
2. Delay

9-89

Gate-level Simulation

Table 9-9 and Table 9-10 list all the VITAL error messages. Every
message is prefixed with an error class specific message and
sufficient context for you to find the problem object. For example, if
a port is the offending object, the name of the port and entity are
provided. For type violation, the offending type is shown. When there
is no indication of what was found, it means that the negation of the
statement was found. For example, the error message “The actual
part of ... MUST be static” indicates that the type found is not static.

Table 9-9 VITAL Error Messages for Level 0 Conformance Issues

Error
Class

VITAL
Reference
Manual
section
number

Error Message

1 type 4.1 The attribute %s { VITAL_Level0, VITAL_Level1 }
MUST be declared in package VITAL_Timing and it is
declared in %s.

2 type 4.1 The type of the attribute %s { VITAL_Level0,
VITAL_Level1 } MUST be Boolean and it is %s.

3 warning 4.1 The value of the attribute %s { VITAL_Level0,
VITAL_Level1 } MUST be True and it is %s.

4 scope 4.2 %s declared in VITAL package %s cannot have an
overloaded outside the package.

5 scope 4.2.1 Use of foreign architecture body %s for entity %s is
prohibited.

6 Not
implemen
ted

4.2.1 The syntactic rule %s, removed in IEEE Std 1076-1993
is illegal in VITAL.

7 syntax 4.3 The only declaration allowed inside an entity’s %s
declarative part is VITAL_Level0 attribute declaration.

8 syntax 4.3 No statements allowed inside a VITAL entity’s %s
statement part.

9 semantic 4.3.1 Entity %s port %s name CAN NOT contain underscore
character(s).

10 semantic 4.3.1 Entity %s port %s CAN NOT be of mode LINKAGE.
11 semantic 4.3.1 Entity %s: The type of the scalar port %s MUST be a

subtype of Std_Logic. Type is %s.

9-90

Gate-level Simulation

Table 9-10 VITAL Error Messages for Level 1 Conformance Issues

12 semantic 4.3.1 Entity %s: The type of vector port %s MUST be
Std_Logic_Vector. Type is %s.

13 syntax 4.3.1 Entity %s port %s CAN NOT be a guarded signal.
14 semantic 4.3.1 Entity %s: a range constraint is not allowed on port %s.
15 semantic 4.3.1 Entity %s port %s CAN NOT specify a user defined

resolution function.
16 warning 4.3.2.1.1 Entity %s: No port associated with the timing generic

%s. Generic %s unused by VITAL and no check will be
performed on it.

17 type 4.3.2.1.2 Entity %s: The type of the scalar generic timing
parameter %s does not match the type of associated
with a vector port %s.

18 type 4.3.2.1.2 Entity %s: the dimension(s) of the vector timing generic
%s does not match that of the associated port %s.

19 type 4.3.all The type of the timing generic %s MUST be one of { %s,
...} and it is %s.

20 semantic 4.3.2.1.3.14 Biased propagation delay timing generic %s needs a
propagation delay timing generic associated with the
same port, condition and edge.

21 semantic 4.3.2.1.3.14 The type %s of biased propagation delay timing generic
%s does not match the type %s of the propagation
delay timing generic %s associated with the same port,
condition and edge.

22 semantic 4.3.3 The type %s of the control generic %s is illegal. Type
MUST be %s.

23 semantic 4.4.1 Entity %s: Timing generic %s value used before
simulation.

24 semantic 4.4 Architecture %s { VITAL_Level0, VITAL_Level1 } %s
must be associated with a VITAL_Level0 entity.

Error
Class

VITAL
Reference
Manual
section
number

Error Message

9-91

Gate-level Simulation

Error
Class

VITAL
Reference
Manual
section
number

Error Message

1 semantic 6.2 VITAL_GLOBSIG, VERR_USER, MARK
Signal ’%s’ MUST be an entity port or an internal signal.

2 semantic 6.2 VITAL_GLOBSIG, VERR_USER, MARK
Signal-valued attribute ’%s’ is not allowed in a VITAL
Level 1 architecture.

3 semantic 6.2 It is illegal for a signal %s in architecture %s to have
multiple drivers. The drivers are { %s, ... }

4 semantic 6.2 Internal signal %s of type %s in architecture %s is
illegal. Type can be only of type { Std_ULogic,
StdLogic_Vector }. Type is %s.

5 semantic 6.2 Operators used in a VITAL_Level1 architecture MUST
be defined in Std_Logic_1164 . Operator %s is defined
in %s.

6 semantic 6.2 Subprogram invoked in a VITAL_Level1 architecture
MUST be defined in Std_Logic_1164 or VITAL
package. Subprogram %s is defined in %s.

7 semantic 6.2 Formal sub-element association %s in a subprogram
call %s is not allowed.

8 semantic 6.2 Type conversion %s in a subprogram call %s is not
allowed.

9 semantic 6.4 Multiple wire delay blocks in architecture %s are not
allowed. Offending blocks are labeled { %s, ... }. At
most one block with a label “WireDelay” is allowed.

10 syntax 6.4 Architecture %s body is allowed at most one negative
constraint block to compute the internal signal delays
declared in entity %s.

11 syntax 6.4 Architecture %s needs at least one process statement
or a concurrent procedure call.

12 semantic 6.4.1 Illegal block label %s. It MUST be “WireDelay."
13 context 6.4.1 Procedure VitalWireDelay MUST be declared in

package VITAL_Timing and it is declared in %s.
14 semantic 6.4.1 A call to a VitalWireDelay procedure outside a wire

delay block is not allowed.

9-92

Gate-level Simulation

15 semantic 6.4.1 At most one wire delay per port of mode IN or INOUT
and associated with a wire delay concurrent procedure
is allowed inside a wire delay block. Offending signals
are {%s, ...}.

16 semantic - A VITAL predefined name %s CAN NOT be overloaded
outside the VITAL package %s.

17 semantic 6.4.1 Internal wire delayed signal %s representing the wire
delay of port %s MUST be the same type as the port.

18 semantic 6.4.1 The value of port %s can be read only as an actual part
to a wire delay concurrent procedure call.

19 semantic 6.4.1 No range attribute specified for generate statement of
a wire delay port %s.

20 semantic 6.4.1 Only a concurrent procedure call allowed inside an
array port %s generate statement.

21 usage 6.4.1 The index for the generate statement %s for the array
port %s MUST be the name of the generate parameter
%s.

22 semantic 6.4.1 The actual part associated with the input parameter
InSig for a wire delay concurrent procedure call MUST
be a name of a port of mode IN or INOUT. Offending
port %s is of mode %s.

23 semantic 6.4.1 The actual part associated with the output parameter
OutSig for a wire delay concurrent procedure call
MUST be a name of an internal signal. The actual part
is %s of type %s.

24 semantic 6.4.1 TWire delay value parameter does not take negative
values. Value is %s.

25 semantic 6.4.1 The actual part associated with wire delay parameter
TWire MUST be locally static or a name of an
interconnect delay parameter. Actual part is %s.

26 semantic 6.4.2 VITAL negative constraint block MUST have a label
named “SignalDelay.” Label is %s.

27 semantic 6.4.2 Negative constraint %s has no procedure call
associated with it and therefore is unused by VITAL.

28 semantic 6.4.2 Negative constraint %s has more than one procedure
call { %s, ... } associated with it. Only one procedure
call per generic timing parameter is allowed.

Error
Class

VITAL
Reference
Manual
section
number

Error Message

9-93

Gate-level Simulation

29 context 6.4.2 Procedure VitalSignalDelay MUST be declared in
package VITAL_Timing and it is declared in %s.

30 semantic 6.4.2 A call to VitalSignalDelay is not allowed outside a
negative constraint block.

31 semantic 6.4.2 The actual part associated with the delay value
parameter Dly in VitalSignalDelay MUST be a timing
generic representing internal signal or internal clock
delay. The actual part is %s.

32 semantic 6.4.2 The actual part associated with the input signal
parameter S in VitalSignalDelay MUST be a static
name denoting an input port or the corresponding wire
delay signal (if it exists).

33 semantic 6.4.2 The actual part associated with the output signal
parameter DelayedS MUST be an internal signal.

34 syntax 6.4.3 A VITAL process statement %s MUST have sensitivity
list.

35 context 6.4.3 Signal %s CAN NOT appear in the sensitivity list of
process %s.

36 semantic 6.4.3.1.1 Vital unrestricted variable %s MUST be of type
{ Std_ulogic, Std_logic_vector, Boolean } only. Type is
%s.

37 semantic 6.4.3.1.1.1 The actual part %s of a restricted formal parameter %s
MUST be a simple name.

38 semantic 6.4.3.1.1.1 The initial value of the restricted variable %s
associated with the restricted formal parameter
GlitchData in procedure VitalPathDelay MUST be a
VITAL constant or VITAL function with a locally static
parameters, but it is %s.

39 semantic 6.4.3.1.1.1 The initial value of the restricted variable %s
associated with the restricted formal parameter
TimingData in procedure %s { VitalSetupHoldCheck,
VitalRecoveryRemovalCheck } MUST be a VITAL
constant or VITAL function with a locally static
parameters, but it is %s.

Error
Class

VITAL
Reference
Manual
section
number

Error Message

9-94

Gate-level Simulation

40 semantic 6.4.3.1.1.1 The initial value of the restricted variable %s
associated with the restricted formal parameter
PeriodPulseData in procedure VitalPeriodPulseCheck
MUST be a VITAL constant or VITAL function with a
locally static parameters, but it is %s.

41 semantic 6.4.3.1.1.1 The initial value of the restricted variable %s
associated with the restricted formal parameter
PreviousDataIn in procedure VitalStateTable can be
only a VITAL constant or a VITAL function with a locally
static parameters, but it is %s.

42 syntax 6.4.3.2 A VITAL process statement cannot be empty.
43 syntax 6.4.3.2.1 The condition in timing check IF statement MUST be

the simple name TimingCheckOn defined in entity %s
as a control generic.

44 semantic 6.4.3.2.1 A VITAL timing check statement can be only a call to
one of { VITAL_Timing, VITALSetupHoldCheck,
VITALRecoveryRemovalCheck,
VITALPeriodPulseCheck }.

45 semantic 6.4.3.2.1 The procedure %s { VITAL_Timing,
VITALSetupHoldCheck,
VITALRecoveryRemovalCheck,
VITALPeriodPulseCheck } MUST be declared in
package VITAL_Timing, but it is declared in %s.

46 semantic 6.4.3.2.1 A call to %s (One of { VITAL_Timing(),
VITALSetupHoldCheck(),
VITALRecoveryRemovalCheck(),
VITALPeriodPulseCheck() }) occurred outside a timing
check section.

47 semantic 6.4.3.2.1 The actual part %s associated with the formal
parameter %s (representing a signal name %s) MUST
be locally static.

48 semantic 6.4.3.2.1 The actual %s associated with the formal parameter
HeaderMsg MUST be a globally static expression.

49 semantic 6.4.3.2.1 The actual %s of the timing check procedure %s
associated with a formal parameter %s of type Time
MUST be a locally static expression or simple name
denoting the control generic of the same name.

Error
Class

VITAL
Reference
Manual
section
number

Error Message

9-95

Gate-level Simulation

50 semantic 6.4.3.2.1 The actual %s associated with a formal parameter %s
{ XOn, MsgOn } MUST be a globally static expression.

51 semantic 6.4.3.2.1 A function %s call or an operator %s invocation in the
actual part to a formal parameter %s MUST be a
function/operator defined in one of packages
{ Standard, Std_logic_1164, VITAL_Timing }.

52 semantic 6.4.3.2.1 The actual %s associated with the formal parameter
%s { TestSignalName } MUST be locally static
expression.

53 context 6.4.3.2.1 variable %s associated with a timing check violation
parameter %s could not be used in another timing
check statement. It appears in timing check %s.

54 context 6.4.3.2.2 procedure VitalStateTable() MUST be declared in the
package VITAL_Primitives, but it is declared in %s.

55 semantic 6.4.3.2.2 Only a call to the predefined procedure
VitalStateTable() is allowed inside a VITAL functionality
section.

56 semantic 6.4.3.2.2 The actual %s associated with the StateTable
parameter to procedure VitalStateTable MUST be
globally static expression.

57 semantic 6.4.3.2.2 The index constraint on the variable %s associated
with the PreviousDataIn parameter MUST match the
constraint on the actual associated with the DataIn
parameter.

58 semantic 6.4.3.2.2 The target of a VITAL variable assignment MUST be
unrestricted variable denoted by a locally static name,
but it is %s.

59 type 6.4.3.2.2 The target of an assignment statement of a standard
logic type inside a functionality section requires a
primary on the right side to be one of the following:
1. A globally static expression
2. A name of a port or an internal signal
3. A function call to a standard logic function, a VITAL
primitive or VITALTruthTable()
4. An aggregate or a qualified expression with an
aggregate operand
5. A parenthesized expression

Error
Class

VITAL
Reference
Manual
section
number

Error Message

9-96

Gate-level Simulation

60 semantic 6.4.3.2.2 A call to function VITALTruthTable CAN NOT occur
outside VITAL functionality section.

61 semantic 6.4.3.2.3 The procedure %s { VITALPathDelay,
VITALPathDelay01, VITALPathDelay01Z } MUST be
defined in package VITAL_Timing, but it is defined in
%s.

62 semantic 6.4.3.2.3 A call to procedure %s { VITALPathDelay,
VITALPathDelay01, VITALPathDelay01Z } CAN NOT
occur outside a path delay section.

63 semantic 6.4.3.2.3 The actual part associated with the formal parameter
OutSignal of a path delay procedure %s
{ VITALPathDelay, VITALPathDelay01,
VITALPathDelay01Z } MUST be a locally static signal
name, but it is %s.

64 semantic 6.4.3.2.3 The actual part associated with the formal parameter
Paths of a path delay procedure %s { VITALPathDelay,
VITALPathDelay01, VITALPathDelay01Z } MUST be
an aggregate, but it is %s.

65 semantic 6.4.3.2.3 The sub-element PathDelay of the actual part
associated with the formal parameter Paths to a path
delay procedure %s { VITALPathDelay,
VITALPathDelay01, VITALPathDelay01Z } MUST be
globally static, but it is %s.

66 semantic 6.4.3.2.3 The sub-element InputChangeTime of the actual
associated with the formal parameter Paths %s
{ VITALPathDelay, VITALPathDelay01,
VITALPathDelay01Z } MUST be a LastEvent attribute
or a locally static expression, but it is %s.

67 semantic 6.4.3.2.3 The actual associated with the formal parameter
GlitchMode to a path delay procedure %s MUST be a
literal, but it is %s.

68 semantic 6.4.3.2.3 The actual part associated with the formal parameter
GlitchData MUST be a locally static name, but it is %s.

69 semantic 6.4.3.2.3 The actual part associated with the formal parameter
%s { Xon, MsgOn } MUST be a locally static expression
or a simple name denoting control generic of the same
name, but it is %s.

Error
Class

VITAL
Reference
Manual
section
number

Error Message

9-97

Gate-level Simulation

70 semantic 6.4.3.2.3 The actual part associated with the formal parameter
%s { OutSignalName, DefaultDelay, OutputMap }
MUST be a locally static expression.

71 No Check 6.4.3.2.3 Port of type %s { OUT, INOUT, BUFFER } has to be
driven by a VITAL primitive procedure call or a path
delay procedure, but the driver is %s.

72 semantic 6.4.4 The actual associated with the formal parameter %s of
class VARIABLE or SIGNAL on VITAL primitive %s
MUST be a static name, but it is %s.

73 semantic 6.4.4 The actual part associated with the formal parameter
%s of class CONSTANT to a procedure call %s MUST
be a locally static expression, but it is %s.

74 semantic 6.4.4 The actual part associated with the formal parameter
ResultMap to a procedure call %s MUST be a locally
static expression, but it is %s.

75 semantic 6.4.4 The actual part associated with the formal parameter
%s { TruthTable, StateTable } on table primitive
procedure call %s MUST be a constant whose value
expression is an aggregate with fields that are locally
static expressions.

76 No Check 7.1.1 VITAL logic primitive %s MUST be defined in package
%s.

77 No Check 7.3.1 Symbol %s CAN NOT appear in Table %s.
78 No Check 7.3.3.1 Wrong number of inputs to an object %s of type

VitalTruthTable. The number MUST equal to the value
of the DataIn parameter VitalTruthTable.

79 No Check 7.3.3.1 Wrong dimensions for table %s of type %s
{ VitalTruthTable, VitalStateTable }.

80 Package 7.4.3.2.2 procedure VitalStateTable() MUST be declared in
VitalPrimitives, but it is declared in %s.

81 Package 7.4.3.2.3 procedure %s { VITALPathDelay, VITALPathDelay01,
VITALPathDelay01Z } MUST be defined in package
VITAL_Timing, but it is defined in %s.

Error
Class

VITAL
Reference
Manual
section
number

Error Message

10-1

Coverage

10
Coverage 1

VCS monitors the execution of the HDL code during simulation. The
verification engineers can determine which part of the code has not
been tested yet so that they can focus their efforts on those areas to
achieve 100% coverage. VCS offers two coverage techniques to test
your HDL code. Code coverage and Functional coverage.

Code Coverage

The following coverage metrics are classified as code coverage:

• Line Coverage — This metric measures statements in your HDL
code that have been executed in the simulation.

10-2

Coverage

• Toggle Coverage — This metric measures the bits of logic that
have toggled during simulation. A toggle simply means that a bit
changes from 0 to 1 or from 1 to 0. It is one of the oldest metrics
of coverage in hardware design and can be used at both the
register transfer level (RTL) and gate level.

• Condition Coverage — This metric measures how the variables
or sub-expressions in the conditional statements are evaluated
during simulation. It can find the errors in the conditional
statements that cannot be found by other coverage analysis.

• Branch Coverage — This metric measures the coverage of
expressions and case statements that affect the control flow (such
as the if-statement and while-statement) of the HDL. It focuses
on the decision points that affect the control flow of the HDL
execution.

• FSM Coverage — This metric verifies that every legal state of the
state machine has been visited and that every transition between
states has been covered.

For more information about coverage technology and how you can
generate the coverage information for your design, click the link
Coverage Technology User Guide if you are using the VCS Online
Documentation.

If you are using the PDF interface, click this link cov_ug.pdf to view
the Coverage Technology User Guide PDF documentation.

Functional Coverage

Functional coverage checks the overall functionality of the
implementation. To perform functional coverage, you must define the
coverage points for the functions to be covered in the DUT. VCS

10-3

Coverage

supports both NTB and SystemVerilog covergroup model.
Covergroups are specified by the user. They allow the system to
monitor values and transitions for variables and signals. They also
enable cross coverage between variables and signals.

For more information about NTB or SystemVerilog functional
coverage models, see the VCS Native Testbench Language
Reference Manual or the VCS SystemVerilog Language Reference
Manual respectively in the Testbench category in the VCS Online
Documentation.

Options For Coverage Metrics

-cm line|cond|fsm|tgl|branch|assert

Specifies elaborating for the specified type or types of coverage.
The argument specifies the types of coverage:

line

Elaborate for line or statement coverage.

cond

Elaborate for condition coverage.

fsm

Elaborate for FSM coverage.

tgl

Elaborate for toggle coverage.

branch

10-4

Coverage

Elaborate for branch coverage

assert

Elaborate for SystemVerilog assertion coverage.

For more information on Coverage options, click the link Coverage
Technology Reference Manual if you are using the VCS Online
Documentation.

If you are using the PDF interface, click the link cov_ref.pdf to view
the Coverage Technology Reference Manual PDF documentation.

11-1

Using SystemVerilog

11
Using SystemVerilog 1

VCS MX supports the SystemVerilog language as defined in the
IEEE 1800-2009 standard. For information on SystemVerilog
constructs, see the SystemVerilog Language Reference Manual.

This chapter describes the following:

• “Usage Model”

• “Using UVM With VCS”

• “Using VMM with VCS”

• “Using OVM with VCS”

• “Debugging SystemVerilog Designs”

• “Functional Coverage”

• “Newly implemented SystemVerilog Constructs”

11-2

Using SystemVerilog

• “Extensions to SystemVerilog”

• “Error Condition for Using a Genvar Outside of its Generate Block”
on page 81

• “Exporting a SystemVerilog Package” on page 82

• “Using a Package in a SystemVerilog Module, Program, and
Interface Header” on page 87

For SystemVerilog assertions, see Chapter 17, "Using
SystemVerilog Assertions".

Usage Model

The usage model to analyze, elaborate, and simulate your design
with SystemVerilog files is as follows:

Analysis

% vlogan -sverilog [vlogan_options] file4.sv file5.v
% vhdlan [vhdlan_options] file3.vhd file2.vhd file1.vhd

Note:
Specify the VHDL bottommost entity first, then move up in order.

Elaboration

% vcs [elab_options] top_cfg/entity/module

Simulation

% simv [simv_options]

To analyze SV files, use the option -sverilog with vlogan as
shown in the above usage model.

11-3

Using SystemVerilog

Using UVM With VCS

This version of VCS provides native support for both UVM-1.1a and
UVM-1.0. These libraries are located in:

• $VCS_HOME/etc/uvm-1.1

• $VCS_HOME/etc/uvm-1.0

UVM 1.1 is now replaced with UVM 1.1a, which is the default. You
can load UVM 1.1a by:

• Using the -ntb_opts uvm option

• Explicitly specifying the -ntb_opts uvm-1.1 option

The following sections explain your options for using UVM with VCS:

• “Update on UVM-1.0” on page 4

• “Update on UVM-EA” on page 4

• “Natively Compiling and Elaborating UVM-1.0” on page 5

• “Natively Compiling and Elaborating UVM-1.1a” on page 5

• “Compiling the External UVM Library” on page 6

• “Accessing HDL Registers Through UVM Backdoor” on page 8

• “Generating UVM Register Abstraction Layer Code” on page 9

• “Recording UVM Transactions” on page 10

• “UVM Template Generator (uvmgen)” on page 11

• “Using Mixed VMM/UVM Libraries” on page 12

11-4

Using SystemVerilog

• “Migrating from OVM to UVM” on page 13

• “Where to Find UVM Examples” on page 14

• “Where to Find UVM Documentation” on page 14

Update on UVM-1.0

Starting with this release, you can load UVM-1.0 using the
-ntb_opts uvm-1.0 option.

In the E-2011.03 version of VCS, the UVM-1.0 library is the default.
In F-2011.12 and in this version, the UVM-1.1 library is the default..
In this version, the UVM-1.1 library is the default.

Note:
You may see some differences in results when changing UVM
libraries. However, you don’t need any code changes to comply
with UVM-1.1.

Update on UVM-EA

Starting with this release, UVM-EA is not natively available. If you
use the -ntb_opts uvm-ea option, VCS generates an error
message. In that case, you can edit your source code to comply with
UVM-1.0 or UVM-1.1a.

As an alternative, you can continue to use the UVM-EA library by
downloading the UVM-EA installation from Accellera and using the
+incdir option to point to that installation.

11-5

Using SystemVerilog

Natively Compiling and Elaborating UVM-1.0

You can compile and elaborate SystemVerilog code which extends
from UVM-1.0 base classes using the following command:

% vcs -sverilog -ntb_opts uvm-1.0 [compile_options] \
<user source files using UVM>

For a mixed-HDL or UUM (unified use model) environment, compile
UVM-1.0 with vlogan using the following commands:

% vlogan -ntb_opts uvm-1.0 [compile_options]
// no source files here!

% vlogan -ntb_opts uvm-1.0 [compile_options] \
<user source files using UVM>

Note:
Complete the first step before using the subsequent command.
The first vlogan call compiles the UVM library. This is without
any user source files specified.

Elaborate the design as follows:

% vcs top [elab_options] -ntb_opts uvm-1.0 <top module>

Natively Compiling and Elaborating UVM-1.1a

You can compile and elaborate SystemVerilog code which extends
from UVM-1.1a base classes by using the following command:

% vcs -sverilog -ntb_opts uvm [compile_options] \
<user source files using UVM>

11-6

Using SystemVerilog

For a mixed-HDL or UUM environment, compile UVM-1.1a with
vlogan using the following command:

% vlogan -ntb_opts uvm [compile_options]
// no source files here!

% vlogan -ntb_opts uvm [compile_options] \
<user source files using UVM>

Note:
- Complete the first step that compiles the UVM library before

using the subsequent command. The first vlogan call compiles
the UVM library. This is without any user source files specified.

- In specific cases, the subsequent vlogan command might
error out with Error-[UM] Undefined Macro. In this scenario you
must explicitly add `include uvm_macros.svh to the file
getting this error.

Elaborate the design as follows:

% vcs -ntb_opts uvm [elab_options] <top module>

Using the -ntb_opts uvm option is the same as specifying the
version explicitly using the -ntb_opts uvm-1.1 option. However,
it is best to specify the version explicitly, because later versions of
UVM might carry the default UVM library.

Compiling the External UVM Library

If you want to use a UVM version from Accellera in place of the
UVM-1.1a version shipped with VCS, follow either of these
procedures:

• “Using the -ntb_opts uvm Option”

11-7

Using SystemVerilog

• “Explicitly Specifying UVM Files and Arguments”

Using the -ntb_opts uvm Option

When you set the VCS_UVM_HOME environment variable to specify a
UVM library directory, VCS uses this location even if the -ntb_opts
uvm option is used. For example:

% setenv VCS_UVM_HOME /<path_to_uvm_library>/myuvm1.1

% vcs -sverilog -ntb_opts uvm [compile_options] \
<user source files using UVM>

This is also supported for the UUM flow and using vlogan.

Specifying External uvm_dpi.cc Source

When using -ntb_opts uvm, the uvm_dpi.cc is picked up from
the UVM installation inside the VCS installation. However, you might
want to use the custom UVM DPI files instead of the ones shipped
with the UVM library.

Explicitly Specifying UVM Files and Arguments

The following example shows how to compile and elaborate the
UVM extended code by explicitly specifying the UVM files and
arguments:

% vcs -sverilog +incdir+${UVM_HOME} \
${UVM_HOME}/uvm_pkg.sv \
${UVM_HOME}/dpi/uvm_dpi.cc \
-CFLAGS -DVCS \
[compile_options] \
<user source files using UVM>

11-8

Using SystemVerilog

For a mixed-HDL or UUM environment, compile with vlogan using
the following command:

% vlogan -sverilog +incdir+${UVM_HOME} \
${UVM_HOME}/uvm_pkg.sv

% vlogan -sverilog +incdir+${UVM_HOME} \
<user source files using UVM>

Elaborate the design as follows:

% vcs [elab_options] \
${UVM_HOME}/dpi/uvm_dpi.cc <top module> \
-CFLAGS -DVCS

Note:
${UVM_HOME} should point to your UVM release path. It can
also point to ${VCS_HOME}/etc/uvm-1.1.

Accessing HDL Registers Through UVM Backdoor

If you are using tests that need to access HDL registers through the
default UVM register backdoor mechanism, add the -debug_pp
switch to your command line:

% vcs -sverilog -debug_pp -ntb_opts uvm \
[compile_options] <user source files using UVM>

Note:
The debug_pp switch may affect simulation performance.
Therefore, you should use the pli_learn capability to improve
the HDL access. For more information, see the VCS User Guide.

11-9

Using SystemVerilog

To simulate, use the following command:

% simv +UVM_TESTNAME=<your_uvm_test> [simv_options]

If you use the -b option with ralgen, the -debug_pp switch is not
required and the HDL backdoor is enabled through cross-module
references instead of VPI. This provides better performance.

Generating UVM Register Abstraction Layer Code

VCS ships a utility called ralgen. Given a description of the
available registers and memories in a design, ralgen automatically
generates the UVM RAL abstraction model for these registers and
memories. The description of these registers and memories can be
in RALF format or in the IPXACT schema.

To generate a register model from a RALF file, use the following
command:

% ralgen [options] -t <topname> -uvm <filename.ralf>

Here, filename.ralf is the name of the RALF input file and
topname is the top block or system name in the RALF file.

To generate a register model from an IPXACT file, you use a two-
step flow. The first step is to generate RALF from IPXACT as follows:

% ralgen -ipxact2ralf <input_file>

The second step is the same as the one described above. For more
information, see the UVM RAL Generator User Guide.

11-10

Using SystemVerilog

Recording UVM Transactions

UVM has additional features that allow you to take advantage of VCS
transaction recording and DVE transaction debugging capabilities.
These features are available with both the UVM-1.0 and UVM-1.1a
libraries.

To turn on UVM transaction recording, you need to use a compile-
time flag for UVM-1.0. No compile-time flag is needed for UVM-1.1a.
Then you enable recording using a runtime flag. The transaction and
report recordings are stored in the simulation VPD file.

To compile your UVM-1.0 code, add the
+define+UVM_TR_RECORD statement to your vcs or vlogan
command line as shown below:

% vcs -sverilog -ntb_opts uvm-1.0 \
+define+UVM_TR_RECORD [compile_options]

To compile your UVM-1.1a code, no compile-time flag is needed.

% vcs -sverilog -ntb_opts uvm-1.1 [compile_options]

To simulate, use +UVM_TR_RECORD to turn on transaction recording
and use +UVM_LOG_RECORD to turn on recording of UVM report log
messages:

% simv +UVM_TESTNAME=<your_uvm_test> +UVM_TR_RECORD \
+UVM_LOG_RECORD [simv_options]

You can then use DVE to debug the transactions and messages.
This is supported for both interactive and post-process debug. The
recorded streams with transactions and report logs are available in
the VMM/UVM folder of the transaction browser.

11-11

Using SystemVerilog

Note:
If you used the UVM_TR_RECORD feature with a previous version
of VCS, then you should remove the set_config_int("*",
"recording_detail", UVM_FULL) statement from your UVM
code, because it is no longer required.

UVM Template Generator (uvmgen)

uvmgen is a template generator for creating robust and extensible
UVM-compliant environments. The primary purpose of uvmgen is to
minimize the VIP and environment development cycle by providing
detailed templates for developing UVM-compliant verification
environments. You can also use uvmgen to quickly understand how
different UVM base classes can be used in different contexts. This is
possible because the templates use a rich set of the latest UVM
features to ensure the appropriate base classes and their features
are picked up optimally.

In addition, uvmgen can be used to generate both individual
templates and complete UVM environments.

uvmgen is a part of the VCS installation. It can be invoked by,

uvmgen [-L libdir] [-X] [-o fname] [-O]

where,

-L: Takes user-defined library for template generation

-X: Excludes standard template library

-o: Generates templates in specified file

-O: Overwrites if file already exists

11-12

Using SystemVerilog

-q: Quick mode to generate complete environment

For more information, see the UVM Template Generator (uvmgen)
User Guide.

Using Mixed VMM/UVM Libraries

For interoperability reasons (using UVM components in a VMM
environment and vice versa), VCS allows you to load the VMM and
UVM libraries simultaneously, along with the VMM/UVM interop kit.

The VMM-1.2/UVM-1.0 interop kit is located in:

• $VCS_HOME/etc/uvm-1.0/uvm_vmm_pkg.sv

• $VCS_HOME/etc/uvm-1.1/uvm_vmm_pkg.sv

This works with both UVM-1.0 and UVM-1.1a.

You can load mixed VMM-1.2 and UVM-1.0/1.1a by using a
combination of the following VCS switches:

• -ntb_opts uvm[-1.0/1.1]+rvm

-or-

• -ntb_opts rvm+uvm[-1.0/1.1]

-ntb_opts uvm[-1.0/1.1]+rvm is supported for both the
mixed-HDL and UUM flows:

% vcs … -ntb_opts uvm+rvm …

% vlogan … -ntb_opts uvm+rvm …

11-13

Using SystemVerilog

You can turn off the automatic inclusion of uvm_vmm_pkg.sv using
+define+NO_VMM_UVM_INTEROP.

By default, the mixed environment is driven by a VMM top timeline.
However, you can define a UVM top using +define+UVM_ON_TOP.

The UVM-1.0/1.1a VMM-1.2 interop kit examples are located in
$VCS_HOME/doc/examples/uvm_vmm_interop_kit.

Note:
In this version of VCS, the UVM-EA and VMM-1.2 interop kit is
no longer included. If you need either one of these kits, contact
vcs_support@synopsys.com.

Migrating from OVM to UVM

To convert your OVM code to UVM, you can use a script stored in
${VCS_HOME}/bin/OVM_UVM_Rename.pl. This script makes the
migration process easy.

Note:
This process is simple for SystemVerilog code that extends from
OVM 2.1.1 onward.

Use the following command to convert your OVM code to UVM code:

% OVM_UVM_Rename.pl

This script hierarchically changes all occurrences of “ovm_” to
“uvm_” for files with .v, .vh, .sv, and.svh extensions.

Change the simulation command line by replacing OVM_TESTNAME
with UVM_TESTNAME.

mailto:vcs_support@synopsys.com

11-14

Using SystemVerilog

Note:
Some additional work is required for the base classes that differ
between OVM and UVM. For example, you may need to modify
callbacks, some global function names, arguments, etc.

Where to Find UVM Examples

The UVM-1.1a interop examples are located in:

$VCS_HOME/doc/examples/uvm.

The UVM-VMM interop examples are located in:

$VCS_HOME/doc/examples/uvm_vmm_interop_kit.

Where to Find UVM Documentation

The UVM-1.1a, UVM-1.0, and UVM-VMM interop documentation is
available in the following locations.

UVM-1.1a Documentation

The PDF version of the UVM-1.1a User Guide is located in
$VCS_HOME/doc/UserGuide/pdf/uvm_users_guide_1.1.pdf.

The PDF version of the UVM-1.1a Reference Guide is located in
$VCS_HOME/doc/UserGuide/pdf/UVM_Class_Reference_1.1.pdf.

11-15

Using SystemVerilog

UVM-1.0 Documentation

The PDF version of the UVM-1.0 Reference Guide is located in
$VCS_HOME/doc/UserGuide/pdf/
UVM_Class_Reference_Manual_1.0.pdf.

The PDF version of the UVM-1.0 User Guide is located in
$VCS_HOME/doc/UserGuide/pdf/uvm_users_guide_1.0.pdf

UVM-VMM Interop Documentation

The unified HTML version of the UVM-VMM Interop Reference
Guide is accessible from the VCS or VCS MX installation at
$VCS_HOME/doc/UserGuide/userguide_html/uvm_vmm/html/
index.html.

Using VMM with VCS

The usage model to use VMM with VCS is as follows:

Analysis

% vlogan -sverilog -ntb_opts rvm [vlogan_options] file4.sv
file5.v
% vhdlan [vhdlan_options] file3.vhd file2.vhd file1.vhd

Note:
Specify the VHDL bottommost entity first, then move up in order.

Elaboration

% vcs [elab_options] top_cfg/entity/module

../uvm_vmm/html/index.html
../uvm_vmm/html/index.html

11-16

Using SystemVerilog

Simulation

% simv [simv_options]

To analyze SV files using VMM, use the option
-sverilog and -ntb_opts rvm with vlogan as shown in the
above usage model.

For more information on VMM, refer to the Verification Methodology
Manual for SystemVerilog.

Using OVM with VCS

VCS provides native support for OVM 2.1.2 The libraries are located
in:

$VCS_HOME/etc/ovm

Native Compilation and Elaboration of OVM 2.1.2

You can compile and elaborate SystemVerilog code which extends
from OVM 2.1.2 base classes by using the following command:

% vcs -sverilog -ntb_opts ovm [compile_options] \
<user source files using OVM>

When you natively compile and elaborate the OVM code, you do not
have to explicitly include OVM source files in user code as they
would get parsed by default.

In the G-2012.09 version of VCS, the OVM 2.1.2 library is default.

For a mixed-HDL or UUM environment, compile OVM 2.1.2 with
vlogan using the following command:

11-17

Using SystemVerilog

% vlogan -ntb_opts ovm [compile_options]
// no source files here!
% vlogan -ntb_opts ovm -sverilog [compile_options] \
<user source files using OVM>

Note:
• Complete the first step that compiles the OVM library before using

the subsequent command. The first vlogan call compiles the OVM
library, which does not contain any user source files.

• In specific cases, the subsequent vlogan command might error
out with Error-[UM] Undefined macro. In this scenario, explicitly
add ̀ include "ovm_macros.svh" to the file encountering this
error.

Elaborate the design as follows:

% vcs -ntb_opts ovm [elab_options] <top module>
% simv +OVM_TESTNAME=<ovm testname> <simv options>

Using -ntb_opts ovm option is same as specifying the version by
explicitly using -ntb_opts ovm-2.1.2 option.

In some cases, if you have explicitly included "ovm.svh" then the
OVM source code is recompiled in subsequent vlogan command. To
avoid re-compilation, you need to add +define+OVM_SVH in
subsequent vlogan commands.

% vlogan -ntb_opts ovm [compile_options]
// no source files here!

% vlogan -ntb_opts ovm -sverilog +define+OVM_SVH
[compile_options] \<user source files using OVM>

In cases where`include "ovm_pkg.sv" is present in the user
code, recompilation of the OVM source code is required. To avoid
this, you needs to pass +define+OVM_PKG_SV in the subsequent
vlogan commands.

11-18

Using SystemVerilog

% vlogan -ntb_opts ovm [compile_options]
// no source files here!

% vlogan -ntb_opts ovm -sverilog +define+OVM_PKG_SV
[compile_options] \<user source files using OVM>

Compiling the External OVM Library

If you want to use an OVM version from Accellera in place of the
OVM 2.1.2 version shipped with VCS, use one of the following
procedures:

• Using the -ntb_opts ovm option

• Explicitly specifying OVM files and arguments

Using the -ntb_opts ovm Option

When you set the VCS_OVM_HOME environment variable to specify
a OVM library directory, VCS uses this location even if the
-ntb_opts ovm option is used. For example,

% setenv VCS_OVM_HOME /<path_to_ovm_library>/myOVM-2.1.2

% vcs -sverilog -ntb_opts ovm [compile_options] \
<user source files using OVM>

This is also supported for the UUM flow and for using vlogan.

Explicitly Specifying OVM Files and Arguments

The following example shows how to compile and elaborate the
OVM extended code by explicitly specifying the OVM files and
arguments:

% vcs -sverilog +incdir+${OVM_HOME} \

11-19

Using SystemVerilog

${OVM_HOME}/ovm_pkg.sv \
[compile_options] \
<user source files using OVM>

For a mixed-HDL or UUM environment, compile with vlogan using
the following command:

% vlogan -sverilog +incdir+${OVM_HOME} \
${OVM_HOME}/ovm_pkg.sv

% vlogan -sverilog +incdir+${OVM_HOME} \
<user source files using OVM>

Note:${OVM_HOME}should point to your OVM release path. It can
also point to ${VCS_HOME}/etc/ovm-2.1.2

Recording OVM Transactions

The OVM version shipped with VCS has additional features that
allows you to take advantage of VCS and DVE's transaction
recording and debugging capabilities.

To turn on OVM transaction recording, you need to use a specific
compile-time flag for OVM or use any of the -debug flags with VCS
in the two step flow and then enable recording using a different
runtime flag. The transaction and report recordings are stored in the
simulation VPD file. -PP can be provided instead of -debug flags if
only post process debug is desired.

To compile your OVM code, add -debug/_pp/_all flag to your
VCS command.

For three step flow, you need to provide
+define+OVM_VCS_RECORD to the first vlogan command line as
shown below along with any of the -debug flags with VCS.

11-20

Using SystemVerilog

Two step flow:

% vcs -sverilog -ntb_opts ovm -debug[_pp/all]\
[compile_options]

In UUM flow:

% vlogan -ntb_opts ovm
+define+OVM_VCS_RECORD[compile_options]
// no source files here!

% vlogan -ntb_opts ovm [compile_options] \
<user source files using OVM>

Note:
• Complete the first step that compiles the OVM library before using

the subsequent command. The first vlogan call compiles the OVM
library. Define OVM_VCS_RECORD at this step to enable
transaction recording which is without any specified user source
files.

• In specific cases, the subsequent vlogan command might error
out with Error-[UM] Undefined macro. In this scenario, you
must explicitly add `include "ovm_macros.svh" to the file
getting this error.

Elaborate the design as follows:

% vcs -ntb_opts ovm [elab_options] <top module> -debug[_all/
_pp]

To simulate, use +OVM_TR_RECORD to turn on transaction recording
and use +OVM_LOG_RECORD to turn on recording of OVM report log
messages:

% simv +OVM_TESTNAME=<my_ovm_testname> +OVM_TR_RECORD \
+OVM_LOG_RECORD [simv_options]

11-21

Using SystemVerilog

You can then use DVE to debug the transactions and log messages.
This is supported for both interactive and post-process debug. The
recorded streams with transactions and report logs are available in
the VMM/OVM folder of the transaction browser.

Running Native OVM Code in Partition Compile Flow

Partition compile flow allows you to create various partitions and
compile the code in partitions. The OVM code can also be used in
this flow.

You need to identify the block of the design that needs modifications.
Specify the identified block as partition. Create a top config file and
compile the code -partcomp to enable the partition compile.

To enable the partition compile flow, use vlogan and VCS commands
as shown.

% vlogan -sverilog -ntb_opts ovm [compile_options]
// no source files here!

% vlogan -sverilog -ntb_opts ovm [compile_options] \
<user source files using OVM>

% vlogan -sverilog topcfg.v

Note:
• Complete the first step that compiles the OVM library before using

the subsequent command. The first vlogan call compiles the
OVM library, which is without any specified user source files.

• In specific cases, the subsequent vlogan command might error
out with Error-[UM] Undefined macro. In this scenario, you
must explicitly add `include "ovm_macros.svh" to the file
encountering this error.

11-22

Using SystemVerilog

• The top config file should have the partitions based on either the
instance or the module. The start and end of the file will be config
and endconfig.

Example of top config file:

config topcfg;
design work.top;
partition package work.ovm_pkg;
instance router_test_top.top_io use work.router_io;
instance router_test_top.tb use work.test;
partition instance router_test_top.tb ;
instance router_test_top.dut use work.router;
partition instance router_test_top.dut ;
default liblist work;

endconfig

Elaborate the design as follows:

% vcs -ntb_opts ovm -sverilog -partcomp <top_config_name>
[elab_options]

% simv +OVM_TESTNAME=<my_ovm_testname> [simv options]

To turn on OVM transaction recording in the partition compile flow,
you need to use the same options as in the UUM flow.

11-23

Using SystemVerilog

Debugging SystemVerilog Designs

VCS MX provides UCLI commands to perform the following tasks to
debug a design:

For detailed information on the UCLI commands, see the UCLI User
Guide.

Functional Coverage

The VCS MX implementation of SystemVerilog supports the
covergroup construct, which you specify as the user. These
constructs allow the system to monitor values and transitions for
variables and signals. They also enable cross coverage between
variables and signals.

If you have covergroups in your design, VCS MX collects the
coverage data during simulation and generates a database,
simv.vdb. Once you have simv.vdb, you can use the Unified
Report Generator to generate text or HTML reports. For more

Task Related UCLI commands are...

Line stepping step
next
run

Thread debugging step
thread

Setting breakpoints stop
run

Mailbox related information show

Semaphore related information show

11-24

Using SystemVerilog

information about covergroups, see the VCS SystemVerilog LRM.
For more information about functional coverage generated in VCS,
see the Coverage Technology User Guide.

11-25

Using SystemVerilog

Newly implemented SystemVerilog Constructs

VCS MX has implemented the following SystemVerilog constructs in
this release:

• “Support for Aggregate Methods in Constraints Using the “with”
Construct”

• “Debugging During Initialization SystemVerilog Static Functions
and Tasks in Module Definitions”

• “Explicit External Constraint Blocks”

• “Generate Constructs in Program Blocks”

• “Error Condition for Using a Genvar Outside of its Generate Block”
on page 35

• “Randomizing Unpacked Structs”

• “Making wait fork Statements Compliant with the SV LRM”

• “Making disable fork Statements Compliant with the SV LRM”

Support for Aggregate Methods in Constraints Using the
“with” Construct

Aggregate methods in constraint blocks using the with construct
have two variants, as shown in the following code example:

byte arr[3] = { 10, 20, 30 };
class C;
 rand int x1;
 rand int x2;
 rand int x3;
 rand int x4;

11-26

Using SystemVerilog

 constraint cons {
 // Newly implemented variant
 x1 == arr.sum() with (item * item);
 x2 == arr.sum(x) with (x + x);

 // Previously implemented variant
 // Supported in older releases
 x3 == arr.sum() with (arr[item.index] * arr[item.index]);
 x4 == arr.sum(x) with (arr[x.index] + arr[x.index]);
 }
endclass

The first variant is implemented in this release.

For a discussion and examples of aggregate methods in constraints
using the with construct, see IEEE Std 1800-2009, section 7.12.4
“Iterator index querying.”

As specified in the standard, the entire with expression must be in
parentheses.

Debugging During Initialization SystemVerilog Static
Functions and Tasks in Module Definitions

You can tell VCS MX to enable UCLI debugging when initialization
begins for static SystemVerilog tasks and functions in module
definitions with the -ucli=init runtime option and keyword
argument.

This debugging capability enables you to do, among other things, to
set breakpoints during initialization.

11-27

Using SystemVerilog

If you omit the =init keyword argument and just enter the -ucli
runtime option, the UCLI begins after initialization and you can’t
debug inside static initialization routines during initialization.

Note:
- Debugging static SystemVerilog tasks and functions in program

blocks during initialization does not require the =init keyword
argument.

- This feature does not apply to VHDL or SystemC code.

When you enable this debugging VCS displays the following prompt
indicating that the UCLI is in the initialization phase:

init%

When initialization ends the UCLI returns to its usual prompt:

ucli%

During the initialization the run UCLI command with the 0 argument
(run 0), or the -nba or -delta options runs VCS MX until
initialization ends. As usual, after initialization, the run 0 command
and argument runs the simulation until the end of the current
simulation time.

During initialization the following restrictions apply:

• UCLI commands that alter the simulation state, such as a force
command, create an error condition.

• Attaching or configuring Cbug, or in other ways enabling C, C++,
or SystemC debugging during initialization is an error condition.

• The following UCLI commands are not allowed during
initialization:

11-28

Using SystemVerilog

session management commands: save and restore

signal and variable commands: force, release, and call

The signal value and memory dump specification commands:
memory -read/-write and dump

The coverage commands: coverage and assertion

Example

If we have the following small code example:

module mod1;
class C;
 static int I=F();
 static function int F();
 logic log1;
 begin
 log1 = 1;
 $display("%m log1=%0b",log1);
 $display("In function F");
 F = 10;
 end
 endfunction
endclass
endmodule

If we simulate this example, with just the -ucli runtime option, we
see the following:

Command: simv =ucli
Chronologic VCS simulator copyright 1991-year
Contains Synopsys proprietary information.
Compiler version version-number; Runtime version version-
number; simulation-start-date-time
mod1.\C::F log1=1
In function F

11-29

Using SystemVerilog

 V C S S i m u l a t i o n R e p o r t
Time: 0
CPU Time: 0.510 seconds; Data structure size: 0.0Mb
simulation-ends-day-date-time

VCS MX executed the $display tasks right away and the
simulation immediately ran to completion.

If we simulate this example, with just the -ucli=init runtime
option and keyword argument, we see the following:

Command: simv -ucli=init
Chronologic VCS simulator copyright 1991-year
Contains Synopsys proprietary information.
Compiler version version-number; Runtime version version-
number; simulation-start-date-time
init%

Notice that VCS MX has not executed the $display system tasks
yet and the prompt is init%.

We can set a breakpoint, for example:

init% stop -in \C::F
1

We ran then attempt to run through the initialization phase:

init% run 0

Stop point #1 @ 0 s;
init%

The breakpoint halts VCS MX.

If we run the simulation up to the end of the initialization phase with
the run 0 UCLI command again, we see the following:

11-30

Using SystemVerilog

init% run 0
mod1.\C::F log1=1
In function F
ucli%

Now VCS MX executes the $display system tasks and changes
the prompt to ucli%.

Explicit External Constraint Blocks

External constraint blocks are constraint blocks, also called the
constraint bodies, that are outside of a class, and at the same
hierarchical level of that class. You enable them with external
constraint prototypes in the class.

There are two forms of external constraint prototypes:

• explicit — where you include the extern keyword in the
prototype.

• implicit — where you omit the extern keyword in the prototype.

The explicit form is implemented in this release.

The following code example shows these two forms of external
constraint prototypes.

class Class1;
 rand int int1,int2;
 constraint imp_ext_cnstr_proto1; // implicit form
 extern constraint exp_ext_cnstr_proto2; // explicit form
...
endclass

11-31

Using SystemVerilog

The external constraint block, or body, for these prototypes must be
at the same hierarchical level as the class and follow the class
definition.

The following are external constraint blocks or bodies for these
external constraint prototypes:

constraint Class1::imp_ext_cnstr_proto1 {
 int1 inside {0, [3:5], [7:31]};}
constraint Class1::exp_ext_cnstr_proto2 {
 int2 dist {100 := 1, 101 := 2};}

Besides the extern keyword, the difference between the implicit
and explicit forms is how VCS MX responds when the external
constraint block or body for a prototype is missing:

• With the implicit form, VCS MX handles a missing external
constraint block as an empty constraint block. This is not an error
condition and VCS MX just outputs a warning message, for
example:

Warning-[BCNACMBP] Missing constraint definition
doc_example.sv, 6
prog, "constraint imp_ext_cnstr_proto1;"
 The constraint imp_ext_cnstr_proto1 declared in the
class Class1 is not defined.
Provide a definition of the constraint body
imp_ext_cnstr_proto1 or remove the constraint declaration
imp_ext_cnstr_proto1 from the class declaration Class1.

An empty constraint block would be the same as the following:

constraint imp_ext_cnstr_proto1 { };

11-32

Using SystemVerilog

With a missing external constraint block for the implicit form,
because it is not an error condition, VCS MX continues to compile
or elaborate and generates the simv executable. If you don’t notice
the warning message you might expect to see the missing
constraint block constraining the values of the random variables.

• With the explicit form, a missing external constraint block is an
error condition, for example:

Error-[SV_MEECD] Missing explicit external constraint def
doc_example.sv, 7
prog, "constraint exp_ext_cnstr_proto2;"
The explicit external constraint 'exp_ext_cnstr_proto2'
declared in the class 'Class1' is not defined.
Provide a definition of the constraint body
'exp_ext_cnstr_proto2' or remove the explicit external
constraint declaration 'exp_ext_cnstr_proto2' from the
class declaration 'Class1'.

With a missing external constraint block for the explicit form,
because it is an error condition, VCS MX does not compile or
elaborate.

Using an Empty Constraint Block

You can use the implicit form of a constraint prototype, without the
corresponding constraint block, in a subclass to remove a constraint
from a base class, for example:

module top;
class C;
rand int x;
 constraint protoC_1 { x < 5; }
 constraint protoC_2 { x > 3; }
endclass

class CD extends C;
 rand int y;
 constraint protoC_1; // removing this constraint in

11-33

Using SystemVerilog

 // this subclass
 constraint protoCD_1 { x < 6; } // applying a new constraint
 // on x
endclass

C ci = new;
CD cdi = new;
int res1;
int res2;

initial begin
 repeat (20) begin
 res1 = ci.randomize(); // here x can have value 4 only
 res2 = cdi.randomize(); // here x can have values 4 and 5
 if ((res1 == 1) && (res2 == 1))
 $display("niru>> ci.x=%d cdi.x=%d",ci.x, cdi.x);
 end
end

endmodule

The Explicit Form in Previous Releases

In previous releases the explicit form was an error condition and
VCS MX displayed the following:

Error-[SE] Syntax error
 Following verilog source has syntax error :
 "doc_example.sv", 7: token is 'constraint'
 extern constraint exp_ext_cnstr_proto2;
 ^
 System verilog keyword 'constraint' is not expected
 to be used in this context.

Generate Constructs in Program Blocks

Generate constructs are now supported in program blocks, not just
in modules.

11-34

Using SystemVerilog

These constructs are described in The Verilog LRM, IEEE Std 1364-
2005 in the following sections:

12.4 Generate constructs

12.4.1 Loop generate constructs

12.4.2 Conditional generate constructs

The following are examples of these constructs in a program block:

program prog;
...
generate
 reg reg1;
endgenerate

if (1) logic log1;

genvar gv1;
for(gv1=1; gv1<10; gv1++) logic log2;

case (param1)
 0 : logic log3;
 ...
endcase

endprogram

The first is a generate region, specified with the generate and
endgenerate keywords inside a program block:

generate
 reg reg1;
endgenerate

The second is a conditional generate construct with the if keyword:

11-35

Using SystemVerilog

if (1) logic log1;

The third is a generate loop variable declared with the genvar
keyword, followed by a for loop for that variable:

genvar gv1;
for(gv1=1; gv1<10; gv1++) logic log2;

The fourth is a generate case construct:

case (param1)
 0 : logic log3;
 ...
endcase

In previous releases these constructs would have resulted in the
following error messages:

Error-[NYI] Not Yet Implemented
source_filename, line_number
 Feature is not yet supported: Generate Block inside Program

Error-[NYI] Not Yet Implemented
source_filename, line_number
Feature is not yet supported: Generate Variable declaration
inside Program

Error Condition for Using a Genvar Outside of its
Generate Block

A genvar variable declared in local scope of a generate block, that is
used outside that block is an error condition starting from
VCS2011.12-FCS release. The following code example shows this
error condition:

module test;
generate

11-36

Using SystemVerilog

 for (genvar i = 0; i < 1; i++)
 begin
 a1: assert final (1);
 end
endgenerate
generate
 for (i = 0; i < 1; i++)
 begin
 a1: assert final (1);
 end
endgenerate
endmodule

Elaborating this example with the following command line:

vcs generate.sv -sverilog -assert svaext

Results in the following error message:

Error-[IND] Identifier not declared
generate.sv, 9
 Identifier 'i' has not been declared yet. If this error
is not expected,
 please check if you have set `default_nettype to none.

1 error

This error condition was ignored in previous releases.

To fix this error please declare genvar i in module scope.

Randomizing Unpacked Structs

You can now randomize members of an unpacked struct. You can do
this in the following ways:

• use the scope randomize method std::randomize()

11-37

Using SystemVerilog

• use the class randomize method randomize()

You can also:

• disable and re-enable randomization in an unpacked struct with
the rand_mode() method.

• use in-line random variable control to specify the randomized
variables with an argument to the randomize() method.

Using the Scope Randomize Method std::randomize()

The following example illustrates using this method:

Example 11-1 First Example of the Scope Randomize Method
std::randomize()

module test();

typedef struct {
 bit [1:0] b1;
 integer i1;
 } ST1;

ST1 st1;

initial
 repeat (4)
 begin
 std::randomize(st1);
 #10 $display("\n\n\t at %0t",$time);
 $display("\t st1.b1 is %0d",st1.b1);
 $display("\t st1.i1 is %0d",st1.i1);
 end

endmodule

This example randomizes struct instance st1. The $display
system tasks display the following:

11-38

Using SystemVerilog

at 10
 st1.b1 is 2
 st1.i1 is 1474208060

 at 20
 st1.b1 is 1
 st1.i1 is 816460770

 at 30
 st1.b1 is 3
 st1.i1 is -1179418145

 at 40
 st1.b1 is 0
 st1.i1 is -719881993

In the previous version of VCS MX, this example would result in the
following error messages at compile-time:

Error-[UARC] Unsupported argument to randomize call
doc_ex1.sv, 13
"st1"
 Arg #1 of std::randomize "st1" is unsupported unpacked
struct or array of unpacked struct

Error-[SV-FNYI] Feature not yet implemented
doc_ex1.sv, 13
 SystemVerilog feature not yet implemented. unpacked
structure(s) in system function calls Expression:
std::randomize(st1)

Here is another code example that randomizes members of an
unpacked struct and uses constraints:

11-39

Using SystemVerilog

Example 11-2 Second Example of the Scope Randomize Method
std::randomize()

module test;
 typedef struct {
 rand byte aa;
 byte bb;
 } ST;

 ST st;
 bit [3:0] c;

initial begin
 std::randomize(st.bb); // std randomization on a
 // struct member
 std::randomize(st) with { st.aa > 10; };
 // support st.aa in with block
 std::randomize(c,st) with { st.aa > c; };
 $display("\n\n\t at %0t",$time);
 $display("\t st.aa is %0d",st.aa);
 $display("\t st.bb is %0d",st.bb);
 $display("\t bit c is %0d",c);
 end
endmodule

The $display system tasks display the following:

at 0
 st.aa is 121
 st.bb is -9
 bit c is 0

Example 11-3 Third Example of the Scope Randomize Method
std::randomize()

module test;
 typedef struct {
 byte a0;
 byte b0;
 } ST0;
 typedef struct {

11-40

Using SystemVerilog

 byte aa;
 ST0 st0;
 } ST_NONE;

 typedef struct {
 rand byte aa;
 byte bb;
 } ST_PART;

 typedef struct {
 rand byte aa;
 randc byte bb;
 } ST_ALL;

 ST_NONE st;
 ST_PART st1;
ST_ALL st2;

initial begin
 repeat (5) begin
 // random variables: st.aa st.st0.a0 st.st0.b0
 std::randomize(st);

 // random variables: st1.aa st.bb
 std::randomize(st1) with {st1.aa>st1.bb;};

 // random variables: st2.aa st2.bb
 std::randomize(st2);

 $display("st %p",st);
 $display("st1 %p",st1);
 $display("st2 %p",st2);
 end
end

endmodule

This example randomizes unpacked struct instance st1. The
$display system tasks display the following:

st '{aa:54, st0:'{a0:60, b0:125}}

11-41

Using SystemVerilog

st1 '{aa:-125, bb:-126}
st2 '{aa:-9, bb:-90}
st '{aa:27, st0:'{a0:-75, b0:-6}}
st1 '{aa:-37, bb:-47}
st2 '{aa:-106, bb:49}
st '{aa:-60, st0:'{a0:-86, b0:-60}}
st1 '{aa:-71, bb:-103}
st2 '{aa:-120, bb:-15}
st '{aa:44, st0:'{a0:-50, b0:5}}
st1 '{aa:-69, bb:-96}
st2 '{aa:96, bb:95}
st '{aa:122, st0:'{a0:-94, b0:-16}}
st1 '{aa:-2, bb:-63}
st2 '{aa:18, bb:-12}

Using the Class Randomize Method randomize()

The following example illustrates using this method.

Example 11-4 The Class Randomize Method randomize()

module test();

typedef struct {
 rand bit [1:0] b1;
 rand integer i1;
 } ST1;

class CC;
 rand ST1 st1;
endclass

CC cc = new;

initial
 repeat (4)
 begin
 cc.randomize();
 #10 $display("\n\n\t at %0t",$time);
 $display("\t cc.st1.b1 is %0d",cc.st1.b1);
 $display("\t cc.st1.i1 is %0d",cc.st1.i1);

11-42

Using SystemVerilog

 end

endmodule

This example randomizes instance cc of class CC that contains
unpacked struct ST. The $display system tasks display the
following:

at 10
 cc.st1.b1 is 3
 cc.st1.i1 is -1241023056

 at 20
 cc.st1.b1 is 3
 cc.st1.i1 is -1877783293

 at 30
 cc.st1.b1 is 1
 cc.st1.i1 is 629780255

 at 40
 cc.st1.b1 is 3
 cc.st1.i1 is 469272579

In the previous version of VCS MX, this example would result in the
following error messages at compile-time:

Error-[SV-RISNYI] Rand in Struct Not Yet Implemented
doc_ex2.sv, 4
 The qualifier 'rand' was seen in a struct. This is not yet
supported.
 Please remove the 'rand' declaration.

Error-[SV-RISNYI] Rand in Struct Not Yet Implemented
doc_ex2.sv, 5
 The qualifier 'rand' was seen in a struct. This is not yet

11-43

Using SystemVerilog

supported.
 Please remove the 'rand' declaration.

2 errors

Here is another code example:

Example 11-5 Another Example of the Class Randomize Method
randomize()

module test;

typedef struct {
 bit[3:0] c;
 randc bit[1:0] d;
} ST0;

typedef struct {
 rand bit[5:0] a;
 rand bit[5:0] b;
 rand ST0 st0;
 bit [5:0] e;
}ST;

class CC;
 rand ST st;
endclass

CC cc = new;

initial begin
repeat (10) begin
 // random variables: cc.st.a cc.st.b and cc.st.st0.d
 // state variables: cc.st.e and cc.st.st0.c
 cc.randomize() with { st.a<10 ; st.b>10; st.a+st.b==64;};

 $display("st %p",cc.st);
end
end

endmodule

11-44

Using SystemVerilog

This example randomizes class instance cc according to the
constraint that follows the with keyword. The $display system
task displays the following:

st '{a:'h7, b:'h39, st0:'{c:'h0, d:'h0}, e:'h0}
st '{a:'h8, b:'h38, st0:'{c:'h0, d:'h1}, e:'h0}
st '{a:'h1, b:'h3f, st0:'{c:'h0, d:'h3}, e:'h0}
st '{a:'h1, b:'h3f, st0:'{c:'h0, d:'h2}, e:'h0}
st '{a:'h1, b:'h3f, st0:'{c:'h0, d:'h0}, e:'h0}
st '{a:'h8, b:'h38, st0:'{c:'h0, d:'h1}, e:'h0}
st '{a:'h9, b:'h37, st0:'{c:'h0, d:'h2}, e:'h0}
st '{a:'h9, b:'h37, st0:'{c:'h0, d:'h3}, e:'h0}
st '{a:'h7, b:'h39, st0:'{c:'h0, d:'h3}, e:'h0}
st '{a:'h8, b:'h38, st0:'{c:'h0, d:'h1}, e:'h0}

Disabling and Re-enabling Randomization

You can disable and re-enable randomization in an unpacked struct
with the rand_mode() method.

Example 11-6 Disabling and Re-enabling Randomization with the
rand_mode() Method

module test();

typedef struct {
 rand integer i1;
 } ST1;

class CC;
 rand ST1 st1;
endclass

CC cc = new;

initial
 repeat (10)
 begin

11-45

Using SystemVerilog

 cc.randomize();
 #10 $display("\n\t at %0t",$time);
 $display("\t cc.st1.i1 is %0d",cc.st1.i1);
 end

initial
 begin
 #55 cc.rand_mode(0);
 #20 cc.rand_mode(1);
 end

endmodule

In this example the rand_mode() method, with its arguments,
disables and re-enables randomization in class instance cc. The
$display system tasks display the following:

at 10
 cc.st1.i1 is -902462825

 at 20
 cc.st1.i1 is -1241023056

 at 30
 cc.st1.i1 is 69704603

 at 40
 cc.st1.i1 is -1877783293

 at 50
 cc.st1.i1 is -795611063

 at 60
 cc.st1.i1 is 629780255

 at 70
 cc.st1.i1 is 629780255

 at 80
 cc.st1.i1 is 629780255

11-46

Using SystemVerilog

 at 90
 cc.st1.i1 is 1347943271

 at 100
 cc.st1.i1 is 469272579

In this example randomization is disabled at simulation time 55 and
re-enabled at simulation time 75, enabling new random values at
simulation time 90.

In the previous version of VCS MX, this example would result in the
following error messages at compile-time:

Error-[SV-RISNYI] Rand in Struct Not Yet Implemented
doc_ex3.sv, 4
 The qualifier 'rand' was seen in a struct. This is not yet
supported.
 Please remove the 'rand' declaration.

1 error

Here is another code example:

Example 11-7 Another Example of Disabling and Re-enabling
Randomization with the rand_mode() Method

module test;

typedef struct {
 bit[3:0] c;
 randc bit[1:0] d;
 } ST0;

typedef struct {
 rand bit[5:0] a;
 rand bit[5:0] b;
 rand ST0 st0;
 bit [5:0] e;
 }ST;

11-47

Using SystemVerilog

class CC;
 rand ST st;
 rand bit[2:0] n1;
endclass

CC cc = new;

initial
 begin
 cc.st.rand_mode(0);
 repeat (10)
 begin
 // random variables: cc.n1
 // state variables: all members of cc.st
 cc.randomize();
 $display("turn off st %p , cc.n1 %b",

cc.st,cc.n1);
 end
 cc.st.rand_mode(1);
 cc.st.st0.rand_mode(0);
 repeat (10)
 begin
 // random variables: cc.n1 cc.st.a cc.st.b
 // state variables: cc.st.e cc.st.st0.c cc.st.st0.d
 cc.randomize();
 $display("turn off st.st0 %p , cc.n1 %b",

cc.st,cc.n1);
 end
 cc.st.st0.rand_mode(1);
 end

endmodule

In this example the rand_mode() method disables randomization
in unpacked struct instance cc.st.st0 and then re-enables it. The
$display system tasks displays the following:

turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 111
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 000
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 011
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 011

11-48

Using SystemVerilog

turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 001
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 111
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 111
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 011
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 001
turn off st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 100
turn off st.st0 '{a:'h39, b:'h17, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 010
turn off st.st0 '{a:'h26, b:'h1f, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 001
turn off st.st0 '{a:'h9, b:'h3, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 010
turn off st.st0 '{a:'h23, b:'he, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 101
turn off st.st0 '{a:'h21, b:'h18, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 000
turn off st.st0 '{a:'h34, b:'h1d, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 001
turn off st.st0 '{a:'h2f, b:'h27, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 011
turn off st.st0 '{a:'h2f, b:'h17, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 100
turn off st.st0 '{a:'hd, b:'h34, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 010
turn off st.st0 '{a:'h27, b:'h11, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 010

Using In-line Random Variable Control

The following example illustrates using in-line random variable
control to specify the randomized variables with an argument to the
randomize() method.

Example 11-8 In-line Random Variable Control

module test();

typedef struct {
 rand integer i1;
 } ST1;

typedef struct {
 rand integer i1;
 } ST2;

class CC;
 rand ST1 st1;
 rand ST2 st2;
endclass

CC cc = new;

initial

11-49

Using SystemVerilog

 begin
 #10 cc.randomize();
 $display("\n\t at sim time %0t",$time);
 $display("\t cc.st1.i1 is %0d",cc.st1.i1);
 $display("\t cc.st2.i1 is %0d",cc.st2.i1);
 #10 cc.randomize(st1);
 $display("\n\t at sim time %0t",$time);
 $display("\t cc.st1.i1 is %0d",cc.st1.i1);
 $display("\t cc.st2.i1 is %0d",cc.st2.i1);
 #10 cc.randomize(null);
 $display("\n\t at sim time %0t",$time);
 $display("\t cc.st1.i1 is %0d",cc.st1.i1);
 $display("\t cc.st2.i1 is %0d",cc.st2.i1);
 #10 cc.randomize(st2);
 $display("\n\t at sim time %0t",$time);
 $display("\t cc.st1.i1 is %0d",cc.st1.i1);
 $display("\t cc.st2.i1 is %0d",cc.st2.i1);
 end

endmodule

This example supplies the randomize() method with arguments
for unpacked struct instances st1 and st2 and the null keyword.

1. At simulation time 20 randomization is limited to st1.

2. At simulation time 30 randomization is turned off.

3. At simulation time 40 randomization is limited to st2.

The $display system tasks displays the following:

 at sim time 10
 cc.st1.i1 is -902462825
 cc.st2.i1 is -1241023056

 at sim time 20
 cc.st1.i1 is 69704603
 cc.st2.i1 is -1241023056

11-50

Using SystemVerilog

 at sim time 30
 cc.st1.i1 is 69704603
 cc.st2.i1 is -1241023056

 at sim time 40
 cc.st1.i1 is 69704603
 cc.st2.i1 is -1877783293

At simulation 20 a new random value is in st1 but not st2.

At simulation time 30 there are no new random values.

At simulation time 40 a new random value is in st2 but not st1.

In the previous version of VCS MX, this example would result in the
following error messages at compile-time:

Error-[SV-RISNYI] Rand in Struct Not Yet Implemented
doc_ex4.sv, 4
 The qualifier 'rand' was seen in a struct. This is not yet
supported.
 Please remove the 'rand' declaration.

Error-[SV-RISNYI] Rand in Struct Not Yet Implemented
doc_ex4.sv, 8
 The qualifier 'rand' was seen in a struct. This is not yet
supported.
 Please remove the 'rand' declaration.

2 errors

Here is another code example:

Example 11-9 Another Example of In-line Random Variable Control

module test;

typedef struct {
 bit[3:0] c;
 randc bit[1:0] d;

11-51

Using SystemVerilog

} ST0;

typedef struct {
 rand bit[5:0] a;
 rand bit[5:0] b;
 rand ST0 st0;
 bit [5:0] e;
}ST;

class CC;
 ST st;
 rand bit[2:0] n1;
endclass

CC cc = new;

initial begin
 // random variables: cc.n1
 // state variables: all members of cc.st
repeat (5) begin
 cc.randomize();
 $display("default st %p , cc.n1 %b",cc.st,cc.n1);
end

 // random variables: cc.st.a cc.st.b cc.st.st0.d
 // state variables: cc.n1 cc.st.e cc.st.st0.c
repeat (5) begin
 cc.randomize(st);
 $display("inline st %p , cc.n1 %b",cc.st,cc.n1);
end

end
endmodule

In this example the randomize() method is called without an
argument and then with the st struct instance argument. The
$display system tasks display the following:

default st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 111
default st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 000
default st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 011

11-52

Using SystemVerilog

default st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 011
default st '{a:'h0, b:'h0, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 001
inline st '{a:'h1f, b:'h27, st0:'{c:'h0, d:'h0}, e:'h0} , cc.n1 001
inline st '{a:'h11, b:'h34, st0:'{c:'h0, d:'h1}, e:'h0} , cc.n1 001
inline st '{a:'h17, b:'h2a, st0:'{c:'h0, d:'h2}, e:'h0} , cc.n1 001
inline st '{a:'h1f, b:'h9, st0:'{c:'h0, d:'h3}, e:'h0} , cc.n1 001
inline st '{a:'h3, b:'h12, st0:'{c:'h0, d:'h3}, e:'h0} , cc.n1 001

VCS MX executes the second $display system task after it
executes the randomize() method with the st argument.

Limitation

Random class objects as members of an unpacked struct are not yet
implemented (NYI), for example:

module test;

class CC0;
 rand int a;
endclass

typedef struct {
 rand bit[5:0] a;
 rand bit[5:0] b;
 rand CC0 cc0; // this is not allowed in this release
}ST;

endmodule

Making wait fork Statements Compliant with the SV LRM

You specify making wait fork statements compliant with the SV
LRM with the -ntb_opts sv_dwfork compile-time option and
keyword argument.

The IEEE Std 1800-2009 standard LRM for SystemVerilog states the
following about wait fork statements:

11-53

Using SystemVerilog

“The wait fork statement blocks process execution flow until all
immediate child subprocesses (processes created by the current
process, excluding their descendants) have completed their
execution.”

For backwards compatibility reasons, by default, VCS MX blocks the
process execution flow until all child subprocesses, not just the
immediate child subprocesses, have completed their execution. It
also waits only for those processes that are created by the current
task or process that contains the wait fork statement.

You can specify that VCS MX be compliant with the standard and
block process execution flow only for immediate child subprocesses
and wait for processes created by the current process (even if the
wait fork is contained within a task) with the -ntb_opts
sv_dwfork compile-time option and keyword argument.

The following code example shows the difference in behavior for wait
fork.

program A;
task t1();
 #1 $display($time,," T1_1 \n");
endtask
task t2();
 fork
 #1 $display($time,," T2_1 \n");
 #9 $display($time,," T2_2 \n");
 join_any
endtask
task disp();
 fork
 t1();
 t2();
 join_any
 wait fork;
 $display($time,,"After Wait fork");

11-54

Using SystemVerilog

endtask
initial begin
 fork
 #1 $display($time,," Initial Thread 1 \n");
 #5 $display($time,," Initial Thread 2 \n");
 join_any
 disp();
end
endprogram

VCS MX by default waits for the execution of:

#9 $display($time,," T2_2 \n");

It executes this line at simulation time 10, even though the fork for
this $display system task is not an immediate child subprocess of
task disp().

The $display system tasks, by default, displays the following:

1 Initial Thread 1
2 T1_1
2 T2_1
5 Initial Thread 2
10 T2_2
10 After Wait fork

If you include the -ntb_opts sv_dwfork compile-time option and
keyword argument, the $display system tasks displays the
following:

1 Initial Thread 1
2 T1_1
2 T2_1
5 Initial Thread 2
5 After Wait fork

11-55

Using SystemVerilog

Making disable fork Statements Compliant with the SV
LRM

You also specify making disable fork statements compliant with
the SV LRM with the -ntb_opts sv_dwfork compile-time option
and keyword argument.

The IEEE Std 1800-2009 standard LRM for SystemVerilog states the
following about disable fork statements:

“The disable fork statement terminates all active descendants
(subprocesses) of the calling process.”

For backwards compatibility reasons, by default, VCS MX terminates
only those processes that are created by the current task or process
that contains the disable fork.

You can specify that VCS MX be compliant with the standard and
terminate all the processes that are created by the process that
contains the disable fork (even if the disable fork is
contained within a task) with the –ntb_opts sv_dwfork compile-
time option and keyword argument.

The following code example shows the difference in behavior for
disable fork.

program A;
task disp();
 fork
 #1 $display($time,,"disp_T1");
 #2 $display($time,,"disp_T2");
 join_any
 disable fork;
 $display($time,,"After disable fork");
endtask
initial begin

11-56

Using SystemVerilog

fork
 #1 $display($time,," Initial Thread 1 \n");
 #5 $display($time,," Initial Thread 2 \n");
join_any
disp();
#10 $display($time,, "End");
end
endprogram

By default, disable fork does not disable the fork in the process,
but only disables the fork in the task in which it is present, to give the
output:

1 Initial Thread 1
2 disp_T1
2 After disable fork
5 Initial Thread 2
12 End

With the -ntb_opts sv_dwfork option, disable fork disables
the fork in the process also, giving the output:

1 Initial Thread 1
2 disp_T1
2 After disable fork
12 End

Recently Implemented SystemVerilog Constructs

VCS MX has implemented the following SystemVerilog constructs in
recent releases:

• “The std::randomize() Function”

• “SystemVerilog Bounded Queues”

11-57

Using SystemVerilog

• “wait() Statement with a Static Class Member Variable”

• “Parameters and Localparams in Classes”

• “SystemVerilog Math Functions”

• “Streaming Operators”

The std::randomize() Function

The randomize() function randomizes variables that are not class
members.

Syntax
[std::]randomize(variable-identifier-list)
 [with constraint-block]

Description

SystemVerilog defines extensive randomization methods and
operators for class members. Most modeling methodologies
recommend the use of classes for randomization. However, there
are situations where the data to be randomized is not available in a
class. SystemVerilog provides the std::randomize() function to
randomize variables that are not class members.

The std::randomize() function can be used in the following
scopes:

• module

• function

• task

11-58

Using SystemVerilog

• class method

Arguments to std::randomize() can be of integral types
including:

• integer

• bit vector

• enumerated type

Object handles and strings cannot be used as arguments to
std::randomize().

The variables passed to std::randomize() must be visible in the
scope where the function is called. Cross-module references are not
allowed as arguments to the std::randomize() function.

All constraint expressions currently available with
obj.randomize() in VCS can be used as constraints in the
constraint-block.

Only constraints specified in the constraint block are honored. Any
rand mode specified on the class members is ignored when
std::randomize() is called with the given class member.

The pre_randomize() and post-randomize() tasks are not
called when std::randomize() is used within a class member
function.

The “std::” prefix must be explicitly specified for the
randomize() call.

The std::randomize() function is supported in VCS. Files
containing std::randomize() calls can be compiled with
vlogan.

11-59

Using SystemVerilog

The function using std::randomize() can be declared in a task
inside a package that can be imported into modules and programs.

Example

module M;
 bit[11:0] addr;
 integer data;

 function bit genAddrData();
 bit success;
 success = std::randomize(addr, data);
 return success;
 endfunction

 function bit genConstrainedAddrData();
 bit success;
 success = std::randomize(addr, data)
 with {addr > 1000; addr + data < 20000;};
 return success;
 endfunction

endmodule

The genAddrData function uses std::randomize(addr,
data) to assign random values to addr and data variables. The
std::randomize() function randomizes any variables that are
visible in the scope.

The getConstrainedAddrData() function uses
std::randomize(addr, data) to assign random values to
addr and data variables. In this case there is an additional
constraint given to the call, which is that addr is greater than 1,000
and addr+data is less than 20,000.

11-60

Using SystemVerilog

SystemVerilog Bounded Queues

A bounded queue is a queue limited to a fixed number of items, for
example:

bit q[$:255];

a bit queue whose maximum size is 257 bits

int q[$:5000];

an int queue whose maximum size is 50001

This section explains the how bounded queues work in certain
operations.

q1 = q2;

This is a bounded queue assignment. VCS copies the items in q2
into q1 until q1 is full or until all the items in q2 are copied into q1.
The bound number of items in the queues remain as you declared
them.

q.push_front(new_item)

If adding a new item to the front of a full bounded queue, VCS
deletes the last item in the back of the queue.

q.push_back(new_item)

If the bounded queue is full, a new item can’t be added to the back
of the queue and the queue remains the same.

q1 === q2

11-61

Using SystemVerilog

A bounded queue comparison behaves the same as an unbounded
queue, the bound sizes should be the same when the two bounded
queues are equal.

Limitation for SystemVerilog Bounded Queues

Bounded queues are not supported in constraints.

wait() Statement with a Static Class Member Variable

A wait statement with a static class member variable is now
supported. The following is an example:

class foo;
 static bit is_true = 0;
 task my_task();
 fork
 begin
 #20;
 is_true = 1;
 end
 begin
 wait(is_true == 1);
 $display("%0d: is_true is now %0d", $time, is_true);
 end
 join
 endtask: my_task
endclass: foo

program automatic main;
 foo foo_i;
 initial begin
 foo_i = new();
 foo_i.my_task();
 end
endprogram: main

11-62

Using SystemVerilog

Parameters and Localparams in Classes

You can include parameters and localparams in classes, for
example:

class cls;
 localparam int Lp = 10;
 parameter int P = 5;
endclass

SystemVerilog Math Functions

Verilog defines math functions that behave the same as their
corresponding math functions in C. These functions are as follows:

$ln(x) Natural logarithm
$log10(x) Decimal logarithm
$exp(x) Exponential
$sqrt(x) Square root
$pow(x,y) x**y
$floor(x) Floor
$ceil(x) Ceiling
$sin(x) Sine
$cos(x) Cosine
$tan(x) Tangent
$asin(x) Arc-sine
$acos(x) Arc-cosine
$atan(x) Arc-tangent
$atan2(x,y) Arc-tangent of x/y
$hypot(x,y) sqrt(x*x+y*y)
$sinh(x) Hyperbolic sine

11-63

Using SystemVerilog

Streaming Operators

Streaming operators can be applied to any bit-stream data types
consists of the following:

• Any integral, packed, or string type

• Unpacked arrays, structures, or class of the above types

• Dynamically sized arrays (dynamic, associative, or queues) of any
of the above types

Packing (Used on RHS)

Primitive Operation
expr_target = {>>|<< slice{expr_1, expr_2, ..., expr_n }}

The expr_target and expr_i can be any primary expressions of
any streamed data types.

The slice determines the size of each block measured in bits. If
specified, it may be either a constant integral expression, or a simple
type.

The << or >> determines the order in which blocks of data are
streamed.

$cosh(x) Hyperbolic cosine
$tanh(x) Hyperbolic tangent
$asinh(x) Arc-hyperbolic sine
$acosh(x) Arc-hyperbolic cosine
$atanh(x) Arc-hyperbolic tangent
$clog2(n) Ceiling of log base 2 of n (as integer)

11-64

Using SystemVerilog

Streaming Concatenation
expr_target = {>>slice1 {expr1, expr2, {<< slice2{expr3,
expr4}}}

Unpacking (Used on LHS)

Primitive operation
{>>|<< slice{expr_1, expr_2, ..., expr_n }} = expr_src;

If the unpacked operation includes unbounded dynamically sized
types, the process is greedy. The first dynamically sized items is
resized to accept all the available data (excluding subsequent fixed
sized items) in the stream; any remaining dynamically sized items
are left empty.

Streaming Concatenation
{>>slice1 {expr1, expr2, {<< slice2{expr3, expr4}}} =
expr_src;

Packing and Unpacking

{>>|<< slice_target{target_1, target_2, ..., target_n }} =
{>>|<< slice_src{src_1, src_2, ..., src_n }};

Propagation and force Statement

Any operand (either dynamic or not) in the stream can be
propagated and forced/released correctly.

11-65

Using SystemVerilog

Error Conditions

• Compile time error for associative arrays as assignment target

• Run time error for Any null class handles in packing and unpacking
operations

Structures with Streaming Operators

Although the whole structure is not allowed in the stream, any
structure members, sub structures excluded, could be used as an
operand of both packing and unpacking operations.

For example:

 s1 = {>>{expr_1, expr_2, .., expr_n}} //invalid
 s1.data = {>>{expr_1, expr_2, expr_n}}//valid

Extensions to SystemVerilog

This section contains descriptions of Synopsys enhancements to
SystemVerilog. This section contains the following topics:

• “Unique/Priority Case/IF Final Semantic Enhancements”

• “Single-Sized Packed Dimension Extension”

• “Covariant Virtual Function Return Types”

• “Self Instance of a Virtual Interface”

11-66

Using SystemVerilog

Unique/Priority Case/IF Final Semantic Enhancements

The behavior of the compliance checking keywords unique and
priority for case and for if...else if...else selection
statements as defined in the IEEE 1800-2009 LRM section named
“Conditional if-else statement” in some cases can cause spurious
warnings when used inside a module's continuous assignment or
always block. By default, VCS will evaluate compliance with unique
or priority on every update to the selection statement input.

To force unique and priority to evaluate compliance only on the
stable and final value of the selection input at the end of a simulation
timestep, VCS now provides a compile time switch -xlrm
uniq_prior_final.

This can be useful, for example, when always_comb might trigger
several times within a simulation time slot while its input values are
getting stabilized. The case statements can get executed several
times during same time slot if it is valid for combinational blocks.
While going through intermediate transitions, the case statement
might get values that violate the unique or priority property and
cause VCS to report multiple runtime warnings. When it is
undesirable to receive intermediate warnings, compile time option
‘-xlrm uniq_prior_final’ can be used to evaluate compliance
for only the final stable value of the input.

11-67

Using SystemVerilog

Using Unique/Priority Case/If with Always Block or
Continuous Assign

-xlrm uniq_prior_final behavior only applies to the use of
unique and priority keywords when selection statements are
used inside a module's continuous assignment or always block.
The switch is not applicable for program block or initial block of
code.

The following two examples illustrate this behavior:

Example 11-10 unique case statement at the same timestep

//test.sv:
module top;
reg cond;
bit [7:0] a = 0,b, v1, v2;
always_comb begin

if (cond) begin
unique case (a)

v1: begin b = 0; $display(" Executing Case
 with cond value 1 "); end

v2: begin b = 1; $display(" Executing Case
 with cond value 1 "); end
 endcase

end
else begin

 unique case (a)
v1: begin b = 0; $display(" Executing Case

 with cond value 0 "); end
v2: begin b = 1; $display(" Executing Case

 with cond value 0 "); end
 endcase

end
end

initial begin
#1 cond = 1;
a=a+4; v1=4; v2=4;

$display("\n TIME %0d ns : cond value %0b, a value %0d",

11-68

Using SystemVerilog

$time, cond, a);
#0 cond = 0;
a=a+1; v1++; v2++;
$display("\n TIME %0d ns: cond value %0b, a value %0d",

$time, cond, a);
 end
endmodule

Simulation output without ‘-xlrm uniq_prior_final’:

%> vcs -sverilog test.sv -R

Executing Case with condition value 0
RT Warning: More than one conditions match in 'unique case'
statement.
 "unique_case.sv", line 12, for top.
 Line 13 & 14 are overlapping at time 0.
Executing Case with cond value 0
RT Warning: More than one conditions match in 'unique case'
statement.
 "unique_case.sv", line 12, for top.
 Line 13 & 14 are overlapping at time 0.

 TIME 1 ns : cond value 1, a value 4
 Executing Case with cond value 1
RT Warning: More than one conditions match in 'unique case'
statement.
 "unique_case.sv", line 6, for top.
 Line 7 & 8 are overlapping at time 1.

 TIME 1 ns: cond value 0, a value 5
 Executing Case with cond value 0
RT Warning: More than one conditions match in 'unique case'
statement.
 "unique_case.sv", line 12, for top.
 Line 13 & 14 are overlapping at time 1.

11-69

Using SystemVerilog

Simulation output with ' -xlrm uniq_prior_final' compile
time switch:

%> vcs -sverilog test.sv -xlrm uniq_prior_final -R
Executing Case with cond value 0:
RT Warning: More than one conditions match in 'unique case'
statement.
 "unique_case.sv", line 12, for top.
 Line 13 & 14 are overlapping at time 0.

 TIME 1 ns : cond value 1, a value 4
 Executing Case with cond value 1

 TIME 1 ns: cond value 0, a value 5
 Executing Case with cond value 0
RT Warning: More than one conditions match in 'unique case'
statement.
 "unique_case.sv", line 12, for top.
 Line 13 & 14 are overlapping at time 1.

Example 11-11 unique if inside always_comb

//test.sv
module top;
reg cond;
bit [7:0] a = 0,b;
always_comb begin

unique if (a == 0 || a == 1) $display ("A is 0 or 1");
else if (a == 2) $display ("A is 2");

end

initial begin
#100;
a = 1;
#100 a = 2;
#100 a = 3;
#0 a++;
#0 a++;
#0 a++;
#10 $finish;

11-70

Using SystemVerilog

end

endmodule

Simulation output without ‘-xlrm’:

%> vcs -sverilog test.sv -R

A is 0 or 1
A is 0 or 1
A is 0 or 1
A is 2
RT Warning: No condition matches in 'unique if' statement.

"unique_if.sv", line 5, for top, at time 300.
RT Warning: No condition matches in 'unique if' statement.

"unique_if.sv", line 5, for top, at time 300.
RT Warning: No condition matches in 'unique if' statement.

"unique_if.sv", line 5, for top, at time 300.
RT Warning: No condition matches in 'unique if' statement.

"unique_if.sv", line 5, for top, at time 300.
$finish called from file "unique_if.sv", line 17.

Simulation output with '-xlrm uniq_prior_final':

%> vcs -sverilog test.sv -xlrm uniq_prior_final -R

A is 0 or 1
A is 0 or 1
A is 0 or 1
A is 2
RT Warning: No condition matches in 'unique if' statement.

"unique_if.sv", line 5, for top, at time 300.
$finish called from file "unique_if.sv", line 17.

Using Unique/Priority Inside a Function

With the new enhancement, if unique/priority case statement
is used inside a function, VCS not only points to the current case
statement but also provides a complete stack trace of where the
function is called. The following example illustrate this behavior:

11-71

Using SystemVerilog

Example 11-12 unique case used with nested loop inside function

//test.sv
module top;
 int i,j;
 reg [1:0][2:0] a, b, c;
 bit flag;

 function foo;
 for (int i=0; i<2; i++)
 for (int j=0; j<3; j++)
 unique case (a[i][j])
 0: b[i][j] = 1'b0;
 1: b[i][j] = c[i][j];
 endcase
 endfunction : foo

 always_comb begin
 for(i=0; i<4; i++) begin
 if (i==2)
 foo();
 end
 end

 initial begin
 a = 6'b00x011;
 end

endmodule : top

Simulation output without ‘-xlrm’ option:

%> vcs -sverilog test.sv -R

RT Warning: No condition matches in 'unique case' statement.
"unique_case_inside_func.sv", line 8, for top.foo, at time 0.

RT Warning: No condition matches in 'unique case' statement.
"unique_case_inside_func.sv", line 8, for top.foo, at time 0.

11-72

Using SystemVerilog

Simulation output with '-xlrm uniq_prior_final':

%> vcs -sverilog test.sv -xlrm uniq_prior_final -R

RT Warning: No condition matches in 'unique case' statement.

"unique_case_inside_func.sv", line 8, for top.foo, at time 0.
#0 in foo at unique_case_inside_func.sv:8
#1 in loop with j= 0 at unique_case_inside_func.sv:7
#2 in loop with i= 1 at unique_case_inside_func.sv:6
#3 in top at unique_case_inside_func.sv:16
#4 in loop with i= 2 at unique_case_inside_func.sv:14

Note:
The following limitations must be noted while using ‘-xlrm
uniq_prior_final’ feature for loop indices:

- It must be written in for statement. The while and
do...while are not supported.

- The loop bounds must be compile-time constants.

- for(i= lsb; i<msb; i++)

- Here, lsb and msb must be compile-time constant, or will
become constant when upper loops get unrolled.

- No other drivers of the loop variable must be in the loop body.

VCS also supports unique/prior final in a for loop that can
not be unrolled at compile time. For example, if you have a for loop
whose range could not be determined at compile-time and if there
are errors during the last evaluation of such a for loop, VCS still
reports the error. However, loop index information will not be
provided. Even if multiple failures occur in different iterations, VCS
reports only the last one.

11-73

Using SystemVerilog

Important:
Use unique/priority case/if statement only inside always block,
continuous assign, or inside a function. If you use it in other places,
the final semantic will be ignored.

System Tasks to Control Warning Messages

Two system tasks $uniq_prior_checkon and
$uniq_prior_checkoff will enable you to switch on/off runtime
warning messages for unique/priority if/case statements.
The following example illustrates the use model of these tasks to
ignore violations:

Example 11-13 System tasks to control warning messages

//test.sv
module m;
 bit sel, v1, v2;

//Disable this initial block to display all RT warning
messages
initial
begin

$display($time, " Priority checker OFF\n");
$uniq_prior_checkoff();
#1;
$display($time, " Priority checker ON\n");
$uniq_prior_checkon();

 end

initial
begin
//violation with this set of values (warning disabled)
sel = 1'b1;
v1 = 1'b1;
v2 = 1'b1;
#1;
//violation with this set of values (warning enabled)
sel = 1'b0;

11-74

Using SystemVerilog

v1 = 1'b0;
v2 = 1'b0;
#1;
end
always_comb begin
unique case(sel)
 v1: $display($time, " Hello");
 v2: $display($time, " World");
endcase
end
endmodule

Simulation Output:

%> vcs -sverilog test.sv -R

0 Priority checker OFF
0 Hello
0 Hello
1 Priority checker ON
1 Hello

RT Warning: More than one conditions match in 'unique case'
statement.

"system_task_control_warning.sv", line 28, for m.
Line 29 & 30 are overlapping at time 1.

Single-Sized Packed Dimension Extension

VCS has implemented an extension to a single-sized packed
dimension SystemVerilog signals and Multi-Dimensional Arrays
(MDAs). This section provides examples of using this extension for
a single-sized packed dimension and explains how VCS expands
the single size.

You can use the extension for these basic data types: bit, reg, and
wire (using other basic data types with this extension is an error
condition) The following is an example:

bit [4] a;

11-75

Using SystemVerilog

VCS expands the packed dimension [4] into [0:3].

For packed MDAs, for example:

bit [4][4] a;

VCS expands the packed dimensions [4][4] into [0:3][0:3].

You can use this extension in several ways. The following is an
example of using this extension in a user defined type:

typedef reg [8] DREG;

The following is an example of using this extension in a structure,
union, and enumerated type:

struct packed {
DREG [20][20] arr4;
} [2][2] st1;

union packed {
DBIT [20][20] arr5;
} [2][2] un1;

enum logic [8] {IDLE, XX=8'bxxxxxxxx, S1=8'bzzzzzzzz,
S2=8'hff} arr3;

The following is an example of a user-defined structure and union
with a packed memory or MDA:

typedef bit [2][24] DBIT;

typedef reg [2][24] DREG;

typedef struct packed {
DBIT [20][20] arr1;
} ST;

ST [2][2] st;

11-76

Using SystemVerilog

typedef union packed {
DREG [20][20] arr2;
} UN;

UN [2][2] un;

You can also use this extension for specifying module ports, for
example:

module mux2(input wire [3] a,
input wire [3] b,
output logic [3] y);

You can use this extension in the parameter list of a user-defined
function or task, for example:

function automatic integer factorial (input [32] operand);

You can use this extension in the definition of a parameter, for
example:

parameter reg [2][2][2] p2 = 8;

Error Conditions

The following are error conditions for this extension:

• Using the dollar sign ($) as the size, for example:

reg [8:$] a;
reg [$] b;

• Using basic data types other than bit, reg, and wire, for
example:

typedef shortint [8] DREG;

11-77

Using SystemVerilog

Covariant Virtual Function Return Types

VCS supports, as an extension to SystemVerilog, covariant virtual
function return types.

A covariant return type allows overriding a superclass method with a
return type that is a derived type of the superclass method’s return
type. Covariant return types minimize the need for dynamic casts
(upcasting or downcasting).

Example 11-14 Sample code for covariant function return types

class Base;
 virtual function Base clone();
 Base b = new this;
 return b;
 endfunction
endclass

class Derived extends Base;
 virtual function Derived clone();
 Derived d = new this;
 return d;
 endfunction
endclass

Without covariant types, the signature of the Derived::clone()
above would have to be the same as in the Base class, like the
following:

class Derived extends Base;
 virtual function Base clone();
 Derived d = new this;
 return d;
 endfunction
endclass

This would lead to code like the following for users of the class:

11-78

Using SystemVerilog

Derived d = new;
Base b = d.clone(); // automatic down-cast to Base
Derived d2;
if(!($cast(d2, b))) begin
 b = null;
 $error(...) // some exception
end

Instead, with covariant return types, the code is simplified to:

Derived d = new;
Derived d2 = d.clone();

Self Instance of a Virtual Interface

You can create a self instance of a virtual interface that points to itself
when it is initialized, for example:

interface intf;
 int data1;
 int data2;
 virtual intf vi;
 initial
 vi = interface::self();
endinterface

module top;
 intf i0();
 initial #1 i0.vi.data1 = 100;
 always @(i0.data1)
 $display("trigger success");
endmodule

In this example the virtual interface named vi is initialized with the
expression:

 vi = interface::self();

11-79

Using SystemVerilog

The interface::self() expression enables you provide a string
variable that is effectively the %m format specification of the interface
instance that VCS MX returns for assignment to the virtual interface
variable. You use the interface::self() expression to initialize
virtual interface variables in methodologies like UVM and VMM. It
enables you to write components that are configurable with a string
is the %m of the virtual interface that the component drives or
monitors.

The expression interface::self() must be entered precisely,
otherwise it is a syntax error. Also notice the required delay (in this
case #1) in the initialization of virtual interface vi. This delay is
required to prevent a race condition.

This implementation is in accordance with the SystemVerilog IEEE
STD 1800-2009 section 9.7 Fine-grain process control which
specifies:

“The self() function returns a handle to the current process, that
is, a handle to the process making the call.”

SVA-bind is supported with self instances of virtual interfaces.

Note:
A self instance of a virtual interface is not supported in Partition
Compile.

The following conditions are required for a self instance of a virtual
interface:

• The self instance must be defined in the scope.

• The virtual interface type in the interface declaration must be the
same as the interface that includes itself.

11-80

Using SystemVerilog

• Within an interface, you can only use the virtual
interface::self() expression can be used in a context that
is valid for initializing a virtual interface. Any other use of the
interface::self() expression results in a compilation error.

• Within an interface, the virtual interface::self() expression
in a context that is valid for initializing a virtual interface. Any other
use of the interface::self() expression results in a
compilation error.

UVM Example

The following is an example of a self instance of a virtual interface:

/* interface definition */
interface bus_if; //ports.
//signal declaration.
…
 initial begin
 uvm_resource_db#(virtual bus_if)::set("*",
 $sformatf("%m"), interface::self());
 end
endinterface

/* instantiated bus interface in design. */
//Add "bus()" to module called "top".
bind top bus_if bus();

/*Example config_db usage: */
 if(!uvm_config_db#(virtual bus_if)::get(this, "",
 "top.bus", bus))
 ̀ uvm_error("TESTERROR", "no bus interface available");
 else
 'uvm_info("build", "got bus_if", UVM_LOW)

OR

11-81

Using SystemVerilog

/*Example resource_db usage: */
 if(!uvm_resource_db#(virtual
bus_if)::read_by_type(get_full_name(), bus, this))
 ̀ uvm_error("TESTERROR", "no bus interface available");
 else
 'uvm_info("build", "got bus_if", UVM_LOW)

Error Condition for Using a Genvar Outside of its
Generate Block

Declaring a genvar variable in the local scope of a generate
block, and then using this genvar variable (in statements that read
or write to this variable) outside of that block, is an error condition
starting from VCS2011.12-FCS release.

The following code example shows this error condition:

module test;
generate
 for (genvar i = 0; i < 1; i++)
 begin
 a1: assert final (1);
 end
endgenerate
generate
 for (i = 0; i < 1; i++)
 begin
 a1: assert final (1);
 end
endgenerate
endmodule

In this code example the genvar variable named i is:

1. declared in the first generate block

11-82

Using SystemVerilog

2. used in the first generate block (initialized, evaluated, and
incremented)

3. also used in the same way in the second generate block

Elaborating this example with the following command line:

vcs generate.sv -sverilog -assert svaext

Results in the following error message:

Error-[IND] Identifier not declared
generate.sv, 9
 Identifier 'i' has not been declared yet. If this error
is not expected,
 please check if you have set `default_nettype to none.

1 error

This error condition was ignored in previous releases.

To fix this error in this example declare genvar i in the module
scope.

Exporting a SystemVerilog Package

VCS MX has an alternative implementation of how it exports
SystemVerilog packages. This implementation is less optimistic and
is more rigidly compliant with the SystemVerilog IEEE Std 1800-2009
standard. You enable this implementation with the
-sv_package_export compile-time option or vlogan option.

In this implementation, declarations imported into a package are not
visible by way of subsequent imports of that package.

11-83

Using SystemVerilog

Package export declarations allow a package to specify those
imported declarations to be made visible in subsequent imports.

There are three forms of export declarations:

export pkg::name;

This both imports and exports the explicit name from the specified
package named pkg.

export pkg::*;

This exports all names imported from package pkg into the
current package. Those imports can be by name reference or by
named export directive.

export *::*;

Exports all names imported from any packages into the current
package. Those imports can be by name reference or by named
export directive. An export directive *::* must match at least one
import directive

Unlike package import directives, package export directives can only
occur at package scope, and cannot occur in $unit.

Use Model

This package export functionality is implemented under the
-sv_package_export compile-time option or vlogan option.

For VCS MX (in two-step mode) the command lines are as follows:

vcs -sverilog -sv_package_export other_options source_files

11-84

Using SystemVerilog

simv runtime_options

For VCS MX in three-step mode the command lines are as follows:

vlogan –sverilog -sv_package_export other_analysis_options\
source_files

vcs other_elab_time_options top-level_module

simv runtime_options

In VCS MX three-step mode the -sv_package_export option is
only entered at the analysis stage, the stage where you use the
vlogan utility. If there are multiple analysis steps, it needs to be
supplied at all analysis steps.

You can also enable the package export functionality with a
synopsys_sim.setup option:

SV_PACKAGE_EXPORT=TRUE|FALSE

The TRUE argument enables this functionality.

The -sv_package_export compile-time or vlogan analysis
option takes precedence over the SV_PACKAGE_EXPORT=FALSE
synopsys_sim.setup option.

The following example illustrates the package export functionality:

11-85

Using SystemVerilog

Example 11-15 The Package Import Functionality Example 1

Backward Compatibility

VCS presently implicitly exports all names imported into a package,
so those symbols can then be referenced through the scope of the
importing package. This is referred to as "chained imports", but it is
not a IEEE 1800-2009 standard. With the implementation of export
package support, using -sv_package_export, chained imports
will no longer be allowed, VCS would only export the required set of
names/symbols.

In a future release, the export package support will be enabled by
default. The chained import behavior would be allowed only under a
backwards compatibility switch, for a limited time.

package p1;
int x, y;

endpackage
package p2;

import p1::x;
export p1::*;

endpackage

package p3;
import p1::*;
import p2::*;
export p2::*;
int q = x;

endpackage

exports p1::x as the variable
named x

p1::x and p2::x are the same
declaration

p1::x and q are made available
from p3

Although p1::y is a candidate
for import, it is not actually imported
since it is not referenced.

Since p1::y is not imported, it is not
made available by the export

11-86

Using SystemVerilog

Example 11-16 The Package Import Functionality Example 2

package p1;
 int x = 11;
 int y = 22;
endpackage

package p2;
 import p1::*;
 import p1::y;
 task t;
 $display(x);
 endtask

In default mode , x is exported from p2. Either of the following
are required with the new export package functionality enabled
with -sv_package_export:

Explicit import, no other reference required

import p1::x

// export p1::x, p1::y;
// export p1::*;
// export *::*;

endpackage

module m;
 import p2::*;
 initial $display(x);
 initial $display(y);
endmodule

doesn't require reference to x/y

require reference to x in p2

chained import of p1::x through p2

chained import of p1::y through p2

11-87

Using SystemVerilog

Using a Package in a SystemVerilog Module, Program,
and Interface Header

Importing from a package to a module, program, or interface by
including the package in the module, program, or interface header is
now implemented.

This technique of importing from a package is described in the
SystemVerilog LRM IEEE Std 1800-2009 in the section named
“26.4 Using packages in module headers” in clause “26 Packages.”

The primary purpose of this syntax and usage is to enable you to
imported names in the parameter list or port list, without importing
the package into the enclosing scope ($unit).

To illustrate this technique we import from a package into a module
definition and then into a program definition, as shown in Example
11-17 and Example 11-18. This technique is also implemented for
importing from a package to an interface.

Example 11-17 Importing a Package in a Module Header

package my_pkg;
 typedef reg [3:0] my_type1;
 typedef int my_type2;
endpackage

module my_module import my_pkg::*;
 (input my_type1 a, output my_type2 z);
M
endmodule

11-88

Using SystemVerilog

In Example 11-17 the design objects declared in package my_pkg
are imported into module my_module with the import keyword
followed by the name of the package. We use the wildcard *
(asterisk) to specify importing all design objects in the package.

In previous release this example results in the following error
messages:

Error-[NYI-NS] Not Yet Implemented
 The following feature is not yet supported: import in
 module/interface/program header

Error-[SE] Syntax error
 Following verilog source has syntax error :
 "ex1.sv", 6: token is 'my_pkg'
 module my_module import my_pkg::*;
 ^

2 errors

Example 11-18 shows importing from packages in a program
header.

Example 11-18 Importing Packages in a Program Header

package pack1;
 typedef struct {
 real r1;
 } struct1;
 typedef enum bit {H,T} bool_sds;
endpackage:pack1

package pack3;
 integer int1=0;
endpackage: pack3

program prog1 import pack1::struct1,pack3::*;
 (output out1,out2);

11-89

Using SystemVerilog

M
endprogram: prog1

The header of program prog1 includes the keyword import
followed by the packages pack1 and pack3. We import structure
struct1 from pack1 into program prog1, then using the wildcard *
(asterisk) import all the design objects in pack3 into the program.

In previous release this example results in the following error
messages:

Error-[NYI-NS] Not Yet Implemented
 The following feature is not yet supported: import in
 module/interface/program header

Error-[SE] Syntax error
 Following verilog source has syntax error :
 "complx.sv", 16: token is 'pack1'
 program prog1 import pack1::struct1,pack3::*;
 ^

2 errors

12-1

Using OpenVera Native Testbench

12
Using OpenVera Native Testbench 1

OpenVera Native Testbench is a high-performance, single-kernel
technology in VCS MX that enables:

• Native compilation of testbenches written in OpenVera and in
SystemVerilog.

• Simulation of these testbenches along with the designs.

This technology provides a unified design and verification
environment in VCS MX for significantly improving overall design
and verification productivity. Native Testbench is uniquely geared
towards efficiently catching hard-to-find bugs early in the design
cycle, enabling not only completing functional validation of designs
with the desired degree of confidence, but also achieving this goal in
the shortest time possible.

12-2

Using OpenVera Native Testbench

Native Testbench is built around the preferred methodology of
keeping the testbench and its development separate from the
design. This approach facilitates development, debug, maintenance
and reusability of the testbench, as well as ensuring a smooth
synthesis flow for your design by keeping it clean of all testbench
code. Further, you have the choice of either compiling your
testbench along with your design or separate from it. The latter
choice not only saves you from unnecessary recompilations of your
design, it also enables you to develop and maintain multiple
testbenches for your design.

This chapter describes the high-level, object-oriented verification
language of OpenVera, which enables you to write your testbench in
a straightforward, elegant and clear manner and at a high level
essential for a better understanding of and control over the design
validation process. Further, OpenVera assimilates and extends the
best features found in C++ and Java along with syntax that is a
natural extension of the hardware description languages (Verilog
and VHDL). Adopting and using OpenVera, therefore, means a
disciplined and systematic testbench structure that is easy to
develop, debug, understand, maintain and reuse.

Thus, the high-performance of Native Testbench technology,
together with the unique combination of the features and strengths
of OpenVera, can yield a dramatic improvement in your productivity,
especially when your designs become very large and complex.

This chapter includes the following topics:

• “Usage Model”

• “Key Features”

12-3

Using OpenVera Native Testbench

Usage Model

As any other VCS MX applications, the usage model to simulate
OpenVera testbench includes the following three steps:

Analysis

Always analyze Verilog before VHDL.

% vlogan -ntb [vlogan_options] file1.vr file2.vr file3.v
% vhdlan [vhdlan_options] file3.vhd file4.vhd

Note:
Specify the VHDL bottommost entity first, and then move up in
order.

Elaboration

% vcs [other_ntb_options] [compile_options] design_unit

Simulation

% simv [run_options]

Example

In this example, we have an interface file, a Verilog design,
design.v instantiated in a VHDL top.vhd. Testbench is in
OpenVera.

//Interface: verilog_mod.if.vrh
interface verilog_mod {
 input clk CLOCK ;
 output din_single PHOLD #1 ;
 output [7:0] din_vector PHOLD #1 ;
 input dout_wire_single PSAMPLE #-1;

12-4

Using OpenVera Native Testbench

 input idout_wire_single PSAMPLE #-1 hdl_node "/top/
dout_wire_single" ;
 input [7:0] dout_wire_vector PSAMPLE #-1;
 input [7:0] idout_wire_vector PSAMPLE #-1 hdl_node
"/top/dout_wire_vector" ;
 input dout_reg_single PSAMPLE #-1;
 input idout_reg_single PSAMPLE #-1 hdl_node "/top/
dout_reg_single" ;
 input [7:0] dout_reg_vector PSAMPLE #-1;
 input [7:0] idout_reg_vector PSAMPLE #-1 hdl_node "/
top/dout_reg_vector" ;
 } // end of interface verilog_mod

//Verilog module: design.v

module verilog_mod1 (
clk,din_single,din_vector,dout_wire_single,dout_reg_single
,dout_wire_vector,dout_reg_vector
) ;
input clk;
input din_single;
input [7:0] din_vector;
output dout_wire_single ;
output dout_reg_single ;
output dout_wire_vector ;
output [7:0] dout_reg_vector ;
...
endmodule

-- VHDL Top: top.vhd
...
entity top is
 generic (
 EMU : boolean := false);
end top;

architecture vhdl_top of top is

 component verilog_mod1
 port (
 clk : IN std_logic ;
 din_single : IN std_logic ;

12-5

Using OpenVera Native Testbench

 din_vector : IN std_logic_vector(7 downto 0) ;
 dout_wire_single : OUT std_logic ;
 dout_wire_vector : OUT std_logic_vector(7 downto 0) ;
 dout_reg_single : OUT std_logic ;
 dout_reg_vector : OUT std_logic_vector(7 downto 0)
);
 end component;
...

begin -- ntbmx_test
 ...

 vshell: test
 port map (SystemClock => SystemClock,
 \verilog_mod.clk\ => clk,
 \verilog_mod.din_single\ =>din_single,
 ...
);
 ...
end vhdl_top;

//OpenVera Testbench: test.vr

#include <vera_defines.vrh>
#define MAX_COUNT 10
#include "interface.if"
...

program test {
 integer i ;
 bit b ;
 integer n ;

force_it_p fp ;

 ...

 }

12-6

Using OpenVera Native Testbench

Note:
You can find the complete example in $VCS_HOME/doc/
examples/nativetestbench/mixedhdl/testcase_2

Usage Model

Analysis

% vlogan -ntb test.vr design.v
% vhdlan top.vhd

Note:
Specify the VHDL bottom-most entity first, and then move up in
order.

Elaboration

% vcs top

Simulation

% simv

Importing VHDL Procedures

VHDL procedures can be imported into the NTB domain using the
hdl_task statement:

hdl_task OpenVera_name ([parameters])
 “vhdl_task [lib].[package].[VHDL_name]”

The only difference to the OpenVera hdl_task syntax is that NTB
requires the vhdl_task keyword. This keyword is required
because NTB must be able to distinguish between Verilog and VHDL
procedures at analysis time (vlogan). The [lib], [package] and
[VHDL_name] entries must point to the VHDL library and package

12-7

Using OpenVera Native Testbench

where the [VHDL_name] procedure are described. The VHDL
procedures are best described in packages so that they can be
accessed globally.

The parameters of the VHDL procedure can be of in, out or
inout type and are mapped between the OpenVera and VHDL type
by use of the global -ntb_opts sigtype=[type] command-line
option to vlogan:

Note that this flow is limited to one global signal type, so all
parameters of all imported and exported type must be the same base
ntb_sigtype, for example, STD_LOGIC and
STD_LOGIC_VECTOR.

Table 12-1 Mapping OpenVera and VHDL Datatypes

OpenVera
data type

 VHDL data type sigtype

bit STD_LOGIC STD_LOGIC

bit[N-1:0] STD_LOGIC_VECTOR

bit STD_ULOGIC
STD_ULOGI
C

bit[N-1:0] STD_ULOGIC_VECTOR (default)

bit BIT BIT

bit[N-1:0] BIT_VECTOR

bit[N-1:0] SIGNED SIGNED

bit[N-1:0] UNSIGNED UNSIGNED

bit[N-1:0] INTEGER INTEGER

bit BOOLEAN BOOLEAN

integer INTEGER any

12-8

Using OpenVera Native Testbench

If two or more concurrent calls to an imported procedure can occur,
the later one is queued and executed when the procedure is free
again. Although this matches OpenVera behavior, the timing shift is
probably not what you intended. The solution to this problem is the
-ntb_opts task_import_poolsize=[size] option to
vlogan. Here you can define the maximum number of imported
tasks or procedures that can be called in parallel without blocking.

Exporting OpenVera Tasks

OpenVera tasks can be exported into the VHDL and Verilog domains
using the export keyword in the task definition.

For using the function in VHDL, vlogan creates a VHDL wrapper
package named [OpenVera program name]_pkg. This package
is automatically compiled into the WORK library. The VHDL part of the
design can thus call the OpenVera task in any process that has no
sensitivity list. As a prerequisite, the calling entity only needs to
include the corresponding “use” statement:

use work.[OpenVera program pame]_pkg.all;

The mapping of the OpenVera and VHDL data types is defined by
the -ntb_opts sigtype=[type] command-line option as
described earlier. The -ntb_opts task_export_poolsize
command-line option can be used to increase the maximum number
of concurrent calls to exported tasks. Note, however that in contrast
to the imported tasks, exceeding this limit can cause a runtime error
of the simulation.

Example:

---- start OpenVera code fragment ----
export task vera_decrement (var bit[31:0] count)
{

12-9

Using OpenVera Native Testbench

 count = count - 1;
}

program my_testbench
{ ...
 ---- end OpenVera code fragment ----

task automatic vera_decrement (inout reg [31:0] count) ...

The corresponding VHDL procedure named vera_decrement is
created in my_testbench_pkg package and analyzed into the
WORK library.

 Using Template Generator

To ease the process of writing a testbench in OpenVera, VCS MX
provides you with a testbench template generator. The template
generator supports both a Verilog and a VHDL top design.

Use the following command to invoke the template generator on a
Verilog or VHDL design unit:

% ntb_template -t design_module_name [-c clock] design_file\
 [-vcs vcs_compile-time_options]

Where:

-t design_module_name

Specifies the top-level design module name.

design_file

Name of the design file.

-c

12-10

Using OpenVera Native Testbench

Specifies the clock input of the design. Use this option only if the
specified design_file is a Verilog file.

-template

Can be omitted.

-program

Optional. Use it to specify program name.

-simcycle

Optional. Use this to override the default cycle value of 100.

-vcs vcs_compile-time_options

Optional. Use it to supply a VCS compile-time option. Multiple
-vcs vcs_compile-time_options options can be used to specify
multiple options. Use this option only for Verilog on top designs.

Example

An example SRAM model is used in this demonstration of using the
template generator to develop a testbench environment.

For details on the OpenVera verification language, refer to the
OpenVera Language Reference Manual: Native Testbench.

Design Description

The design is an SRAM whose RTL Verilog model is in the file
sram.v. It has four ports:

- ce_N (chip enable)

- rdWr_N (read/write enable)

12-11

Using OpenVera Native Testbench

- ramAddr (address)

- ramData (data)

Example 12-1 RTL Verilog Model of SRAM in sram.v

module sram(ce_N, rdWr_N, ramAddr, ramData);

input ce_N, rdWr_N;
input [5:0] ramAddr;
inout [7:0] ramData;
wire [7:0] ramData;
reg [7:0] chip[63:0];

assign #5 ramData = (~ce_N & rdWr_N) ? chip[ramAddr] :
8'bzzzzzzzz;

always @(ce_N or rdWr_N)
begin
 if(~ce_N && ~rdWr_N)
 #3 chip[ramAddr] = ramData;
end
endmodule

During a read operation, when ce_N is driven low and rdWr_N is
driven high, ramData is continuously driven from inside the SRAM
with the value stored in the SRAM memory element specified by
ramAddr. During a write operation, when both ce_N and rdWr_N
are driven low, the value driven on ramData from outside the SRAM
is stored in the SRAM memory element specified by ramAddr. At all
other times, ce_N is driven high, and as a result, ramData gets
continuously driven from inside the SRAM with the high-impedance
value Z.

12-12

Using OpenVera Native Testbench

Generating the Testbench Template, the Interface, and the Top-
level Verilog Module from the Design

As previously mentioned, Native Testbench provides a template
generator to start the process of constructing a testbench. The
template generator is invoked on sram.v as shown below:

% ntb_template -t sram sram.v

Where:

• The –t option is followed with the top-level design module name,
which is sram, in this case.

• sram is the name of the module.

• sram.v is the name of the file containing the top-level design
module.

• If the design uses a clock input, then the –c option is to be used
and followed with the name of the clock input. Doing so provides
a clock input derived from the system-clock for the interface and
the design. In this example, there is no clock input required by the
design.

Template generator generates the following files:

• sram.vr.tmp

• sram.if.vrh

• sram.test_top.v

sram.vr.tmp

This is the template for testbench development. The following is an
example, based on the sram.v file of the output of the previous
command line:

12-13

Using OpenVera Native Testbench

//sram.vr.tmp
#define OUTPUT_EDGE PHOLD
#define OUTPUT_SKEW #1
#define INPUT_SKEW #-1
#define INPUT_EDGE PSAMPLE
#include <vera_defines.vrh>

// define interfaces, and verilog_node here if necessary

#include "sram.if.vrh"

// define ports, binds here if necessary

// declare external tasks/classes/functions here if
//necessary

// declare verilog_tasks here if necessary

// declare class typedefs here if necessary

program sram_test
{ // start of top block

 // define global variables here if necessary

 // Start of sram_test

 // Type your test program here:

 //
 // Example of drive:
 // @1 sram.ce_N = 0 ;
 //
 //
 // Example of expect:
 // @1,100 sram.example_output == 0 ;
 //

} // end of program sram_test

// define tasks/classes/functions here if necessary

12-14

Using OpenVera Native Testbench

sram.if.vrh

This is the interface file which provides the basic connectivity
between your testbench signals and your design’s ports and/or
internal nodes. All signals going back and forth between the
testbench and the design go through this interface. The following is
the sram.if.vrh file which results from the previous command
line:

//sram.if.vrh
#ifndef INC_SRAM_IF_VRH
#define INC_SRAM_IF_VRH
 interface sram {
 output ce_N OUTPUT_EDGE OUTPUT_SKEW;
 output rdWr_N OUTPUT_EDGE OUTPUT_SKEW;
 output [5:0] ramAddr OUTPUT_EDGE OUTPUT_SKEW;
 inout [7:0] ramData INPUT_EDGE INPUT_SKEW
OUTPUT_EDGE OUTPUT_SKEW;
 } // end of interface sram

#endif

Notice that, for example, the direction of ce_N is now "output"
instead of "input". The signal direction specified in the interface
is from the point of view of the testbench and not the DUT.

This file must be modified to include the clock input.

sram.test_top.v

This is the top-level Verilog module that contains the testbench
instance, the design instance, and the system-clock. The system
clock can also provide the clock input for both the interface and the
design. The following is the sram.test_top.v file that results from
the previous command line:

//sram.test_top.v
module sram_test_top;

12-15

Using OpenVera Native Testbench

 parameter simulation_cycle = 100;

 reg SystemClock;

 wire ce_N;
 wire rdWr_N;
 wire [5:0] ramAddr;
 wire [7:0] ramData;
`ifdef SYNOPSYS_NTB
 sram_test vshell(
 .SystemClock (SystemClock),
 .\sram.ce_N (ce_N),
 .\sram.rdWr_N (rdWr_N),
 .\sram.ramAddr (ramAddr),
 .\sram.ramData (ramData)
);
`else

 vera_shell vshell(
 .SystemClock (SystemClock),
 .sram_ce_N (ce_N),
 .sram_rdWr_N (rdWr_N),
 .sram_ramAddr (ramAddr),
 .sram_ramData (ramData)
);
`endif

`ifdef emu
/* DUT is in emulator, so not instantiated here */
`else
 sram dut(
 .ce_N (ce_N),
 .rdWr_N (rdWr_N),
 .ramAddr (ramAddr),
 .ramData (ramData)
);
`endif

 initial begin
 SystemClock = 0;
 forever begin
 #(simulation_cycle/2)

12-16

Using OpenVera Native Testbench

 SystemClock = ~SystemClock;
 end
 end

endmodule

Figure 12-1 shows how the three generated files and the design
connect and fit in with each other in the final configuration.

Figure 12-1 Testbench and Design Configuration

Testbench Development and Description

Your generated testbench template, sram.vr.tmp, contains a list of
macro definitions for the interface, include statements for the
interface file and the library containing predefined tasks and
functions, comments indicating where to define or declare the
various parts of the testbench, and the skeleton program shell that

12-17

Using OpenVera Native Testbench

will contain the main testbench constructs. Starting with this
template, you can develop a testbench for the SRAM and rename it
sram.vr. An example testbench is shown in Example 12-2.

Example 12-2 Example testbench for SRAM, sram.vr
// macro definitions for Interface signal types and skews
#define OUTPUT_EDGE PHOLD // for specifying posedge-drive type
#define OUTPUT_SKEW #1 // for specifying drive skew
#define INPUT_SKEW #-1 // for specifying sample skew
#define INPUT_EDGE PSAMPLE // for specifying posedge-sample type

#include <vera_defines.vrh> // include the library of predefined
 // functions and tasks
#include "sram.if.vrh" // include the Interface file

program sram_test { // start of program sram_test

reg [5:0] address = 6'b00_0001; // declare, initialize address (for
 // driving ramAddr during Write and
 // Read)
reg [7:0] rand_bits; // declare rand_bits (for driving
 // ramData during Write)
reg [7:0] data_result; // declare data_result (for receiving
 // ramData during Read)

@(posedge sram.clk); // move to the first posedge of clock
rand_bits = random(); // initialize rand_bits with a random
 // value using the random() function

@1 sram.ramAddr = address; // move to the next posedge of clock,
 // drive ramAddr with the value of
 // address
sram.ce_N = 1'b1; // disable SRAM by driving ce_N high
sram.ramData = rand_bits; // drive ramData with rand_bits and
 // keep it ready for a Write
sram.rdWr_N = 1'b0; // drive rdWr_N low and keep it ready
 // for a Write

@1 sram.ce_N = 1'b0; // move to the next posedge of clock,
 // and enable a SRAM Write by driving
 // ce_N low
printf("Cycle: %d Time: %d \n", get_cycle(), get_time(0));
printf("The SRAM is being written at ramAddr: %b Data written: %b \n", address,
sram.ramData);

@1 sram.ce_N = 1'b1; // move to the next posedge of clock,

12-18

Using OpenVera Native Testbench

 // disable SRAM by driving ce_N high
sram.rdWr_N = 1'b1; // drive rdWr_N high and keep it ready
 // for a Read
sram.ramData = 8'bzzzz_zzzz; // drive a high-impedance value on
 // ramData

@1 sram.ce_N = 1'b0; // move to the next posedge of clock,
 // enable a SRAM Read by driving ce_N
 // low

@1 sram.ce_N = 1'b1; // move to the next posedge of clock,
 // disable SRAM by driving ce_N high
data_result = sram.ramData; // sample ramData and receive the data
 // from SRAM in data_result
printf("Cycle: %d Time: %d\n",get_cycle(), get_time(0));
printf("The SRAM is being read at ramAddr: %b Data read : %b \n", address,
data_result);

} // end of program sram_test

The main body of the testbench is the program, which is named
sram_test. The program contains three data declarations of type
reg in the beginning. It then moves execution through a Write
operation first and then a Read operation. The memory element of
the SRAM written to and read from is 6’b 00_0001. The correct
functioning of the SRAM implies data that is stored in a memory
element during a Write operation must be the same as that which is
received from the memory element during a Read operation later.
The example testbench only demonstrates how any memory
element can be functionally validated. For complete functional
validation of the SRAM, the testbench would need further
development to cover all memory elements from 6’b00_0000 to
6b’11_1111.

Interface Description

The generated if.vrh file has to be modified to include the clock
input. The modified interface is shown in Example 12-3.

12-19

Using OpenVera Native Testbench

Interface for SRAM, sram.if.vrh

Example 12-3
#ifndef INC_SRAM_IF_VRH
#define INC_SRAM_IF_VRH

 interface sram {
 input clk CLOCK; // add clock
 output ce_N OUTPUT_EDGE OUTPUT_SKEW;
 output rdWr_N OUTPUT_EDGE OUTPUT_SKEW;
 output [5:0] ramAddr OUTPUT_EDGE OUTPUT_SKEW;
 inout [7:0] ramData INPUT_EDGE OUTPUT_EDGE OUTPUT_SKEW;
 } // end of interface sram

#endif

The interface consists of signals that are either driven as outputs into
the design or sampled as inputs from the design. The clock input,
clk, is derived from the system clock in the top-level Verilog module.

Top-level Verilog Module Description

The generated top-level module has been modified to include the
clock input for the interface and eliminate code that was not relevant.
The clock input is derived from the system clock. Example 12-4
shows the modified top-level Verilog module for the SRAM.

Example 12-4 Top-level Verilog Module, sram.test_top.v

module sram_test_top;
 parameter simulation_cycle = 100;
 reg SystemClock;
 wire ce_N;
 wire rdWr_N;
 wire [5:0] ramAddr;
 wire [7:0] ramData;
 wire clk = SystemClock;/* Add this line. Interface

clock input derived from the system clock*/

 `ifdef SYNOPSYS_NTB
 sram_test vshell(
 .SystemClock (SystemClock),
 .\sram.clk(clk),

12-20

Using OpenVera Native Testbench

 .\sram.ce_N (ce_N),
 .\sram.rdWr_N (rdWr_N),
 .\sram.ramAddr (ramAddr),
 .\sram.ramData (ramData)
);
`else

 vera_shell vshell(
 .SystemClock (SystemClock),
 .sram_ce_N (ce_N),
 .sram_rdWr_N (rdWr_N),
 .sram_ramAddr (ramAddr),
 .sram_ramData (ramData)
);
`endif

 // design instance
 sram dut(
 .ce_N (ce_N),
 .rdWr_N (rdWr_N),
 .ramAddr (ramAddr),
 .ramData (ramData)
);

 // system-clock generator
 initial begin
 SystemClock = 0;
 forever begin
 #(simulation_cycle/2)
 SystemClock = ~SystemClock;
 end
 end

endmodule

The top-level Verilog module contains the following:

• The system clock, SystemClock. The system clock is contained
in the port list of the testbench instance.

12-21

Using OpenVera Native Testbench

• The declaration of the interface clock input, clk, and its derivation
from the system clock.

• The testbench instance, vshell. The module name for the
instance must be the name of the testbench program,
sram_test. The instance name can be something you choose.
The ports of the testbench instance, other than the system clock,
refer to the interface signals. The period in the port names
separates the interface name from the signal name. A backslash
is appended to the period in each port name because periods are
not normally allowed in port names.

• The design instance, dut.

Compiling Testbench With the Design And Running

The VCS MX command line for compiling both your example
testbench and design is the following:

Analysis

% vlogan -ntb sram.v sram.test_top.v sram.vr

Elaboration

% vcs top

Simulation

% simv

You will find the simulation output to be the following:

Cycle: 3 Time: 250
The SRAM is being written at ramAddr: 000001 with ramData:
10101100
Cycle: 6 Time: 550
The SRAM is being read at ramAddr: 000001 its ramData is:
10101100
$finish at simulation time 550

12-22

Using OpenVera Native Testbench

 V C S S i m u l a t i o n R e p o r t

Key Features

VCS MX supports the following features for OpenVera testbench:

• “Multiple Program Support”

• “Separate Compilation of Testbench Files”

• “Class Dependency Source File Reordering”

• “Using Encrypted Files”

• “Functional Coverage”

• “Using Reference Verification Methodology”

Multiple Program Support

Multiple program support enables multiple testbenches to run in
parallel. This is useful when testbenches model stand-alone
components (for example, Verification IP (VIP) or work from a
previous project). Because components are independent, direct
communication between them except through signals is undesirable.
For example, UART and CPU models would communicate only
through their respective interfaces, and not via the testbench. Thus,
multiple program support allows the use of stand-alone components
without requiring knowledge of the code for each component, or
requiring modifications to your own testbench.

12-23

Using OpenVera Native Testbench

Configuration File Model

The configuration file that you create, specifies file dependencies for
OpenVera programs.

Specify the configuration file as an argument to -ntb_opts as
shown in the following usage model:

% vlogan -ntb -ntb_opts config=configfile

Configuration File

The configuration file contains the program construct.

The program keyword is followed by the OpenVera program file (.vr
file) containing the testbench program and all the OpenVera program
files needed for this program. For example:

//configuration file
program

main1.vr
main1_dep1.vr
main1_dep2.vr
...
main1_depN.vr
[NTB_options]

program
main2.vr
main2_dep1.vr
main2_dep2.vr
...
main2_depN.vr
[NTB_options]

program
mainN.vr
mainN_dep1.vr

12-24

Using OpenVera Native Testbench

mainN_dep2.vr
...
mainN_depN.vr
[NTB_options]

In this example, main1.vr, main2.vr and mainN files each
contain a program. The other files contain items such as definitions
of functions, classes, tasks and so on needed by the program files.
For example, the main1_dep1.vr, main1_dep2.vr
main1_depN.vr files contain definitions relevant to main1.vr.
Files main2_dep1.v, main2_dep2.vr ... main2_depN.vr
contain definitions relevant to main2.vr, and so forth.

Usage Model for Multiple Programs

You can specify programs and related support files with multiple
programs in two different ways:

1. Specifying all OpenVera programs in the configuration file

2. Specifying one OpenVera program on the command line, and the
rest in the configuration file

Note:
- Specifying multiple OpenVera files containing the program

construct at the VCS MX command prompt is an error.

- If you specify one program at the VCS MX command line and
if any support files are missing from the command line, VCS
MX issues an error.

Specifying all OpenVera programs in the configuration file

When there are two or more program files listed in the configuration
file, the VCS MX command line is:

12-25

Using OpenVera Native Testbench

% vlogan -ntb -ntb_opts config=configfile

The configuration file, could be:

program main1.vr -ntb_define ONE
program main2.vr -ntb_incdir /usr/vera/include

Specifying one OpenVera program on the command line, and
the rest in the configuration file

You can specify one program in the configuration file and the other
program file at the command prompt.

% vlogan -ntb -ntb_opts config=configfile main2.vr

The configuration file used in this example is:

program main1.vr

In the previous example, main1.vr is specified in the configuration
file and main2.vr is specified on the command line along with the
files needed by main2.vr.

NTB Options and the Configuration File

The configuration file supports different OpenVera programs with
different NTB options such as ‘include, ‘define, or
‘timescale. For example, if there are three OpenVera programs
p1.vr, p2.vr and p3.vr, and p1.vr requires the -ntb_define
VERA1 runtime option, and p2.vr should run with
-ntb_incdir /usr/vera/include option, specify these
options in the configuration file:

program p1.vr -ntb_define VERA1
program p2.vr -ntb_incdir /usr/vera/include

12-26

Using OpenVera Native Testbench

and specify the command line as follows.

% vlogan -ntb -ntb_opts config=configfile p3.vr

Any NTB options mentioned at the command prompt, in addition to
the configuration file, are applicable to all OpenVera programs.

In the configuration file, you may specify the NTB options in one line
separated by spaces, or on multiple lines.

program file1.vr -ntb_opts no_file_by_file_pp

Some NTB options specific for OpenVera code compilation, such as
-ntb_cmp and -ntb_vl, affect the VCS MX flow after the options
are applied. If these options are specified in the configuration file,
they are ignored.

The following options are allowed for multiple program use.

• -ntb_define macro

• -ntb_incdir directory

• -ntb_opts no_file_by_file_pp

• -ntb_opts tb_timescale=value

• -ntb_opts dep_check

• -ntb_opts print_deps

• -ntb_opts use_sigprop

• -ntb_opts vera_portname

See the appendix on “Compile-time Options” or “Elaboration
Options” for descriptions of the these options.

12-27

Using OpenVera Native Testbench

Separate Compilation of Testbench Files

This section describes how to compile your testbench separately
from your design and then load it on simv (compiled design
executable) at runtime. Separate compilation of testbench files
allows you to:

• Keep one or many testbenches compiled and ready and then
choose which testbench to load when running a simulation.

• Save time by recompiling only the testbench after making changes
to it and then running simv with the recompiled testbench.

• Save time in cases where changes to the design do not require
changes to the testbench by recompiling only the design after
making changes to it and then running simv with the previously
compiled testbench.

Separate compilation of the testbench generates two files:

• The compiled testbench in a shared object file, libtb.so. This
shared object file is the one to be loaded on simv at runtime.

• A Verilog shell file (.vshell) that contains the testbench shell
module. Since the testbench instance in the top-level Verilog
module now refers to this shell module, the shell file has to be
compiled along with the design and the top-level Verilog module.
The loaded shared object testbench file is automatically invoked
by the shell module during simulation.

The following steps demonstrate a typical flow involving separate
compilation of the testbench:

1. Compile the testbench in VCS MX to generate the shared object
(libtb.so) file containing the compiled testbench and the
Verilog testbench shell file.

12-28

Using OpenVera Native Testbench

2. Analyze and elaborate the HDL along with the top-level Verilog
module and the testbench shell (.vshell) file to generate the
executable simv.

3. Load the testbench on simv at runtime.

Important:
The following ntb_opts options must be used for both steps of
the compilation (the testbench compilation and the design
compilation):

-ntb_opts use_sigprop
-ntb_opts dw_vip
-ntb_opts aop

Usage Model

Testbench Compilation

% vcs -ntbmx_cmp [other_ntb_options] file1.vr file2.vr

Analysis

Always analyze Verilog before VHDL.

% vlogan -ntbmx_vl [vlogan_options] file1.v pgm_name.vshell
% vhdlan [vhdlan_options] file3.vhd file4.vhd

Note:
Specify the VHDL bottom-most entity first, and then move up in
order.

Elaboration

% vcs -ntbmx_vl [other_ntb_options] [compile_options]
 top_cfg/entity/module

12-29

Using OpenVera Native Testbench

Simulation

% simv +ntb_load=PATH/libtb.so [run_options]

PATH is the directory where the libtb.so and .vshell files are
created. You can specify PATH by using the -ntb_spath option
while compiling the testbench.

Example

Design files: top.v mid.vhd, bot.v

Testbench file: tb.vr

% vcs -ntbmx_cmp -timescale=1ns/1ps tb.vr

% vlogan -ntbmx_vl tb.vshell top.v bot.v
% vhdlan mid.vhd

% vcs -ntbmx_vl -timescale=1ns/1ps top

% simv +ntb_load=./libtb.so

Class Dependency Source File Reordering

In order to ease transitioning of legacy code from Vera’s make-based
single-file compilation scheme to VCS MX-NTB, where all source
files have to be specified on the command line, VCS MX provides a
way of instructing the compiler to reorder Vera files in such a way that
class declarations are in topological order (that is, base classes
precede derived classes).

12-30

Using OpenVera Native Testbench

In Vera, where files are compiled one-by-one, and extensive use of
header files is a must, the structure of file inclusions makes it very
likely that the combined source text has class declarations in
topological order.

If specifying a command line like the following leads to problems
(error messages related to classes), adding the analysis option
-ntb_opts dep_check to the command line directs the compiler
to activate analysis of Vera files and process them in topological
order with regard to class derivation relationships.

% vlogan -ntb *.vr

By default, files are processed in the order specified (or
wildcard-expanded by the shell). This is a global option, and affects
all Vera input files, including those preceding it, and those named in
-f file.list.

When using the option –ntb_opts print_deps in addition to
–ntb_opts dep_check with vlogan, the reordered list of source
files is printed on standard output. This could be used, for example,
to establish a baseline for further testbench development.

For example, assume the following files and declarations:

b.vr: class Base {integer i;}
d.vr: class Derived extends Base {integer j;}
p.vr: program test {Derived d = new;}

File d.vr depends on file b.vr, since it contains a class derived
from a class in b.vr, whereas p.vr depends on neither, despite
containing a reference to a class declared in the former. The p.vr
file does not participate in inheritance relationships. The effect of
dependency ordering is to properly order the files b.vr and d.vr,
while leaving files without class inheritance relationships alone.

12-31

Using OpenVera Native Testbench

The following command lines result in reordered sequences.

% vlogan –ntb –ntb_opts dep_check d.vr b.vr p.vr
% vlogan –ntb –ntb_opts dep_check p.vr d.vr b.vr

The first command line yields the order b.vr d.vr p.vr, while
the second line yields, p.vr b.vr d.vr.

Circular Dependencies

With some programming styles, source files can appear to have
circular inheritance dependencies in spite of correct inheritance
trees being cycle-free. This can happen, for example, in the following
scenario:

a.vr: class Base_A {...}
 class Derived_B extends Base_B {...}
b.vr: class Base_B {...}
 class Derived_A extends Base_A {...}

In this example, classes are derived from base classes that are in the
other file, respectively, or more generally, when the inheritance
relationships project onto a loop among the files. This is, however,
an abnormality that should not occur in good programming styles.
VCS MX will detect and report the loop, and will use a heuristic to
break it. This may not lead to successful compilation, in which case
you can use the -ntb_opts print_deps option to generate a
starting point for manual resolution; however, if possible, the code
should be rewritten.

12-32

Using OpenVera Native Testbench

Dependency-based Ordering in Encrypted Files

As encrypted files are intended to be mostly self-contained library
modules that the testbench builds upon, they are excluded from
reordering regardless of dependencies (these files should not exist
in unencrypted code). VCS MX splits Vera input files into those that
are encrypted or declared as such by having the .vrp or .vrhp file
extension or as specified using the –ntb_vipext option, and
others. Only the latter unencrypted files are subject to dependency-
based reordering, and encrypted files are prefixed to them.

Note:
The -ntb_opts dep_check analysis option specifically
resolves dependencies involving classes and enums. That is, we
only consider definitions and declarations of classes and enums.
Other constructs such as ports, interfaces, tasks and functions
are not currently supported for dependency check.

Using Encrypted Files

VCS MX NTB allows distributors of Verification IP (Intellectual
Property) to make testbench modules available in encrypted form.
This enables the IP vendors to protect their source code from
reverse-engineering. Encrypted testbench IP is regular OpenVera
code, and is not subject to special processing other than to protect
the source code from inspection in the debugger, through the PLI, or
otherwise.

Encrypted code files provided on the command line are detected by
VCS MX, and are combined into one preprocessing unit that is
preprocessed separately from unencrypted files, and is for itself,

12-33

Using OpenVera Native Testbench

always preprocessed in –ntb_opts no_file_by_file_pp
mode. The preprocessed result of encrypted code is prefixed to
preprocessed unencrypted code.

VCS MX only detects encrypted files on the command line (including
-f option files), and does not descend into include hierarchies.
While the generally recommended usage methodology is to
separate encrypted from unencrypted code, and not include
encrypted files in unencrypted files, encrypted files can be included
in unencrypted files if the latter are marked as encrypted-mode by
naming them with extensions .vrp, .vrhp, or additional extensions
specified using the –ntb_vipext option. This implies that the
extensions are considered OpenVera extensions similar to using
-ntb_filext for unencrypted files. This causes those files and
everything they include to be preprocessed in encrypted mode.

Functional Coverage

The VCS MX implementation of OpenVera supports the
covergroup construct. For more information about the covergroup
and other functional coverage model, see the section "Functional
Coverage Groups" in the VCS OpenVera Language Reference
Manual.

Using Reference Verification Methodology

VCS MX supports the use of Reference Verification Methodology
(RVM) for implementing testbenches as part of a scalable
verification architecture.

12-34

Using OpenVera Native Testbench

The usage model for using RVM with VCS MX is:

Analysis

Always analyze Verilog before VHDL.

% vlogan -ntb -ntb_opts rvm [vlogan_options] file1.vr
file2.vr file3.v
% vhdlan [vhdlan_options] file3.vhd file4.vhd

Note:
Specify the VHDL bottom-most entity first, and then move up in
order.

Elaboration

% vcs [other_ntb_options] [compile_options] design_unit

Simulation

% simv [run_options]

For details on the use of RVM, see the Reference Verification
Methodology User Guide. Though the manual descriptions refer to
Vera, NTB uses a subset of the OpenVera language and all
language specific descriptions apply to NTB.

Differences between the usage of NTB and Vera are:

• NTB does not require header files (.vrh) as described in the
Reference Verification Methodology User Guide chapter “Coding
and Compilation.”

• NTB parses all testbench files in a single compilation.

• The VCS MX command-line option -ntb_opts rvm must be used
with NTB.

12-35

Using OpenVera Native Testbench

Limitations

• The handshake configuration of notifier is not supported (since
there is no handshake for triggers/syncs in NTB).

• RVM enhancements for assertion support in Vera 6.2.10 and later
are not supported for NTB.

• If there are multiple consumers and producers, there is no
guarantee of fairness in reads from channels, etc.

Note:
The current profiler and the +prof compile-time option will be
replaced by the unified profiler and the -simprofile compile-
time option in the next release of VCS. The unified profiler is now
an LCA feature, see The Unified Simulation Profiler.

13-1

Aspect Oriented Extensions

13
Aspect Oriented Extensions 1

Aspect-Oriented Programming (AOP) methodology complements
the OOP methodology using a construct called aspect or an aspect-
oriented extension (AOE) that can affect the behavior of a class or
multiple classes. In AOP methodology, the terms “aspect” and
“aspect-oriented extension” are used interchangeably.

Aspect oriented extensions in SV allow testbench engineers to
design testcase more efficiently, using fewer lines of code.

AOP addresses issues or concerns that prove difficult to solve when
using Object-Oriented Programming (OOP) tow write constrained-
random test benches.

Such concerns include:

1. Context-sensitive behavior.

2. Unanticipated extensions.

13-2

Aspect Oriented Extensions

3. Multi-object protocols.

In AOP these issues are termed cross-cutting concerns as they cut
across the typical divisions of responsibility in a given programming
model.

In OOP, the natural unit of modularity is the class. Some of the cross
cutting concerns, such as "Multi-object protocols", cut across
multiple classes and are not easy to solve using the OOP
methodology. AOP is a way of modularizing such cross-cutting
concerns. AOP extends the functionality of existing OOP derived
classes and uses the notion of aspect as a natural unit of modularity.
Behavior that affects multiple classes can be encapsulated in
aspects to form reusable modules. As potential benefits of AOP are
achieved better in a language where an aspect unit can affect
behavior of multiple classes and therefore can modularize the
behavior that affects multiple classes, AOP ability in SV language is
currently limited in the sense that an aspect extension affects the
behavior of only a single class. It is useful nonetheless, enabling test
engineers to design code that efficiently addresses concerns
"Context-sensitive behavior" and "Unanticipated extensions".

AOP is used in conjunction with object-oriented programming. By
compartmentalizing code containing aspects, cross-cutting concerns
become easy to deal with. Aspects of a system can be changed,
inserted or removed at compile time, and become reusable.

It is important to understand that the overall verification environment
should be assembled using OOP to retain encapsulation and
protection. NTB's Aspect-Oriented Extensions should be used only
for constrained-random test specifications with the aim of minimizing
code.

SV’s Aspect-Oriented Extensions should not be used to:

13-3

Aspect Oriented Extensions

• Code base classes and class libraries

• Debug, trace or monitor unknown or inaccessible classes

• Insert new code to fix an existing problem

For information on the creation and refinement of verification test
benches, see the Reference Verification Methodology User Guide.

Aspect-Oriented Extensions in SV

In SV, AOP is supported by a set of directives and constructs that
need to be processed before compilation. Therefore, an SV program
with these Aspect oriented directives and constructs would need to
be processed as per the definition of these directives and constructs
in SV to generate an equivalent SV program that is devoid of aspect
extensions, and consists of traditional SV. Conceptually, AOP is
implemented as pre-compilation expansion of code.

This chapter explains how AOE in SV are directives to SV compiler
as to how the pre-compilation expansion of code needs to be
performed.

In SV, an aspect extension for a class can be defined in any scope
where the class is visible, except for within another aspect extension.
That is, aspect extensions can not be nested.

An aspect oriented extension in SV is defined using a new top-level
extends directive. Terms aspect and “extends directive” have been
used interchangeably throughout the document. Normally, a class is
extended through derivation, but an extends directive defines
modifications to a pre-existing class by doing in-place extension of
the class. in-place extension modifies the definition of a class by
adding new member fields and member methods, and changing the

13-4

Aspect Oriented Extensions

behavior of earlier defined class methods, without creating any new
subclasse(s). That is, SV’s Aspect-Oriented Extensions change the
original class definition without creating subclasses. These changes
affect all instances of the original class that was extended by AOEs.

An extends directive for a class defines a scope in SV language.
Within this scope exist the items that modify the class definition.
These items within an extends directive for a class can be divided
into the following three categories.

• Introduction

Declaration of a new property, or the definition of a new method,
a new constraint, or a new coverage group within the extends
directive scope adds (or introduces) the new symbol into the
original class definition as a new member. Such declaration/
definition is called an introduction.

• Advice

An advice is a construct to specify code that affects the behavior
of a member method of the class by weaving the specified code
into the member method definition. This is explained in more detail
later. The advice item is said to be an advice to the affected
member method.

• Hide list:

Some items within an extends directive, such as a virtual method
introduction, or an advice to virtual method may not be permissible
within the extends directive scope depending upon the hide
permissions at the place where the item is defined. A hide list is
a construct whose placement and arguments within the extends
directive scope controls the hide permissions. There could be
multiple hide lists within an extends directive.

13-5

Aspect Oriented Extensions

Processing of AOE as a Precompilation Expansion

As a precompilation expansion, AOE code is processed by VCS to
modify the class definitions that it extends as per the directives in
AOE.

A symbol is a valid identifier in a program. Classes and class
methods are symbols that can be affected by AOE. AOE code is
processed which involves adding of introductions and weaving of
advices in and around the affected symbols. Weaving is performed
before actual compilation (and thereby before symbol resolution),
therefore, under certain conditions, introduced symbols with the
same identifier as some already visible symbol, can hide the already
visible symbols. This is explained in more detail in Section , “hide_list
details,” on page 13-30. The preprocessed input program, now
devoid of AOE, is then compiled.

Syntax:

extends_directive ::=
extends extends_identifier

(class_identifier)[dominate_list];
extends_item_list

endextends

dominate_list ::=

dominates(extends_identifier
{,extends_identifier});

extends_item_list ::=
extends_item {extends_item}

extends_item ::=

class_item
| advice
| hide_list

13-6

Aspect Oriented Extensions

class_item ::=
class_property
| class_method
| class_constraint
| class_coverage
| enum_defn

advice ::= placement procedure

placement ::=

before
| after
| around

procedure ::=

| optional_method_specifiers task
task_identifier(list_of_task_proto_formals);

| optional_method_specifiers function
function_type

function_identifier(list_of_function_proto_formals)
endfunction

 advice_code ::= [stmt] {stmt}

 stmt ::= statement
 | proceed ;

hide_list ::=
hide([hide_item {,hide_item}]);

hide_item ::=
// Empty
| virtuals
| rules

The symbols in boldface are keywords and their syntax are as
follows:

extends_identifier

13-7

Aspect Oriented Extensions

 Name of the aspect extension.

class_identifier

 Name of the class that is being extended by the extends directive.

dominate_list

Specifies extensions that are dominated by the current directive.
Domination defines the precedence between code woven by
multiple extensions into the same scope. One extension can
dominate one or more of the other extensions. In such a case, you
must use a comma-separated list of extends identifiers.

dominates(extends_identifier
{,extends_identifier});

A dominated extension is assigned lower precedence than an
extension that dominates it. Precedence among aspects extensions
of a class determines the order in which introductions defined in the
aspects are added to the class definition. It also determines the order
in which advices defined in the aspects are woven into the class
method definitions thus affecting the behavior of a class method.
Rules for determination of precedence among aspects are explained
later in “Precedence” on page 16.

class_property

 Refers to an item that can be parsed as a property of a class.

class_method

 Refers to an item that can be parsed as a class method.

class_constraint

13-8

Aspect Oriented Extensions

 Refers to an item that can be parsed as a class constraint.

class_coverage

 Refers to an item that can be parsed as a coverage_group in a
class.

advice_code

 Specifies to a block of statements.

statement

 Is an SV statement.

procedure_prototype

A full prototype of the target procedure. Prototypes enable the advice
code to reference the formal arguments of the procedure.

opt_method_specifiers

Refers to a combination of protection level specifier (local, or
protected), virtual method specifier (virtual), and the static method
specifier (static) for the method.

task_identifier

 Name of the task.

function_identifier

 Name of the function.

function_type

13-9

Aspect Oriented Extensions

 Data type of the return value of the function.

list_of_task_proto_formals

 List of formal arguments to the task.

list_of_function_proto_formals

 List of formal arguments to the function.

placement

Specifies the position at which the advice code within the advice is
woven into the target method definition. Target method is either the
class method, or some other new method that was created as part of
the process of weaving, which is a part of pre-compilation expansion
of code. The overall details of the process of “weaving” are explained
in Pre-compilation Expansion details. The placement element could
be any of the keywords, before, after, or around, and the advices with
these placement elements are referred to as before advice, after
advice and around advice, respectively.

proceed statement

The proceed keyword specifies an SV statement that can be used
within advice code. A proceed statement is valid only within an
around block and only a single proceed statement can be used
inside the advice code block of an around advice. It cannot be used
in a before advice block or an after advice block. The proceed
statement is optional.

hide_list

13-10

Aspect Oriented Extensions

Specifies the permission(s) for introductions to hide a symbol, and/
or permission(s) for advices to modify local and protected methods.
It is explained in detail in Section , “hide_list details,” on page 13-30.

Weaving advice into the target method

The target method is either the class method, or some other new
method that was created as part of the process of weaving.
“Weaving” of all advices in the input program comprises several
steps of weaving of an advice into the target method. Weaving of an
advice into its target method involves the following.

A new method is created with the same method prototype as the
target method and with the advice code block as the code block of
the new method. This method is referred to as the advice method.

13-11

Aspect Oriented Extensions

The following table shows the rest of the steps involved in weaving
of the advice for each type of placement element (before, after, and
around).

Within an extends directive, you can specify only one advice can be
specified for a given placement element and a given method. For
example, an extends directive may contain a maximum of one
before, one after, and one around advice each for a class method
Packet::foo of a class Packet, but it may not contain two before
advices for the Packet::foo.

Example 13-1 before Advice

Target method:

class packet;
 task myTask();
 $display("Executing original code\n");
 endtask

Table 13-1 Placement Elements

Element Description
before Inserts a new method-call statement

that calls an advice method. The
statement is inserted as the first
statement to be executed before any
other statements.

after Creates a new method A with the target
method prototype, with its first
statement being a call to the target
method. Second statement with A is a
new method call statement that calls
the advice method. All the instances
in the input program where the target
method is called are replaced by newly
created method calls to A. A is
replaced as the new target method.

around All the instances in the input program
where the target method is called are
replaced by newly created method calls
to the advice method.

13-12

Aspect Oriented Extensions

endclass

Advice:

before task myTask ();
$display("Before in aoe1\n");

endtask

Weaving of the advice in the target method yields the following.

task myTask();
mytask_before();
$display("Executing original code\n");

endtask

task mytask_before ();
$display("Before in aoe1\n");

endtask

Note that the SV language does not impose any restrictions on the
names of newly created methods during pre-compilation expansion,
such as mytask_before. Compilers can adopt any naming
conventions such methods that are created as a result of the
weaving process.

Example 13-2 after Advice

Target method:

class packet;
 task myTask();
 $display("Executing original code\n");
 endtask
endclass

Advice:

after task myTask ();
$display("Before in aoe1\n");

endtask

13-13

Aspect Oriented Extensions

Weaving of the advice in the target method yields the following.

 task myTask_newTarget();
myTask();
myTask_after();

endtask

task myTask();
$display("Executing original code\n");

endtask

task myTask_after ();
$display("After in aoe1\n");

endtask

As a result of weaving, all the method calls to myTask() in the input
program code are replaced by method calls to myTask_newTarget().
Also, myTask_newTarget replaces myTask as the target method for
myTask().

Example 13-3 around Advice

Target method:

class packet;
 task myTask();
 $display("Executing original code\n");
 endtask
endclass

Advice:

around task myTask ();
$display("Around in aoe1\n");

endtask

Weaving of the advice in the target method yields the following.

13-14

Aspect Oriented Extensions

 task myTask_around();
$display("Around in aoe1\n");

endtask

task myTask();
$display("Executing original code\n");

endtask

As a result of weaving, all the method calls to myTask() in the input
program code are replaced by method calls to myTask_around().
Also, myTask_around() replaces myTask() as the target method for
myTask().

During weaving of an around advice that contains a proceed
statement, the proceed statement is replaced by a method call to the
target method.

Example 13-4 around Advice with proceed

Target method:

class packet;
 task myTask();
 $display("Executing original code\n");
 endtask
endclass

Advice:

around task myTask ();
proceed;
$display("Around in aoe1\n");

endtask

Weaving of the advice in the target method yields:

 task myTask_around();
myTask();

13-15

Aspect Oriented Extensions

$display("Around in aoe1\n");
endtask

task myTask();
$display("Executing original code\n");

endtask

As a result of weaving, all the method calls to myTask() in the input
program code are replaced by method calls to myTask_around().
The proceed statement in the around code is replaced with a call to
the target method myTask(). Also, myTask_around replaces myTask
as the target method for myTask().

Pre-compilation Expansion details

Pre-compilation expansion of a program containing AOE code is
done in the following order:

1. Preprocessing and parsing of all input code.

2. Identification of the symbols, such as methods and classes
affected by extensions.

3. The precedence order of aspect extensions (and thereby
introductions and advices) for each class is established.

4. Addition of introductions to their respective classes as class
members in their order of precedence. Whether an introduction
can or can not override or hide a symbol with the same name that
is visible in the scope of the original class definition, is dependent
on certain rules related to the hide_list parameter. For a detailed
explanation, see “hide_list details” on page 13-30.

5. Weaving of all advices in the input program are weaved into their
respective class methods as per the precedence order.

13-16

Aspect Oriented Extensions

These steps are described in more detail in the following sections.

Precedence

Precedence is specified through the dominate_list (see
“dominate_list” on page 7) There is no default precedence across
files; if precedence is not specified, the tool is free to weave code in
any order. Within a file, dominance established by dominate_lists
always overrides precedence established by the order in which
extends directives are coded. Only when the precedence is not
established after analyzing the dominate lists of directives, is the
order of coding used to define the order of precedence.

Within an extends directive there is an inherent precedence between
advices. Advices that are defined later in the directive have higher
precedence that those defined earlier.

Precedence does not change the order between adding of
introductions and weaving of advices in the code. Precedence
defines the order in which introductions to a class are added to the
class, and the order in which advices to methods belonging to a
class are woven into the class methods.

Example 13-5 Precedence Using dominates

// Beginning of file test.sv
class packet;
 // Other member fields/methods
 //...

 task send();
 $display("Sending data\n");
 endtask
endclass

program top ;

13-17

Aspect Oriented Extensions

 initial begin
 packet p;
 p = new();
 p.send();
 end
endprogram

extends aspect_1(packet) dominates (aspect_2, aspect_3);

 after task send(); // Advice 1
 $display("Aspect_1: send advice after\n");
 endtask
endextends

extends aspect_2(packet);

 after task send() ; // Advice 2
 $display("Aspect_2: send advice after\n");
 endtask
endextends

extends aspect_3(packet);

 around task send(); // Advice 3
 $display("Aspect_3: Begin send advice around\n");
 proceed;
 $display("Aspect_3: End send advice around\n");
 endtask

 before task send(); // Advice 4
 $display("Aspect_3: send advice before\n");
 endtask
endextends

// End of file test.sv

In Example 13-5, multiple aspect extensions for a class named
packet are defined in a single SV file. As specified in the dominating
list of aspect_1, aspect_1 dominates both aspect_2 and aspect_3.

13-18

Aspect Oriented Extensions

As per the dominating lists of the aspect extensions, there is no
precedence order established between aspect_2 and aspect_3, and
since aspect_3 is coded later in Input.vr than aspect_2, aspect_3
has higher precedence than aspect_2. Therefore, the precedence of
these aspect extensions in the decreasing order of precedence is:

{aspect_1, aspect_3, aspect_2}

This implies that the advice(s) within aspect_2 have lower
precedence than advice(s) within aspect_3, and advice(s) within
aspect_3 have lower precedence than advice(s) within aspect_1.
Therefore, advice 2 has lower precedence than advice 3 and advice
4. Both advice 3 and advice 4 have lower precedence than advice 1.
Between advice 3 and advice 4, advice 4 has higher precedence as
it is defined later than advice 3. That puts the order of advices in the
increasing order of precedence as:

{2, 3, 4, 1}.

Adding of Introductions
Target scope refers to the scope of the class definition that is being
extended by an aspect. Introductions in an aspect are appended as
new members at the end of its target scope. If an extension A has
precedence over extension B, the symbols introduced by A are
appended first.

Within an aspect extension, symbols introduced by the extension are
appended to the target scope in the order they appear in the
extension.

13-19

Aspect Oriented Extensions

There are certain rules according to which an introduction symbol
with the same identifier name as a symbol that is visible in the target
scope, may or may not be allowed as an introduction. These rules
are discussed later in the chapter.

Weaving of advices
An input program may contain several aspect extensions for any or
each of the different class definitions in the program. Weaving of
advices needs to be carried out for each class method for which an
advice is specified.

Weaving of advices in the input program consists of weaving of
advices into each such class method. Weaving of advices into a
class method A is unrelated to weaving of advices into a different
class method B, and therefore weaving of advices to various class
methods can be done in any ordering of the class methods.

For weaving of advices into a class method, all the advices
pertaining to the class method are identified and ordered in the order
of increasing precedence in a list L. This is the order in which these
advices are woven into the class method thereby affecting the run-
time behavior of the method. The advices in list L are woven in the
class method as per the following steps. Target method is initialized
to the class method.

a. Advice A that has the lowest precedence in L is woven into the
target method as explained earlier. Note that the target method
may either be the class method or some other method newly
created during the weaving process.

b. Advice A is deleted from list L.

c. The next advice on list L is woven into the target method. This
continues until all the advices on the list have been woven into
list L.

13-20

Aspect Oriented Extensions

It would become apparent from the example provided later in this
section how the order of precedence of advices for a class method
affects how advices are woven into their target method and thus the
relative order of execution of advice code blocks. Before and after
advices within an aspect to a target method are unrelated to each
other in the sense that their relative precedence to each other does
not affect their relative order of execution when a method call to the
target method is executed. The before advice’s code block executes
before the target method code block, and the after advice code block
executes after the target method code block. When an around
advice is used with a before or after advice in the same aspect, code
weaving depends upon their precedence with respect to each other.
Depending upon the precedence of the around advice with respect
to other advices in the aspect for the same target method, the around
advice either may be woven before all or some of the other advices,
or may be woven after all of the other advices.

As an example, weaving of advices 1, 2, 3, 4 specified in aspect
extensions in Example 13-5 leads to the expansion of code in the
following manner. Advices are woven in the order of increasing
precedence {2, 3, 4, 1} as explained earlier.

Example 13-6 After Weaving Advice-2 of Class packet

// Beginning of file test.sv

program top ;
packet p;
p = new();
p.send_Created_a();

endprogram

class packet;
...
// Other member fields/methods
...
task send();

p$display("Sending data\n”);

13-21

Aspect Oriented Extensions

endtask

task send_Created_a();
send();
send_after_Created_b();

endtask

task send_after_Created_b();
$display("Aspect_2: send advice after\n");

endtask

endclass

extends aspect_1(packet) dominates (aspect_2, aspect_3);
after task send(); // Advice 1

$display("Aspect_1: send advice after\n");
endtask

endextends

extends aspect_3(packet);
around task send(); // Advice 3

$display("Aspect_3: Begin send advice around\n");
proceed;
$display("Aspect_3: End send advice around\n");

endtask

before task send(); // Advice 4
 $display("Aspect_3: send advice before\n");

endtask
endextends

// End of file test.sv

This Example 13-6 shows what the input program looks like after
weaving advice 2 into the class method. Two new methods
send_Created_a and send_after_Created_b are created in the
process and the instances of method call to the target method
packet::send are modified, such that the code block from advice 2
executes after the code block of the target method packet::send.

Example 13-7 After Weaving Advice-3 of Class packet
// Beginning of file test.sv

program top;

13-22

Aspect Oriented Extensions

packet p;
p = new();
p.send_around_Created_c();

endprogram

class packet;
...
// Other member fields/methods
...
task send();

$display("Sending data\n”);
endtask

task send_Created_a();
send();
send_after_Created_b();

endtask

task send_after_Created_b();
$display("Aspect_2: send advice after\n");

endtask

task send_around_Created_c();
$display("Aspect_3: Begin send advice around\n");
send_Created_a();
$display("Aspect_3: End send advice around\n");

endtask
endclass

extends aspect_1(packet) dominates (aspect_2, aspect_3);
after task send(); // Advice 1

$display("Aspect_1: send advice after\n");
endtask

endextends

extends aspect_3(packet);
before task send(); // Advice 4

 $display("Aspect_3: send advice before\n");
endtask

endextends

// End of file test.sv

This Example 13-7 shows what the input program looks like after
weaving advice 3 into the class method. A new method
send_around_Created_c is created in this step and the instances of

13-23

Aspect Oriented Extensions

method call to the target method packet::send_Created_a are
modified, such that the code block from advice 3 executes around
the code block of method packet::send_Created_a. Also note that
the proceed statement from the advice code block is replaced by a
call to send_Created_a. At the end of this step,
send_around_Created_c becomes the new target method for
weaving of further advices to packet::send.

Example 13-8 After Weaving Advice-4 of Class packet

// Beginning of file test.sv

program top;
packet p;
p = new();
p.send_around_Created_c();

endprogram

class packet;
...
// Other member fields/methods
...
task send();

$display("Sending data\n”);
endtask

task send_Created_a();
send();
send_after_Created_b();

endtask

task send_after_Created_b();
$display("Aspect_2: send advice after\n");

endtask

task send_around_Created_c();
send_before_Created_d();
 $display("Aspect_3: Begin send advice around\n");
send_after_Created_a();
 $display("Aspect_3: End send advice around\n");

endtask

task send_before_Created_d();
 $display("Aspect_3: send advice before\n");

13-24

Aspect Oriented Extensions

endtask
endclass

 extends aspect_1(packet) dominates (aspect_2, aspect_3);
after task send(); // Advice 1

$display("Aspect_1: send advice after\n");
endtask

endextends

// End of file test.sv

This Example 13-8 shows what the input program looks like after
weaving advice 4 into the class method. A new method
send_before_Created_d is created in this step and a call to it is
added as the first statement in the target method
packet::send_around_Created_c. Also note that the outcome would
have been different if advice 4 (before advice) was defined earlier
than advice 3 (around advice) within aspect_3, as that would have
affected the order of precedence of advice 3 and advice. In that
scenario the advice 3 (around advice) would have weaved around
the code block from advice 4 (before advice), unlike the current
outcome.

Example 13-9 After Weaving all{2,3,4,1} Advices of Class packet

// Beginnning of file test.sv

program top;
packet p;
p = new();
p.send_Created_f();

endprogram

class packet;
...
// Other member fields/methods
...
task send();

$display("Sending data\n”);
endtask

task send_Created_a();

13-25

Aspect Oriented Extensions

send();
send_Created_b();

endtask

task send_after_Created_b();
$display("Aspect_2: send advice after\n");

endtask

task send_around_Created_c();
send_before_Created_d();
$display("Aspect_3: Begin send advice around\n");
send_after_Created_a();
$display("Aspect_3: End send advice around\n");

endtask

task send_before_Created_d();
 $display("Aspect_3: send advice before\n");

endtask
task send_after_Created_e();

$display("Aspect_1: send advice after\n");
endtask

task send_Created_f();
send_around_Created_c();
send_after_Created_e()

endtask
endclass

// End of file test.sv

This Example 13-9 shows the input program after weaving of all four
advices {2, 3, 4, 1}. New methods send_after_Created_e and
send_Created_f are created in the last step of weaving and the
instances of method call to packet::send_around_Created_c were
replaced by method call to packet::send_Created_f.

When executed, output of this program is:

Aspect_3: send advice before
Aspect_3: Begin send advice around
Sending data
Aspect_2: send advice after
Aspect_3: End send advice around
Aspect_1: send advice after

13-26

Aspect Oriented Extensions

Example 13-10 Around Advice With dominates-I

// Begin file test.sv
class foo;
 int i;

 task myTask();
 $display("Executing original code\n");
 endtask
endclass

extends aoe1 (foo) dominates(aoe2);
 around task myTask();
 proceed;
 $display("around in aoe1\n");
 endtask
endextends

extends aoe2 (foo);
 around task myTask();
 proceed;
 $display("around in aoe2\n");
 endtask
endextends

program top;
 foo f;

 initial begin
 f = new();
 f.myTask();
 end
endprogram

// End file test.sv

When aoe1 dominates aoe2, as in func1, the output when the
program is executed is:

Executing original code
around in aoe2
around in aoe1

13-27

Aspect Oriented Extensions

Example 13-11 Around Advice with dominates-II

// Begin file test.sv
class foo;
 int i;
 task myTask();
 $display("Executing original code\n");
 endtask
endclass

extends aoe1 (foo);
 around task myTask();
 proceed;
 $display("around in aoe1\n");
 endtask
endextends

extends aoe2 (foo) dominates (aoe1);
 around task myTask();
 proceed;
 $display("around in aoe2\n");
 endtask
endextends

program top;
 foo f;

 initial begin
 f = new();
 f.myTask();
 end
endprogram
// End file test.sv

On the other hand, when aoe2 dominates aoe1 as in this Example
13-11, the output is:

Executing original code
around in aoe1
around in aoe2

13-28

Aspect Oriented Extensions

Symbol Resolution Details:
As introductions and advices defined within extends directives are
pre-processed as a pre-compilation expansion of the input program,
the pre-processing occurs earlier than final symbol resolution stage
within a compiler. Therefore, it possible for AOE code to reference
symbols that were added to the original class definition using AOEs.
Because advices are woven after introductions have been added to
the class definitions, advices can be specified for introduced
member methods and can reference introduced symbols.

An advice to a class method can access and modify the member
fields and methods of the class object to which the class method
belongs. An advice to a class function can access and modify the
variable that stores the return value of the function.

Furthermore, members of the original class definition can also
reference symbols introduced by aspect extensions using the extern
declarations (?). Extern declarations can also be used to reference
symbols introduced by an aspect extension to a class in some other
aspect extension code that extends the same class.

An introduction that has the same identifier as a symbol that is
already defined in the target scope as a member property or member
method is not permitted.

Examples:

Example 13-12 before Advice on Class Task

// Begin file test.sv
class packet;
 task foo(integer x); //Formal argument is "x"
 $display("x=%0d\n", x);
 endtask
endclass

13-29

Aspect Oriented Extensions

extends myaspect(packet);
 // Make packet::foo always print: "x=99"
 before task foo(integer x);
 x = 99; //force every call to foo to use x=99
 endtask
endextends

program top;
 packet p;

 initial begin
 p = new();
 p.foo(100);
 end
endprogram
// End file test.sv

The extends directive in Example 13-12 sets the x parameter inside
the foo() task to 99 before the original code inside of foo() executes.
Actual argument to foo() is not affected, and is not set unless
passed-by-reference using ref.

Example 13-13 after Advice on Class Function

// Begin file test.sv
class packet ;
 function integer bar();
 bar = 5;
 $display("Point 1: Value = %d\n", bar);
 endfunction
endclass

extends myaspect(packet);
 after function integer bar();
 $display("Point 2: Value = %d\n", bar);
 bar = bar + 1; // Stmt A
 $display("Point 3: Value = %d\n", bar);
 endfunction
endextends

program top ;

13-30

Aspect Oriented Extensions

 packet p;

 initial begin
 p = new();
 $display("Output is: %d\n", p.bar());
 end
endprogram

// End file test.sv

An advice to a function can access and modify the variable that
stores the return value of the function as shown in Example 13-13,
in this example a call to packet::bar returns 6 instead of 5 as the final
return value is set by the Stmt A in the advice code block.

When executed, the output of the program code is:

Point 1: Value = 5
Point 2: Value = 5
Point 3: Value = 6
Output is: 6

 hide_list details
The hide_list item of an extends_directive specifies the
permission(s) for introductions to hide symbols, and/or advice to
modify local and protected methods. By default, an introduction does
not have permission to hide symbols that were previously visible in
the target scope, and it is an error for an extension to introduce a
symbol that hides a global or super-class symbol.

The hide_list option contains a comma-separated list of options such
as:

13-31

Aspect Oriented Extensions

• The virtuals option permits the hiding (that is, overriding) of virtual
methods defined in a super class. Virtual methods are the only
symbols that may be hidden; global, and file-local tasks and
functions may not be hidden. Furthermore, all introduced methods
must have the same virtual modifier as their overridden super-
class and overriding sub-class methods.

• The rules option permits the extension to suspend access rules
and to specify advice that changes protected and local virtual
methods; by default, extensions cannot change protected and
local virtual methods.

• An empty option list removes all permissions, that is, it resets
permissions to default.

In Example 13-14, the print method introduced by the extends
directive hides the print method in the super class.

Example 13-14 Change Permission Using hide virtuals
class pbase;
 virtual task print();
 $display("I’m pbase\n");
 endtask
endclass

class packet extends pbase;
 task foo();
 $display(); //Call the print task
 endtask
endclass

extends myaspect(packet);
 hide(virtuals); // Allows permissions to
 // hide pbase::print task

 virtual task print();
 $display("I.m packet\n.");
 endtask
endextends

13-32

Aspect Oriented Extensions

program test;
 packet tr;
 pbase base;

 initial begin
 tr = new();
 tr.print();
 base = tr;
 base.print();
 end
endprogram

As explained earlier, there are two types of hide permissions:

a. Permission to hide virtual methods defined in a super class
(option virtuals) is referred to as virtuals-permission. An aspect
item is either an introduction, an advice, or a hide list within an
aspect. If at an aspect item within an aspect, such permission
is granted, then the virtuals-permission is said to be on or the
status of virtuals-permission is said to be on at that aspect item
and at all the aspect items following that, until a hide list that
forfeits the permission is encountered. If virtuals-permission is
not on or the status of virtuals-permission is not on at an aspect
item, then the virtuals-permission at that item is said to be off
or the status of virtuals-permission at that item is said to be off

b. Permission to suspend access rules and to specify advice that
changes protected and local virtual methods (option "rules") is
referred to as rules-permission. If within an aspect, at an aspect
item, such permission is granted, then the rules-permission is
said to be on or the status of rules-permission is said to be on
at that aspect item and at all the aspect items following that,
until a hide list that forfeits the permission is encountered. If
rules-permission is not on or the status of rules-permission is
not on at an aspect item, then the rules-permission at that item
is said to be off or the status of rules-permission at that item is
said to be off.

13-33

Aspect Oriented Extensions

Permission for one of the above types of hide permissions does not
affect the other. Status of rules-permission and hide-permission
varies with the position of an aspect item within the aspect. Multiple
hide_list(s) may appear in the extension. In an aspect, whether an
introduction or an advice that can be affected by hide permissions is
permitted to be defined at a given position within the aspect
extension is determined by the status of the relevant hide permission
at the position. A hide_list at a given position in an aspect can
change the status of rules-permission and/or virtuals-permission at
that position and all following aspect items until any hide permission
status is changed again in that aspect using hide_list.

Example 13-15 illustrates how the two hide permissions can change
at different aspect items within an aspect extension.

Example 13-15 Hide Permissions

class pbase;
 virtual task print1();
 $display("pbase::print1\n");
 endtask

 virtual task print2();
 $display("pbase::print2\n");
 endtask
endclass

class packet extends pbase;
 task foo();
 rules_test();
 endtask

 local virtual task rules_test();
 $display("Rules-permission example\n");
 endtask
endclass

extends myaspect(packet);

13-34

Aspect Oriented Extensions

 // At this point within the myaspect scope,
 // virtuals-permission and rules-permission are both off.
 hide(virtuals); // Grants virtuals-permission

 // virtuals-permission is on at this point within aspect,
 // and therefore can define print1 method introduction.
 virtual task print1();
 $display("packet::print1\n.");
 endtask

 hide(); // virtuals-permission is forfieted

 hide(rules); // Grants rules-permission

 // Following advice permitted as rules-permission is on
 before local virtual task rules_test();
 $display("Advice to Rules-permission example\n");
 endtask

 hide(virtuals); // Grants virtuals-permission

 // virtuals-permission is on at this point within aspect,
 // and therefore can define print2 method introduction.
 virtual task print2();
 $display("packet::print2\n.");
 endtask
endextends

program test;
 packet tr;

 initial begin
 tr = new();
 tr.print1();
 tr.foo();
 tr.print2();
 end
endprogram

13-35

Aspect Oriented Extensions

Examples
Introducing new members into a class:

Example 13-16 shows how AOE can be used to introduce new
members into a class definition. myaspect adds a new property,
constraint, coverage group, and method to the packet class.

Example 13-16 Introducing New Member

class packet;
 rand bit[31:0] hdr_len;
endclass

extends myaspect(packet);
 integer sending_port;
 event cg_trigger;

 constraint con2 {
 hdr_len == 4;
 }

 covergroup cov2 @(cg_trigger);
 coverpoint sending_port;
 endgroup

 task print_sender();
 $display("Sending port = %0d\n", sending_port);
 endtask
endextends

program test;
 packet tr;

 initial begin
 tr = new();
 void'(tr.randomize());
 tr.sending_port = 1;
 tr.print_sender();
 -> tr.cg_trigger;
 end

13-36

Aspect Oriented Extensions

endprogram

As mentioned earlier, new members that are introduced should not
have the same name as a symbol that is already defined in the class
scope. So, AOE defined in the manner shown in Example 13-17 will
is not allowed, as the aspect myaspect defines x as one of the
introductions when the symbol x is already defined in class foo.

Example 13-17 Non-permissible Introduction

class foo;
 rand integer myfield;
 integer x;
endclass

extends myaspect(foo);
 integer x ;

 constraint con1 {
 myfield == 4;
 }
endextends

program test;
 foo tr;

 initial begin
 tr = new();
 $display("Non-permissible introduction error....!");
 void'(tr.randomize());
 end
endprogram

Examples of advice code

In Example 13-18, the extends directive adds advices to the
packet::send method.

13-37

Aspect Oriented Extensions

Example 13-18 before-after Advices

// Begin file test.sv
class packet;
 task send();
 $display("Sending data\n.");
 endtask
endclass

extends myaspect(packet);
 before task send();
 $display("Before sending packet\n");
 endtask

 after task send();
 $display("After sending packet\n");
 endtask
endextends

program test;
 packet p;

 initial begin
 p = new();
 p.send();
 end
endprogram

// End file test.sv

When Example 13-18 is executed, the output is:

Before sending packet
Sending data
After sending packet

In Example 13-19, extends directive myaspect adds advice to turn
off constraint c1 before each call to the foo::pre_randomize
method.

13-38

Aspect Oriented Extensions

Example 13-19 Turn-off Constraint Using before Advice

class foo;
 rand integer myfield;

 constraint c1 {
 myfield == 4;
 }
endclass

extends myaspect(foo);

 before function void pre_randomize();
 c1.constraint_mode(0);
 endfunction
endextends

program test;
 foo tr;

 initial begin
 tr = new();
 void'(tr.randomize());
 $display("myfiled value = %d, constraint mode OFF (!=
4)!", tr.myfield);
 end
endprogram

In Example 13-20, extends directive myaspect adds advice to set a
property named valid to 0 after each call to the
foo::post_randomize method.

Example 13-20 Change Property Value After post-randomize()
class foo;
 integer valid;
 rand integer myfield;

 constraint c1 {
 myfield inside {[0:6]};
 }

13-39

Aspect Oriented Extensions

endclass

extends myaspect(foo);
 after function void post_randomize();
 if (myfield > 6)
 valid = 0;
 else
 valid = 1;
 endfunction
endextends

program test;
 foo tr;

 initial begin
 tr = new();
 void'(tr.randomize());
 $display("valid = %0d ", tr.valid);
 end
endprogram

Example 13-21 shows an aspect extension that defines an around
advice for the class method packet::send. When the code in
example is compiled and run, the around advice code is executed
instead of original packet::send code.

Example 13-21 Changing Test Functionality Using around Advice

// Begin file test.sv
class packet;
 integer len;
 task setLen(integer i);
 len = i;
 endtask

 task send();
 $display("Sending data\n.");
 endtask
endclass

program test;

13-40

Aspect Oriented Extensions

 packet p;

 initial begin
 p = new();
 p.setLen(5000);
 p.send();
 p.setLen(10000);
 p.send();
 end
endprogram

extends myaspect(packet);
 around task send();
 if (len < 8000)
 proceed;
 else
 $display("Dropping packet\n");
 endtask
endextends

// End file test.sv

This Example 13-21 also demonstrates how the around advice code
can reference properties such as len in the packet object p. When
executed the output of the above example is,

Sending data
Dropping packet

14-1

Using Constraints

14
Using Constraints 1

This chapter explains VCS support for the following constraints
features:

• “Inconsistent Constraints” on page 2

• “Constraint Debug” on page 3

• “Constraint Debug Using DVE” on page 16

• “Constraint Guard Error Suppression” on page 17

• “Array and XMR Support in std::randomize()” on page 20

• “XMR Support in Constraints” on page 22

• “State Variable Index in Constraints” on page 25

• “Using Soft Constraints in SystemVerilog” on page 26

• “Using DPI Function Calls in Constraints” on page 36

14-2

Using Constraints

• “Using Foreach Loops Over Packed Dimensions in Constraints”
on page 41

• “Randomized Objects in a Structure” on page 46

Inconsistent Constraints

VCS MX correctly identifies inconsistent constraints while trying to
find the minimal set causing the inconsistency. VCS MX supports two
options to find inconsistent constraints: binary search and linear
search. You can use two new options to set larger timeout values.
The default timeout values for each iteration of the constraint solver
are 100 seconds for the binary search and 10 seconds for the linear
search. You can set larger timeout values in seconds. For example:

simv +ntb_binary_debug_solver_cpu_limit=200
simv +ntb_linear_debug_solver_cpu_limit=20

Note:
If the constraint solver timeout value is too low, VCS MX may not
be able to find the minimal set of conflicting constraints. If the
solver timeout value is too high, performance may degrade while
finding a conflict. Therefore, setting optimal timeout values is
important.

Inconsistent constraints are non-fatal by default. VCS MX continues
to run after a constraint failure. Use the
+ntb_stop_on_constraint_solver_error=0|1 option,
where 1 enables stop on first error and 0 disables stop on first error
to control how VCS handles these inconsistencies. For example, to
make VCS MX stop the simulation on the first constraint failure, use
the following command line:

14-3

Using Constraints

simv +ntb_stop_on_constraint_solver_error=1

When VCS MX detects inconsistent constraints, the default printing
mode only displays the failure subset. For example:

The solver failed when solving following set of constraints

rand integer y; // rand_mode = ON
rand integer z; // rand_mode = ON
rand integer x; // rand_mode = ON
constraint c // (from this) (constraint_mode = ON)
{
(x < 1) ;
(x in { 3 , 5 , 7 : 11 }) ;
}

You can use the
+ntb_enable_solver_trace_on_failure=0|1|2|3 runtime
option as follows:

Constraint Debug

Generally, there are two kinds of constraint debug scenarios. In the
first scenario, VCS MX solves the random variables but the user
wishes to get a better understanding how the random variables are

0 Print a one-line failure message with no details.

1 Print only the failure subset (this is the default).

2 Print the entire constraint problem and failure subset.

3 Print only the failure problem. This is useful when the
solver fails to determine the minimum subset.

14-4

Using Constraints

solved. This is about debugging the solved values. In the second
scenario, VCS MX either times out when solving or solves after a
long time. This is about performance debug.

The following sections describe the VCS MX features that can help
with these kinds of constraint debug.

- “Partition” on page 4

- “Randomize Serial Number” on page 6

- “Solver Trace” on page 7

- “Test Case Extraction” on page 13

- “Using multiple +ntb_solver_debug arguments ” on page 15

- “Summary for +ntb_solver_debug” on page 15

Partition

Whether it is std::randomize or the randomization of a class
object, it generally involves one or more state and random variables.
Constraints are used to describe relationships that between these
variables. An important concept of constrained randomization is the
notion of partitions. In other words, a randomize call is partitioned
into one or more smaller constraint problems to solve. At run time,
VCS MX groups all the related random variables involved in each
randomization into one or more partitions. If there are no constraints
between two random variables, they are not solved in the same
partition. Here is an example to illustrate this concept:

class myClass;
 rand int x;
 rand int y;
 rand int z;

14-5

Using Constraints

 rand byte a;
 rand byte b;
 bit c;
 constraint m {
 x > z;
 c -> a == b;
 }
 constraint n {
 y > 0;
 }

myClass obj = new;
obj.randomize(); // 1st randomize() call
obj.randomize() with {x!=y;}; // 2nd randomize() call

For the first randomize call, the following constraints are used to
solve the five random variables: x, y, z, a, and b and VCS MX creates
three partitions for these random variables.

 x > z; // from the constraint block m
 c -> a == b; // from the constraint block m
 y > 0; // from the constraint block n

The random variables x and z are grouped in one partition because
of a constraint (x > z) relating the two together.

The random variables a and b are grouped in another partition
because of the constraint (c -> a == b).

There are no constraints between y and any other random variable.
So y is on a third partition of its own.

Because the random variables from different partitions are not
constrained together, they do not have to be solved in any particular
order.

14-6

Using Constraints

For the second randomize() call, a new constraint is added in the
inline constraint (that is randomize() with). Here are the four
constraints for the same 5 random variables.

 x > z; // from the constraint block m
 c -> a == b; // from the constraint block m
 y > 0; // from the constraint block n
 x != y; // from the inline constraint

// – randomize() with ..

For this second randomize call, two partitions are created.

The first partition has the random variables: x, y, and z because the
following constraints relate all three together: (x > z), (y > 0), and
(x != y).

The second partition has the random variables a and b because of
the (c -> a == b) constraint.

Randomize Serial Number

Each randomization in a simulation is assigned a serial number
starting with 1. For example, if there are ten randomize calls
(std::randomize or randomization of class objects) in a
simulation, they are numbered from 1 to 10.

By default, the randomize serial numbers are not printed at run time.
To display the randomize serial numbers during simulation, you need
to run the simulation with the +ntb_solver_debug=serial
option.

simv +ntb_solver_debug=serial

14-7

Using Constraints

After each randomization completes, VCS prints the randomize
serial number along with some run time and memory data for the
randomize() call.

Using a randomize serial number provides a mechanism to focus the
constraint debug on a specific randomize() call. If the randomize
serial number is used together with the partition number, it is the
specified partition within the specified randomize call that becomes
the focus for the constraint debug.

To specify the nth partition of the mth randomize call, the notation m.n
is used.

Solver Trace

To get more insight to how VCS solves a randomize call, you can
enable solver trace reporting by using the
+ntb_solver_debug=trace runtime option. Here is an example
of the solver trace:

// Part.sv
class C;
 rand byte x, y, z, m, n, p, q;

 constraint imply {
 x > 3 -> y > p; // C1
 z < bigadd (x, q); // C2
 n != 0; // C3
 }

 function byte bigadd (byte a, b);
 return (a + b);
 endfunction

endclass

14-8

Using Constraints

program automatic test;
 C obj = new;
 initial begin
 repeat (5) begin
 obj.randomize() with { m == z; }; // C4
 end
 end
endprogram

For this example, let us determine the partitions that will be created
by the solver.

The SystemVerilog LRM mandates that function arguments must be
solved first in order to compute the function that is used to constraint
other random variables. In other words, separate partitions must be
created for (x, q) and then for z.

• The constraint expression C1 relates the random variables, x, y,
p together. So they are solved together in one partition.

• The constraint expression C2 using function call in constraint
requires that z is solved in a different partition from x and q.

• Since the random variable q is not related to any other random
variables, q is solved in a partition on its own.

• Similarly, the random variable n is not related to any other random
variables, n is solved in another partition on its own.

• The constraint expression C4 is an inline constraint relating the
two random variables, m and z, together. Therefore, m and z will
be solved together in one partition.

• Given the above descriptions, you can see four partitions will be
created.

• Partition 1 to solve x, y, p together

14-9

Using Constraints

• Partition 2 to solve n alone

• Partition 3 to solve q alone

• Partition 4 to solve z and m together

To compile and run this example and enable solver trace for the third
randomize call:

vcs –sverilog part.sv

simv +ntb_solver_debug=trace +ntb_solver_debug_filter=3

Part of the solver trace will show the partition information. Here is a
part of the solver trace from the command above.

===
SOLVING constraints
At file part.sv, line 20, serial 3

Rng state is:
01x0z11xzxxx11zx1xz0zx100zxxzzz0zxxzzzzxzzzxxzxzzzzzxzzzzz
xxzxxz
Virtual class C, Static class C

…
Solving Partition 1 (mode = 2)

rand bit signed [7:0] y; // rand_mode = ON
rand bit signed [7:0] p; // rand_mode = ON
rand bit signed [7:0] x; // rand_mode = ON

...

Solving Partition 2 (mode = 2)

rand bit signed [7:0] n; // rand_mode = ON

...

14-10

Using Constraints

Solving Partition 3 (mode = 2)

rand bit signed [7:0] q; // rand_mode = ON

...

Solving Partition 4 (mode = 2)

bit signed [7:0] fv_3 /* this .C::bigadd(x , q) */ = -127;
rand bit signed [7:0] z; // rand_mode = ON
rand bit signed [7:0] m; // rand_mode = ON

It is required to specify the randomize() call(s) and/or partitions(s)
to report the solver trace details. For example:

The following command reports the solver trace for the second
randomize() call and all partitions within this randomize() call of
the simulation.

simv +ntb_solver_debug=trace +ntb_solver_debug_filter=2

The following command reports the solver trace for the third partition
of the fifth randomize() call of the simulation.

simv +ntb_solver_debug=trace +ntb_solver_debug_filter=5.3

If the solver trace is to be enabled for multiple randomize calls, you
can specify the list of random serial and, optionally, partition numbers
in a comma separated list for the +ntb_solver_debug_filter
option. For example: the following command reports the solver
traces for the following randomize() calls and their partitions:

• Serial number 2, all partitions of this second randomize() call

• Serial number 5, just the third partition of this fifth randomize()
call

14-11

Using Constraints

• Serial number 10, all partitions of this tenth randomize() call

• Serial number 15, just the 30th partition of this 15th randomize()
call.

simv +ntb_solver_debug=trace \
+ntb_solver_debug_filter=2,5.3,10,15.30

The following command reports the solver traces for the
randomize() calls or partitions listed in a text file, for example if
serial_trace.txt is the file name.

simv +ntb_solver_debug=trace \
+ntb_solver_debug_filter=file:serial_trace.txt

The following command reports the solver traces for all
randomize() calls in the simulation. Be aware that this may
produce a lot of data if there are many randomize() calls in the
simulation.

simv +ntb_solver_debug=trace +ntb_solver_debug_filter=all

or

simv +ntb_solver_debug=trace_all

The +ntb_solver_debug_filter is not needed on the second
simv command line.

Note:
Reporting solver traces for all randomize() calls can generate
very large data files. Using the +ntb_solver_debug=trace
and +ntb_solver_debug_filter=serial_num|file
options and arguments limit the solver trace reports to the one(s)
on which you want to focus the constraint debug.

14-12

Using Constraints

Constraint debugging capability is also in DVE, including a similar
solver trace capability to understand the details of a randomize()
call and many graphical user interface features, such as cross
probing, search, and filters to make debugging constraints faster and
easier. For more information see the DVE User Guide.

Constraint Profiler

To debug any performance related issues, profiling is required to
identify the top consumers of time/memory. VCS provides a
constraint profiler feature that can be enabled by using the
+ntb_solver_debug=profile runtime option and keyword
argument.

simv +ntb_solver_debug=profile

This simv command line runs the simulation and collects runtime
and memory data on each of the randomize() calls in the
simulation. The randomize calls/partitions that take the most time
and memory will be listed out in a constraint profile report in the file
simv.cst/html/profile.xml, where simv is the name of the
simulation executable.

To view the constraint profile report in simv.cst/html/
profile.xml, open the file with the Firefox or Chrome web
browser. Viewing this file in Internet Explorer on Windows is not
supported.

The random serial numbers for the randomize calls and/or partitions
that take the most time are listed in the simv.cst/
serial2trace.txt file.

14-13

Using Constraints

Note:
The unified profiler also does constraint profiling. The Unified
profiler is an LCA feature, for more information see the VCS MX/
VCSi MX LCA Features book.

Test Case Extraction

The solver trace shows the list of variables and constraints for each
of the partitions. By wrapping this data inside a SystemVerilog class
in a program block, you can create a standalone test case to compile
and simulate to shorten the debug time. If you wishes to try different
things to better understand the solver behavior and or to fix the
constraint issue, you can do it on this extracted test case instead of
the original design to save compile and run time.

To enable test case extraction, you can enable solver trace reporting
by using the +ntb_solver_debug=extract runtime option and
keyword argument. You must specify the specific randomize()
call(s) to extract the test cases for using the
+ntb_solver_debug_filter option.

For example, test case extraction is enabled for the second
randomize call, that is randomize serial number = 2:

simv +ntb_solver_debug=extract +ntb_solver_debug_filter=2

This extracts a test case for each of the partitions of the
randomize() call. Extracted test cases are saved in the
simv.cst/testcases directory, where simv is the name of the
simulation executable. The extracted test cases follow this naming
convention:

extracted_r_serial#_p_partition#.sv

14-14

Using Constraints

Once extracted, you can follow the commands below to compile and
run the standalone test case. For example, to simulate the extracted
test case for the third partition of the second randomize() call of
the original design:

cd simv.cst/testcases
vcs –sverilog extracted_r_2_p_3.sv -R

Similar to reporting solver traces for a single partition or for multiple
randomize() calls and their partitions, you can enable test case
extraction for these too. For example:

simv +ntb_solver_debug=extract \
+ntb_solver_debug_filter=5.3

simv +ntb_solver_debug=extract \
+ntb_solver_debug_filter=2,5.3,10,15.30

simv +ntb_solver_debug=extract \
+ntb_solver_debug_filter=file:serial_trace.txt

Note:
You can only extract test cases from a partition. If VCS fails before
any partition is created, test case extraction does not work.

When VCS encounters a randomize() call that has no solution or
has constraint inconsistencies, VCS MX automatically extracts a test
for it and saves the extracted test case using the following naming
convention:

simv.cst/testcases/
extracted_r_serial#_p_partition#_inconsistency.sv

14-15

Using Constraints

When VCS fails to solve a randomize() call due to solver time
outs, test case extraction is also automatically enabled for it and
VCS saves the extracted test case using the following naming
convention:

simv.cst/testcases/
extracted_r_serial#_p_partition#_timeout.sv

Using multiple +ntb_solver_debug arguments

To use multiple +ntb_solver_debug arguments such as serial,
trace, extract, and profile, you can use pluses (+) to combine
them, for example:

simv +ntb_solver_debug=serial+trace+extract \
+ntb_solver_debug_filter=3,4

Summary for +ntb_solver_debug

The runtime option +ntb_solver_debug provides you with many
constraint debug features to debug constraints in batch mode.

+ntb_solver_debug=serial

The serial number assignment to the randomizations in a simulation
provides a method to identify the randomize() calls to be
debugged next. Once identified, you can use this runtime option with
appropriate arguments to report the trace and extract test cases.
The constraint profiler also uses the same identification method to
provide feedback to you which specific randomize() calls to
optimize for best performance improvements.

14-16

Using Constraints

+ntb_solver_debug=trace

This enables solver trace reporting for the specified randomize()
calls. This helps the user to understands how VCS solves the
random variables for given randomize calls. The
+ntb_solver_debug_filter option is required to specify a list of
randomize() calls for which to enable the solver trace.

+ntb_solver_debug=profile

This enables constraint profiling for the simulation at runtime. The
profile report provides important information to you which randomize
calls should be targeted for improving constraint performance to
bring down the total simulation run time or memory.

+ntb_solver_debug=extract

This enables test case extraction for the specified randomize calls.
This creates standalone test cases for you to compile and run
outside of the original design. This should help quicker turnaround
time to experiment possible fixes as it is faster to compile and run a
smaller test case. The +ntb_solver_debug_filter option is
required to specify a list of randomize calls for which to enable test
case extraction.

Constraint Debug Using DVE

Constraint debug is supported in DVE. Please refer to DVE User
Guide for more details.

14-17

Using Constraints

Constraint Guard Error Suppression

If a guard expression is false, and if there are no other errors during
randomization, VCS suppresses errors in the implied expressions of
guard constraints. For example, here is a sample error message that
VCS now suppresses:

Error-[CNST-NPE] Constraint null pointer error
test_guard.sv, 27
 Accessing null pointer obj.x in constraints.
 Please make sure variable obj.x is allocated.

Guarded constraints are defined in the SystemVerilog LRM (section
13.4; especially sections 13.4.5, 13.4.6, and 13.4.12).

The VCS constraint solver does not distinguish between implication
(LRM section 13.4.5) and if-else constraints (LRM section
13.4.6). They are equivalent representations in the VCS constraint
solver. We call them guarded constraints in this document.

Hence, the two formats shown in Example 14-1 are equivalent inside
the VCS constraint solver.

Example 14-1 Guarded Expressions

if (a | b | c)
{
obj.x == 10;
}

-or-

(a | b | c) -> (obj.x == 10);

14-18

Using Constraints

In Example 14-1, the expression inside the if condition (or the left
side of the implication operator) is the guard expression. The
remaining part of the expression (the right side of the implication
operator) is the implied expression.

Note:
If there are other types of errors or conflicts, VCS does not
guarantee suppression of those errors in the implied expression
of the guard constraint.

The LRM says that the implication operator (or the if-else
statement) should be at the top level of each constraint. Therefore,
a constraint may have at most one guard (or one implication
operator).

Error Message Suppression Limitations

The constraint guard error message suppression feature has some
limitations, as explained in the following sections:

• “Flattening Nested Guard Expressions” on page 18

• “Pushing Guard Expressions into Foreach Loops” on page 19

Flattening Nested Guard Expressions

If there are multiple nested guards for a constraint, VCS combines
them into one guard. For example, given the following code:

 if (a)
 {
 if (b)
 {
 if (c)

14-19

Using Constraints

 {
 obj.x == 10;
 }
 }
 }

VCS flattens the guard expression into the following equivalent code:

 if (a && b && c)
 {
 obj.x == 10;
 }

In the above example, if a is false, and b has an error (for example,
a null address error), VCS still generates the error message.

Pushing Guard Expressions into Foreach Loops

VCS pushes constraint guards into foreach loops. For example, if
you have:

 if (a | b | c)
 {
 foreach (array[i])
 {
 array[i].obj.x == 10;
 }
 }

VCS transforms it into the following equivalent code:

 foreach (array[i])
 {
 if (a | b | c)
 {
 array[i].obj.x == 10;
 }
 }

14-20

Using Constraints

In the above example, if a | b | c is false, and array has an
error (for example, a null address error), VCS still generates the error
message.

Array and XMR Support in std::randomize()

VCS allows you to use cross-module references (XMRs) in class
constraints and inline constraints, in all applicable contexts. Here,
XMR means a variable with static storage (anything accessed as a
global variable).

VCS std::randomize() support allow the use of arrays and
cross-module references (XMRs) as arguments.

VCS supports all types of arrays:

• fixed-size arrays

• associative arrays

• dynamic arrays

• multidimensional arrays

• smart queues

Note:
VCS does not support multidimensional, variable-sized arrays.

Array elements are also supported as arguments to
std::randomize().

VCS supports all types of XMRs:

14-21

Using Constraints

• class XMRs

• package XMRs

• interface XMRs

• module XMRs

• static variable XMRs

• any combination of the above

You can use arrays, array elements, and XMRs as arguments to
std::randomize().

Syntax

integer fa[3];
success= std::randomize(fa);
success= std::randomize(fa[2]);
success= std::randomize(pkg::xmr);

Example

module test;
integer i, success;
integer fa[3];
initial
begin

foreach(fa[i]) $display("%d %d\n", i, fa[i]);
success = std::randomize(fa);
foreach(fa[i]) $display("%d %d\n", i, fa[i]);

end
endmodule

When std::randomize() is called, VCS ignores any rand mode
specified on class member arrays or array elements that are used as
arguments. This is consistent with how std::randomize() is

14-22

Using Constraints

specified in the SystemVerilog LRM. This means that for purposes of
std::randomize() calls, all arguments have rand mode ON, and
none of them are randc.

Error Conditions

If you specify an argument to a std::randomize() array element
which is outside the range of the array, VCS prints the following error
message:

Error-[CNST-VOAE] Constraint variable outside array error

Random variables are not allowed as part of an array index.

If you specify an XMR argument in a std::randomize() call, and
that XMR that cannot be resolved, VCS prints an error message.

XMR Support in Constraints

You can use XMRs in class constraints and inlined constraints. You
can refer to XMR variables directly or by specifying the full
hierarchical name, where appropriate. You can use XMRs for all data
types, including scalars, enums, arrays, and class objects.

VCS supports all types of XMRs:

• class XMRs

• package XMRs

• interface XMRs

• module XMRs

14-23

Using Constraints

• static variable XMRs

• any combination of the above

Syntax

constraint general
{
varxmr1 == 3;
pkg::varxmr2 == 4;
}

c.randomize with { a.b == 5; }

Examples

Here is an example of a module XMR:

// xmr from module
module mod1;
 int x = 10;
class cls1;

rand int i1 [3:0];
rand int i2;

constraint constr
{
foreach(i1[a]) i1[a] == mod1.x;
}

endclass

cls1 c1 = new();
initial
begin

c1.randomize() with {i2 == mod1.x + 5;};
end
endmodule

Here is an example of a package XMR:

package pkg;
typedef enum {WEAK,STRONG} STRENGTH;

14-24

Using Constraints

class C;
static rand STRENGTH stren;

endclass

pkg::C inst = new;
endpackage

module test;
import pkg::*;
initial
begin

inst.randomize() with {pkg::C::stren == STRONG;};
$display("%d", pkg::C::stren);

end
endmodule

Functional Clarifications

XMR resolution in constraints (that is, choosing to which variable
VCS binds an XMR variable) is consistent with XMR resolution in
procedural SystemVerilog code. VCS first tries to resolve an XMR
reference in the local scope. If the variable is not found in the local
scope, VCS searches for it in the immediate upper enclosing scope,
and so on, until it finds the variable.

If you specify an XMR variable that cannot be resolved in any parent
scopes of the constraint/scope where it is used, VCS errors out and
prints an error message.

XMR Function Calls in Constraints

VCS supports XMR function calls in class constraints, inlined
constraints, and std::randomize. You can refer to XMR functions
with or without specifying the full hierarchical name. XMR functions
can return and have as arguments all supported data types,
including scalar data types, enums, arrays, and class objects.

14-25

Using Constraints

State Variable Index in Constraints

VCS supports the use of state variables as array indexes in
constraints and inline constraints, in all applicable contexts. These
state variables must evaluate to the same type required by the index
type of the array to which they are addressed.

Note:
String-type state variables in array indexes are not supported.

VCS supports the set of expressions (operators and constructs) that
also work with loop variables as array indices in constraints. The set
of supported expressions is restricted in the sense that they must
evaluate in the constraint framework.

Runtime Check for State Versus Random Variables

VCS supports state variables for array indexes, but not random
variables, so the tool performs runtime checks for the randomness
of the variable. The randomness may be affected if the variable is
aliased (due to object hierarchy, module hierarchy, or XMR). When
this runtime check finds a random variable being used as an array
index, the tool issues an error message.

To differentiate random versus state variables, VCS uses the
following scheme:

• For randomize with a list of arguments (std::randomize or
obj.randomize), variables or objects in the argument list are
considered to be random. Variables or objects outside the list (and
not aliased by the random objects) are considered to be state
variables.

14-26

Using Constraints

• For randomize without a list of arguments (obj.randomize)
variables declared as non-random, or declared as random but
with rand mode OFF, are considered to be state variables.

Array Index

The variable (or supported expression) used for an array index must
be an integral data type. If the value of the expression or the state
variable evaluates out of bounds, comes to a negative index value,
references a non-existent array member, or contains X or Z, VCS
issues a runtime error message.

Using Soft Constraints in SystemVerilog

Input stimulus randomization in SystemVerilog is controlled by user-
specified constraints. If there is a conflict between two or more
constraints, the randomization fails.

To solve this problem, you can use soft constraints. Soft constraints
are constraints that VCS disables if they conflict with other
constraints.

VCS use a deterministic, priority-based mechanism to disable soft
constraints. When there is a constraint conflict, VCS disables any
soft constraints in reverse order of priority (that is, the lowest priority
soft constraint is disabled first) until the conflict is resolved. The
following sections explain how to use soft constraints with VCS:

• “Using Soft Constraints” on page 27

• “Soft Constraint Prioritization” on page 28

14-27

Using Constraints

• “Soft Constraints Defined in Classes Instantiated as rand
Members in Another Class” on page 29

• “Soft Constraints Inheritance Between Classes” on page 31

• “Soft Constraints in AOP Extensions to a Class” on page 32

• “Soft Constraints in View Constraints Blocks” on page 34

• “Discarding Lower-Priority Soft Constraints” on page 34

Using Soft Constraints

Use the soft keyword to identify soft constraints. Constraints not
defined as soft constraints are hard constraints. Example 14-2
shows a soft constraint.

Example 14-2 Soft Constraint

class A;
 rand int x;
constraint c1 {

soft x > 2; // soft constraint
}
endclass

Example 14-3 shows a hard constraint.

Example 14-3 Hard Constraint

class A;
 rand int x;
constraint c1 {

x > 2; // hard constraint
}
endclass

14-28

Using Constraints

Soft Constraint Prioritization

VCS determines the priorities of soft constraints according to the set
of rules described in this section. In general, VCS assigns increasing
priorities to soft constraints as they climb the following list:

• Class parents in the inheritance graph

• Class members

• Soft constraints in the class itself

• Soft constraints in any extends blocks applied to a class

In this schema, soft constraints in any extends blocks applied to a
class are assigned the highest priority.

In this documentation, we use the following notation to describe the
priority of a given soft constraint (SC):

priority(SCx)

If the following is true:

priority(SC2) > priority(SC1)

then VCS disables constraint SC1 before constraint SC2 when there
is a conflict.

Within a Single Class

VCS assigns soft constraints declared within a class increasing
priority by order of declaration. Soft constraints that appear later in
the class body have higher priority than soft constraints that appear
earlier in the class body.

14-29

Using Constraints

For example, in Example 14-4, priority(SC2) > priority(SC1).

Example 14-4 SC2 Higher Priority than SC1

class A;
rand int x;

constraint c1 {
soft x > 10; // SC1
soft x > 5; // SC2
}

endclass

In Example 14-5, priority(SC2) > priority(SC1).

Example 14-5 SC2 Higher Priority than SC1

class A;
rand int x;

constraint c1 {
soft x > 10; // SC1
}

constraint c2 {
soft x > 5; // SC2
}

endclass

Soft Constraints Defined in Classes Instantiated as rand
Members in Another Class

VCS assigns soft constraints declared within rand members of
classes increasing priority by order of member declaration. In
Example 14-6 on page 30, the soft constraints contributed by
C.objB are higher priority than the soft constraints contributed by
C.objA because C.objB is declared after C.objA within class C.

14-30

Using Constraints

Example 14-6 on page 30 also shows why some soft constraints are
dropped, instead of honored, because of the relative priorities
assigned to soft constraints:

• // objC.x = 4 because SC6 is honored.

• // objC.objA.x = 4 because priority(SC4) > priority(SC1).

Here, SC4 is honored and SC1 is dropped. If SC1 were not
dropped, it would have caused a conflict because objA.x cannot
be 4 (objC.x in SC4) and 2 (SC1) at the same time.

• // objC.objB.x = 5 because priority(SC5) > priority(SC3) >
priority(SC2).

Here, SC5 is honored and SC3 is dropped (otherwise, SC3 would
conflict with SC5). SC2 is honored because it does not conflict
with SC5. By honoring SC2, objC.objB.x = 5.

Example 14-6 SC3 Higher Priority than SC2 and SC1

class A;
rand int x;
constraint c1 { soft x == 2; } // SC1

endclass

class B;
rand int x;
constraint c2 { soft x == 5; } // SC2
constraint c3 { soft x == 3; } // SC3

endclass

class C;
rand int x;
rand A objA;
rand B objB;
constraint c4 { soft x == objA.x; } // SC4
constraint c5 { soft objA.x < objB.x; } // SC5
constraint c6 { soft x == 4; } // SC6

14-31

Using Constraints

function
new(); objA = new; objB = new;

endfunction
endclass

program test;
C objC;
initial begin

objC = new;
objC.randomize();
$display(objC.x); /// should print "4"
$display(objC.objA.x); // should print "4"
$display(objC.objB.x); // should print "5"

end
endprogram

For array members where objects are allocated prior to
randomization, priorities are assigned in increasing order by position
in the array, where soft constraints in element N have lower priority
than soft constraints in element N+1.

For array members where the objects are allocated during
randomization, all soft constraints in allocated objects and their base
classes and member classes have the same priority.

Soft Constraints Inheritance Between Classes

Soft constraints in an inherited class have a higher priority than soft
constraints in its base class. For example, in Example 14-7,
priority(SC2) > priority(SC1).

Example 14-7 SC2 Higher Priority than SC1

class A;
rand int x;
constraint c1 {

 soft x > 2; // SC1

14-32

Using Constraints

}
endclass

class B extends A;
constraint c1 {

soft x > 3; // SC2
}

endclass

Soft Constraints in AOP Extensions to a Class

VCS assigns soft constraints added to a class through an extends
construct higher priority than soft constraints already in the class. For
example, in Example 14-8, priority(SC2) > priority(SC1).

Example 14-8 SC2 Higher Priority than SC1

class A;
rand int x;
constraint c1 {

soft x > 2; // SC1
}

endclass

extends A_aop1(A);
constraint c2 {

soft x > 3; // SC2
}

endextends

VCS assigns priorities to multiple soft constraints in a single
extends block in the same manner as in a class.

By default, VCS assigns extends blocks appearing later in a given
file higher priority than those appearing earlier. The prioritization
between extends blocks in different files depends on compilation
order.

14-33

Using Constraints

You can explicitly define priorities between extends blocks using
the dominates keyword. If extends block A is described as
explicitly dominating extends block B, then the constraints in A
have higher priority than those in B. For example, in Example 14-9,
priority(SC5) > priority(SC4) > priority(SC3) > priority(SC2) >
priority(SC1).

Example 14-9 SC5 Higher Priority than SC1

class A;
rand int x;
constraint c1 {

soft x > 2; // SC1
}

endclass

extends A_aop2(A) dominates (A_aop1);
constraint c3 {

soft x > 4; // SC3
}
constraint c4 {

soft x == 5; // SC4
}

endextends

extends A_aop4(A);
constraint c5 {

soft x == 5; // SC5
}

endextends

extends A_aop1(A);
constraint c2 {

soft x > 3; // SC2
}

endextends

14-34

Using Constraints

Soft Constraints in View Constraints Blocks

VCS assigns soft constraints within a view constraint block
increasing priority by order of declaration. Soft constraints that
appear later have higher priority than those that appear earlier. For
example, in Example 14-10, priority(SC3) > priority(SC2) >
priority(SC1).

Example 14-10 SC3 Higher Priority than SC1

class A;
rand int a;
rand int b;
constraint c1 {

soft a == 2; // SC1
}

endclass

A objA;
objA.randomize () with {
soft a > 2; // SC2
soft b == 1; // SC3
}

Discarding Lower-Priority Soft Constraints

You can use a disable soft constraint to discard lower-priority
soft constraints, even when they are not in conflict with other
constraints (see Example 14-11).

Example 14-11 Discarding Lower-Priority Soft Constraints

class A;
rand int x;
constraint A1 {soft x == 3;}
constraint A2 {disable soft x;} // discard soft constraints
constraint A3 {soft x inside {1, 2};}

14-35

Using Constraints

endclass
initial begin
A a= new();
a.randomize();
end

In Example 14-11, constraint A2 tells the solver to discard all soft
constraints of lower priority on random variable x. This results in
constraint A1 being discarded. Now, only the last constraint (A3)
needs to be honored. This example results in random variable x
taking the values 1 and 2.

A disable soft constraint causes lower-priority soft constraints to
be discarded even when they are not in conflict with other
constraints. This feature allows you to introduce fresh soft
constraints which replace default values specified in preceding soft
constraints (see Example 14-12).

Example 14-12 Specifying Fresh Soft Constraints

class B;
rand int x;
constraint B1 {soft x == 5;}
constraint B2 {disable soft x; soft x dist {5, 8};}
endclass
initial begin
B b = new();
b.randomize();
end

In Example 14-12, the disable soft constraint preceding the
soft dist in block B2 causes the lower-priority constraint on
variable x in block B1 to be discarded. Now, the solver assigns the
values 5 and 8 to x with equal distribution (the result from the fresh
constraint: soft x dist {5,8}).

14-36

Using Constraints

Compare the behavior of Example 14-12 with Example 14-13, where
the disable soft constraint is omitted.

Example 14-13 Specifying Additional Soft Constraints

class B;
rand int x;
constraint B1 {soft x == 5;}
constraint B3 {soft x dist {5, 8};}
endclass
initial begin
B b = new();
b.randomize();
end

In Example 14-13, the soft dist constraint in block B3 can be
satisfied with a value of 5, so the solver assigns x the value 5. If you
want the distribution weights of a soft dist constraint to be
satisfied regardless of the presence of lower-priority soft constraints,
you should first use a disable soft to discard those lower-priority
soft constraints.

Using DPI Function Calls in Constraints

VCS supports calling DPI functions directly from constraints. These
DPI function calls must be pure and cannot have any side effects, as
per the SystemVerilog LRM (Section 18.5.11 of Std. 1800-2009). For
more information on DPI function call contexts (pure and non-pure),
see Section 35 of the SystemVerilog LRM.

Following are some examples of valid import DPI function
declarations that you can call from constraints:

import "DPI-C" pure function int func1();
import "DPI-C" pure function int func2(int a, int b);

14-37

Using Constraints

Example 14-14 shows a pure DPI function in C.

Example 14-14 Pure DPI Function in C

#include <svdpi.h>

int dpi_func (int a, int b) {
return (a+b); // Result depends solely on its inputs.

}

Example 14-15 shows how to call a pure DPI function from
constraints.

Example 14-15 Invoking a Pure DPI Function from Constraints

import "DPI-C" pure function int dpi_func(int a, int b);
class C;

rand int ii;
constraint cstr {

ii == dpi_func(10, 20);
}

endclass

program tb;
initial begin

C cc;
cc = new;
cc.randomize();

end
endprogram

Invoking Non-pure DPI Functions from Constraints

VCS issues an error message when it detects a call to any context
DPI function or other import DPI function for which the context is not
specified or the import property is not specified as pure. VCS issues

14-38

Using Constraints

this error even if the DPI function actually has no side effects. To
prevent this kind of error, explicitly mark the DPI function import
declaration with the pure keyword.

For example, running Example 14-16 with the C code shown in
Example 14-14 on page 37 results in an error because the import
DPI function is not explicitly marked as pure.

Example 14-16 Invoking a DPI Function Not Marked pure from Constraints.

import "DPI-C" function int dpi_func(int a, int b);
// Error: Only functions explicitly marked as
// pure can be called from constraints

class C;
rand int ii;
constraint cstr {

ii == dpi_func(10, 20);
}

endclass

program tb;
initial begin

C cc;
cc = new;
cc.randomize();

end
endprogram

Similarly, running Example 14-17 with the C code shown in
Example 14-14 on page 37 results in an error because context
import DPI functions cannot be called from constraints.

Example 14-17 Invoking a context DPI Function from Constraints

import "DPI-C" context function int dpi_func(int a, int b);

// Error: Calling 'context' DPI function
// from constraint is illegal.

14-39

Using Constraints

class C;
rand int ii;
constraint cstr {

ii == dpi_func(10, 20);
}

endclass

program tb;
initial begin

C cc;
cc = new;
cc.randomize();

end
endprogram

Calling an import DPI function that is explicitly marked pure (as
shown in Example 14-14 on page 37) has undefined behavior if the
actual implementation of the function does things that are not pure,
such as:

• Calling DPI exported functions/tasks.

• Accessing SystemVerilog data objects other than the function’s
actual arguments (for example, via VPI calls).

For example, Example 14-18 has undefined behavior (and may even
cause a crash).

Example 14-18 Non-pure DPI Function in C

#include <stdio.h>
#include <stdlib.h>
#include "svdpi.h"

int readValueOfBFromFile(char * file) {
int result = 0;

char * buf = NULL;
FILE * fp = fopen(file, "r");

// Read the content of the file in 'buf' here...

14-40

Using Constraints

 ...

if (buf) return strlen(buf);
else return 0;

}

int dpi_func () {

 char * str = getenv("ENV_VAL_OF_A");
 int a = str ? atoi(str) : -1;
 int b = readValueOfBFromFile("/some/file");
 int c;

 svScope scp = svGetScopeFromName("$unit");
 if (scp == NULL) {
 fprintf(stderr, "FATAL: Cannot set scope to $unit\n");
 exit(-1);
 }
 svSetScope(scp);

 c = export_dpi_func();
 return (a+b+c);
}

Example 14-19 shows a DPI function marked pure that is actually
doing non-pure activities. This results in an error.

Example 14-19 DPI Function Marked pure but Non-pure Activities

import "DPI-C" pure function int dpi_func();
export "DPI-C" function export_dpi_func;

function int export_dpi_func();
return 10;

endfunction

class C;
rand int ii;
constraint cstr {

ii == dpi_func();
}

14-41

Using Constraints

endclass

program tb;
initial begin

C cc;
cc = new;
cc.randomize();

end
endprogram

So make sure that DPI functions called from constraints explicitly
use the pure keyword. Also make sure that the DPI function
corresponding foreign language implementation is indeed pure (that
is, has no side effects).

Using Foreach Loops Over Packed Dimensions in
Constraints

VCS supports foreach loops over the following kinds of packed
dimensions in constraints:

• “Memories with Packed Dimensions” on page 42

• “MDAs with Packed Dimensions” on page 43

You do not need to set any special compilation or runtime switches
to make this work. VCS MX supports foreach loop variables for
entirely packed dimensions of an array. For more information, see
the section “The foreach Iterative Constraint for Packed Arrays” on
page 44.

14-42

Using Constraints

Memories with Packed Dimensions

You can use foreach loops over memories with single or multiple
packed dimensions, as shown in the following examples.

Single Packed Dimension

class C;
rand bit [5:2] arr [2];
constraint Cons {

foreach(arr[i,j]) {
arr[i][j] == 1;

}
}
endclass

Multiple Packed Dimensions

class C;
rand bit [3:1][5:2] arr [2];
constraint Cons {

foreach(arr[i,j,k]) {
arr[i][j][k] == 1;

}
}
endclass

14-43

Using Constraints

MDAs with Packed Dimensions

You can use foreach loops over MDAs with single or multiple packed
dimensions, as shown in the following examples.

Single Packed Dimension

class C;
rand bit [5:2] arr [2][3];
constraint Cons {

foreach(arr[i,j,k]) {
arr[i][j][k] == 1;

}
}
endclass

Multiple Packed Dimensions

class C;
rand bit [-1:1][5:2] arr [2][3];
constraint Cons {

foreach(arr[i,j,k,l]) {
arr[i][j][k][l] == 1;}

}
}
endclass

Just Packed Dimensions

class C;
rand bit [5:2] arr1;
rand bit [-1:0][5:2] arr2;
constraint Cons1 {
foreach(arr1[i]) {
arr1[i] == 1;
}
}

14-44

Using Constraints

Constraint Cons2 {
 foreach(arr2[i,j]) {
 arr2[i][j] == 1;
}
}
endclass

VCS does not create implicit constraints that guarantee the array
indexed by the variable (or expression) is valid. You must properly
constrain or set the variable value so that the array is correctly
addressed.

VCS also supports associative array indices. The indexes of these
arrays may be integral data types or strings if the associative array
is string-indexed. However, you cannot use expressions for
associative arrays.

The foreach Iterative Constraint for Packed Arrays

VCS MX has implemented foreach loop variables for entirely
packed dimensions of an array in the constraint context.

In previous releases up to 2011.12-2, a foreach loop for the
dimensions of a multi-dimensional array in the constraint context
required that at least one of the dimensions be unpacked. That
restriction is removed, a multi-dimensional packed array in the
constraint context is now fully supported.

The following code example illustrates this implementation.

14-45

Using Constraints

Example 14-20 The foreach Iterative Constraint for Packed Arrays

In previous releases at least one of the dimensions of MDA array
needed to be unpacked.

This code example results in the following error message in previous
releases:

Error-[NYI-UFAIFE] NYI constraint: packed dimensions
doc_ex.sv,9
prog, "this.arr"
 arr has only packed dimensions and no unpacked dimensions.
 Foreach over packed dimensions is supported if the object
has at least one
 unpacked dimension.

1 error

program prog;

class my_class;

 rand reg [2][2][2][2] arr;

 constraint constr {

 foreach (arr[i,j,k,l]) {

 (i==0) -> arr [i][j][k][l] == 1;

 (i==1) -> arr [i][j][k][l] == 0;
 }
 }
endclass

endprogram

all dimensions packed

14-46

Using Constraints

Starting with release F-2011.12-3 and G-2012.09, entirely packed
arrays in the constraint context are not an error condition and do not
result in this error message.

Randomized Objects in a Structure

VCS MX has implemented randomized objects in a structure. The
following code example illustrates this implementation.

Example 14-21 Randomized Object in a Structure

function new();
 this.hd.p1 = new;
endfunction

endclass

packet_test pt = new;

initial begin
 pt.randomize(hd);
 end
endprogram

program test;

 class packet;
 randc int addr = 1;
 int crc;
 rand byte data [] = {1,2,3,4};
 endclass
class packet_test;
 typedef struct {
 rand packet p1;
 } header;
 header hd;

randomized object
in a structure

14-47

Using Constraints

In previous releases declaring this class in a structure with the rand
type-modifier keyword resulted in the following error message:

Error-[SV-NYI-CRUDST] Rand class object under structure
code_ex_rand_struct.sv, 10
"p1"
 Rand class objects which defined under structure is not
yet supported.

1 error

This code example compiles and runs without any errors since rand
class objects inside a structure are implemented.

15-49

Extensions for SystemVerilog Coverage

15
Extensions for SystemVerilog Coverage 2

The extensions for SystemVerilog coverage include the following:

• “Support for Reference Arguments in get_coverage()”

• “Functional Coverage Methodology Using the SystemVerilog C/
C++ Interface”

Support for Reference Arguments in get_coverage()

The Systemverilog LRM provides several pre-defined methods for
every covergroup, coverpoint, or cross. See “Predefined Coverage
Methods” in Clause 18 of the SystemVerilog Language Reference
Manual for VCS/VCS MX for information. Two of these pre-defined
methods, get_coverage() and get_inst_coverage(),
support optional arguments.

15-50

Extensions for SystemVerilog Coverage

You can use the get_coverage() and get_inst_coverage()
predefined methods to query on coverage during the simulation run,
so that you can react to the coverage statistics dynamically.

The get_coverage() and get_inst_coverage() methods both
accept, as optional arguments, a pair of integer values passed by
reference.

get_inst_coverage() method

When the optional arguments are entered with the method in
coverpoint scope or cross scope, the get_inst_coverage()
method assigns to the first argument the value of the covered bins,
and assigns to the second argument the number of bins for the given
coverage item. These two values correspond to the numerator and
the denominator used for calculating the coverage score (before
scaling by 100).

In covergroup scope, the get_inst_coverage() method assigns
to the first argument the weighted sum of coverpoint and cross
coverage, rounded to the nearest integer, and assigns to the second
argument the sum of the weights of the coverpoint or cross items.

get_coverage() method

The numerator and denominator assigned by the get_coverage()
method depend on the scope.

In covergroup scope, get_coverage() assigns to its first
argument the weighted sum of the coverage of merged coverpoints
and crosses.

15-51

Extensions for SystemVerilog Coverage

In coverpoint or cross scope the first argument to get_coverage()
is assigned the number of covered bins in the merged coverpoint or
cross, and the second argument is assigned the total number of bins.

In all cases, weighted sums are rounded to the nearest integer and
the second argument is set to the sum of weights.

Functional Coverage Methodology Using the
SystemVerilog C/C++ Interface

This section describes a SystemVerilog-based functional coverage
flow. The flow supports functional coverage features—data
collection, reporting, merging, grading, analysis, GUI, and so on.

The SystemVerilog functional coverage flow has the following
features:

• Performs RTL coverage using covergroups and cover properties.

• Performs C coverage using covergroups.

• Integrates easily with the existing testbench environment.

• Provides coverage analysis capabilities — reporting, grading
merging, and GUI.

• Has no negative impact on RTL simulation performance.

Functional coverage is very important in verifying correct
functionality of a design. SystemVerilog natively supports functional
coverage in RTL code.

15-52

Extensions for SystemVerilog Coverage

However, because C/C++ code is now commonly used in a design
(with PLI, DPI, DirectC, and so on), there is no systematic approach
to verify the functionality of C/C++.

The SystemVerilog C/C++ interface feature provides an application
programming interface (API) so that C/C++ code can use the
SystemVerilog functional coverage infrastructure to verify its
coverage.

Note:
When you use the SystemVerilog C/C++ interface feature, you
need include the header file svCovgAPI.h.

SystemVerilog Functional Coverage Flow

Figure 15-1 illustrates the functional coverage flow:

15-53

Extensions for SystemVerilog Coverage

Figure 15-1 SystemVerilog C/C++ Functional Coverage Flow

DPI is the SystemVerilog Direct Programming Interface. See
“SystemVerilog DPI” in the SystemVerilog Language Reference
Manual for VCS/VCS MX for details and examples of using DPI.

VPI is the Verilog Procedural Interface. See “SystemVerilog VPI
Object Model” in the SystemVerilog Language Reference Manual for
VCS/VCS MX for information about using VPI with SystemVerilog.

Covergroups are defined in SystemVerilog, and then they are used
to track the functional coverage of C/C++ code through the C-API (C
Application Programming Interface). There are two major parts to C/
C++ functional coverage interface:

• Covergroup(s)

• The C/C++ testbench using those covergroups

RTL & C Testbench (C++)

RTL Design

Wrapper Module

Coverage DB

Coverage

DPI

DPI

VPI

C-API

15-54

Extensions for SystemVerilog Coverage

Covergroup Definition

The following section lists the covergroup limitations for C/C++
functional coverage. Covergroups

• Cannot have a sampling clock.

• Must be declared in $unit.

• Cannot be inside another scope (for example, modules,
programs, and so on).

• Must not be instantiated anywhere in else SystemVerilog code.

• Arguments can only be in int, enum (base type int), and bit

vector types. The SystemVerilog-to-C data-type mapping is
compliant with DPI. Table 15-1 shows the mapping of the
supported types:

Table 15-1 SystemVerilog-to-C Data-Type Mapping by DPI

• Definitions must appear in files that are separate from the DUT
because the definitions are compiled separately with the VCS
command-line option -c_covg.

After you define the covergroups, compile them with -c_covg (that
is, -c_covg <covergroup_file>). If you have multiple
covergroup files, you must precede each of them with the -c_covg
option (that is, -c_covg <cov_file1> -c_covg <cov_file2>
…).

SystemVerilog C

int int

bit unsigned char

bit[m:n] svBitVec32

enum int int

15-55

Extensions for SystemVerilog Coverage

The options -sverilog and +vpi are also needed when compiling
with -c_covg.

After compiling the covergroups to be used with C/C++, the C-API
allows for the allocation of covergroup handles, manual triggering of
the covergroup sample, and the ability to de-instance and free the
previously declared covergroup handle.

The following is a list of the C-API functions:

• svCovgNew / svCovgNew2

• svCovgSample / svCovgSample2

• svCovgDelete

Detailed specifications for these functions appear in “C/C++
Functional Coverage API Specification” .

The following examples demonstrate the use model.

SystemVerilog (Covergroup for C/C++): covg.sv

cp: coverpoint count {
 bins b = {data};
 …
}
endgroup

C Testbench: test.c

int my_c_testbench ()
{
svCovgHandle cgh;
// C variables
int data;
int count;

15-56

Extensions for SystemVerilog Coverage

Approach #1: Passing Arguments by Reference

// Create a covergroup instance; pass data as a value
// parameter and count as a reference parameter;
// coverage handle remembers references
cgh = svCovgNew(“cg”, “cg_inst”, SV_SAMPLE_REF, data,
&count);

// Sample stored references
svCovgSample(cgh); // sampling by the stored reference
...

// Delete covergroup instance
svCovgDelete(cgh);

Approach #2: Passing Arguments by Value

// Create a covergroup instance; pass data and count as
// value parameters
cgh = svCovgNew(“cg”, “cg_inst”, SV_SAMPLE_VAL, data,
count);

// Sample values passed for covergroup ref arguments
svCovgSample(cgh, count); // sampling the value of count
...

// Delete covergroup instance
svCovgDelete(cgh);

Compile Flow

Compile the coverage model (covg.sv) using -c_covg together
with the design and the C testbench

This step assumes that you invoke the C testbench from the design
dut.sv through some C interface (for example, DPI, PLI, and so
on). For example:

vcs –sverilog dut.sv test.c –c_covg +vpi covg.sv

15-57

Extensions for SystemVerilog Coverage

Runtime

At runtime (executing simv), the functional coverage data is
collected and stored in the coverage database.

C/C++ Functional Coverage API Specification

This section gives detailed specifications for the C/C++ functional
coverage C-API.

svCovgHandle svCovgNew (char* cgName, char* ciName, int
refType, args …);

svCovgHandle svCovgNew2 (char* cgName, char* ciName, int
refType, va_list vl);

Parameters
cgName

Covergroup name.

ciName

Covergroup instance name (should be unique).

refType

SV_SAMPLE_REF or SV_SAMPLE_VAL.

args…

A variable number of arguments for creating a new covergroup
instance.

15-58

Extensions for SystemVerilog Coverage

vl

Represents a C predefined data structure (va_list) for
maintaining a list of arguments.

Description

Create a covergroup instance using the covergroup and instance
names. If no error, return svCovgHandle, otherwise return NULL.
The C variable sampling type (either reference or value) is specified
using refType. The sampling type is stored in svCovgHandle. The
svCovgNew2 function is similar to svCovgNew except that you
provide it with a va_list, instead of a variable number of
arguments (represented by “…”) to svCovgNew.

For value sampling, pass values for non-reference and reference
arguments in the order specified in the covergroup declaration, and
set refType to SV_SAMPLE_VAL.

For reference sampling, pass values for non-reference arguments
and addresses for reference arguments in the order specified in the
covergroup declaration. References must remain valid during the life
of the covergroup instance. Set refType to SV_SAMPLE_REF.

Type checking is not performed for arguments. It is your
responsibility to pass correct values and addresses.

int svCovgSample(svCovgHandle ch, args …);

int svCovgSample2(svCovgHandle ch, va_list vl);

Parameters
ch

Handle to a covergroup instance created by svCovgNew().

15-59

Extensions for SystemVerilog Coverage

args

A variable number of arguments for sampling a covergroup by
value, if refType = SV_SAMPLE_VAL in svCovgNew().

vl

Represents a C predefined data structure (va_list) for
maintaining a list of arguments.

Description

Sample a covergroup instance using the sampling style stored in
svCovgHandle and return 1 (TRUE) if no error, otherwise return 0
(FALSE). The svCovgSample2 function is similar to
svCovgSample except that you provide a va_list, instead of a
variable number of arguments (represented by “…”), to
svCovgSample.

For value sampling, provide values for reference arguments in the
order specified in the covergroup declaration. Type checking is not
performed for value arguments. It is your responsibility to pass
correct values.

For reference sampling, use stored addresses for reference
arguments in svCovgHandle.

int svCovgDelete(svCovgHandle ch);

Parameters
ch

Handle to a covergroup instance created by svCovgNew() (or
svCovgNew2).

15-60

Extensions for SystemVerilog Coverage

Description

Delete a covergroup instance and return 1 (TRUE) if no error,
otherwise return 0 (FALSE).

16-1

OpenVera-SystemVerilog Testbench Interoperability

16
OpenVera-SystemVerilog Testbench
Interoperability 1

The primary purpose of OpenVera-SystemVerilog interoperability in
VCS MX Native Testbench is to enable you to reuse OpenVera
classes in new SystemVerilog code without rewriting OpenVera code
into SystemVerilog.

This chapter describes:

• “Scope of Interoperability”

• “Importing OpenVera types into SystemVerilog”

Using the SystemVerilog package import syntax to import
OpenVera data types and constructs into SystemVerilog.

16-2

OpenVera-SystemVerilog Testbench Interoperability

• “Data Type Mapping”

The automatic mapping of data types between the two languages
as well as the limitations of this mapping (some data types cannot
be directly mapped).

• “Connecting to the Design”

Mapping of SystemVerilog modports to OpenVera where they can
be used as OpenVera virtual ports.

• “Notes to Remember”

• “Usage Model”

• “Limitations”

Scope of Interoperability

The scope of OpenVera-SystemVerilog interoperability in VCS MX
Native Testbench is as follows:

• Classes defined in OpenVera can be used directly or extended in
SystemVerilog testbenches.

• Program blocks must be coded in SystemVerilog. The
SystemVerilog interface can include constructs like modports and
clocking blocks to communicate with the design.

• OpenVera code must not contain program blocks, bind
statements, or predefined methods. It can contain classes,
enums, ports, interfaces, tasks, and functions.

16-3

OpenVera-SystemVerilog Testbench Interoperability

• OpenVera code can use virtual ports for sampling, driving, or
waiting on design signals that are connected to the SystemVerilog
testbench.

Importing OpenVera types into SystemVerilog

OpenVera has two user-defined types: enums and classes. These
types can be imported into SystemVerilog by using the
SystemVerilog package import syntax:

import OpenVera::openvera_class_name;
import OpenVera::openvera_enum_name;

Allows one to use openvera_class_name in SystemVerilog code
in the same way as a SystemVerilog class. This includes the ability
to:

• Create objects of type openvera_class_name

• Access or use properties and types defined in
openvera_class_name or its base classes

• Invoke methods (virtual and non-virtual) defined in
openvera_class_name or its base classes

• Extend openvera_class_name to SV classes

However, this does not import the names of base classes of
openvera_class_name into SystemVerilog (that requires an
explicit import). For example:

// OpenVera
 class Base {
 .
 .

16-4

OpenVera-SystemVerilog Testbench Interoperability

 .
 task foo(arguments) {
 .
 .
 .
 }
 virtual task (arguments) {
 .
 .
 .
 }
 class Derived extends Base {
 virtual task vfoo(arguments) {
 .
 .
 .
 }
 }

// SystemVerilog
 import OpenVera::Derived;
 Derived d = new; // OK
 initial begin
 d.foo(); // OK (Base::foo automatically
 // imported)
 d.vfoo(); // OK
 end
 Base b = new; // not OK (don't know that Base is a
 //class name)

The previous example would be valid if you add the following line
before the first usage of the name Base.

import OpenVera::Base;

Continuing with the previous example, SystemVerilog code can
extend an OpenVera class as shown below:

// SystemVerilog
 import OpenVera::Base;

16-5

OpenVera-SystemVerilog Testbench Interoperability

 class SVDerived extends Base;
 virtual task vmt()
 begin
 .
 .
 .
 end
 endtask
 endclass

Note:
- If a derived class redefines a base class method, the arguments

of the derived class method must exactly match the arguments
of the base class method.

- Explicit import of each data type from OpenVera can be avoided
by a single import OpenVera::*.

// OpenVera
 class Base {

integer i;
 .
 .
 .
 }
 class wrappedBase {
 public Base myBase;
 }
// SystemVerilog
 import OpenVera::wrappedBase;
 class extendedWrappedBase extends wrappedBase;
 .
 .
 .
 endclass

In this example, myBase.i can be used to refer to this member of
Base from the SV side. However, if SV also needs to use objects of
type Base, then you must include:

16-6

OpenVera-SystemVerilog Testbench Interoperability

import OpenVera::Base;

Data Type Mapping

This section describes how various data types in SystemVerilog are
mapped to OpenVera and vice-versa:

• Direct mapping: Many data types have a direct mapping in the
other language and no conversion of data representation is
required. In such cases, we say that the OpenVera type is
equivalent to the SystemVerilog type.

• Implicit conversion: In other cases, VCS MX performs implicit type
conversion. The rules of inter-language implicit type conversion
follows the implicit type conversion rules specified in
SystemVerilog LRM. To apply SystemVerilog rules to OpenVera,
the OpenVera type must be first mapped to its equivalent
SystemVerilog type. For example, there is no direct mapping
between OpenVera reg and SystemVerilog bit. But reg in
OpenVera can be directly mapped to logic in SystemVerilog.
Then the same implicit conversion rules between SystemVerilog
logic and SystemVerilog bit can be applied to OpenVera reg
and SystemVerilog bit.

• Explicit translation: In the case of mailboxes and semaphores, the
translation must be explicitly performed by the user. This is
because in OpenVera, mailboxes and semaphores are
represented by integer ids and VCS MX cannot reliably
determine if an integer value represents a mailbox id.

16-7

OpenVera-SystemVerilog Testbench Interoperability

Mailboxes and Semaphores

Mailboxes and semaphores are referenced using object handles in
SystemVerilog whereas in OpenVera they are referenced using
integral ids.

VCS MX supports the mapping of mailboxes between the two
languages.

For example, consider a mailbox created in SystemVerilog. To use it
in OpenVera, you need to get the id for the mailbox somehow. The
get_id() function, available as a VCS MX extension to SV, returns
this value:

function int mailbox::get_id();

It will be used as follows:

// SystemVerilog
 mailbox mbox = new;
 int id;
 .
 .
 .
 id = mbox.get_id();
 .
 .
 .
 foo.vera_method(id);

// OpenVera
 class Foo {
 .
 .
 .
 task vera_method(integer id) {
 .

16-8

OpenVera-SystemVerilog Testbench Interoperability

 .
 .
 void = mailbox_put(data_type mailbox_id,
 data_type variable);
 }
 }

Once OpenVera gets an id for a mailbox/semaphore it can save it
into any integer type variable. Note that however if get_id is
invoked for a mailbox, the mailbox can no longer be garbage
collected because VCS MX has no way of knowing when the mailbox
ceases to be in use.

Typed mailboxes (currently not supported), when they are supported
in SystemVerilog can be passed to OpenVera code using the same
method as untyped mailboxes above. However, if the OpenVera
code attempts to put an object of incompatible type into a typed
mailbox, a simulation error will result.

Bounded mailboxes (currently not supported), when they are
supported in SystemVerilog can be passed to OpenVera code using
the same method as above. OpenVera code trying to do
mailbox_put into a full mailbox will result in a simulation error.

To use an OpenVera mailbox in SystemVerilog, you need to get a
handle to the mailbox object using a system function call. The
system function $get_mailbox returns this handle:

function mailbox $get_mailbox(int id);

It will be used as follows:

// SystemVerilog
 .
 .
 .

16-9

OpenVera-SystemVerilog Testbench Interoperability

 mailbox mbox;
 int id = foo.vera_method(); // vera_method returns an
 // OpenVera mailbox id
 mbox = $get_mailbox(id);

Analogous extensions are available for semaphores:

function int semaphore::get_id();
function semaphore $get_semaphore(int id);

Events

The OpenVera event data type is equivalent to the SystemVerilog
event data type. Events from either language can be passed (as
method arguments or return values) to the other language without
any conversion. The operations performed on events in a given
language are determined by the language syntax:

An event variable can be used in OpenVera in sync and trigger.
An event variable event1 can be used in SystemVerilog as follows:

event1.triggered //event1 triggered state property

->event1 //trigger event1

@(event1) //wait for event1

Strings

OpenVera and SystemVerilog strings are equivalent. Strings from
either language can be passed (as method arguments or return
values) to the other language without any conversion. In OpenVera,
null is the default value for a string. In SystemVerilog, the default

16-10

OpenVera-SystemVerilog Testbench Interoperability

value is the empty string (""). It is illegal to assign null to a string
in SystemVerilog. Currently, NTB-OV treats "" and null as distinct
constants (equality fails).

Enumerated Types

SystemVerilog enumerated types have arbitrary base types and are
not generally compatible with OpenVera enumerated types. A
SystemVerilog enumerated type will be implicitly converted to the
base type of the enum (an integral type) and then the bit-vector
conversion rules (section 2.5) are applied to convert to an OpenVera
type. This is illustrated in the following example:

// SystemVerilog
 typedef reg [7:0] formal_t; // SV type equivalent to
 // 'reg [7:0]' in OV
 typedef enum reg [7:0] { red = 8'hff, blue = 8'hfe,
 green = 8'hfd } color;
 // Note: the base type of color is 'reg [7:0]'
 typedef enum bit [1:0] { high = 2'b11, med = 2'b01,
 low = 2'b00 } level;
 color c;
 level d = high;
 Foo foo;
 ...
 foo.vera_method(c); // OK: formal_t'(c) is passed to
 // vera_method.
 foo.vera_method(d); // OK: formal_t'(d) is passed to
 // vera_method.
 // If d == high, then 8'b00000011 is
 // passed to vera_method.
// OpenVera
 class Foo {
 ...
 task vera_method(reg [7:0] r) {
 ...
 }
 }

16-11

OpenVera-SystemVerilog Testbench Interoperability

The above data type conversion does not involve a conversion in
data representation. An enum can be passed by reference to
OpenVera code but the formal argument of the OpenVera method
must exactly match the enum base type (for example: 2-to-4 value
conversion, sign conversion, padding or truncation are not allowed
for arguments passed by reference; they are OK for arguments
passed by value).

Enumerated types with 2-value base types will be implicitly
converted to the appropriate 4-state type (of the same bit length).
See the discussion in 2.5 on the conversion of bit vector types.

OpenVera enum types can be imported to SystemVerilog using the
following syntax:

import OpenVera::openvera_enum_name;

It will be used as follows:

// OpenVera
 enum OpCode { Add, Sub, Mul };

// System Verilog
 import OpenVera::OpCode;
 OpCode x = OpenVera::Add;

// or the enum label can be imported and then used
// without OpenVera::

 import OpenVera::Add;
 OpCode y = Add;

Note: SystemVerilog enum methods such as next, prev and
name can be used on imported OpenVera enums.

Enums contained within OV classes are illustrated in the following
example:

16-12

OpenVera-SystemVerilog Testbench Interoperability

class OVclass{
enum Opcode {Add, Sub, Mul};

}

import OpenVera::OVclass;
OVclass::Opcode SVvar;
SVvar=OVclass::Add;

Integers and Bit-Vectors

The mapping between SystemVerilog and OpenVera integral types
are shown in the following table:

Note:
If a value or sign conversion is needed between the actual and
formal arguments of a task or function, then the argument cannot
be passed by reference.

SystemVerilog OpenVera
2/4 or 4/2 value

conversion? Change in sign?

integer integer N
(equivalent types)

N (Both signed)

byte reg [7:0] Y Y

shortint reg [15:0] Y Y

int integer Y N (Both signed)

longint reg [63:0] Y Y

logic [m:n] reg [abs(m-n)+1:0] N
(equivalent types)

N (Both unsigned)

bit [m:n] reg [abs(m-n)+1:0] Y N (Both unsigned)

time reg [63:0] Y N (Both unsigned)

16-13

OpenVera-SystemVerilog Testbench Interoperability

Arrays

Arrays can be passed as arguments to tasks and functions from
SystemVerilog to OpenVera and vice-versa. The formal and actual
array arguments must have equivalent element types, the same
number of dimensions with corresponding dimensions of the same
length. These rules follow the SystemVerilog LRM.

• A SystemVerilog fixed array dimension of the form [m:n] is
directly mapped to [abs(m-n)+1] in OpenVera.

• An OpenVera fixed array dimension of the form [m] is directly
mapped to [m] in SystemVerilog.

Rules for equivalency of other (non-fixed) types of arrays are as
follows:

• A dynamic array (or Smart queue) in OpenVera is directly mapped
to a SystemVerilog dynamic array if their element types are
equivalent (can be directly mapped).

• An OpenVera associative array with unspecified key type (for
example integer a[]) is equivalent to a SystemVerilog
associative array with key type reg [63:0] provided the element
types are equivalent.

• An OpenVera associative array with string key type is
equivalent to a SystemVerilog associative array with string key
type provided the element types are equivalent.

Other types of SystemVerilog associative arrays have no equivalent
in OpenVera and hence they cannot be passed across the language
boundary.

16-14

OpenVera-SystemVerilog Testbench Interoperability

Some examples of compatibility are described in the following table:

A 2-valued array type in SystemVerilog cannot be directly mapped
to a 4-valued array in OpenVera. However, a cast may be performed
as follows:

// OpenVera
 class Foo {
 .
 .
 .
 task vera_method(integer array[5]) {
 .
 .
 . }
 .
 .
 .
 }
// SystemVerilog
 int array[5];
 typedef integer array_t[5];
 import OpenVera::Foo;
 Foo f;
 .
 .
 .
 f.vera_method(array); // Error: type mismatch
 f.vera_method(array_t'(array)); // OK
 .
 .
 .

OpenVera SystemVerilog Compatibility

integer a[10] integer b[11:2] Yes

integer a[10] int b[11:2] No

reg [11:0] a[5] logic [3:0][2:0] b[5] Yes

16-15

OpenVera-SystemVerilog Testbench Interoperability

Structs and Unions

Unpacked structs/unions cannot be passed as arguments to
OpenVera methods. Packed structs/unions can be passed as
arguments to OpenVera: they will be implicitly converted to bit
vectors of the same width.

packed struct {...} s in SystemVerilog is mapped to
reg [m:0] r in OpenVera where m == $bits(s).

Analogous mapping applies to unions.

Connecting to the Design

Mapping Modports to Virtual Ports

This section relies on the following extensions to SystemVerilog
supported in VCS MX.

Virtual Modports

VCS MX supports a reference to a modport in an interface to be
declared using the following syntax.

virtual interface_name.modport_name virtual_modport_name;

For example:

interface IFC;
 wire a, b;
 modport mp (input a, output b);
endinterface

16-16

OpenVera-SystemVerilog Testbench Interoperability

IFC i();
virtual IFC.mp vmp;
.
.
.
 vmp = i.mp;

Importing Clocking Block Members into a Modport

VCS MX allows a reference to a clocking block member to be made
by omitting the clocking block name.

For example, in SystemVerilog a clocking block is used in a modport
as follows:

interface IFC(input clk);
 wire a, b;
 clocking cb @(posedge clk);
 input a;
 input b;
 endclocking
 modport mp (clocking cb);
endinterface

program mpg(IFC ifc);
 .
 .
 .
 .
virtual IFC.mp vmp;
 .
 .
 .
 vmp = i.mp;
 @(vmp.cb.a); // here we need to specify cb explicitly
 .
endprogram
module top();
 .

16-17

OpenVera-SystemVerilog Testbench Interoperability

 .
 IFC ifc(clk); // use this to connect to DUT and TB
 mpg mpg(ifc);
 dut dut(...);
 .
 .
endmodule

VCS MX supports the following extensions that allow the clocking
block name to be omitted from vmp.cb.a.

// Example-1
 interface IFC(input clk);
 wire a, b;
 clocking cb @(posedge clk);
 input a;
 input b;
 endclocking
 modport mp (import cb.a, import cb.b);
 endinterface

 program mpg(IFC ifc);
 .
 .
 .
 virtual IFC.mp vmp;
 .
 .
 .
 vmp = i.mp;
 @(vmp.a); // cb can be omitted; 'cb.a' is
 // imported into the modport
 .
 endprogram
 module top();
 .
 .
 IFC ifc(clk); // use this to connect to DUT and TB
 mpg mpg(ifc);
 dut dut(...);
 .

16-18

OpenVera-SystemVerilog Testbench Interoperability

 .
 endmodule

// Example-2
 interface IFC(input clk);
 wire a, b;
 bit clk;
 clocking cb @(posedge clk);
 input a;
 input b;
 endclocking
 modport mp (import cb.*); // All members of cb
 // are imported.
 // Equivalent to the
 // modport in
 // Example-1.
 endinterface

 program mpg(IFC ifc);
 .
 .
 IFC i(clk);
 .
 .
 .
 virtual IFC.mp vmp;
 .
 .
 .
 vmp = i.mp;
 @(vmp.a); // cb can be omitted;
 //'cb.a' is imported into the modport
 endprogram

module top();
 .
 .
 IFC ifc(clk); // use this to connect to DUT and TB
 mpg mpg(ifc);
 dut dut(...);
 .
 .

16-19

OpenVera-SystemVerilog Testbench Interoperability

endmodule

A SystemVerilog modport can be implicitly converted to an
OpenVera virtual port provided the following conditions are satisfied:

• The modport and the virtual port have the same number of
members.

• Each member of the modport converted to a virtual port must
either be: (1) a clocking block, or (2) imported from a clocking
block using the import syntax above.

• For different modports to be implicitly converted to the same virtual
port, the corresponding members of the modports (in the order in
which they appear in the modport declaration) be of bit lengths.
If the members of a clocking block are imported into the modport
using the cb.* syntax, where cb is a clocking block, then the
order of those members in the modport is determined by their
declaration order in cb.

Example

// OpenVera
port P {
 clk;
 a;
 b;
}

class Foo {
 P p;
 task new(P p_) {
 p = p_;
 }

 task foo() {
 .
 .
 .

16-20

OpenVera-SystemVerilog Testbench Interoperability

 @(p.$clk);
 .
 variable = p.$b;
 p.$a = variable;
 .
 .
 .
 }
}

// SystemVerilog
interface IFC(input clk);
 wire a;
 wire b;

 clocking clk_cb @(clk);
 input #0 clk;
 endclocking

 clocking cb @(posedge clk);
 output a;
 input b;
 endclocking

modport mp (import clk_cb.*, import cb.*); // modport
 // can aggregate signals from multiple clocking blocks.

endinterface: IFC

program mpg(IFC ifc);
 import OpenVera::Foo;
 .
 .
 virtual IFC.mp vmp = ifc.mp;
 Foo f = new(vmp); // clocking event of ifc.cb mapped to
 // $clk in port P
 // ifc.cb.a mapped to $a in port P
 // ifc.cb.b mapped to $b in port P
 .
 f.foo();
 .
 .

16-21

OpenVera-SystemVerilog Testbench Interoperability

 .
endprogram

module top();
 .
 .
 IFC ifc(clk); // use this to connect to DUT and TB
 mpg mpg(ifc);
 dut dut(...);
 .
 .
endmodule

Note:
In the above example, you can also directly pass the vmp modport
from an interface instance:

Foo f = new(ifc.mp);

Semantic Issues with Samples, Drives, and Expects

When OpenVera code wants to sample a DUT signal through a
virtual port (or interface), if the current time is not at the relevant clock
edge, the current thread is suspended until that clock edge occurs
and then the value is sampled. NTB-OV implements this behavior by
default. On the other hand, in SystemVerilog, sampling never blocks
and the value that was sampled at the most recent edge of the clock
is used. Analogous differences exist for drives and expects.

16-22

OpenVera-SystemVerilog Testbench Interoperability

Notes to Remember

Blocking Functions in OpenVera

When a SystemVerilog function calls a virtual function that may
resolve to a blocking OpenVera function at runtime, the compiler
cannot determine with certainty if the SystemVerilog function will
block. VCS MX issues a warning at compile time and let the
SystemVerilog function block at runtime.

Besides killing descendant processes in the same language domain,
terminate invoked from OpenVera will also kill descendant
processes in SystemVerilog. Similarly, disable fork invoked
from SystemVerilog will also kill descendant processes in OpenVera.
wait_child will also wait for SystemVerilog descendant
processes and wait fork will also wait for OpenVera descendant
processes.

Constraints and Randomization

• SystemVerilog code can call randomize() on objects of an
OpenVera class type.

• In SystemVerilog code, SystemVerilog syntax must be used to
turn off/on constraint blocks or randomization of specific rand
variables (even for OpenVera classes).

• Random stability will be maintained across the language domain.

//OV
class OVclass{

rand integer ri;
constraint cnst{...}

}

16-23

OpenVera-SystemVerilog Testbench Interoperability

//SV
OVclass obj=new();
SVclass Svobj=new();
SVobj.randomize();
obj.randomize() with
{obj.ri==SVobj.var;};

Functional Coverage

There are some differences in functional coverage semantics
between OpenVera and SystemVerilog. These differences are
currently being eliminated by changing OpenVera semantics to
conform to SystemVerilog. In interoperability mode,
coverage_group in OpenVera and covergroup in SystemVerilog
will have the same (SystemVerilog) semantics. Non-embedded
coverage group can be imported from Vera to SystemVerilog using
the package import syntax (similar to classes).

Coverage reports will be unified and keywords such as coverpoint,
bins will be used from SystemVerilog instead of OpenVera keywords.

Here is an example of usage of coverage groups across the
language boundary:

// OpenVera
class A
{
 B b;
 coverage_group cg {
 sample x(b.c);

 sample y(b.d);
 cross cc1(x, y);

 sample_event = @(posedge CLOCK);
 }
 task new() {
 b = new;
 }
}

16-24

OpenVera-SystemVerilog Testbench Interoperability

// SystemVerilog

import OpenVera::A;

initial begin
 A obj = new;
 obj.cg.option.at_least = 2;
 obj.cg.option.comment = "this should work”;
 @(posedge CLOCK);
 $display("coverage=%f", obj.cg.get_coverage());
end

Usage Model

Any `define from the OV code will be visible in SV once they are
explicitly included.

Note:
OV #define must be rewritten as ̀ define for ease of migration
to SV.

Analysis

% vlogan -sverilog -ntb_opts interop [other_NTB_options] \
 [vlogan_options] file4.sv file5.vr file2.v file1.v
% vhdlan [vhdlan_options] file3.vhd file2.vhd file1.vhd

Note:
Specify the VHDL bottommost entity first, and then move up in
order.

Elaboration

% vcs [elab_options] top_cfg/entity/module

Simulation

% simv [simv_options]

16-25

OpenVera-SystemVerilog Testbench Interoperability

Note:
- If RVM class libs are used in the OV code, use -ntb_opts
rvm with vlogan command line.

- Using -ntb_opts interop -ntb_opts rvm with vlogan,
automatically translates rvm_ macros in OV package to vmm_
equivalents.

Limitations

• Classes extended/defined in SystemVerilog cannot be
instantiated by OpenVera. OpenVera verification IP will need to
be compiled with the NTB syntax and semantic restrictions. These
restrictions are detailed in the Native Testbench Coding Guide,
included in the VCS MX release.

• SystemVerilog contains several data types that are not supported
in OpenVera including real, unpacked-structures, and unpacked-
unions. OpenVera cannot access any variables or class data
members of these types. A compiler error will occur if the
OpenVera code attempts to access the undefined SystemVerilog
data member. This does not prevent SystemVerilog passing an
object to OpenVera, and then receiving it back again, with the
unsupported data items unchanged.

• When using VMM RVM Interoperability, you should only register
VMM or RVM scenarios with a generator in the same language.
You can instantiate an OpenVera scenario in a SystemVerilog
scenario, but only a SystemVerilog scenario can be registered
with a SystemVerilog generator. You cannot register OpenVera
Multi-Stream Scenarios on a SystemVerilog Multi-Stream
Scenario Generator (MSSG).

16-26

OpenVera-SystemVerilog Testbench Interoperability

17-1

Using SystemVerilog Assertions

17
Using SystemVerilog Assertions 1

Using SystemVerilog Assertions (SVA) you can specify how you
expect a design to behave and have VCS MX display messages
when the design does not behave as specified.

assert property (@(posedge clk) req |-> ##2 ack)
else $display ("ACK failed to follow the request);

The above example displays, "ACK failed to follow the
request", if ACK is not high two clock cycles after req is high. This
example is a very simple assertion. For more information on how to
write assertions, refer to Chapter 17 of SystemVerilog Language
Reference Manual.

VCS MX allows you to:

• Control the SVAs

• Enable or Disable SVAs

17-2

Using SystemVerilog Assertions

• Control the simulation based on the assertion results

This chapter describes the following:

• “Using SVAs in the HDL Design”

• “Controlling SystemVerilog Assertions”

• “Viewing Results”

• “Enhanced Reporting for SystemVerilog Assertions in Functions”

• “Controlling Assertion Failure Messages”

Note:
Synopsys recommends you to use the gcc compiler for Solaris
platform.

Using SVAs in the HDL Design

You can instantiate SVAs in your HDL design in the following ways:

• “Using Standard Checker Library”

• “Inlining SVAs in the Verilog Design”

• “Inlining SVA in the VHDL design”

Using Standard Checker Library

VCS MX provides you SVA checkers, which can be directly
instantiated in your Verilog/VHDL source files. You can find these
SVA checkers files in $VCS_HOME/packages/sva directory.

17-3

Using SystemVerilog Assertions

This section describes the usage model to analyze, elaborate and
simulate the design with SVA checkers. For more information on
SVA checker libraries and list of available checkers, see the
SystemVerilog Assertions Checker Library Reference Manual.

Instantiating SVA Checkers in Verilog

You can instantiate SVA checkers in your Verilog source just like
instantiating any other Verilog module. For example, to instantiate
the checker assert_always, specify:

module my_verilog();
....
 assert_always always_inst (.clk(clk), .reset(rst),
 .test_expr(test_expr));
...
endmodule

The usage model to simulate the design with SVA checkers is as
follows:

Analysis

% vlogan -sverilog [vlogan_options] +define+ASSERT_ON \
 +incdir+$VCS_HOME/packages/sva –y $VCS_HOME/packages/sva
 +libext+.v \
 Verilog_source_files

Note:
It is necessary to use +define+ASSERT_ON to turn on the
assertions in all checker instances.

Elaboration

% vcs [vcs_options] top_cfg/entity/module

17-4

Using SystemVerilog Assertions

Simulation

% simv [simv_options]

For more information on SVA checker libraries and a list of available
checkers, see the

Instantiating SVA Checkers in VHDL

To instantiate SVA checkers in the VHDL source file, you need to do
the following:

• Analyze the required SVA checker files using vlogan. For
example, the command line to analyze the checker files in the
default WORK library is shown below:

% vlogan $VCS_HOME/packages/sva/*.v \
 +incdir+$VCS_HOME/packages/sva –y $VCS_HOME/
 packages/sva +libext+.v \
 +define+ASSERT_ON -sverilog

• Analyze the SVA component package file.

You can find SVA checkers in $VCS_HOME/packages/sva
directory. In the same directory you will find the VHDL package
sva_lib, containing the component definitions for all the
checkers in the library. The name of this file is
component.sva_v.vhd.

For example, suppose you analyze the package file in the default
WORK library, then the vhdlan command line is shown below:

% vhdlan $VCS_HOME/packages/sva/component.sva_v.vhd

• To use the compiled checkers, you must include the sva_lib
package in your VHDL file. For example, the below line includes
the sva_lib analyzed into the default WORK library:

17-5

Using SystemVerilog Assertions

library WORK;
use WORK.sva_lib.all;

For more information on SVA checker libraries and list of available
checkers, see the SystemVerilog Assertions Checker Library
Reference Manual.

You can now instantiate SVA checkers in your VHDL file, like any
other VHDL entity. For example, to instantiate the checker
assert_always, perform the following:

library IEEE;
use IEEE.STD_LOGIC_1164.all;
library WORK;
use WORK.sva_lib.all;

entity my_ent(
 ...
);
end my_ent;

architecture my_arch of my_ent is
...
begin
 ...
checker_inst : assert_always port map(.clk(clk),
 .reset(rst), a(1));
 ...
end my_arch;

The usage model to simulate the design with SVA checkers is as
follows:

Analysis

Always analyze Verilog before VHDL.

% vlogan [vlogan_options] Verilog_source_files
% vhdlan [vhdlan_options] VHDL_source_files

17-6

Using SystemVerilog Assertions

Elaboration

% vcs [vcs_options] top_cfg/entity/module

Simulation

% simv [simv_options]

Inlining SVAs in the Verilog Design

VCS MX allows you to write inlined SVAs for both VHDL and Verilog
design. For Verilog designs, you can write SVAs as part of the code
or within pragmas as shown in the following example:

Example 1: Writing Assertions as a part of the code

module dut(...);

....

sequence s1;
@(posedge clk) sig1 ##[1:3] sig2;
endsequence

....

endmodule

Example 2: Writing Assertions using SVA pragmas
(//sv_pragma)

module dut(...);

....

//sv_pragma sequence s1;
//sv_pragma @(posedge clk) sig1 ##[1:3] sig2;
//sv_pragma endsequence

17-7

Using SystemVerilog Assertions

/*sv_pragma
sequence s2;
 @(posedge clk) sig3 ##[1:3] sig4;
endsequence
*/
....
endmodule

As shown in Example 2, you can use SVA pragmas as
//sv_pragma at the beginning of all SVA lines, or you can use the
following to mark a block of code as SVA code:

/* sv_pragma
 sequence s2;
 @(posedge clk) sig3 ##[1:3] sig4;
 endsequence
*/

Usage Model

The usage model to analyze, elaborate and simulate the designs
having inlined assertions is as follows:

Analysis

% vlogan -sv_pragma [vlogan_options] file1.v file2.v

Note:
If you have your assertions inlined using //sv_pragma, use the
analysis option -sv_pragma as shown above.

Elaboration

% vcs [elab_options] design_unit

Simulation

% simv [run_options]

17-8

Using SystemVerilog Assertions

Inlining SVA in the VHDL design

Inlining SVAs in VHDL design is possible only by using SVA
pragmas. The location of the SVA implicitly specifies to which entity-
architecture the SVA code is bound to. You can embed the SVA code
in the concurrent portion on your VHDL code using the pragmas
--sva_begin and --sva_end. These pragmas should be written
within an architecture - end architecture definition block
as shown in the example below:

architecture RTL of cntrl is
 begin
 ...
 --sva_begin
 -- property p1;
 -- @(posedge clk) a && b ##1 !c ;
 -- endproperty : p1

 -- a_p1: assert property (p1) else $display ($time, " :
 Assertion a_p1 failed");
 --sva_end
 end architecture RTL;

As soon as VCS MX encounters --sva_begin, it implicitly
understands that the following lines until --sva_end are SVA
constructs.

Within the inlined SVA code, you can:

• use VHDL signals, generics, and constants.

• write Verilog comments, compiler directives, and SVA pragmas.

However, you cannot use a VHDL variable within the inlined SVA
code.

17-9

Using SystemVerilog Assertions

Usage Model

Analysis

Always analyze Verilog before VHDL.

% vlogan -sverilog [vlogan_options] file1.v file2.v file3.v
% vhdlan -sva [vhdlan_options] file2.vhd file1.vhd

Note:
- Use -sva option, if you have SVA code inlined in your VHDL.

- For analysis, analyze the VHDL bottom-most entity first, then
move up in order.

Elaboration

% vcs [vcs_options] top_cfg/entity/module

Simulation

% simv [simv_options]

You can also use the option -sv_opts "vlog_opts_to_SVAs" with
vhdlan to specify Verilog options like +define+macro
-timescale=timeunit/precision to the inlined SVA code as
shown in the example below:

% vhdlan -sva -sv_opts "-timescale=1ns/1ns" myDut.vhd

The following example shows the usage of ‘ifdef within the inlined
SVA code:

architecture RTL of cntrl is
 begin
 ...
 --sva_begin
 -- ‘ifdef P1
 -- property p1;
 -- @(posedge clk) a && b ##1 !c ;
 -- endproperty : p1

17-10

Using SystemVerilog Assertions

 -- ‘else
 -- property p1;
 -- @(posedge clk) a !! b ##1 !c ;
 -- endproperty : p1
 -- ‘endif
 -- a_p: assert property (p1)
 -- else $display ($time, " : Assertion a_p failed");
 --sva_end
 end architecture RTL;

In this example, to select the first property P1, you need to specify
+define+P1 as an argument to -sv_opts option as shown below:

% vhdlan -sva -sv_opts "+define+P1" myDut.vhd

Controlling SystemVerilog Assertions

SVAs can be controlled or monitored using:

• “Elaboration and Runtime Options”

• “Assertion Monitoring System Tasks”

• “Using Assertion Categories”

Elaboration and Runtime Options

VCS MX provides various elaboration options to perform the
following tasks:

• If you want to control assertions at runtime, use the -assert
enable_diag option at compile time.

• To enable -assert hier=<file_name> at runtime, use the
-assert enable_hier option at compile time.

17-11

Using SystemVerilog Assertions

Note:
The -assert quiet and -assert report=<file_name>
options do not require the use of the -assert enable_hier or
-assert enable_diag options at compile time.

• To enable dumping assertion information in a VPD file, use the
-assert dve option. This option also allows you to view
assertion information in the assertion pane in DVE (for more
information, see the DVE User Guide.)

• To disable all SVAs in the design, use the -assert disable
compilation option. To disable only the SVAs specified in a file,
use the -assert disable_file=<file_name> compilation
option.

• To disable assertion coverage, use the -assert
disable_cover compilation option. By default, when you use
the -cm assert option, VCS MX enables monitoring your
assertions for coverage, and writes an assertion coverage
database during simulation.

• To disable property checks (that is, assert and assume
directives) and retain assertion coverage (that is, cover
directives), use -assert disable_assert at compile-time.

• Disable dumping of SVA information in the VPD file

You can use the -assert dumpoff option to disable the
dumping of SVA information to the VPD file during simulation (for
additional information, see “Options for SystemVerilog
Assertions” on page 7).

Following are the tasks VCS MX allows you to do during the runtime:

• Terminate simulation after certain number of assertion failures

17-12

Using SystemVerilog Assertions

You can use either the -assert finish_maxfail=N or -
assert global_finish_maxfail=N runtime option to
terminate the simulation if the number of failures for any assertion
reaches N or if the total number of failures from all SVAs reaches
N, respectively.

• Show both passing and failing assertions

By default, VCS MX reports only failures. However, you can use
the -assert success option to enable reporting of successful
matches, and successes on cover statements, in addition to
failures.

• Limit the maximum number of successes reported

You can use the -assert maxsuccesses=N option to limit the
total number of reported successes to N.

• Disable the display of messages when assertions fail

You can use the -assert quiet option to disable the display
of messages when assertions fail.

• Enable or disable assertions during runtime

You can use the -assert hier=file_name option to enable
or disable the list of assertions in the specified file.

• Generate a report file

You can use the -assert report=file_name option to
generate a report file with the specified name. For additional
information, see “Options for SystemVerilog Assertions” on page
7.

17-13

Using SystemVerilog Assertions

You can enter more than one keyword, using the plus + separator.
For example:

% vcs -assert maxfail=10+maxsucess=20+success ...

However, you cannot combine the elaboration assert arguments and
runtime assert arguments. Both should be specified separately as
shown below:

% vcs -assert disable+dumpoff
 -assert maxfail=10+maxsucess=20+success ...

Assertion Monitoring System Tasks

For monitoring SystemVerilog assertions we have developed the
following new system tasks:

$assert_monitor
$assert_monitor_off
$assert_monitor_on

Note:
Enter these system tasks in an initial block. Do not enter these
system tasks in an always block.

The $assert_monitor system task is analogous to the standard
$monitor system task in that it continually monitors specified
assertions and displays what is happening with them (you can have
it only display on the next clock of the assertion). The syntax is as
follows:

$assert_monitor([0|1,]assertion_identifier...);

Where:

17-14

Using SystemVerilog Assertions

0

Specifies reporting on the assertion if it is active (VCS MX is
checking for its properties) and for the rest of the simulation
reporting on the assertion or assertions, whenever they start.

1

Specifies reporting on the assertion or assertions only once, the
next time they start.

If you specify neither 0 or 1, the default is 0.

assertion_identifier...

A comma separated list of assertions. If one of these assertions
is not declared in the module definition containing this system
task, specify it by its hierarchical name.

Consider the following assertion:

property p1;
 @ (posedge clk) (req1 ##[1:5] req2);
endproperty

a1: assert property(p1);

For property p1 in assertion a1, a clock tick is a rising edge on signal
clk. When there is a clock tick VCS MX checks to see if signal req1
is true, and then to see if signal req2 is true at any of the next five
clock ticks.

17-15

Using SystemVerilog Assertions

In this example simulation, signal clk initializes to 0 and toggles
every 1 ns, so the clock ticks at 1 ns, 3 ns, 5 ns and so on.

A typical display of this system task is as follows:

Assertion test.a1 [’design.v’27]:
5ns: tracing "test.a1" started at 5ns:

attempt starting found: req1 looking for: req2 or
any
5ns: tracing "test.a1" started at 3ns:

trace: req1 ##1 any looking for: req2 or any
failed: req1 ##1 req2

5ns: tracing "test.a1" started at 1ns:
trace: req1 ##1 any[* 2] looking for: req2 or any
failed: req1 ##1 any ##1 req2

Breaking this display into smaller chunks:

Assertion test.a1 [’design.v’27]:

The display is about the assertion with the hierarchical name
test.a1. It is in the source file named design.v and declared on
line 27.

5ns: tracing "test.a1" started at 5ns:
attempt starting found: req1 looking for: req2 or

any

17-16

Using SystemVerilog Assertions

At simulation time, 5 ns VCS MX is tracing test.a1. An attempt at
the assertion started at 5 ns. At this time, VCS MX found req1 to be
true and is looking to see if req2 is true one to five clock ticks after
5 ns. Signal req2 doesn’t have to be true on the next clock tick, so
req2 not being true is okay on the next clock tick; that’s what looking
for “or any” means, anything else than req2 being true.

5ns: tracing "test.a1" started at 3ns:
trace: req1 ##1 any looking for: req2 or any
failed: req1 ##1 req2

The attempt at the assertion also started at 3 ns. At that time, VCS
MX found req1 to be true at 3 ns and it is looking for req2 to be true
some time later. The assertion “failed” in that req2 was not true one
clock tick later. This is not a true failure of the assertion at 3 ns, it can
still succeed in two more clock ticks, but it didn’t succeed at 5 ns.

5ns: tracing "test.a1" started at 1ns:
trace: req1 ##1 any[* 2] looking for: req2 or any
failed: req1 ##1 any ##1 req2

The attempt at the assertion also started at 1 ns. [* is the repeat
operator. ##1 any[* 2] means that after one clock tick, anything
can happen, repeated twice. So the second line here says that req1
was true at 1 ns, anything happened after a clock tick after 1 ns (3
ns) and again after another clock tick (5 ns) and VCS MX is now
looking for req2 to be true or anything else could happen. The third
line here says the assertion “failed” two clock ticks (5 ns) after req1
was found to be true at 1 ns.

The $assert_monitor_off and $assert_monitor_on system
tasks turn off and on the display from the $assert_monitor
system task, just like the $monitoroff and $monitoron system
turn off and on the display from the $monitor system task.

17-17

Using SystemVerilog Assertions

Using Assertion Categories

You can categorize assertions and then enable and disable them by
category. There are two ways to categorize assertions:

• Using System Tasks

- Using OpenVera System Tasks

- Using Assertion System Tasks

• Using Attributes

• Stopping and Restarting Assertions By Category

- Starting and Stopping Assertions Using OpenVera System
Tasks

- Starting and Stopping Assertions Using Assertion System
Tasks

After you categorize assertions you can use these categories to stop
and restart assertions.

Using System Tasks

VCS MX has a number of system tasks and functions for assertions.
These system tasks do the following:

• Set a category for an assertion

• Return the category of an assertion

Using OpenVera System Tasks

These system tasks are as follows:

17-18

Using SystemVerilog Assertions

$ova_set_category("assertion_full_hier_name",
category)

or

$ova_set_category(assertion_full_hier_name,
category)

System task that sets the category level attributes of an assertion.

The category level is an unsigned integer from 0 to 224 - 1.

Note:
These string arguments, such as the full hierarchical name of an
assertion, can be enclosed in quotation marks or not. This is true
when using these system tasks with SVA. They must be in
quotation marks when using them with OVA.

$ova_get_category("assertion_full_hier_name")

or

$ova_get_category(assertion_full_hier_name)

System function that returns an unsigned integer for the category.

Using Assertion System Tasks

You can use the following assertion system tasks to set the category
and severity attributes of assertions:

$assert_set_severity("assertion_full_hier_name", severity)

Sets the severity level attributes of an assertion. The severity level is
an unsigned integer from 0 to 255.

$assert_set_category("assertion_full_hier_name", category)

17-19

Using SystemVerilog Assertions

Sets the category level attributes of an assertion. The category level

is an unsigned integer from 0 to 224 - 1.

You can use the following system tasks to retrieve the category and
severity attributes of assertions:

$assert_get_severity("assertion_full_hier_name")

Returns the severity of action for an assertion failure.

$assert_get_category("assertion_full_hier_name")

Returns an unsigned integer for the category.

After specifying these system tasks and functions, you can start or
stop the monitoring of assertions based upon their specified
category or severity. For details on starting and stopping assertions,
see “Stopping and Restarting Assertions By Category” .

Note:
VCS also supports use of OpenVera system tasks and functions
to categorize assertions namely:

$ova_set_category, $ova_get_category

The use model is identical to the assertion tasks.

Using Attributes

You can prefix an attribute in front of an assert statement to specify
the category of the assertion. The attribute must begin with the
category name and specify an integer value, for example:

(* category=1 *) a1: assert property (p1);

17-20

Using SystemVerilog Assertions

(* category=2 *) a2: assert property (s1);

The value you specify can be an unsigned integer from 0 to 224 - 1,

or a constant expression that evaluates to 0 to 224 - 1.

You can use a parameter, localparam, or genvar in these
attributes. For example:

parameter p=1;
localparam l=2;
.
.
.
(* category=p+1 *) a1: assert property (p1);
(* category=l *) a2: assert property (s1);

genvar g;
generate
for (g=0; g<1; g=g+1)
begin:loop
(* category=g *) a3: assert property (s2);
end
endgenerate

Note:
In a generate statement the category value cannot be an
expression, the attribute in the following example is invalid:

genvar g;
generate
for (g=0; g<1; g=g+1)
begin:loop
(* category=g+1 *) a3: assert property (s2);
end
endgenerate

17-21

Using SystemVerilog Assertions

If you use a parameter for a category value, the parameter value
can be overwritten in a module instantiation statement.

You can use these attributes to assign categories to both named and
unnamed assertions. For example:

(* category=p+1 *) a1: assert property (p1);
(* category=l *) assert property (s1);

The attribute is retained in a tokens.v file when you use the
-Xman=0x4 compile-time option and keyword argument.

Stopping and Restarting Assertions By Category

The are assertions system tasks for starting and stopping assertions.
These system tasks are as follows:

Starting and Stopping Assertions Using OpenVera System
Tasks
$ova_category_start(category)

System task that starts all assertions associated with the specified
category.

$ova_category_stop(category)

System task that stops all assertions associated with the specified
category.

Using Mask Values To Stop And Restart Assertions

There are system tasks for both OpenVera and SystemVerilog
assertions that allow you to use a mask to determine if a category of
assertions should be stopped or restarted. These system tasks are
$ova_category_stop and $ova_category_start. They have
matching syntax.

17-22

Using SystemVerilog Assertions

$ova_category_stop(categoryValue,
maskValue[,globalDirective]);

Where:

categoryValue

Because there is a maskValue argument, this argument is now
the result of an anding operation between the assertion categories
and the maskValue argument. If the result matches this value,
these categories stop. As seen in “Stopping and Restarting
Assertions By Category” , without the maskValue argument, this
argument is the value you specified in $ova_set_category
system tasks or category attribute.

maskValue

A value that is logically anded with the category of the assertion.
If the result of this and operation matches the categoryValue,
VCS MX stops monitoring the assertion.

globalDirective

Can be either of the following values:

0

Enables an $ova_category_start system task, that does
not have a globalDirective argument, to restart the
assertions stopped with this system task.

1

Prevents an $ova_category_start system task that does
not have a globalDirective argument from restarting the
assertions stopped with this system task.

17-23

Using SystemVerilog Assertions

$ova_category_start(categoryValue,
 maskValue[, globalDirective]);

Where:

categoryValue

Because there is a maskValue argument, this argument now is
the result of an anding operation between the assertion categories
and the maskValue argument. If the result matches this value,
these categories start. As seen in “Stopping and Restarting
Assertions By Category” , without the maskValue argument, this
argument is the value you specified in $ova_set_category
system tasks or category attribute.

maskValue

A value that is logically anded with the category of the assertion.
If the result of this and operation matches the categoryValue,
VCS MX starts monitoring the assertion.

globalDirective

Can be either of the following values:

0

Enables an $ova_category_stop system task, that does not
have a globalDirective argument, to stop the assertions
started with this system task.

1

Prevents an $ova_category_stop system task that does not
have a globalDirective argument from stopping the
assertions started with this system task.

17-24

Using SystemVerilog Assertions

Examples

This first example stops the odd numbered categories:

$ova_set_category(top.d1.a1,1);
$ova_set_category(top.d1.a2,2);
$ova_set_category(top.d1.a3,3);
$ova_set_category(top.d1.a4,4);

.

.

.

.
$ova_category_stop(1,’h1);

The categories are masked with the maskValue argument and
compared with the categoryValue argument:

1. VCS MX looks at the least significant bit of each category and
logically ands that LSB to the maskValue argument, which is 1.

bits categoryValue

category 1 001

maskValue 1

result 1 1 match

category 2 010

maskValue 1

result 0 1 no match

category 3 011

maskValue 1

result 1 1 match

category 4 100

maskValue 1

result 0 1 no match

17-25

Using SystemVerilog Assertions

2. The results of these anding operations, 1 or true for categories 1
and 3, and 0 or false for categories 2 and 4, is compared to the
categoryValue, which is 1, there is a match for categories 1
and 3.

3. VCS MX stops the odd numbered categories.

This additional example uses the globalDirective argument:

$ova_set_category(top.d1.a1,1);
$ova_set_category(top.d1.a2,2);
$ova_set_category(top.d1.a3,3);
$ova_set_category(top.d1.a4,4);
.
.
.
$ova_category_stop(1,’h1,0);
$ova_category_stop(0,’h1,1);
.
.
.
$ova_category_start(1,’h1);
$ova_category_start(0,’h1);

In this example:

1. The two $ova_category_stop system tasks first stop the odd
numbered assertions and then the even numbered ones. The first
$ova_category_stop system task has a globalDirective
argument that is 0, the second has a globalDirective
argument that is 1.

2. The first $ova_category_start system task can restart the
odd numbered assertions, but the second
$ova_category_start system task cannot start the even
numbered assertions.

17-26

Using SystemVerilog Assertions

Starting and Stopping Assertions Using Assertion System
Tasks

There are assertions system tasks for starting and stopping
assertions. These system tasks are as follows:

Stopping Assertions by Category or Severity

$assert_category_stop(categoryValue,
[maskValue[,globalDirective]]);

Stops all assertions associated with the specified category.

$assert_severity_stop(severityValue,
[maskValue[,globalDirective]]);

Stops all assertions associated with the specified severity level.

where,

categoryValue

Since there is a maskValue argument, it is now the result of an
anding operation between the assertion categories and the
maskValue argument. If the result matches this value, these
categories stop. Without the maskValue argument, this
argument is the value you specify in $assert_set_category
system tasks or category attributes.

maskValue

A value that is logically anded with the category of the assertion.
If the result of this and operation matches the categoryValue,
VCS stops monitoring the assertion.

globalDirective

17-27

Using SystemVerilog Assertions

Can be either of the following values:

0

Enables an $assert_category_start system task that
does not have a globalDirective argument, to restart the
assertions stopped with this system task.

1

Prevents an $assert_category_start system task that
does not have a globalDirective argument from restarting
the assertions stopped with this system task.

Starting Assertions by Category or Severity

$assert_category_start(categoryValue,
[maskValue[,globalDirective]]);

Starts all assertions associated with the specified category.

$assert_severity_start(severityValue,
[maskValue[,globalDirective]]);

Starts all assertions associated with the specified severity level. The
severity level is an unsigned integer from 0 to 255.

where,

categoryValue

17-28

Using SystemVerilog Assertions

Since there is a maskValue argument, this argument is the result
of an anding operation between the assertion categories and the
maskValue argument. If the result matches this value, these
categories start. Without the maskValue argument, this
argument is the value you specify in $assert_set_category
system tasks or category attributes.

maskValue

A value that is logically anded with the category of the assertion.
If the result of this and operation matches the categoryValue,
VCS starts monitoring the assertion.

globalDirective

Can be either of the following values:

0

Enables an $assert_category_stop system task (that
does not have a globalDirective argument) to stop the
assertions started with this system task.

1

Prevents an $assert_category_stop system task that
does not have a globalDirective argument from stopping
the assertions started with this system task.

Example Showing How to Use MaskValue

Example 17-1 stops the odd numbered categories

Example 17-1 MaskValue Numbering:
$assert_set_category(top.d1.a1,1);
$assert_set_category(top.d1.a2,2);

17-29

Using SystemVerilog Assertions

$assert_set_category(top.d1.a3,3);
$assert_set_category(top.d1.a4,4);

.

.

.

.
$assert_category_stop(1,’h1);

The categories are masked with the maskValue argument and
compared with the categoryValue argument as shown in the
following table.

1. VCS logically ands the category value to the maskValue
argument, which is 1.

2. The result of the and operation is true for categories 1 and 3 as
per the calculation shown above. The result is false for categories
2 and 4.

bits categoryValue

category 1 001

maskValue 1

result 1 1 match

category 2 010

maskValue 1

result 0 1 no match

category 3 011

maskValue 1

result 1 1 match

category 4 100

maskValue 1

result 0 1 no match

17-30

Using SystemVerilog Assertions

3. VCS stops all the assertions which result in a true match with the
and operation.

Example 17-2 uses the globalDirective argument.

Example 17-2 Mask Value with Global Directive
$assert_set_category(top.d1.a1,1);
$assert_set_category(top.d1.a2,2);
$assert_set_category(top.d1.a3,3);
$assert_set_category(top.d1.a4,4);
.
.
$assert_category_stop(1,’h1,1);
$assert_category_start(0,’h1);

The assertions that are stopped or started with globalDirective
value 1, cannot be restarted or stopped with a call to
$assert_category_start, without using the
globalDirective argument. The above code cannot restart
assertions.

The assertions can only be restarted with a call to
$assert_category_start with globalDirective, as follows:

$assert_category_start(1,'h1,1);

or

$assert_category_start(1,'h1,0);

Note:
VCS also supports use of OpenVera system tasks and functions
to categorize assertions namely:

$ova_set_category, $ova_get_category

The use model is identical to the assertion tasks.

17-31

Using SystemVerilog Assertions

Viewing Results

By default, VCS MX reports only assertion of the failures. However,
you can use the -assert success runtime option to report both
pass and failures.

Assertion results can be viewed:

• Using a Report File

• Using DVE

For information on viewing assertions in DVE, refer to the "Using the
Assertion Pane" chapter, in the DVE user guide.

Using a Report File

Using the -assert report=file_name option, you can create an
assertion report file. VCS MX writes all SVA messages to the
specified file.

Assertion attempts generate messages with the following format:

"design.v", 157: top.cnt_in.a2: started at 22100ns failed
at 22700ns
 Offending '(busData == mem[$past(busAddr, 3)])'

File and line with
the assertion Full hierarchical name

of the assertion
Start time Status (succeeded at ...,

failed at ...,
not finished)

Expression that failed (only with failure of check assertions)

17-32

Using SystemVerilog Assertions

Enhanced Reporting for SystemVerilog Assertions in
Functions

This section describes an efficient reporting convention for functions
containing assertions in the following topics:

• “Introduction”

• “Usage Model”

• “Name Conflict Resolution”

• “Checker and Generate Blocks”

Introduction

In earlier releases, when assertions were present inside functions,
assertion path names were reported based on the position of the
function call in the source file. For example, consider the following
code:

module top;
bit b, a1, a2, a3, a4, a5;
function bit myfunc(input bit k);
 $display("FUNC name: %m");
 AF: assert #0(k && !k);
 return !k;
endfunction

always_comb a1=myfunc(b);
always_comb begin: A
 begin: B
 a2=myfunc(b);
 begin a3=myfunc(!b); end
 end
end

17-33

Using SystemVerilog Assertions

always_comb begin
 a4=myfunc(b);
 a5=myfunc(!b);
end
endmodule

If you run this code, it generates the following output:

"top.v", 5: top.\top.v_18__myfunc.AF : started
"top.v", 5: top.\top.v_17__myfunc.AF : started
"top.v", 5: top.\top.v_13__myfunc.AF : started
"top.v", 5: top.\top.v_12__myfunc.AF : started
"top.v", 5: top.\top.v_9__myfunc.AF : started

But the problem with this type of naming convention is, when code
changes, the output of the simulation also changes. To overcome
this limitation, a new naming convention is implemented under the
-assert funchier compile-time option. This new naming
convention is implemented as follows:

• Function names are generated based on the named blocks under
which the functions are called. Each function name is appended
with an index (index=0, 1, 2, 3...), where index 0 is given to the
first function call, index 1 is given to the second function call, and
so on.

• For unnamed blocks, the function name is based on the closest
named block.

• If there is no named scope around the function call, then a module
scope is used as a named block with an empty name.

• Each assertion status reporting message contains the file name
and line number of the function caller.

17-34

Using SystemVerilog Assertions

Usage Model

Use the -assert funchier option to enable the new function
naming convention, as shown in the following command:

% vcs -sverilog -assert funchier+svaext

If you run the above code using this command, it generates the
following output:

"top.v", 5: top.myfunc_2.AF ("top.v", 18): started
"top.v", 5: top.myfunc_1.AF ("top.v", 17): started
"top.v", 5: top.\A.B.myfunc_1.AF ("top.v", 13): started ...
"top.v", 5: top.\A.B.myfunc_0.AF ("top.v", 12): started
"top.v", 5: top.myfunc_0.AF ("top.v", 9): started

Name Conflict Resolution

When a function name generated with the new naming convention
conflicts with an existing block or identifier name in that scope, then
the suffix index is incremented until the conflict is resolved.

Checker and Generate Blocks

When a function is present inside a checker, the generated name of
that function contains the checker name appended to all named
blocks and identifiers in that checker.

Similarly, when a function is present inside a generate block, the
generated name of that function contains the generated block name
appended to all named blocks and identifiers in that generate block.

17-35

Using SystemVerilog Assertions

Controlling Assertion Failure Messages

This section describes the mechanism for controlling failure
messages for SystemVerilog Assertions (SVA), OpenVera
Assertions (OVA), Property Specification Language (PSL)
assertions, and OVA case checks.

This section contains the following topics:

• “Introduction”

• “Options for Controlling Default Assertion Failure Messages”

• “Options to Control Termination of Simulation”

• “Option to Enable Compilation of OVA Case Pragmas”

Introduction

Earlier releases did not provide the flexibility to control the display of
default messages for assertion (SVA, OVA, or PSL) failures, based
on the presence of an action block (for SVA) or a user message (for
OVA and PSL). Also, there was no control over whether these
assertion failures contributed to the failure counts for
–assert [global_]finish_maxfail, or affected simulation if
$ova_[severity|category]_action(<severity_or_category>,

“finish”) was specified.

You can now use the options described in the following topics to
enable additional controls on failure messages, and to terminate the
simulation and compilation of OVA case pragmas.

17-36

Using SystemVerilog Assertions

Options for Controlling Default Assertion Failure
Messages

You can use the following runtime options to control the default
assertion failure messages:

–assert no_default_msg[=SVA|OVA|PSL]

Disables the display of default failure messages for SVA
assertions that contain a fail action block, and OVA and PSL
assertions that contain user messages.

The default failure messages are displayed for:

- SVA assertions without fail action blocks

- PSL and OVA assertions that do not contain user messages

When used without arguments, this option affects SVA, OVA, and
PSL assertions. You can use an optional argument with this option
to specify the class of assertions that should be affected.

Note:
The -assert quiet and -assert report options override
the -assert no_default_msg option. That is, if you use either
of these options along with -assert no_default_msg, then
the latter has no effect.

The –assert no_default_msg=SVA option affects only SVA.

The –assert no_default_msg=OVA and
–assert no_default_msg=PSL options affect both OVA and
PSL assertions, but not SVA.

17-37

Using SystemVerilog Assertions

In addition to the default message, an extra message is displayed
by default, for PSL assertions that have a severity (info, warning,
error, or fatal) associated with them. This message is considered
as a user message, and no default message is displayed, if you
use the –assert no_default_msg[=PSL] option.

Example

Consider the following assertion:

As1: assert property (@(posedge clk) P1) else
$info(“As1 fails”);

By default, VCS displays the following information for each
assertion failure:

"sva_test.v", 15: top.As1: started at 5s failed at 5s
Offending 'a'
Info: "sva_test.v", 15: top.As1: at time 5
As1 fails

If you use the –assert no_default_msg option at runtime, it
disables the default message, and displays only the user
message, as shown below:

Info: "sva_test.v", 15: top.As1: at time 5
As1 fails

Options to Control Termination of Simulation

You can use the following runtime options to control the termination
of simulation:

–assert no_fatal_action

17-38

Using SystemVerilog Assertions

Excludes failures on SVA assertions with fail action blocks for
computation of failure count in the –assert
[global_]finish_maxfail=N runtime option. This option
also excludes failures of these assertions for termination of
simulation, if you use the following command:

$ova_[severity|category]_action(<severity_or_category>,
“finish”)

Note:
This option does not affect OVA case violations and OVA or
PSL assertions, with or without user messages.

Specifying $fatal() in the fail action block of an SVA
assertion or in a fatal severity associated with a PSL assertion,
results in termination of simulation irrespective of whether this
option is used or not.

This option is useful when you want to exclude failures of
assertions having fail action blocks, from adding up to the global
failure count, for the –assert [global]_finish_maxfail=N
option.

Example

Consider the following assertion:

As1: assert property (@(posedge clk) P1) else
$info(“As1 fails”);

17-39

Using SystemVerilog Assertions

If you use the –assert global_finish_maxfail=1 option at
runtime, then the simulation terminates at the first As1 assertion
failure. Now, if you use –assert global_finish_maxfail=1
–assert no_fatal_action at runtime, then the failure of
assertion As1 does not cause the simulation to terminate.

–ova_enable_case_maxfail

Includes OVA case violations in computation of global failure
count for the –assert global_finish_maxfail=N option.

Note:
The –assert finish_maxfail=N option does not include
OVA case violations. This option maintains a per-assertion
failure count for termination of simulation.

Example

Consider an OVA case pragma, as shown in the following code,
to check the case statements for full case violations:

reg [2:0] mda[31:0][31:0];
//ova full_case on;
initial begin

for(i = 31; i >= 0; i = i - 1) begin
 for(j = 0; j <= 31; j = j + 1) begin
 case(mda[i][j])
 1: begin
 testdetect[i][j] = 1'b1;
 end
 endcase
 #1;
 end
 end
end

17-40

Using SystemVerilog Assertions

The above code violates full case check. Therefore, case
violations are displayed as follows:

Select expression value when violation happened for last
iteration : 3'b000
Ova [0]: "ova_case_full.v", 20: Full case violation at
time 9 in a
Failed in iteration: [31] [9]

By default, these violations are not considered in the failure count
for the –assert global_finish_maxfail=N option. But if you use
the -ova_enable_case_maxfail option at runtime, then the case
violations are added in the failure count.

Option to Enable Compilation of OVA Case Pragmas

You can use the following compile-time option to enable compilation
of OVA case pragmas:

–ova_enable_case

Enables the compilation of OVA case pragmas only, when used
without –Xova or –ova_inline. All inlined OVA assertion
pragmas are ignored.

Note:
-Xova or –ova_inline is the superset of the
-ova_enable_case option. They are used to compile both
the case pragmas and assertions.

Example

Consider the following code:

//ova parallel_case on;

17-41

Using SystemVerilog Assertions

//ova full_case on; /* case pragma*/
always @(negedge clock)
 case (opcode)
//ova check_bool (alu_out>10, "ddd", negedge clock); /*
assertion pragma */
 3'h0: alu_out = accum;
 3'h1: alu_out = accum;
 3'h2: alu_out = accum + data;
 3'h3: alu_out = accum & data;
 3'h4: alu_out = accum ^ data;
 3'h5: alu_out = data;
 3'h6: alu_out = accum;
 endcase

The above code contains both OVA case pragmas and assertions.
This option ignores the OVA assertion pragmas, and compiles
only the case pragmas.

Enabling IEEE Std. 1800-2009 Compliant Features

You must use the –assert svaext compile-time option to enable
the new IEEE Std. 1800-2009 compliant SVA features.

Limitations

• In VCS, strong and weak properties are not distinguished in terms
of their reporting at the end of simulation. In all cases, if a property
evaluation attempt did not complete evaluation, it will be reported
as "unfinished evaluation attempt”, and allows you to decide
whether it is a failure or success.

• Checker declaration are allowed in unit scope only.

• Bind construct with checkers are not supported.

Limitations on debug support are as follows:

17-42

Using SystemVerilog Assertions

• Use -assert dve at compile/elab to enable debug for
assertions. While basic debug support is available with this
release, assertion tracing in DVE not supported completely. DVE
provides information such as: start_time, end_time for every
attempt and statistics for every assertion/cover. DVE also groups
all signals involved in an assertion on tracing an attempt. However
the extra "hints" that are provided for SVA constructs are not
available for new constructs as of now.

• UCLI support for new assertions is not supported.

18-1

Using Property Specification Language

18
Using Property Specification Language 1

VCS MX supports the Simple Subset of the IEEE 1850 Property
Specification Language (PSL) standard. Refer to Section 4.4.4 of the
IEEE 1850 PSL LRM for the subset definition.

You can use PSL in Verilog, VHDL, or mixed designs along with
SystemVerilog Assertions (SVA), SVA options, SVA system tasks,
and OpenVera (OV) classes.

Including PSL in the Design

You can include PSL in your design in any of the following ways:

• Inlining the PSL using the //psl or /*psl */ pragmas in Verilog
and SystemVerilog, and --psl pragma in VHDL.

18-2

Using Property Specification Language

• Specifying the PSL in an external file using a verification unit
(vunit).

Examples

The following examples show how to inline PSL in Verilog using the
//psl and /*psl */ pragmas, and in VHDL using the --psl
pragma.

In Verilog

module mod;

 // psl a1: assert always {r1; r2; r3} @(posedge clk);

 /* psl
 A2: assert always {a;b} @(posedge clk);
 ...
 */
endmodule
In VHDL

LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity vh_ent is
...
end vh_ent;

architecture arch_vh_ent of vh_ent is
 ...
 -- psl default clock is (clk'event and clk = '1');
 -- psl sequence seq1 is {in1;[*2];test_sig};

 -- psl property p1 is
 -- (never seq1);

 -- psl A1: assert p1 report " : Assertion failed P1";

18-3

Using Property Specification Language

end arch_vh_ent;

The following examples show how to use vunit to include PSL in
the design.

In Verilog

vunit vunit1 (verilog_mod)
{
 a1: assert always {r1; r2; r3} @(posedge clk);
}

In VHDL

vunit test(vh_entity)
{
 default clock is (clk'event and clk = '1');

 property foo is
 always ({ a = '0'} |=> {(b = prev(b) and c = prev(c))});
 assume foo;
}

Usage Model

If you inline the PSL code, you must analyze it with the -psl option.

If you use vunit, you must analyze the file that contains the vunit
with the -pslfile option. You do not need to use this option if the
file has the .psl extension.

Analysis

% vlogan -psl [vlogan_options] Verilog_files
% vhdlan -psl [vhdlan_options] VHDL_files

Note:
Specify the VHDL bottommost entity first, then move up in order.

18-4

Using Property Specification Language

Elaboration

% vcs -psl top_cfg/entity/config

Note:
Ensure that you specify the -psl option while elaborating the
design.

Simulation

% simv

Examples

To simulate the PSL code that is inlined in a mixed design (test.v
and dut.vhd), execute the following commands:

% vlogan -psl test.v
% vhdlan -psl dut.vhd
% vcs -psl top
% simv

To simulate both the PSL code inlined in a VHDL file (test.vhd),
and the vunit specified in an external file (checker.psl or
checker.txt), execute the following commands:

% vhdlan -psl test.vhd checker.psl
% vcs -psl top
% simv

or

% vhdlan -psl test.vhd -pslfile checker.txt
% vcs -psl top
% simv

18-5

Using Property Specification Language

PSL Assertions Inside VHDL Block Statements in Vunit

This section describes support for Property Specification Language
(PSL) assertions inside VHDL block statements in a vunit.

This section contains the following topics:

• “Introduction” on page 5

• “Use Model” on page 6

• “Limitations” on page 6

Introduction

VCS MX supports the usage of PSL assertions inside VHDL block
statements in vunit. This feature extends the capability of VHDL
block statements in a vunit by allowing PSL assertions inside
VHDL block statements.

Example

library IEEE;
use IEEE.STD_LOGIC_1164.all;

vunit vh_check (esc_id(rtl)) {
default clock is (clk'event and clk='1');
signal t1, t2 : bit;
blk : block is
 generic (G: integer := 3; D: positive);
 generic map (D => width);
 signal load: bit;
 signal t1: std_logic;
begin
 t1 <= not t1 after 3 ns;

18-6

Using Property Specification Language

 property p1 is
 always ({load; t1[*G]});
 A1: assert p1;

 property p2 is
 always ({t2[*D]} |=> {ResetAX;(ack == t1)});
 A2: assert p2;
end block blk;
}

Use Model

Use the -assert psl_in_block analysis option to enable the
usage of PSL assertions inside VHDL block statements in vunit, as
shown in the following command:

$> vhdlan test.vhd –psl –assert psl_in_block test.psl

The following PSL constructs are allowed in the VHDL block
statements. You must specify these constructs in
block_statement_part, and not in block_declarative_part.

• Property and sequence declarations

• Assert statement

• Assume statement

• Restrict statement

• Cover statement

Limitations

The following are the limitations of using PSL assertions inside
VHDL block statements in a vunit:

18-7

Using Property Specification Language

• This enhancement does not support the following non-PSL VHDL
constructs, which are currently not allowed inside a block
statement in a vunit.

- Guard expressions

- Port declarations and port maps

• The following PSL constructs are not supported in the VHDL block
statements:

- Generic declarations and generic maps

- Default clocks

- Vunit inheritance

• When there are nested blocks in a vunit, you cannot map the
generic defined in an inner block to the generic in the outer block.

Example:

B1: block is

 generic (G: integer := 2);

 B2: block is

 generic (GG: integer);

 generic map (GG => G); //This is not supported

 end block B2;

end block B1;

18-8

Using Property Specification Language

PSL Macro Support in VHDL

VCS MX now supports the %if and %for PSL macros in VHDL, as
described in IEEE-1850-2010 PSL. You can use these macros to
conditionally or iteratively generate PSL statements. This removes
the need for to rewrite the entire PSL code (a time-consuming task).
The following sections explain how to use these constructs:

• “Using the %for Construct” on page 8

• “Using the %if Construct” on page 11

• “Using Expressions with %if and %for Constructs” on page 12

• “PSL Macro Support Limitations” on page 13

Using the %for Construct

The %for construct replicates a piece of code.

The syntax for %for iteration range is:

%for /var/ in /expr1/ ... /expr2/ do
...
%end

The syntax for %for iteration list is:

%for /var/ in { /item/ [, /item/]* } do
...
%end

Following are the arguments:

• var — Variable name

18-9

Using Property Specification Language

• expr — Expression on which macro substitution is performed.
This argument should be a numeric decimal value.

• item — Value to be substituted for instances of the variable name
on each iteration of the %for macro. This value can only contain
alphanumeric characters ('a' to 'z', 'A' to 'Z', and '0' to '9') and
underscores.

If an item contains only digits, it is treated as a number during
expression evaluation.

Bareword macro substitution is not done on items in the %for
iteration list. However, %{} style macro substitutions are done on
these items. This provides the flexibility to control the strings in the
list. For example, consider the following code:

%for xx in { aa, bb, cc } do
%for yy in { xx, %{xx}, zz } do
…

The loop iterator yy takes the following values:

• xx, aa, zz in the first iteration of loop xx

• xx, bb, zz in the second iteration of loop xx

• xx, cc, zz in the third iteration of loop xx

When a macro substitution of a list item iterator occurs, it is only done
on one level of substitution. That is, if the list item value itself is a
name that matches the name of a macro iterator, then the value of
that iterator is not substituted. The value substituted is the string
defined in the item list. Consider the code in Example 18-1.

Example 18-1 Macro Substitution
%for xx in 1...2 do
 %for yy in { xx, zz } do

18-10

Using Property Specification Language

 Lbl_%{yy}_%{xx} : assert …
 %end
%end

In Example 18-1, when the yy iterator value is substituted, the
resulting value is xx, and not the current value of the xx iterator (1
or 2):

Lbl_xx_1: assert …
Lbl_zz_1: assert …
Lbl_xx_2: assert …
Lbl_zz_2: assert …

The %{}macro substitution within a quote (“) delimited string is
supported. Bareword string substitution is not allowed within a
quoted string. For example, the following code:

%for xx in 1 ... 2 do
 report “xx = %{xx}”;
%end

Expands to:

Report “xx = 1”;
Report “xx = 2”;

You can use the % character as a string delimiter. No macro
substitution is performed within % delimited strings.

For macro expansion, any occurrence of macro keywords that
include the % character (%for, %if, %then, %else, %end, and the
%{…} substitution macro) takes priority over string initiation. For
example:

report %xx = %{xx}%;

18-11

Using Property Specification Language

The above example results in a syntax error at { and an
unterminated string (starting delimiter is the last % on the line).

Using the %if Construct

The expr argument of the %if macro must evaluate to an integer.

• If the expression resolves to an integer other than zero, then the
expression is true and the %then clause is processed.

• If the expression resolves to zero, then the expression is false
and the %else statement, if present, is processed.

The syntax for %if is as follows:

%if /expr/ %then
...
%end

or

%if /expr/ %then
...
%else

%end

18-12

Using Property Specification Language

Using Expressions with %if and %for Constructs

You can use the following in the expressions with %if and %for
constructs:

• Decimal literals

• Alphanumeric strings

• Operators:

=, -, *, /, %, =, !=, <, <=, >, >=

• Parentheses:

(‘(‘ and ‘)’)

All arithmetic operations are integral.

VCS generates an error message if:

• An operand of an arithmetic operation is non-numeric.

• Either operand evaluates to a non-alphanumeric string.

Comparison operations are integral if both operands are integral. If
either operand is alphanumeric (after substitution), then lexical
comparison is performed.

For example, consider the following expression:

%if (foo(1) == 0)

This expression is an error, because the left operand of the equality
does not evaluate to an alphanumeric string.

18-13

Using Property Specification Language

PSL Macro Support Limitations

• The %for and %if macros are not supported in inline PSL
pragmas.

• The %{} macro substitution cannot span lines. However, %for
and %if header constructs can span lines.

• The %for and %if macros are not supported within encrypted
blocks. Macro text can contain encrypted blocks.

• VHDL-style extended identifiers are not supported as %for macro
iterator names.

• The %{} style replacement macros within other %{} style
replacement macros are not allowed.

Example: %{ ii + %{jj + 1} }

• Octal and hexadecimal literal numeric values are not supported.

• A nested %for iterator name cannot use the same name as an
outer %for macro’s iterator name. For example:

%for xx in 1...2 do
 %for xx in 3...4 do
…

• C preprocessor directives (for example, #define, #ifdef,
#else, #include, and #undef) are not supported.

18-14

Using Property Specification Language

Using SVA Options, SVA System Tasks, and OV Classes

VCS MX enables you to use all assertion options with SVA, PSL, and
OVA. For example, to enable PSL coverage and debug assertions
while elaborating the PSL code, execute the following commands:

% vhdlan -psl dut.vhd checkers.psl
% vhdlan test.vhd
% vcs -psl -cm assert -debug -assert enable_diag test.v
% simv -cm assert -assert success

For information on all assertion options, see Appendix C, Elaboration
Options.

You can control PSL assertions in any of the following ways:

• Using the $asserton, $assertoff, or $assertkill SVA
system tasks.

• Using NTB-OpenVera assert classes.

Note that VCS MX treats the assume PSL directive as the assert
PSL directive.

Discovery Visual Environment (DVE) supports PSL assertions. The
PSL assertion information displayed by VCS MX is similar to
SystemVerilog assertions.

18-15

Using Property Specification Language

Limitations

The VCS MX implementation of PSL has the following limitations:

• VCS MX does not support binding vunit to an instance of a
module or entity.

• VCS MX does not support generic declarations and generic maps
in VHDL block statements in a vunit.

• VCS MX does not support the following data types in your PSL
code -- shortreal, real, realtime, associative arrays, and dynamic
arrays.

• VCS MX does not support the union operator and union
expressions in your PSL code.

• Clock expressions have the following limitations:

- You must not include the rose() and fell() built-in
functions.

- You must not include endpoint instances.

• Endpoint declarations must have a clocked SERE with either a
clock expression or default clock declaration.

• VCS MX supports only the always and never FL invariance
operators in top-level properties. Ensure that you do not
instantiate top-level properties in other properties.

• VCS MX supports all LTL operators, except sync_abort and
async_abort. You can apply the abort operator only to the top
property.

• VCS MX does not support the assume_guarantee, restrict,
and restrict_guarantee PSL directives.

19-1

Using SystemC

19
Using SystemC 1

The MXVCS SystemC Co-simulation Interface enables VCS MX and
the SystemC modeling environment to work together when
simulating a system described in the Verilog, VHDL, and SystemC
languages.

VCS MX contains a built-in SystemC simulator that is compatible
with OSCI SystemC 2.2 (IEEE 1666).

You also have the option of installing the OSCI SystemC simulator
and having VCS MX run it to co-simulate using the interface. See
“Using a Customized SystemC Installation” on page 90.

19-2

Using SystemC

With the interface, you can use the most appropriate modeling
language for each part of the system, and verify the correctness of
the design. For example, the MXVCS SystemC Co-simulation
Interface allows you to:

• Use a SystemC module as a reference model for the VHDL or
Verilog RTL design under test in your testbench

• Verify a Verilog or VHDL netlist after synthesis with the original
SystemC testbench

• Write test benches in SystemC to check the correctness of Verilog
and VHDL designs

• Import legacy VHDL or Verilog IP into a SystemC description

• Import third-party VHDL or Verilog IP into a SystemC description

• Export SystemC IP into a Verilog or VHDL environment when only
a few of the design blocks are implemented in SystemC

• Use SystemC to provide stimulus to your design

The VCS MX/SystemC Co-simulation Interface creates the
necessary infrastructure to co-simulate SystemC models with
Verilog or VHDL models. The infrastructure consists of the required
build files and any generated wrapper or stimulus code. VCS MX
writes these files in subdirectories in the ./csrc directory. To use
the interface, you don’t need to do anything to these files.

During co-simulation, the VCS MX/SystemC Co-simulation Interface
is responsible for:

• Synchronizing the SystemC kernel and VCS MX

• Exchanging data between the two environments

19-3

Using SystemC

Note:
• The unified profiler (an LCA feature) can report CPU time profile

information about the SystemC part or parts of a design. See the
chapter in the LCA features documentaion.

• There are examples of Verilog/VHDL instantiated in SystemC and
SystemC instantiated in Verilog/VHDL in the
$VCS_HOME/doc/examples/systemc directory.

• The interface supports the following compilers:

- RH4, RH5, suse10, suse11: gcc 3.4.6, gcc 4.2.2 and gcc 4.5.2
(default) compilers

- Solaris/SPARC (sparcOS5, sparc32): gcc 3.3.2. However,
sparc64 is not supported

- Solaris/AMD64 (X86sol, x86sol64): gcc 4.2.2

• The VCS MX / SystemC Co-simulation Interface supports 32-bit,
as well as 64-bit (VCS flag -full64) simulation.

• The gcc 4.5.2, gcc 4.2.2, gcc 3.4.6 compilers along with a
matching set of GNU tools are available on the Synopsys FTP
server for download. For more information, e-mail
sim_supt@synopsys.com.

This chapter describes the following sections:

• “Overview”

• “Verilog Design Containing Verilog/VHDL Modules and SystemC
Leaf Modules”

• “SystemC Designs Containing Verilog and VHDL Modules”

• “SystemC Only Designs”

19-4

Using SystemC

• “Considerations for Export DPI Tasks”

• “Specifying Runtime Options to the SystemC Simulation”

• “Using a Port Mapping File”

• “Using a Data Type Mapping File”

• “Combining SystemC with Verilog Configurations”

• “Parameters”

• “Debugging Mixed Simulations Using DVE or UCLI”

• “Transaction Level Interface”

• “Delta-cycles”

• “Using a Customized SystemC Installation”

• “Using Posix threads or quickthreads”

• “VCS Extensions to SystemC Library”

• “Installing VG GNU Package”

• “Static and Dynamic Linking”

• “Limitations”

• “Incremental Compile of SystemC Source Files”

• “TLI Direct Access”

• “Supporting Designs with Donut Topologies”

• “Aligning VMM and SystemC Messages”

• “Exchanging Data Between SystemVerilog and SystemC Using
Byte Pack/Unpack”

19-5

Using SystemC

• “Using Direct Program Interface Based Communication”

• “Improving VCS-SystemC Compilation Speed Using Precompiled
C++ Headers”

• “Increasing Stack and Stack Guard Size”

• Debugging SystemC Runtime Errors

• “Using HDL and SystemC Sync Loops”

• “Controlling Simulation Run From sc_main”

• “UCLI Save Restore Support for SystemC-on-top and Pure-
SystemC”

• “Enabling Unified Hierarchy for VCS and SystemC”

• “Aligning VMM and SystemC Messages”

• “UVM Message Alignment”

• “Introducing TLI Adapters”

• “Using VCS UVM TLI Adapters”

• Modeling SystemC Designs with SCV

• Viewing SystemC sc_report_handler Messages from Log
File

19-6

Using SystemC

Overview

VCS MX/SystemC Co-simulation Interface supports the following
topologies:

• Verilog designs containing SystemC and Verilog/VHDL modules

In this topology, you have a Verilog testbench and instances of
SystemC and Verilog and/or VHDL. You can also have many other
SystemC modules in the design. To instantiate a SystemC module
in your Verilog design, create a Verilog wrapper and instantiate
the wrapper in your Verilog testbench. You can use the syscan
utility to create a Verilog wrapper for your SystemC module. To
see the usage model and an example, refer to the section entitled,
“Verilog Design Containing Verilog/VHDL Modules and SystemC
Leaf Modules”.

• SystemC designs containing Verilog and VHDL modules

In this topology, you have a SystemC testbench and instances of
Verilog and/or VHDL. You can also have many other SystemC
modules in the design. To instantiate a Verilog/VHDL design in
your SystemC module, create a SystemC wrapper and instantiate
the wrapper in your SystemC module. You can use the vlogan/
vhdlan executable to create a SystemC wrapper for your Verilog
and VHDL design units. To see the usage model and an example,
refer to the section entitled, “SystemC Designs Containing Verilog
and VHDL Modules”.

19-7

Using SystemC

• VHDL designs containing SystemC and Verilog/VHDL modules

In this topology, you have a VHDL testbench and instances of
SystemC and Verilog and/or VHDL instances. You can also have
many other SystemC modules in the design. To instantiate a
SystemC module in your VHDL design, create a VHDL wrapper,
and instantiate the wrapper in your VHDL testbench. You can use
the syscan utility to create a VHDL wrapper for your SystemC
module. For the usage model and an example, see “VHDL Design
Containing Verilog/VHDL Modules and SystemC Leaf Modules”.

For information on limitations, see “Limitations”.

Verilog Design Containing Verilog/VHDL Modules and
SystemC Leaf Modules

To co-simulate a Verilog design that contains SystemC and Verilog/
VHDL modules, you need to create a Verilog wrapper for the
SystemC module, which directly interacts with the Verilog design.
You can instantiate your SystemC modules in the Verilog module just
like instantiating any other Verilog module. For additional
information, see “Example” on page 15. Other MX modules are also
included in the design. The ports of the created Verilog wrapper are
connected to signals that are attached to the ports of the
corresponding SystemC modules.

Figure 19-1 illustrates VCS MX DKI communication.

19-8

Using SystemC

Figure 19-1 VCS MX DKI Communication of a Verilog Design Containing
SystemC Modules

Usage Model

The usage model to simulate a design having a Verilog testbench
with SystemC and Verilog/VHDL instances involves the following
steps:

1. Wrapper Generation

2. Analysis

3. Elaboration

4. Simulation

Wrapper Generation

% syscan [options] file1.cpp:sc_module_name

DKI

clk

reset

in

out

rdy_read

SystemC simulatorHDL environment

clk
reset
in

out
rdy_read

H
D

L
in

te
rf

ac
e

to
 th

e
S

ys
te

m
C

 s
im

ul
at

or

S
ys

te
m

C
 in

te
rf

ac
e

to
 t

he
H

D
L

en
vi

ro
n

m
en

t

Automatically generated by the tool

Managed by the tool

Block 2

Block 1 Block 2

Block 3

Block 1

SystemC source code
entity-under-test

HDL source code

19-9

Using SystemC

For additional information, see “Generating Verilog/VHDL Wrappers
for SystemC Modules”.

Analysis

% vlogan [vlogan_options] file1.v file2.v
% vhdlan [vhdlan_options] file1.vhd file2.vhd
% syscan [syscan_options] file2.cpp file3.cpp

Elaboration

% vcs -sysc [compile_options] top_module

Simulation

% simv [runtime_options]

Input Files Required

To run a co-simulation with a Verilog design containing SystemC and
MX instances, you need to provide the following files:

• SystemC source code

- You can directly write the entity-under-test source code or
generate it with other tools

- Any other C or C++ code for the design

• Verilog or VHDL source code (.v, .vhd, .vhdl extensions)
including:

- Verilog wrapper for your SystemC module (see “Generating
Verilog/VHDL Wrappers for SystemC Modules”)

- Any other Verilog or VHDL source files for the design

19-10

Using SystemC

• An optional port mapping file. If you do not provide this file, the
interface uses the default port mapping definition. For details of
the port mapping file, see “Using a Port Mapping File” on page 56.

• An optional data type mapping file. If you don’t write a data type
mapping file, the interface uses the default one in the VCS MX
installation. For details of the data type mapping files, see “Using
a Data Type Mapping File” on page 59.

Generating Verilog/VHDL Wrappers for SystemC
Modules

You use the syscan utility to generate the wrapper and interface
files for co-simulation. This utility creates the csrc directory in the
current directory. The syscan utility writes the wrapper and interface
files in subdirectories in the ./csrc directory.

The syntax for the syscan command line is as follows:

syscan [options] filename[:modulename]
[filename[:modulename]]*

Where:

filename[:modulename] [filename[:modulename]]*

Specifies all the SystemC files in the design. There is no limit to the
number of files.

Include :modulename, for those SystemC modules which are
directly instantiated in your Verilog/VHDL design. If :modulename is
omitted, the .cpp files are compiled and added to the design's
database so the final vcs command is able to bring together all the
modules in the design. You do not need to add -I$VCS_HOME/
include or -I$SYSTEMC/include.

19-11

Using SystemC

[options]

These can be any of the following:

-cflags "flags"

Passes flags to the C++ compiler.

-cpp path_to_the_compiler

Specifies the location of the C++ compiler. If you do specify this
option, VCS MX uses the following compilers by default:

- RH4, RH5, suse10, suse11 : g++

- SunOS : CC (native Sun compiler)

Note:
- See the VCS MX Release Notes for details on all supported

compiler versions.

-full64

Enables compilation and simulation in 64-bit mode.

-debug_all

Prepares SystemC source files for interactive debugging. Along
with -debug_all, use the -g compiler flag.

-port port_mapping_file

Specifies a port mapping file. See “Using a Port Mapping File”
on page 56.

-Mdir=directory_path

Specifies an alternate directory for 'csrc'.

19-12

Using SystemC

-help|-h

Displays the syntax, options, and examples of the syscan
command.

-v

Displays the version number.

-o name

The syscan utility uses the specified name instead of the
module name as the name of the model. Do not enter this option
when you have multiple modules on the command line. Doing
so results in an error condition.

-V

Displays code generation and build details. Use this option if
you encounter errors, or are interested in the flow that builds
the design.

-vcsi

Prepares all SystemC interface models for simulation with VCSi
MXi.

-f filename

Specifies a file containing one or more
filename[:modulename] entries, as if these entries were on
the command line.

-verilog | -vhdl

Generates wrapper for the specified language. -verilog is
the default.

19-13

Using SystemC

-tlm2

Add to the compiler call include directives for header files of
the TLM 2.0.1 installation (located at $VCS_HOME/etc/
systemc/tlm). These include directories have precedence
over other include directories specified with syscan -cflags
"-I/my/tlm2/include".

Note:
You do not specify the data type mapping file on the command
line. For detailed information, see “Using a Data Type Mapping
File” on page 59.

The following example generates a Verilog wrapper:

syscan -cflags "-g" sc_add.cpp:sc_add

Supported Port Data Types

SystemC types are restricted to the sc_clock, sc_bit, sc_bv,
sc_logic, sc_lv, sc_int, sc_uint, sc_bigint, and
sc_biguint data types. Native C/C++ types are restricted to the
uint, uchar, ushort, int, bool, short, char, long and ulong
types.

Verilog ports are restricted to bit, bit-vector and signed
bit-vector types.

VHDL ports are restricted to bit, bit-vector, standard logic,
standard logic vector, signed and unsigned types.

In-out ports that cross the co-simulation boundary between SystemC
and Verilog must observe the following restrictions:

19-14

Using SystemC

• SystemC port types must be sc_inout_rv<> or
sc_inout_resolved and must be connected to signals of type
sc_signal_rv<> or sc_signal_resolved.

• Verilog port types must be bit_vector or bit.

• VHDL port types must be std_logic_vector or std_logic.

• You need to create a port mapping file, as described in “Using a
Port Mapping File” on page 56, to specify the SystemC port data
types as sc_lv (for a vector port) or sc_logic (for a scalar port).

19-15

Using SystemC

Example

In this example, you have a Verilog testbench, a SystemC module,
stimulus, Verilog module, display, and a VHDL entity, fir.

// SYSTEMC MODULE: stimulus
#include <systemc.h>
#include "stimulus.h"

void stimulus::entry() {

 cycle++;
 // sending some reset values
 if (cycle<25) {
 reset.write(SC_LOGIC_1);
 input_valid.write(SC_LOGIC_0);
 } else {
 reset.write(SC_LOGIC_0);
 input_valid.write(SC_LOGIC_0);
 // sending normal mode values
 if (cycle%60==0) {
 input_valid.write(SC_LOGIC_1);
 sample.write(send_value1.to_int());
 printf("Stimuli : %d\n", send_value1.to_int());
 send_value1++;
 };
 }
}

19-16

Using SystemC

//Verilog module: display
module display (output_data_ready, result);
 input output_data_ready;
 input [31:0] result;
 integer counter;

 ...

endmodule

--VHDL Design: fir
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use std.standard.all;

entity fir is
port(reset, input_valid, clk: in std_logic;
 output_data_ready: out std_logic;
 sample : in std_logic_vector (31 downto 0);

result : out std_logic_vector (31 downto 0));
end fir;

architecture behav of fir is
begin

 ...

end architecture behav;

//Verilog testbench: tb
module testbench ();

 parameter PERIOD = 20;

 reg clock;
 wire reset;
 wire input_valid;
 wire [31:0] sample;
 wire output_data_ready;
 wire [31:0] result;

19-17

Using SystemC

 // Stimulus is the SystemC model.
 stimulus stimulus1(.sample(sample),
 .input_valid(input_valid),
 .reset(reset),
 .clk(clock));

// fir is the VHDL model.
 fir fir1(.reset(reset),

 .input_valid(input_valid),
 .sample(sample),
 .output_data_ready(output_data_ready),
 .result(result),
 .CLK(clock));

 // Display is the Verilog model.
 display display1(.output_data_ready(output_data_ready),
 .result(result));

 ...

endmodule

Note:
You can find the same example with a run script in the
$VCS_HOME/doc/examples/systemc/vcsmx/
verilog_on_top/basic directory.

The usage model for the above example is shown below:

Wrapper Generation

% syscan stimulus.cpp:stimulus

For additional information, see “Generating Verilog/VHDL Wrappers
for SystemC Modules”.

19-18

Using SystemC

Analysis

% vlogan display.v tb.v
% vhdlan fir.vhd

Elaboration

% vcs -sysc tb

Simulation

% simv

Compiling Interface Models with acc_user.h and
vhpi_user.h

Header file acc_user.h is provided by VCS and contains many
#define macros and type definitions. Some of these definitions, for
example ’#define bool int’, may conflict with C++ class
definitions in user code. Similarly, header file vhpi_user.h is also
provided by VCS and may also conflict with C++ class definitions in
user code.

SystemC/HDL interface models require to make at least some of
these definitions visible in order to compile the internal interface
code. The amount of definitions can be controlled when syscan is
called. Three use models are available.

Use Model 1: Only a minimal subset of definitions from acc_user.h
and vhi_user.h are made visible. Invoke syscan as follows:

 syscan A.cpp:A -cflags -DSYSC_ACC_USER=0

Chances for a clash of those definitions with user C++ classes are
minimal. Note that it is neither possible to include acc_user.h nor
vhpi_user.h in the user C++ source code.

19-19

Using SystemC

Use model 2: All definitions from acc_user.h (and vhpi_user.h
if a VHDL interface is created) are made visible, except the following
macros ("#define") : bool, true, TRUE, false, FALSE, global,
exfunc, local, null. Invoke syscan as follows:

syscan A.cpp:A -cflags -DSYSC_ACC_USER=1

The user code can include header files acc_user.h or
vhpi_user.h whereby the macros mentioned above are #undef'ed
in some situations.

Use model 3: All definitions from acc_user.h (and vhpi_user.h
if a VHDL interface is created) are made visible. Only macro "bool"
is not visible. Invoke syscan as follows:

syscan A.cpp:A -cflags

or

syscan A.cpp:A -cflags -DSYSC_ACC_USER=2
The user code can include header files acc_user.h or
vhpi_user.h, all definitions including the macros mentioned above
are visible.

Controlling Time Scale and Resolution in a SystemC

The SystemC runtime kernel has a time scale and time resolution
that can be controlled by the user with functions
sc_set_time_resolution() and
sc_set_default_time_unit(). The default setting for time
scale is 10 ns, default for time resolution is 10 ps.

The Verilog or VHDL runtime kernel also has a time scale and time
resolution. This time scale/resolution is different and independent
from the time scale/resolution of SystemC.

19-20

Using SystemC

If the time scale/resolution is not identical, then a warning will be
printed during the start of the simulation. The difference may slow
down the simulation, may lead to wrong simulation results, or even
make the simulation be "stuck" at one time point and not
progressing. It is therefore highly recommended to ensure that time
scale and resolution from both kernels have the same settings. The
following sections explain how to do this.

Automatic adjustment of the time resolution

When the time resolution of SystemC and HDL differs, the overall
time resolution must be the finest of both. This can be set
automatically by the elaboration option -sysc=adjust_timeres
of vcs. This option determines the finest resolution used in both
domains, and sets it to be the finest of the simulator. That can result
that either the HDL side or the SystemC side is adjusted.

When it is not possible to adjust the time resolution, due to a user
constraint, then an error is printed, and no simulator is created.

Setting time scale/resolution of Verilog or VHDL kernel

There are several ways how the time scale and resolution of a
Verilog or mixed Verilog or VHDL is determined. For more
information on time scale and resolution, see “Controlling Time
Scale and Resolution in a SystemC” on page 19.

The most convenient way to ensure that Verilog or VHDL and
SystemC use the same time scale/resolution is using the VCS
"-timescale=1ns/1ps" command line option. Example:

vcs ... -sysc ... -timescale=1ns/1ps ...

19-21

Using SystemC

This will force the Verilog or VHDL kernel to have the same values
as the default values from the SystemC kernel. If this is not possible
(for example, because you need a higher resolution in a Verilog
module), then change the default values of the SystemC kernel as
shown in the next section.

Setting time scale/resolution of SystemC kernel

The default time scale of a systemC kernel is 1 ns, and the default
time resolution is 1 ps. These default values are NOT affected by the
VCS -timescale option.

To control the time resolution of the SystemC kernel, create a static
global object that initializes the timing requirements for the module.
This can be a separate file that is included as one of the .cpp files for
the design. Choose a value that matches the time scale/resolution of
the Verilog or VHDL kernel.

The Sample contents for this file is as follows:

include <systemc.h>
class set_time_resolution {
public:
 set_time_resolution()
 {
 try {
 sc_set_time_resolution(10, SC_PS);
 sc_set_default_time_unit(100, SC_PS);
 }
 catch(const sc_exception& x) {
 cerr << "setting time resolution/default time unit

19-22

Using SystemC

 failed: " <<
 x.what() << endl;
 }
 }
};
static int SetTimeResolution()
{
 new set_time_resolution();
 return 42;
}
static int time_resolution_is_set = SetTimeResolution();

Adding a Main Routine for Verilog-On-Top Designs

Normally, a Verilog-on-top design doesn't contain a sc_main()
function, since all SystemC instantiations are done within the Verilog
modules. However, it is possible to add a main routine to perform
several initializations for the SystemC side. The basic steps are as
follows:

• Create a C++ source file which contains the main function (see
example below).

Note:
Do not name this main function as sc_main.

• Add the registration function which takes care of the proper calling
of the user-defined main routine

• Analyze the file, using syscan user_main.cpp. This will add
the file to the design database. Note that there are no other
options required to analyze this file.

19-23

Using SystemC

The user defined main routine must look like the following:

// File user_main.cpp
int user_main_function(int argc, char **argv)
{
 // you have access to the argc,argv arguments:
 for (int i = 0; i < (argc-1); ++i)
 std::cerr << Arg[" << i << "] = " << argv[i] << "\n";
 // do other init-stuff here...
 return 0;
}
extern "C" int sc_main_register(int (*)(int, char **));
static int my_sc_main =
sc_main_register(user_main_function);
// end-of user_main.cpp

SNPS_REGISTER_SC_MAIN

The macro, SNPS_REGISTER_SC_MAIN, is introduced in this release
for ease of use.This macro registers the start up function and is
defined in the systemc_user.h. And you must include this header
file to use it.

For example:

#include “systemc_user.h”
extern “C” int user_main_function(int argc, char **argv)
{
 // you have access to the argc,argv arguments:
 for (int i = 0; i < (argc-1); ++i)
 std::cerr << Arg[" << i << "] = " << argv[i] << "\n";
 // do other init-stuff here...
 return 0;
}
SNPS_REGISTER_SC_MAIN(user_main_function);

19-24

Using SystemC

SystemC Designs Containing Verilog and VHDL
Modules

To co-simulate a SystemC design that contains Verilog and VHDL
modules, you need to create header files for those Verilog/ VHDL
instances which directly interact with the SystemC design. These
header files will be named as module_name.h for Verilog modules,
and entity_name.h for VHDL designs (see “Example” on page
31). You can analyze other Verilog and VHDL files using the vlogan
vhdlan executables. The ports of the created SystemC wrapper are
connected to signals that are attached to the ports of the
corresponding Verilog/ VHDL modules.

19-25

Using SystemC

Figure 19-2 VCS MX DKI Communication of SystemC Design Containing
Verilog Modules

Usage Model

The usage model to simulate a design having a SystemC testbench
with SystemC and Verilog/VHDL instances involves the following
steps:

1. Wrapper Generation

2. Analysis

3. Elaboration

4. Simulation

Wrapper Generation

% vlogan [options] -sc_model sc_module_name file1.v
% vhdlan [options] -sc_model entity_name file1.vhd

DKI

clk

reset

in

out

rdy_read

HDL simulatorSystemC environment

clk
reset
in

out
rdy_read

S
ys

te
m

C
 in

te
rf

ac
e

to
 th

e
H

D
L

si
m

ul
at

or

H
D

L
in

te
rf

ac
e

to
 t

he
S

ys
te

m
C

 e
n

vi
ro

n
m

en
t

Automatically generated by the tool

Managed by the tool

Block 2

Block 1 Block 2

Block 3

Block 1

HDL source code
entity-under-test

SystemC source code

19-26

Using SystemC

For additional information, see “Generating a SystemC Wrapper for
Verilog Modules”.

Analysis

% vlogan [vlogan_options] file3.v file2.v
% vhdlan [vhdlan_options] file3.vhd file2.vhd
% syscan [syscan_options] file2.cpp file3.cpp

Elaboration

% vcs -sysc [compile_options] sc_main

Simulation

% simv [runtime_options]

Input Files Required

To run co-simulation with a SystemC design containing Verilog and
VHDL modules, you need to provide the following files:

• Verilog and VHDL source code (.v, .vhd, and .vhdl extensions)

- Verilog/ VHDL source files necessary for the design.

• SystemC source code including:

- A SystemC top-level simulation (sc_main) that instantiates the
interface wrappers and other SystemC modules.

- Any other SystemC source files for the design.

• An optional port mapping file. If you do not provide this file, the
interface uses the default port mapping definition. For details of
the port mapping file, see “Using a Port Mapping File” on page 56.

19-27

Using SystemC

• An optional data type mapping file. If you don’t write a data type
mapping file, the interface uses the default file in the VCS MX
installation. For details of the data type mapping files, see “Using
a Data Type Mapping File” on page 59.

Generating a SystemC Wrapper for Verilog Modules

Use the vlogan utility with the -sc_model option to generate and
build the wrapper and interface files for Verilog modules for
co-simulation. This utility creates the ./csrc directory in the current
directory. The vlogan utility writes the header and interface files in
the ./csrc/sysc/include directory.

The syntax for the vlogan command line is as follows:

vlogan [options]-sc_model modulename file.v

Here the options are:

-sc_model modulename file.v

Specifies the module name and its Verilog source file.

-cpp path_to_the_compiler

Specifies the location of the C compiler. If you omit -cpp path,
your environment will find the following compilers as defaults:

- RH4, RH5, suse10, suse11 : g++

- SunOS : CC (native Sun compiler)

Note:
-See the VCS MX Release Notes for more details on supported

compiler versions.

19-28

Using SystemC

-You can override the default compilers in your environment by
supplying a path to the g++ compiler. For example:

-cpp /usr/bin/g++

-sc_portmap port_mapping_file

Specifies a port mapping file. For additional information, see
“Using a Port Mapping File” on page 56.

-Mdir=directory_path

Works the same way that the -Mdir VCS MX compile-time option
works. If you are using the -Mdir option with VCS MX, you should
use the -Mdir option with vlogan to redirect the vlogan output
to the same location that VCS MX uses.

-V

Displays code generation and build details. Use this option if you
are encountering errors or are interested in the flow that builds
the design.

For example, the following command line generates a SystemC
wrapper and interface file for a Verilog module display:

vlogan -sc_model display display.v

Generating A SystemC Wrapper for VHDL Design

You use the vhdlan -sc_model utility to generate and build the
wrapper and interface files for VHDL modules for cosimulation. This
utility creates the ./csrc directory in the current directory. The
vhdlan utility writes the header and interface files in subdirectories
in the ./csrc/sysc/include directory.

19-29

Using SystemC

The syntax for the vhdlan command line is as follows:

vhdlan [options]-sc_model entity_name file.vhd

Here, the options are:

-sc_model entity_name file.vhd

Specifies the entity name and its VHDL source file.

-cpp path

If you omit -cpp path, it is assumed that your environment will
find the following compilers as defaults:

- - RH4, RH5, suse10, suse11: g++

- - SunOS: CC (native Sun compiler)

Note:
- See the VCS MX Release Notes for more details on supported

compiler versions.

- You can override the default compilers in your environment
by supplying a path to the g++ compiler. For example:

-cpp /usr/bin/g++

-sc_portmap port_mapping_file

Specifies a port mapping file. See “Using a Port Mapping File” on
page 56.

19-30

Using SystemC

-Mdir=directory_path

This option works the same as the -Mdir VCS MX compile-time
option. If you are using the -Mdir option with VCS MX, you should
use the -Mdir option with vlogan to redirect the vlogan output
to the same location that VCS MX uses.

-V

Displays code generation and builds details. Use this option if you
are encountering errors or are interested in the flow that builds
the design.

For example, the following command line generates a SystemC
wrapper and interface files for VHDL design fir.vhd

vhdlan -sc_model fir -fir.vhd

19-31

Using SystemC

Example

In this example, we have SystemC testbench sc_main, another
SystemC module, stimulus, a Verilog module display, and a VHDL
design, fir.

// SystemC module: stimulus
#include <systemc.h>
#include "stimulus.h"

void stimulus::entry() {

 cycle++;
 // sending some reset values
 if (cycle<25) {
 reset.write(SC_LOGIC_1);
 input_valid.write(SC_LOGIC_0);
 } else {
 reset.write(SC_LOGIC_0);
 input_valid.write(SC_LOGIC_0);
 // sending normal mode values
 if (cycle%60==0) {
 input_valid.write(SC_LOGIC_1);
 sample.write(send_value1.to_int());
 send_value1++;
 };
 }
}

//Verilog module: display
module display (output_data_ready, result);
 input output_data_ready;
 input [31:0] result;
 integer counter;

 ...

endmodule

19-32

Using SystemC

--VHDL Design: fir
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use std.standard.all;

entity fir is
port(reset, input_valid, clk: in std_logic;
 output_data_ready: out std_logic;
 sample : in std_logic_vector (31 downto 0);

result : out std_logic_vector (31 downto 0));
end fir;

architecture behav of fir is
begin

 ...
end architecture behav;
//SystemC Testbench: sc_main

#include <systemc.h>
#include "stimulus.h"
#include "fir.h" //Header file for the VHDL entity fir
#include "display.h" //Header file for Verilog module display

int sc_main(int argc , char *argv[]) {

 sc_clock clock ("CLK", 20, .5, 0.0);
 sc_signal<sc_logic> reset;
 sc_signal<sc_logic> input_valid;
 sc_signal<sc_lv<32> > sample;
 sc_signal<sc_logic> output_data_ready;
 sc_signal<sc_lv<32> > result;

 fir fir1("fir1");
 display display1("display1");
 stimulus stimulus1("stimulus1");

 stimulus1.reset(reset);
 stimulus1.input_valid(input_valid);
 stimulus1.sample(sample);
 stimulus1.clk(clock.signal());

19-33

Using SystemC

fir1.reset(reset);
 fir1.input_valid(input_valid);
 fir1.sample(sample);
 fir1.output_data_ready(output_data_ready);
 fir1.result(result);
 fir1.clk(clock.signal());

 display1.output_data_ready(output_data_ready);
 display1.result(result);
 display1.input_valid(input_valid);
 display1.sample(sample);

 sc_start();
 return 0;
}

Note:
You can find the same example with a run script in $VCS_HOME/
doc/examples/systemc/vcsmx/systemc_on_top/
basic.

The usage model for the above example is shown below:

Wrapper Generation

% vlogan -sc_model display display.v
% vhdlan -sc_model fir fir.vhd

For additional information, see “Generating a SystemC Wrapper for
Verilog Modules” on page 27.

Analysis

% syscan stimulus.cpp

Elaboration

% vcs -sysc sc_main

Simulation

% simv

19-34

Using SystemC

Elaboration Scheme

When SystemC is at the top of the design hierarchy and you
instantiate Verilog code in the SystemC code, the elaboration of the
simulation is done in the following two steps:

• The first step is to create a temporary simulation executable that
contains all SystemC parts, but does not yet contain any HDL
(Verilog, VHDL, ...) parts. VCS then starts this temporary
executable to find out which Verilog instances are really needed.
All SystemC constructors and end_of_elaboration()
methods are executed; however, simulation does not start.

• VCS creates the final version of the simv file containing SystemC,
as well as all HDL parts. The design is now fully elaborated and
ready to simulate.

As a side effect of executing the temporary executable during step 1,
you will see that the following message is printed:

Error-[SC-VCS-SYSC-ELAB] SystemC elaboration error

19-35

Using SystemC

The design could not be fully elaborated due to an early
exit of the SystemC part of the design. The SystemC part
must execute the constructors of the design.
Please find the details in the SystemC chapter of the VCS
documentation.

In case your simulation contains statements that should NOT be
executed during step 1, guard these statements with a check for
environment variable SYSTEMC_ELAB_ONLY or, with the following
function:

extern "C" bool hdl_elaboration_only()

Both will be set/yield true only during this extra execution of simv
during step 1.

For example, guard statements like this:

 sc_main(int argc, char* argv[])
 {
 // instantiate signals, modules, ...
 ModuleA my_top_module(...); // <-- must always be
executed

 // run simulation
 if (! hdl_elaboration_only()) {
 ... open log file for simulation report ...
 }
 sc_start(); // <-- must always be executed
 if (! hdl_elaboration_only()) {
 ... close log file ...
 }

 return 0;
 }

19-36

Using SystemC

If you guard statements as mentioned above, make sure that all
module constructors and at least one call of sc_start() will be
executed.

 VCS needs to know the entire SystemC module hierarchy during
step 1, which in turn means that all SystemC module constructors
must be executed.

If your simulation checks the command line arguments argc + argv,
then you have two choices. Either guard these statements with an
IF-statement as shown above.

Alternatively, provide the simv command line arguments used
during elaboration using the VCS argument -syscelab. Example:

 For non Unified Use Model (UUM) use model:

 syscsim main.cpp ... -syscelab A ...

 or, in UUM:

 vcs -sysc sc_main ... -syscelab A ...

You can specify -syscelab multiple times. White space within the
arguments is not preserved, instead the arguments are broken up
into multiple arguments; multiple arguments can also be enclosed
within double quotes, for example with -syscelab "1 2 3".

If your SystemC design topology (the set of SystemC instances)
depends on simv runtime arguments, then you MUST provide the
relevant arguments with -syscelab. The SystemC design topology
during step 1 and the final execution of simv must be identical.

19-37

Using SystemC

Note that the -syscelab option is only supported when SystemC is
at the top of the design hierarchy. If Verilog or VHDL is at the top,
then -syscelab is neither needed nor supported.

SNPS_REGISTER_SC_MODULE

This macro can be used to implement sc_main() function in a
SystemC on top design.

Until now, you had to write an sc_main start up function whenever
there was a SystemC-on-top design. Hereafter, you can simply use
this macro to implement the sc_main function by passing the top
level sc_module as an argument as shown below. Since this macro
is defined in systemc_user.h, you must include this header file to
use this macro.

For example:

#include “systemc_user.h”
SC_MODULE(mytopmodule) {
 …
}

SNPS_REGISTER_SC_MODULE(mytopmodule);

VHDL Design Containing Verilog/VHDL Modules and
SystemC Leaf Modules

To cosimulate a VHDL design that contains SystemC leaf modules
and Verilog/VHDL modules, you need to create a VHDL wrapper for
those SystemC modules which interact with the VHDL design
directly. See “Generating Verilog/VHDL Wrappers for SystemC
Modules” on page 10. You can instantiate SystemC modules in your

19-38

Using SystemC

VHDL design, just like instantiating any other HDL design in a VHDL
design unit. Other MX modules are also included in the design. The
ports of the created VHDL wrapper are connected to signals
attached to the ports of the corresponding SystemC modules.

Note:
The VHDL design must contain at least one Verilog module.

Usage Model

The usage model to simulate a design having a Verilog testbench
with SystemC and Verilog/VHDL instances involves the following
steps:

1. Wrapper Generation

2. Analysis

3. Elaboration

4. Simulation

Wrapper Generation

% syscan -vhdl [options] file1.cpp:sc_module_name

See “Generating Verilog/VHDL Wrappers for SystemC Modules”.

Analysis

% vlogan [vlogan_options] file1.v file2.v
% vhdlan [vhdlan_options] file1.vhd file2.vhd
% syscan [syscan_options] file2.cpp file3.cpp

Elaboration

% vcs -sysc [compile_options] top_entity/config

19-39

Using SystemC

Simulation

% simv [runtime_options]

Input Files Required

To run cosimulation with a VHDL design containing SystemC, Verilog
and VHDL modules, you need to provide the following files:

• SystemC source code

- You can directly write the entity-under-test source code or
generate it with other tools.

- Any other C or C++ code for the design.

• HDL source code (.v, .vhd, or .vhdl extension) including:

- A Verilog or VHDL module definition that instantiates the
SystemC and other MX modules.

- Any other VHDL source files for the design

• An optional port mapping file. If you do not provide this file, the
interface uses the default port mapping definition. For details of
the port mapping file, see “Using a Port Mapping File” on page 56.

• An optional data type mapping file. If you do not write a data type
mapping file, the interface uses the default one in the VCS MX
installation. For details of the data type mapping files, see “Using
a Data Type Mapping File” on page 59.

19-40

Using SystemC

Generating a Verilog/VHDL Wrapper for SystemC
Modules

You use the syscan utility to generate the wrapper and interface
files for cosimulation. This utility creates the csrc directory in the
current directory. The syscan utility writes the wrapper and interface
files in subdirectories in the ./csrc directory.

The syntax for the syscan command line is as follows:

syscan [options] filename[:modulename]
 [filename[:modulename]]*

Here:

filename[:modulename] [filename[:modulename]]*

Specifies all the SystemC files in the design. There is no limit to the
number of files.

Include :modulename for those SystemC modules which are
directly instantiated in your Verilog/VHDL design. If :modulename is
omitted, the .cpp files are compiled and added to the design's
database so the final vcs command is able to bring together all the
modules in the design. You do not need to add
-I$VCS_HOME/include or -I$SYSTEMC/include.

[options]

These can be any of the following:

-cflags "flags"

Passes flags to the C++ compiler.

19-41

Using SystemC

-cpp path_to_the_compiler

Specifies the location of the C++ compiler. If you do not specify
this option, VCS MX uses the following compilers by default:

- - RH4, RH5, suse10, suse11 : g++

- SunOS : CC (native Sun compiler)

Note:
See the VCS MX Release Notes for details on all the supported
compiler versions.

-debug_all

Prepares SystemC source files for interactive debugging. Along
with -debug_all, use the -g compiler flag.

-port port_mapping_file

Specifies a port mapping file. See “Using a Port Mapping File”.

-Mdir=directory_path

Specifies the path where the syscan output must be redirected.

-help|-h

Displays the syntax, options, and examples of the syscan
command.

-v

Displays the version number.

19-42

Using SystemC

-o name

The syscan utility uses the specified name instead of the
module name as the name of the model. Do not enter this option
when you have multiple modules on the command line. Doing
so results in an error condition.

-V

Displays code generation and build details. Use this option if
you are encountering errors or are interested in the flow that
builds the design.

-vcsi

Prepares all SystemC interface models for simulation with VCS
MXi.

-f filename

Specifies a file containing one or more
filename[:modulename] entries, as if these entries were on
the command line.

-verilog | -vhdl

Generates wrapper for the specified language. -verilog is
the default.

Note:
You don’t specify the data type mapping file on the command line,
See “Using a Data Type Mapping File”.

The following example generates a VHDL wrapper:

syscan -vhdl sc_add.cpp:sc_add

19-43

Using SystemC

Example

In this example, we have a VHDL testbench called testbench, a
SystemC module fir, and a Verilog module display.

//SystemC module: fir
#include <systemc.h>
#include "fir.h"
#include "fir_const.h"

void fir::entry() {
 int i = 0;

 sc_int<8> sample_tmp;
 sc_int<17> pro;
 sc_int<19> acc;
 sc_int<8> shift[16];

 ...
}

//Verilog module: display
module display (output_data_ready, result);
 input output_data_ready;
 input [31:0] result;
 integer counter;

...

endmodule

19-44

Using SystemC

--VHDL Testbench: testbench

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use ieee.std_logic_textio.all;
use std.standard.all;
use std.textio.all;

entity testbench is
end testbench;

architecture testbench_arch of testbench is
 signal reset, input_valid, clk, output_ready: std_logic;
 signal sample, result: std_logic_vector(31 downto 0);

 component fir
 port(reset, input_valid, CLK: in std_logic;
 sample: in std_logic_vector(31 downto 0);
 output_data_ready: out std_logic;
 result: out std_logic_vector(31 downto 0));
 end component;

 component display
 port(output_data_ready: in std_logic;
 result: in std_logic_vector(31 downto 0));
 end component;

begin
 dut: fir
 port map (reset => reset,
 input_valid => input_valid,
 CLK => clk,
 sample => sample,
 output_data_ready => output_ready,
 result => result);

 disp: display
 port map (output_data_ready => output_ready,
 result => result);

19-45

Using SystemC

...

end architecture testbench_arch;

Note:
You can find the same example with a run script in $VCS_HOME/
doc/examples/osci_dki/vcsmx/vhdl_on_top/basic.

Use Model

Wrapper Generation

% syscan -vhdl fir.cpp:fir

See “Generating Verilog/VHDL Wrappers for SystemC Modules”.

Analysis

% vlogan display.v
% vhdlan tb.vhd

Elaboration

% vcs -sysc testbench

Simulation

% simv

SystemC Only Designs

VCS MX supports simulating and debugging simulations that contain
only SystemC models, referred to as a "pure SystemC" simulation.

Pure SystemC simulations contain no Verilog, no VHDL, no SVA,
and no NTB modules. The design will have only the SystemC and
other C/C++ source files. The usage model to simulate pure

19-46

Using SystemC

SystemC designs is the same as SystemC on top designs, except
the wrapper generation phase, which is not required for pure
SystemC simulation.

Usage Model

The usage model to simulate a pure SystemC design involves the
following steps:

1. Analysis

2. Elaboration

3. Simulation

Analysis

% syscan [syscan_options] all_systemC_source_files

Elaboration% syscan <SystemC source files(s)>
% vcs -sysc [elab_options] sc_main

Simulation

% simv [runtime_options]

Example 1:

% syscan adder.cpp
% syscan foo.cpp bar.cpp xyz.cpp main.cpp
% vcs -sysc sc_main
% ./simv -gui

19-47

Using SystemC

Example 2:

% syscan -cpp g++ -cflags -g adder.cpp
% syscan -cpp g++ -cflags -g foo.cpp bar.cpp xyz.cpp
% syscan -cpp g++ -cflags -g main.cpp
% vcs -sysc sc_main \
 -cpp g++ -cflags -g \
 extra_file.o -ldflags "-L/u/me/lib -labc"
% ./simv -ucli

Restrictions

The following elaboration options are not supported for pure
SystemC simulation:

-sverilog: Pure SystemC simulation will not have any SV files.

-ntb*: Pure SystemC simulation will not have any OV files.

-ova*: Pure SystemC simulation will not have any OV files.

-cm*: Coverage related options are not supported.

-comp64: Cross-compilation is not supported. However, pure
SystemC simulation is supported in 32-bit and 64-bit mode.

-e: The name of the main routine must always be sc_main.

-P: Pure SystemC simulation will not have any HDL files.

19-48

Using SystemC

Supported and Unsupported UCLI/DVE and CBug
Features

You can use UCLI commands or the DVE GUI to debug your pure
SystemC design. The list of supported features in UCLI and DVE are
as follows:

• View SystemC design hierarchy

• VPD tracing of SystemC objects

• Set breakpoints, stepping in C, C++, SystemC sources

• Get values of SystemC (or C/C++ objects)

• stack [-up|-down]

• continue/step/next/finish

• run [time]

The following UCLI and DVE features are not supported for SystemC
objects:

• Viewing schematics

• Using force, release commands

• Tracing [active] drivers, and loads

• The UCLI command next -end is not supported.

• Commands that apply to HDL objects only

In case of a Control-C (i.e., SIGINT), CBug will always take over
and report the current location.

19-49

Using SystemC

When the simulation stops somewhere in the System C or VCS MX
kernel, between execution of user processes, then a dummy file is
reported as the current location. This happens, for example,
immediately after the init phase. This dummy file contains a
description about this situation and instructions how to proceed (i.e.,
Set BP in SystemC source file, click continue).

Controlling TimeScale Resolution

The most convenient way to ensure that Verilog/VHDL and SystemC
use the same time scale/resolution is using the VCS MX
-timescale=1ns/1ps command-line option.

For example:

% vcs -sysc top -timescale=1ns/1ps

This command forces the Verilog/VHDL kernel to have the same
values as the default values from the SystemC kernel. If this is not
possible (for example, because you need a higher resolution in a
Verilog module), then change the default values of the SystemC
kernel as shown in the following section.

Setting Timescale of SystemC Kernel

To control the time resolution of your SystemC module, create a
static global object that initializes the timing requirements for the
module. This can be a separate file that is included as one of the
.cpp files for the design.

19-50

Using SystemC

Sample contents for this file are:

include <systemc.h>
class set_time_resolution {
public:
 set_time_resolution()
 {
 try {
 sc_set_time_resolution(10, SC_PS);
 }
 catch(const sc_exception& x) {
 cerr << "setting time resolution/default time unit
failed: " <<
x.what() << endl;
 }
 }
};
static int SetTimeResolution()
{
 new set_time_resolution();
 return 42;
}
static int time_resolution_is_set = SetTimeResolution();

Automatic Adjustment of Time Resolution

If the time resolution of SystemC and HDL differs, VCS MX can also
automatically determine the finer time resolution and set it as the
simulator’s time scale. To enable this feature, you must use the
-sysc=adjust_timeres elaboration option.

VCS MX may be unable to adjust the time resolution if you elaborate
your HDL with the -timescale option and/or use the
sc_set_time_resolution() function call in your SystemC
code. In such cases, VCS MX reports an error and does not create
simv.

19-51

Using SystemC

Considerations for Export DPI Tasks

If you have a SystemC design with Verilog instances, and you want
to call export "DPI" tasks from the SystemC side of the design, then
you need to do either one of the following three steps:

• “Use syscan -export_DPI [function-name]”

• “Use syscan -export_DPI [Verilog-file]”

• “Use a Stubs File”

Use syscan -export_DPI [function-name]

Register the name of all export DPI functions and tasks prior to the
final vcs call to elaborate the design. You need to call syscan in
the following way:

syscan -export_DPI function-name1 [[function-name2] ...]

This is necessary for each export DPI task or function that is used by
SystemC or C code. Only the name of function must be specified,
and formal arguments are neither needed nor allowed. Multiple
space-separated function names can be specified in one call of
syscan -export_DPI. It is allowed to call syscan -export_DPI
any number of times. A function name can be specified multiple
times.

19-52

Using SystemC

Example

Assume that you want to instantiate the following SystemVerilog
module inside a SystemC module:

//myFile.v
module vlog_top;
 export "DPI" task task1;
 import "DPI" context task task2(input int A);
 export "DPI" function function3;

 task task1(int n);
 ...
 endtask
 function int function3(int m);
 ...
 endfunction // int
endmodule

You must do the following steps before you can elaborate the
simulation:

 syscan -export_DPI task1
 syscan -export_DPI function3

Note that task2 is not specified because it is an import "DPI" task.

Use syscan -export_DPI [Verilog-file]

This is same as syscan -export_DPI [function-name],
however, you can specify the name of a Verilog file instead of the
name of an export DPI function. The syscan will search for all
export_DPI declarations in that file.

19-53

Using SystemC

The syntax is as shown below:

syscan -export_DPI [Verilog-file]

For example (see myFile.v in the above section):

% syscan -export_DPI myFile.v

This will locate export_DPI functions task1 and functions3 in
the myFile.v file.

Note: syscan does not apply a complete Verilog or SystemVerilog
parser, but instead does a primitive string search in the specified file.

The following restrictions apply:

• The entire export_DPI declaration must be written in one line
(no line breaks allowed)

• `include statements are ignored

• Macros are ignored

VCS MX will elaborate the design even if the source files do not
comply to the above restrictions. However, syscan will be unable to
extract some or all of the export_DPI declarations. In this case,
use syscan -export_DPI [function-name].

19-54

Using SystemC

Use a Stubs File

An alternative approach is to use stubs located in a library. For each
export DPI function like my_export_DPI, create a C stub with no
arguments and store it in an archive which is linked by VCS MX:

 file my_DPI_stubs.c :
 #include <stdio.h>
 #include <stdlib.h>

 void my_export_DPI() {
 fprintf(stderr,"Error: stub for my_export_DPI is
 used\n");

 exit(1);
 }

 ... more stubs for other export DPI function ...

 gcc -c my_DPI_stubs.c
 ar r my_DPI_stubs.a my_DPI_stubs.o
 ...
 syscsim ... my_DPI_stubs.a ...

It is important to use an archive (file extension .a) and not an object
file (file extension .o).

Using options -Mlib and -Mdir

You can use VCS options -Mlib and -Mdir during analysis and
elaboration to store analyzed SystemC files in multiple directories.
This may be helpful if analyzing (compiling) of SystemC source files
takes a long time, and if you want to share analyzed files between
different projects.

19-55

Using SystemC

The use model is as follows:

 syscan -Mdir=<dir1> model1.cpp:model1
 ...
 syscan -Mdir=<dir2> model2.cpp:model2
 ...
 vcs -sysc -Mlib=<dir1>,<dir2> ...

Options -Mlib and -Mdir are available in all configurations,
meaning for SystemC designs containing Verilog/VHDL modules,
and also for Verilog/VHDL designs containing SystemC modules.

Specifying Runtime Options to the SystemC Simulation

You start a simulation with the simv command line. Command line
arguments can be passed to just the VCS MX simulator kernel, or
just the sc_main() function or both.

By default, all command-line arguments are given to sc_main(), as
well as the VCS MX simulator kernel. All arguments following
-systemcrun will go only to sc_main(). All arguments following
-verilogrun will go only to the VCS MX simulator kernel. The
following arguments are always recognized, and goes only to the
VCS MX simulator kernel:

-r, -restore, -pathmap, -save, -save_nocbk, -save_file,
-save_file_skip, -gui, -ucli, -uclimode, -ucli2Proc

For example:

simv a b -verilogrun c d -systemcrun e f -ucli g

19-56

Using SystemC

Function sc_main() will receive arguments "a b e f g". The VCS
MX simulator kernel will receive arguments "c d -ucli".

Using a Port Mapping File

You can provide an optional port mapping file for the syscan
command with the -port option, and for vhdlan and vlogan by
using -sc_portmap. If you specify a port mapping file, any module
port that is not listed in the port mapping file is assigned the default
type mapping.

A SystemC port has a corresponding Verilog or VHDL port in the
wrapper for instantiation. The syscan utility either uses the default
method for determining the type of the HDL port it writes in the
wrapper or uses the entry for the port in the port mapping file.

A port mapping file is an ASCII text file. Each line defines a port in
the SystemC module, using the format in Example 14-1 and 14-2. A
line beginning with a pound sign (#) is a comment.

A port definition line begins with a port name, which must be the
same name as that of a port in the HDL module or entity. Specify the
number of bits, the HDL port type, and the SystemC port type on the
same line, separated by white space. You can specify the port
definition lines in any order. You must, however, provide the port
definition parameters within each line in this order: port name, bits,
HDL type, and SystemC type.

The valid Verilog port types, which are case-insensitive, are as
follows:

• bit — specifies a scalar (single bit) Verilog port

19-57

Using SystemC

• bit_vector — specifies a vector (multi-bit) unsigned Verilog
port (bit-vector is a valid alternative)

• signed — specifies a Verilog port that is also a reg or a net
declared with the signed keyword and propagates a signed value.

The valid VHDL port types, which are case-insensitive, are:

• bit

• bitvector

• std_logic

• std_logic_vector

• signed

• unsigned

The following examples showport mapping files:

Example 19-1 Verilog Port Mapping File

Port name Bits Verilog type SystemC type
in1 8 signed sc_int
in2 8 bit_vector sc_lv
clock 1 bit sc_clock
out1 8 bit_vector sc_uint
out2 8 bit_vector sc_uint

Example 19-2 VHDL Port Mapping File

Port name Bits VHDL type SystemC type
in1 8 std_logic_vector sc_int
in2 8 std_logic_vector sc_lv
clock 1 std_logic sc_clock
out1 8 std_logic_vector sc_uint
out2 8 std_logic_vector sc_uint

19-58

Using SystemC

SystemC types are restricted to the sc_clock, sc_bit, sc_bv,
sc_logic, sc_lv, sc_int, sc_uint, sc_bigint, and
sc_biguint data types.

Native C/C++ types are restricted to the bool, char, uchar, short,
ushort, int, uint, long, and ulong data types.

Automatic Creation of Portmap File

VCS now writes the portmap file automatically thus making the task
of mapping the ports easier across the languages. When SystemC
is instantiated in HDL or vice-versa, you must write port map file for
mapping the data types between the languages. This is a tedious job
when we have many ports.

Now, a default portmap file can be created by using the option -
sysc=gen_portmap and -sysc=opt_if while generating the
wrapper.

For example:

syscan –sysc=gen_portmap -sysc=-opt_if mymod.cpp:mymod
vlogan –sysc=gen_portmap -sysc=-opt_if vmod.v –sc_model vmod
vhdlan –sysc=gen_portmap -sysc=-opt_if hmod.vhdl –sc_model
hmod

mymod.default_map:
ina 8 bitvectorsc_int
clk 1 bit sc_clock
outx 32 bitvectorsc_bv

If the port map file already exists, the option –sysc=gen_portmap
will overwrite it if the file has the write permission. It generates the
following message if the file does not have the write permission.

Error-[SC-PORTMAP-ERR]Cannot open portmap file

19-59

Using SystemC

Using a Data Type Mapping File

When running a VCS MX / SystemC simulation, the interface
propagates data through the module ports from one language
domain to another. This can require the interface to translate data
from one data type representation to another. This translation is
called mapping, and is controlled by data type mapping files.

The data type mapping mechanism is similar to that used for port
mapping, but is more economical and requires less effort to create
and maintain. Because the data type mapping is independent of the
ports, you can create one or more default mappings for a particular
type that will be used for all ports, rather than having to create a port
map for every port of each new HDL wrapper model.

Data type mapping files map types, so that ALL ports of that type on
ALL instances will now be assigned the specified mapping.

The data type mapping file is named cosim_defaults.map. The
interface looks for and reads the data mapping file in the following
places and in the following order:

1. In $VCS_HOME/include/cosim

2. In your $HOME/.synopsys_ccss directory

3. In the current directory.

An entry in a later file overrules an entry in an earlier file.

Each entry for a SystemC type has the following:

1. It begins with the keyword Verilog or VHDL.

19-60

Using SystemC

2. It is followed by the bit width. For vectors, an asterisk (*) is a
wildcard to designate vectors of any bit width not specified
elsewhere in the file.

3. The corresponding Verilog or VHDL “type” using keywords that
specify if it is scalar, unsigned vector, or signed port, the same
keywords used in the port mapping file.

4. The SystemC or Native C++ type.

Example 19-3 shows an example of a data type mapping file.

Example 19-3 Data Type Mapping File

##
Mappings between SystemC and Verilog datatypes
##
Verilog * bit_vector sc_bv
Verilog 1 bit bool
Verilog * bit_vector int
Verilog * signed int
Verilog 1 bit sc_logic
Verilog 1 bit sc_bit
Verilog * bit_vector char
Verilog * bit_vector uchar
Verilog * bit_vector short
Verilog * bit_vector ushort
Verilog * bit_vector uint
Verilog * bit_vector long
Verilog * bit_vector ulong

19-61

Using SystemC

Combining SystemC with Verilog Configurations

SystemC can be used in combination with Verilog configurations.
This is supported since release 2009.06 and only in UUM flow.
Topologies SystemC-top and Verilog-top are supported. Topology
VHDL-top is not (yet) supported.

Verilog-on-top, SystemC and/or VHDL down

A Verilog-on-top design with SystemC and/or VHDL down is
specified like any other design, where the analysis of the Verilog
files, by means of vlogan, must use the libmap option. Added to it
is a Verilog source file, containing the configurations. A configuration
consists of a config scope. Example:

config use_A;
 design top; // name of the Verilog top-entity
 default liblist workA; // library where the top-entity
 is analyzed
 // different mappings of verilog instances:
 instance top.v_mod.inst1 use workA.v_sub; // verilog-
 subtractor
 instance top.v_mod.inst2 use workA.h_sub; // VHDL-
 subtractor
 instance top.v_mod.inst3 use workA.s_sub; // SystemC-
 subtractor
endconfig

config use_B;
 design top;
 default liblist workA;
 // no overrule for ...inst1
 instance top.v_mod.inst2 use workA.s_sub; // SystemC-
 subtractor
 instance top.v_mod.inst3 use workA.s_sub; // SystemC-

19-62

Using SystemC

 subtractor
endconfig

The name of the Verilog top-entity is obligatory. The default liblist
statement defines where this Verilog top-entity is analyzed, by
means of the libmap option of vlogan.

The instances are defined by their logical hierarchical name within
the design hierarchy.

For setting up a design with Verilog configurations, there must be at
least one call to syscan like the one given below:

 %> syscan s_sub.cpp:s_sub

Above command generates an interface model, which has to be
instantiated in Verilog.

The libmap option for vlogan requires a correct setting of the
synopsys_sim.setup file. See the VCS and VCS MX user guides
for details.

Compiling a Verilog/SystemC design

Compiling a design containing only Verilog and SystemC is different
compared to compiling a design containing Verilog, SystemC, and
VHDL. Point of difference are the options passed to vcs for
elaboration.

19-63

Using SystemC

The following example shows how to compile a design containing
Verilog and SystemC:

 %> syscan s_sub.cpp:s_sub -sysc=2.2
 %> vlogan v_sub.v -libmap liblist.map -sverilog
 %> vlogan v_design.v -libmap liblist.map -sverilog
 %> vlogan v_configs.v -libmap liblist.map -sverilog
 %> vcs -sverilog -top use_B -sysc=2.2

The used configuration for the design is specified with the option
 "-top <config-name>".

When a different configuration is to be used, or a configuration has
changed, it is sufficient to re-analyze the verilog file containing the
changed configuration, and redo the elaboration.

Compiling a Verilog/SystemC+VHDL design

Here an example how to compile a design:

 %> syscan s_sub.cpp:s_sub -sysc=2.2
 %> vlogan v_sub.v -lbimap liblist.map -sverilog
 %> vhdlan h_sub.vhdl
 %> vlogan v_design.v -libmap liblist.map -sverilog
 %> vlogan v_configs.v -libmap liblist.map -sverilog
 %> vcs -sysc=2.2 use_A -sverilog

Note the difference to the compile steps of SystemC+Verilog: the
used configuration is NOT preceded with the -top option.

19-64

Using SystemC

SystemC-on-top, Verilog and/or VHDL down

A SystemC-on-top design with Verilog and/or VHDL down is
specified like any other design, where the analysis of the Verilog
files, by means of vlogan, must use the libmap option. Added to it is
a Verilog source file, containing the configurations. The following
example shows a configuration with a SystemC-on-top topology:

 config use_SysC_A;
 design sYsTeMcToP; // name of the default SystemC top
 entity
 default liblist workA; // library where the top-entity
 is analyzed
 // different mappings of verilog instances:
 instance sYsTeMcToP.v_mod.inst1 use workA.v_sub; //
 verilog-subtractor
 instance sYsTeMcToP.v_mod.inst2 use workA.v_add; //
 verilog-adder
 instance sYsTeMcToP.\sctop.sc2 .v_mod.inst3 use
 workA.v_add;
 endconfig

 config use_SysC_B;
 design sYsTeMcToP;
 default liblist workA;
 instance sYsTeMcToP.v_mod.inst1 use workA.h_sub; //
 VHDL-subtractor
 instance sYsTeMcToP.v_mod.inst2 use workA.v_sub; //
 verilog-subtractor
 instance sYsTeMcToP.\sctop.sc2 .v_mod.inst3 use
 workA.v_add;
 endconfig

19-65

Using SystemC

The name of the SystemC top-entity is hard coded as sYsTeMcToP
and cannot be changed. Note that only Verilog modules can be re-
configured; it is not possible to reconfigure a SystemC instance and/
or a VHDL instance. Also note that it is not possible to re-configure
a Verilog-instance to a SystemC-instance.

How to specify the pathname for a Verilog instance depends on the
position of the instance within the design hierarchy.

Use a normal path for Verilog modules that are instantiated at the
top-level inside the sc_main() function and that are not a sub-
instance of a SystemC model. Example:

"instance sYsTeMcToP.v_mod.inst1"

But you must use a partially escaped path name for Verilog instances
that are sub-instances of SystemC modules. The path name has to
be split into two parts, where the first part contains only SystemC
instances, and a second part contain Verilog or VHDL instances. The
first part has be specified as an extended Verilog identifier.

Example:

instance sYsTeMcToP.\sctop.sc2 .v_mod.inst3 use
 workA.v_add;

The design topology is:

 sctop SystemC
 sc2 SystemC
 v_mod Verilog
 inst3 Verilog

The first part consists two SystemC instances, ’sctop’ and ’sc2’.
These instances must be specified as "\sctop.sc2 ".

19-66

Using SystemC

Note that the space at the end is important and must not be omitted.
The second part consist of two Verilog instances, ’v_mod’ and ’inst3’
and must not be escaped.

Note:
Writing the configuration as given below is not supported:

 instance sYsTeMcToP.sctop.sc2.v_mod.inst3 use
 workA.v_add;

Compiling a SystemC/Verilog design

Compiling a design containing only Verilog and SystemC is different
than compiling a design containing Verilog, SystemC, and VHDL.
Point of difference are the options passed to vcs for elaboration.

 %> vlogan v_sub.v -libmap liblist.map -sverilog
 %> vlogan v_mod.v -libmap liblist.map -sverilog -sc_model
 v_mod -sysc=2.2
 %> vlogan v_configs.v -libmap liblist.map -sverilog
 %> syscan sc_main.cpp -sysc=2.2
 %> vcs -sysc=2.2 -top use_A sc_main -sverilog

The used configuration is specified with the -top <config-name>
option.

Note:
The argument sc_main specifies that the design topology is
SystemC-on-top.

When a different configuration is to be used, or a configuration has
changed, it is sufficient to re-analyze the verilog file containing the
changed configuration, and redo the elaboration.

19-67

Using SystemC

 Compiling a SystemC/Verilog+VHDL design

 %> vlogan v_sub.v -libmap liblist.map -sverilog
 %> vhdlan h_sub.vhdl
 %> vlogan v_mod.v -libmap liblist.map -sverilog -sc_model
v_mod -sysc=2.2
 %> vlogan v_configs.v -libmap liblist.map -sverilog
 %> syscan -sysc=2.2 sc_main.cpp
 %> vcs -sysc=2.2 sc_main use_B -sverilog

Note:
The difference with MX-design is that the used configuration is
NOT preceded with the -top option.

Limitations

The following limitation apply:

• VHDL-on-top designs are not supported with Verilog
configurations.

• A Verilog-on-top design must contain at least one SystemC
instance, when no configurations are used. Later on, this SystemC
instance can be configured to something else.

• The name of the SystemC-top entity is hard coded to
sYsTeMcToP.

• The interfaces of the modules must match. The results are
unpredicted otherwise. It is the user's responsibility to keep the
consistence here.

19-68

Using SystemC

 Parameters

Parameters are supported between Verilog or VHDL and SystemC.
The parameter values that are specified for a SystemC instance in
Verilog are automatically passed to the SystemC domain.

 Parameters in Verilog

Supported parameter types in Verilog are signed and unsigned
integers and the real data type. For SystemVerilog, the string
parameter type is also supported. Parameters are part of a module
declaration and can be used like:

 parameter msb = 7;
 parameter e = 7, f = 5;
 parameter foo = 8; bar = foo + 42;
 parameter av_delay = (e + f) / 2;
 parameter signed [3:0] mux_selector = 3;
 parameter real pi = 314e-2;
 parameter string hi_there = "Verilog String Parameter";

19-69

Using SystemC

Parameters in VHDL

In VHDL, parameters correspond to 'generics'. Supported parameter
types for the combination with Verilog and SystemC are integer,
natural, real, and string. Generics are defined as part of the entity
declaration:

entity H is
 generic (
 param_int : integer := 42;
 param_real : real := 123.456;
 param_nat : natural := 4;
 param_string : string := "VHDL String Parameter")
 port (...);
end H;

Parameters in SystemC

In SystemC, there is no standard definition for parameters.
Therefore, a special parameter class is defined for that purpose. The
supported types must match the types as being using in

19-70

Using SystemC

(System)Verilog and VHDL, so the supported datatypes are int,
double and std::string. Within SystemC the parameters must be
initialized with a default value inside the class constructor. Example:

#include "systemc.h"
#include "snps_hdl_param.h"

SC_MODULE(sysc_foo) {
 // declarative part
 hdl_param<int> msb;
 hdl_param<int> e, f;
 hdl_param<double> av_delay;
 hdl_param<std::string> hi_there;

 // initialization part
 SC_CTOR(sysc_foo) : HDL_PARAM(msb, 42), HDL_PARAM(e, 3),
HDL_PARAM(f, 4),HDL_PARAM(av_delay, "123.456"),

 HDL_PARAM(hi_there, "SystemC String Parameter")
 { ... }
 };

Verilog-on-Top, SystemC-down

The instantiation of a parameterized SystemC module inside Verilog
is the same as for any other Verilog module:

 sysc_foo #(11, 2, 3, 12.21, "Verilog-override") foo1(...);
 sysc_foo #(.av_delay(44.33), .e(-9)) foo2(...);
 sysc_foo foo3(...); // using all default parameter values

19-71

Using SystemC

Within the SystemC constructor, the values of the parameters can be
obtained by:

 // SC_CTOR(sysc_foo) : HDL_PARAM(...)...
 {
 int l_msb = msb.get();
 double delay = av_delay.get();
 std::string str = hi_there.get();
 }

VHDL-on-Top, SystemC-down

The instantiation of a parameterized SystemC module inside VHDL
is the same as for any other VHDL module:

 architecture H_arch of H is
 component sysc_foo
 generic (
 msb : integer;
 e, f : integer;
 av_delay : real;
 hi_there : string)
 port (...);
 end component;

 begin
 m_foo : sysc_foo generic map (
 msb => 11;
 av_delay => 0.01;
 hi_there => "VHDL Override")
 port map (...);
 ...

19-72

Using SystemC

SystemC-on-Top, Verilog or VHDL down

Within SystemC there are two ways to instantiate a foreign module:

• using the default constructor, and using separate setting calls for
the parameters, or

• using a fully specified constructor, where each parameter must
be assigned a value.

The instantiation can be in any SystemC module and/or in the
sc_main routine:

 #include "v_add.h" // verilog module
 #include "h.h" // vhdl module
 int sc_main(int, char **) {
 h m_h("h"); // VHDL module
 m_h.param_int(44);
 m_h.param_real(99.01);
 m_h.param_string("SystemC Override");

 v_add m_v1("v1", 3 /* incr value */, 1.01 /* factor */,
 "SystemC Override");

 v_add m_v2("v2");
 m_v2.incr_value(4);
 m_v2.factor(0.99);

 m_v2.hi_there("SystemC Override #2");

 sc_start(-1, SC_NS);
 }

19-73

Using SystemC

The hdl_param class defines the ::operator() to initialize the
parameters, and the ::get() function for obtaining the final value
of the parameter. Parameters can only be initialized once, and
cannot be altered after the value of the parameter is obtained by
means of the ::get() function.

Namespace

For SystemC-2.2, name spaces are used to define the SystemC
hdl_param objects:

 namespace sc_snps {
 template < class T >
 class hdl_param : public sc_object { ... };
 } // namespace sc_snps

For the declaration of the parameters this namespace must be used:

 SC_MODULE(sysc_foo) {
 sc_snps::hdl_param<int> i;
 };

 Parameter specification as vcs elaboration arguments

Parameter can be defined using the vcs elaboration command line
arguments. This is implemented only for a Verilog-on-top design:

* -pvalue+v_top.foo1.msb=33

This works only for integer and real parameter types. This doesn't
work for string parameters.

* -parameters param.lst

19-74

Using SystemC

with param.lst a list of parameter assignments (see the specific vcs
part of this guide discussing parameters).

Debug

The SystemC hdl_param objects are visible as class parameters
within a combined hierarchy view (vpd-file). Although parameters are
constant and won't change after time == 0, they can be traced.

Access with the UCLI get command is supported. Changing the
value with the change or force commands is not supported, since
parameters are constant after the construction time.

Limitations

The verilog parameters are not compile constants for SystemC. That
has a limitation that these can not be used as template arguments
for the construction of templatized classes. Example:

SC_CTOR(not_possible) : HDL_PARAM(width, 4) {
 sc_int<width> *pint = new sc_int<width>; // NOT SUPPORTED
 }

The same hold for the Verilog and VHDL domains:

 module test(data_in1, data_in2);
 parameter width = 12;
 input [width-1 : 0] data_in1; // NOT SUPPORTED
 input [11 : 0] data_in2;
 endmodule

19-75

Using SystemC

Debugging Mixed Simulations Using DVE or UCLI

You can use Discovery Visual Environment (DVE) or the Unified
Command-line Interface (UCLI) to debug VCS MX (Verilog, VHDL,
and mixed) simulations containing SystemC source code by
attaching the C-source debugger to DVE or UCLI.

The following steps outline the general debugging flow. For more
information, see The Discovery Visual Environment User Guide and
the Unified Command-line Interface User Guide.

1. Compile your VCS MX with SystemC modules as you normally
would, making sure to compile all SystemC files you want to
debug.

For example, with a design with Verilog on top of a SystemC
model:

% syscan -cpp g++ -cflags "-g" my_module.cpp:my_module
% vlogan top.v
% vcs -cpp g++ -sysc -debug_all top

Note that you must use -debug or -debug_all to enable
debugging.

2. Start the debugger.

- To start DVE, enter:

simv -gui

- To start UCLI, enter:

simv -ucli

3. Attach the C debugger as follows:

19-76

Using SystemC

- In DVE, select Simulator > C/C++ Debugging or enter cbug
on the console command line.

- In UCLI, enter cbug on the command line.

 Debugging SystemC source code is enabled and the following
message appears:

CBug - Copyright Synopsys Inc. 2003-2009.

4. Run the simulation.

Improved CBug Debugging Capabilities

The following debugging capabilities have been provided in CBug to
ease troubleshooting issues with your SystemC designs.

• Viewing sc_signal of User-defined struct in Waveform Window

• Driver/Load Support for SystemC Designs in Post Processing

Viewing sc_signal of User-defined struct in Waveform
Window

Until now, troubleshooting a user-defined c/c++/SystemC structure
was not available in CBug. Hereafter, you can easily dump signals or
ports of type user-defined structs and view these signals in the wave
form window. This will enable you to debug these user-defined
structs by viewing them in the waveform window clearly. This feature
enables dumping of signals and ports that are part of the static
design hierarchy. However, the local variables inside class methods
whose lifetime is valid only for that method call are out of the scope
of this feature.

19-77

Using SystemC

This feature is disabled by default. To enable this feature, perform
the following steps:

In UCLI:

%ucli> config syscaddstructtypes on

In DVE:

Click Edit -> Preferences. The Preferences dialog box appears.
Select Testbench/CBug. Choose CBug. CBug options appear on
the right hand side of the dialog box. Here, check the box For
signals and ports over struct/union types.

In shell:

%>setenv SYSC_ADD_STRUCT_TYPES 1

This feature is not supported on Solaris platform.

Driver/Load Support for SystemC Designs in Post
Processing

Until now, viewing driver/load on a Verilog signal in a mixed-
language design was not possible in the post-processing mode
thereby depriving you of a better debug capability. Hereafter, you will
be able to view the driver or load on Verilog signals in post-
processing mode. This will enable you to understand from where the
Verilog signal is being driven so that you can back trace the signal
easily in the post-processing mode.

19-78

Using SystemC

Transaction Level Interface

The transaction level interface (TLI) between SystemVerilog and
SystemC supports communication between these languages at the
transaction level. At RTL, all communication goes through signals.
At transaction level, communication goes through function or task
calls.

It is an easy-to-use feature that enables integrating Transaction
Level SystemC models into a SystemVerilog environment
seamlessly and efficiently. The automated generation of the
communication code alleviates the difficulties in implementing a
synchronized communication mechanism to fully integrate cycle
accurate SystemC models into a SystemVerilog environment.

TLI exploits using the powerful Verification Methodology Manual
(VMM methodology) to verify functional or highly accurate SystemC
TLMs. TLI improves mixed language simulation performance and
speeds-up the development of the verification scenarios.
Furthermore, TLI adds the necessary logic to enable you to debug
the transaction traffic using the waveform viewer in DVE.

TLI augments the pin-level interface (DKI) to enable both languages
to communicate at different levels of abstraction. Using this
interface, you can simulate some part of the design at the
transaction-level and the other part at the hardware level, enabling
full control over the level of detail required for your simulation runs.
This integration also helps you to leverage the powerful features of
SystemVerilog for transaction-level verification. Also, you can use
the same testbenches for hardware verification. TLI enables you to
do the following:

• Call interface methods of SystemC interfaces from SystemVerilog

19-79

Using SystemC

• Call tasks or functions of SystemVerilog interfaces from SystemC

Methods and tasks can be blocking as well as non-blocking.
Blocking in the context of this document means the call may not
return immediately, but consumes simulation time before it returns.
However, non-blocking calls always return immediately in the same
simulation time.

The caller's execution is resumed exactly at the simulation time
when the callee returns, so a blocking call consumes the same
amount of time in both the language domains – SystemC and
SystemVerilog. Non-blocking calls always return immediately.

The tasks or functions must be reachable through an interface of the
specific language domain. This means that for SystemVerilog calling
SystemC, the TLI can connect to functions that are members of a
SystemC interface class. For SystemC calling SystemVerilog, the
TLI can call functions or tasks that are part of a SystemVerilog
interface.

The usage model of the transaction level interface consists of
defining the interface by means of an interface definition file, calling
a code generator to create the TLI adapters for each domain, and
finally instantiation and binding of the adapters.

Interface Definition File

The interface definition file contains all the necessary information to
generate the TLI adapters. It consists of a general section and a
section specific to task/function. The order of lines within the general

19-80

Using SystemC

section is arbitrary, and the first occurrence of a task or function
keyword marks the end of this section. The format of the file is
illustrated as follows:

interface if_name
direction sv_calls_sc
[verilog_adapter name]
[systemc_adapter name]
[hdl_path XMR-path]

[#include "file1.h"]
[`include "file2.v"]
...

task <method1>
input|output|inout|return vlog_type argument_name_1 return
input|output|inout|vlog_type argument_name_2
.
.
.
function [return type] method2
input|output|inout vlog_type argument_name_1
.
.
.

The interface entry defines the name of the SystemVerilog
"interface". Similarly, the class entry defines the name of the
SystemVerilog "class". For the direction SystemVerilog calling
SystemC, the if_name argument must match the name of the
SystemC interface class. Specialized template arguments are
allowed in this case, for example my_interface<int> or
my_interface<32>. For SystemC calling SystemVerilog,
if_name must match the SystemVerilog interface name.

19-81

Using SystemC

The direction field specifies the caller and callee language
domains, and defaults to sv_calls_sc. The SystemC calling
SystemVerilog direction is indicated by sc_calls_sv.

The verilog_adapter and systemc_adapter fields are
optional and define the names of the generated TLI adapters and the
corresponding file names. File extension .sv is used for the
verilog_adapter and file extensions .h and .cpp for the
systemc_adapter.

The optional #include lines are inserted literally into the generated
SystemC header file, and the optional `include lines into the
generated SystemVerilog file.

The hdl_path field is optional and binds the generated Verilog
adapter through an XMR to a fixed Verilog module, Verilog interface,
or class instance. Using hdl_path makes it easier to connect to a
specific entity, however, the adapter can be instantiated only once,
not multiple times. If you want to have multiple connections, then
create multiple adapters which differ only by their name.

A SystemC method may or may not be blocking, meaning it may
consume simulation time before it returns or it will return right away.
This distinction is important for the generation of the adapter. Use
task for SystemC methods that are blocking or even potentially
blocking. Use function for SystemC methods that will not block for
sure. Note that functions enable faster simulation than tasks.

The lines after task or function define the formal arguments of
the interface method. This is done in SystemVerilog syntax. This
means that types of the arguments must be valid SystemVerilog
types. See “Supported Data Types of Formal Arguments” on page 88
for more details.

19-82

Using SystemC

The return keyword is only allowed once for each task. It becomes
an output argument on the Verilog side to a return value on the
SystemC side. This feature is required because blocking functions in
SystemC may return values, while Verilog tasks do not have a return
value.

The one exception is if the methods of the SystemC interface class
use reference parameters. For example, if my_method(int&
par)is used, then you need to mark this parameter as inout& in the
interface definition file. Note that the & appendix is only allowed for
inout parameters. For input parameters, this special marker is
not needed and not supported. Pure output parameters that should
be passed as reference must be defined as inout in the interface
definition file.

Example interface definition file for the simple_bus blocking
interface:

interface simple_bus_blocking_if
direction sv_calls_sc
verilog_adapter simple_bus_blocking_if_adapter
systemc_adapter simple_bus_blocking_if_adapter
#include "simple_bus_blocking_if.h"

task burst_read
input int unsigned priority_
inout int data[32]
input int unsigned start_address
input int unsigned length
input int unsigned lock
return int unsigned status

task burst_write
input int unsigned priority_
inout int data[32]
input int unsigned start_address
input int unsigned length
input int unsigned lock
return int unsigned status

19-83

Using SystemC

Generation of the TLI Adapters

The following command generates SystemVerilog and SystemC
source code for the TLI adapters from the specified interface
definition file:

syscan -idf interface_definition_file

This command generates SystemC and SystemVerilog files that
define the TLI adapters for each language domain. All generated
files can be compiled just like any other source file for the
corresponding domain. The files have to be generated again only
when the content of the interface definition file changes.

TLI adapters for the sv_calls_sc direction can be generated in
two different styles. The SystemC part of the generate adapter is the
same for both styles, however, the SystemVerilog part is different.

If you use the -idf option along with the interface entry in the
idf file, then this option creates a SystemVerilog "interface".
Similarly, If you use the -idf option along with the class entry in
the idf file, then this option creates a SystemVerilog "class".

A class is generally easier to connect into the SystemVerilog source
code and there are situations where a SystemVerilog testbench
allows you to instantiate a class but not an interface. However, if a
class is generated, then the TLI adapter can create only one
connection of this type between the SystemVerilog and SystemC
side. Alternatively, if an interface is generated, then multiple
connections can be created (which are distinguished by the integer
parameter of the interface).

19-84

Using SystemC

Transaction Debug Output

Since the transaction information traveling back and forth between
SystemVerilog and SystemC along with the transaction timing is
often crucial information (for example, comparison of ref-model and
design for debugging and so on), the SystemC part of the TLI
adapters are generated with additional debugging output that can be
enabled or disabled. For additional information, see “Instantiation
and Binding” on page 85.

Note:
Transaction debug is an LCA feature. For more information on
this feature, refer to Debugging with Transactions chapter in VCS
MX LCA Features book

The transaction debug output can either be used as a terminal I/O
(stdout) or as a transaction tracing in DVE. In DVE, each TLI adapter
has an sc_signal<string> member with name
m_task_or_function_name_transactions that you can
display in the waveform viewer of DVE.

Sometimes, the next transaction begins at the same point in time
when the previous transaction ends. Prefixes "->" and "<-" are used
such that both transactions could be distinguished. The return
values, if any, for the previous transaction are displayed with a
leading "<-". The input arguments for the new argument are prefixed
with "->".

If the default scheme how the debug output is formatted does not
match the debugging requirements, then do not change the
generated code in the TLI adapter. Instead, override the debug
methods m_task_or_function_name_transactions using a

19-85

Using SystemC

derived class that defines only these virtual methods. You can copy
these methods from the generated adapter code as a starting point
and then modify the code according to the debugging requirements.

If the adapter is generated again, then the existing code is
overwritten and all manual edits are lost.

Note:
Do not manually modify the code generated by the TLI adapter.
Instead, override the debug functions in a derived class.

Instantiation and Binding

TLI adapters must always be instantiated in pairs, where each pair
forms a point-to-point connection from one language domain to the
other.

If multiple pairs of the same TLI adapter type are needed in the
design, you must instantiate the adapter multiple times in each
domain. The point-to-point connection must be set up by assigning
a matching ID value to the SystemVerilog interface or class, and the
SystemC module. The ID value is set for SystemC module and the
SystemVerilog class, if generated, as a constructor argument. In
case the SystemVerilog Adapter is generated as an interface, the ID
is set through a parameter.

The SystemVerilog TLI adapter (either as an interface or a class) can
be instantiated and used like any other SystemVerilog interface or
class. If you want to call an IMC of a SystemC interface, you need to
call the corresponding member function/task of the TLI adapter.

19-86

Using SystemC

The SystemC part of the TLI adapter is a plain SystemC module that
has a port p over the specified interface name
(sc_port if_name p). This module can be instantiated in the
systemC design hierarchy, where you can bind the port to the design
interface just like any other SystemC module.

As mentioned above, there is an optional constructor argument for
the point-to-point ID of type int that defaults to zero. There is a
second optional constructor argument of type int that specifies the
format of debug information that the adapter prints when an interface
method is called. If the LSB of this argument is set, the TLI adapter
prints messages to stdout. If the next bit (LSB+1) is set, this
information is written to an sc_signal<string> that you can
display in DVE.

For SystemC calling SystemVerilog, the SystemC part of the TLI
adapter is an sc_module that you can instantiate within the module
where you want to call the Verilog tasks or functions. You can
execute the cross-boundary task or function calls by calling the
corresponding member function of the SystemC TLI adapter
instance.

The SystemVerilog portion of the TLI adapter depends on whether
the hdl_path field and the following options are used:

- The -idf option used along with the interface entry in the
idf file.

- The -idf option used along with the class entry in the idf file.

19-87

Using SystemC

• combination -idf used along with the interface entry in the
idf file, no hdl_path:

The Verilog adapter has a port over the interface type, as defined
in the interface description file. You can instantiate the adapter
module in the Verilog design like any other Verilog module, and
the port should be bound to the SystemVerilog interface that
implements the tasks or functions to be called.

• combination -idf used along with the interface entry in the
idf file, with hdl_path path:

The Verilog adapter is a Verilog module with no ports. All calls
initiated by SystemC are routed through the XMR path to some
other Verilog module or interface.

• combination -idf used along with the class entry in the idf
file, with hdl_path path:

The Verilog adapter is a group of task definitions and other
statements that must be included in a program with an
`include "if_name_sc_calls_sv.sv" statement. Calls
initiated by the SystemC side are routed through the XMR path
to some class object of the SV testbench.

• combination -idf used along with the class entry in the idf
file, no hdl-path:

This combination is not supported and displays an error message.

It is important to note that Verilog tasks, in contrast to Verilog
functions, must always be called from within a SystemC thread
context. This is because tasks can consume time, and in order to

19-88

Using SystemC

synchronize the simulator kernels, wait() is used in the SystemC
adapter module. The SystemC kernel throws an error when wait()
is called from a non-thread context.

Supported Data Types of Formal Arguments

The TLI infrastructure uses the SystemVerilog DPI mechanism to
call the functions and transport data, so the basic type mapping rules
are inherited from this interface. Refer to the SystemVerilog standard
for a detailed description on DPI. In summary, the following mapping
rules apply for simple data types:

SystemVerilog SystemC

input byte char

inout | output byte char*

input shortint short int

inout | output shortint short int*

input int int

inout | output int int*

input longint long long

inout | output longint long long*

input real double

inout | output real double*

input shortreal float

inout | output shortreal float*

input chandle void*

inout | output chandle void**

input string char*

inout | output string char**

input bit unsigned char

inout | output bit unsigned char*

input logic unsigned char

inout | output logic unsigned char*

19-89

Using SystemC

For the integral data types in the above table, the signed and
unsigned qualifiers are allowed and mapped to the equivalent C
unsigned data type.

All array types listed in the above table are passed as pointers to the
specific data types. There are two exceptions to this rule:

• Open arrays, which are only allowed for the SystemVerilog calling
SystemC direction, are passed using handles (void *). The
SystemVerilog standard defines the rules for accessing the data
within these open arrays.

• Packed bit arrays with sizes <= 32 in input direction (for example,
input bit [31:0] myarg) are passed by value of type
svBitVec32. Basically, this type is an unsigned int, and the
individual bits can be accessed by proper masking.

Miscellaneous

The TLI generator uses Perl5 which needs to be installed on the local
host machine. Perl5 is picked up in the following order from your
installation paths (1=highest priority):

1. use ${SYSCAN_PERL}, if (defined)

2. /usr/local/bin/perl5

3. perl5 from local path and print warning

Delta-cycles

VPD dumping of delta-cycles is supported for SystemC elements,
but it needs to be enabled as follows:

19-90

Using SystemC

First, add function call bf_delta_trace(1) to the source code.
Example:

#include "cosim/bf/systemc_user.h"
 ...
 int prev_state = bf_delta_trace(1);

This function turns on the delta tracing (or, turns off when the
argument is 0). This function can be called anywhere, for example
in constructors of SystemC classes, and/or in sc_main.

Next, make the generated delta-cycles visible in the DVE waveform
window as follows:

1. Start the simulator with -gui option. This will pop up DVE.

2. Enable CBug Debugger in the DVE, and then select Simulator ->
C/C++ Debugging -> enable.
Or, enter CBug in the DVE gui console command line.

3. Select Simulator -> Capture Delta Cycle Values. This will turn
it on for DVE.

4. Go with the time-marker somewhere, and then Press right-mouse
button.

5. select Expand Time.

Now the SystemC delta cycles are shown.

Using a Customized SystemC Installation

You can install the OSCI SystemC simulator 2.2.0 and tell VCS to
use it for Verilog/SystemC co-simulation. To do so, you need to:

19-91

Using SystemC

• Obtain OSCI SystemC version from www.systemc.org.

• Set the SYSTEMC environment variable to path of the OSCI
SystemC installation. For example:

 setenv SYSTEMC /net/user/download/systemc-2.2.0

To create a SystemC 2.2 installation with VCS patches, perform the
following series of tasks.

There are several files in the $VCS_HOME/etc/systemc-2.2
directories that contain necessary patches. You need to replace the
following 4 files from the OSCI installation (*) with the those from
$VCS_HOME/etc/systemc-22:

$VCS_HOME/etc/systemc.../
sc_simcontext.cpp
sc_simcontext.h
sc_event.cpp
sc_main_main.cpp

(*): here is the location where you need to replace these files with the
those from $VCS_HOME

For SC 2.2: osci_SC_installation_path/src/sysc/kernel

For example, replace:

<your osci SystemC installation>/src/sysc/kernel/
sc_simcontext.cpp

with:

$VCS_HOME/etc/systemc-2.2/sc_simcontext.cpp

19-92

Using SystemC

Follow the installation instructions provided by OSCI (see file
INSTALL which is part the SystemC tar file) and build a SystemC
library. Note that you must use ../configure i686-pc-linux-
gnu to build an RH4, RH5, suse10 or suse11 installation; call ../
configure on other platforms.

Set the SYSTEMC_OVERRIDE VCS environment variable to the user-
defined OSCI SystemC library installation path. For example:

setenv SYSTEMC_OVERRIDE /net/user/systemc-2.2.0

Header files must exist in the $SYSTEMC_OVERRIDE/include
directory and the libsystemc.a library file must be in the following
directories:

• $SYSTEMC_OVERRIDE/lib-linux/

• $SYSTEMC_OVERRIDE/lib-gccsparcos5/

The $SYSTEMC_OVERRIDE environment variable must point to the
OSCI SystemC simulator installation. Header files must be located
at $SYSTEMC_OVERRIDE/include and library files in:

• $SYSTEMC_OVERRIDE/lib-linux/libsystemc.a

• $SYSTEMC_OVERRIDE/lib-gccsparcOS5/libsystemc.a

As of March 19, 2007 (SYSTEMC_VERSION 20070314),
VcsSystemC 2.2 is binary compatible with OSCI SystemC 2.2.0.

19-93

Using SystemC

Compatibility with OSCI SystemC

The default, built-in SystemC simulator is binary compatible to the
OSCI SystemC 2.2.0 simulator. This means that you can link the
object files (*.{o,a,so}) compiled with the OSCI SystemC 2.2.0
simulator to a simv executable without adding any switch to vcs or
syscan.

Compiling Source Files

If you need to compile the source files that include systemc.h in
your own environment and not with the syscan script, then add
compiler flag -I$VCS_HOME/include/systemc22.

Using Posix threads or quickthreads

SC_THREAD processes can be implemented by pthreads (Posix
threads) or quickthreads. Switching from one SC_THREAD to
another is significantly slower with pthreads than with quickthreads.
However, pthreads have advantages in terms of debugging support
with gdb or DVE/CBug or tools like Purify or Valgrind.

Whether pthreads or quickthreads are used depends on the platform
and can be influenced by the user in some case(s).

• RHEL32: always quickthreads

• Linux 64-bit: quickthreads are default, pthreads can be selected

• Solaris 32-bit: always quickthreads

• Solaris 64-bit: always pthreads

19-94

Using SystemC

The following API allows you to select or check if pthreads are used
(if supported on the platform):

// wish for either pthreads or quickthreads, return true
// if wish is granted, return false+produce warning if not
// possible.

bool sc_snps::request_to_use_pthreads(bool use_pthreads);

// use pthreads (true) or quickthreads for SC_[C]THREADS

bool sc_snps::use_pthreads();

Function request_to_use_pthreads() must be called before
the simulation starts to run for the first time, for example, before the
first call of sc_start(). A good position in which to place the
statement is at the beginning of the sc_main() function.

The function returns true if the request was granted. It returns false
if this is not possible and also a warning is printed. Reasons may be
the wrong platform (for example, RHEL32), or by calling the function
too late.

VCS Extensions to SystemC Library

The following proprietary extensions are available as part of VCS
MX, and not available as part of OSCI SystemC.

19-95

Using SystemC

• Runtime functions

Include file systemc_user.h contains the prototypes of
functions that can be called during execution of the simulation.
Add this line to your source code to make the header file visible:

#include <cosim/bf/systemc_user.h>

• GetFullName()

Returns the full logical name of the given object or "No Name" on
error. The full name can contain hierarchical sub-paths of other
domains, like Verilog/VHDL:

namespace sc_snps {
 const char *GetFullName(sc_object *obj);
}

19-96

Using SystemC

• sc_object::name() Returns Logical Path Name

Until now, the sc_object::name() returned only the
physical path (underscore is used when hierarchy crosses the
language).

Hereafter, sc_object::name() returns the logical path
name (dot is used when hierarchy crosses the language) when
the following call is made:

sc_snps::sysc_configure(sc_snps::VCS_SYSC_LOGIC_NAM
E, 1);

Without the above call, sc_object::name() returns the
physical path name by default.

The function sysc_configure()is defined in
systemc_user.h. You must include this header file to use this
function. This feature works only with SystemC 2.3 which can
be enabled using the option –sysc=2.3

If SystemC 2.3 is not used, the following message is generated
and the call to sysc_configure() is ignored.

[SC-CONF-NO] sysc_configure is not supported

19-97

Using SystemC

Note:
The member function sc_core::sc_object::name()
defined as part of the SystemC language usually does not
return the same string as sc_snps::GetFullName().
Member sc_object::name() does not consider Verilog/
VHDL instances and shows only the path name w.r.t. to the
SystemC hierarchy. Alternatively, the
GetFullName()function considers the entire Verilog/VHDL/
SystemC instance hierarchy and gives the correct logical name
of the SystemC instance inside this hierarchy.

• GetName()

Returns the instance name (short name) of the given object or
return "No Name" on error:

namespace sc_snps {
 const char *GetName(sc_object *obj);
}

Note:
The corresponding member function
sc_core::sc_object::basename(), defined as part of
the SystemC language, usually does not return the same string
as sc_snps::GetName().

19-98

Using SystemC

• Asynchronous Reset for Clocked Thread Processes

The SystemC standard allows a clocked thread process
(SC_CTHREAD) to have an optional synchronous reset. This is
specified with the reset_signal_is() function as follows:

SC_CTHREAD(th_1, clk.pos());
reset_signal_is(syncrst, true);

In addition, VCS MX supports an optional asynchronous reset,
which is specified with the async_reset_signal_is()
function. For example:

SC_CTHREAD(th_1, clk.pos());
async_reset_signal_is(asyncrst, true);

Note:
This feature is a VCS MX-specific extension. It is not a part of
the IEEE 1666 OSCI SystemC standard.

Note the following points about asynchronous resets:

- Both the synchronous and asynchronous resets are optional.
A process can have one, both, or none of these resets.

- While you can specify asynchronous resets in any order, ensure
that they are within the constructor section (SC_CTOR).

- An asynchronous reset cannot be specified more than once.

- When the asynchronous reset is specified, the clocked thread
process will restart if either of the following conditions are true:

- the asynchronous reset is active during the clock edge

19-99

Using SystemC

- the asynchronous reset changes from inactive to active even
if there is no clock edge

When the synchronous reset is also specified, the process will
also restart if the synchronous reset is active during the clock
edge.

If only the synchronous reset is specified, the behavior is as
defined in the IEEE 1666 standard.

The syntax of the asynchronous reset function is as follows:

async_reset_signal_is (pin, level)

Where:

pin

Specifies the signal, which can be either an input port or signal
of type bool.

level

Defines the level at which the reset becomes active.

This feature has the following limitations:

- Asynchronous reset can be specified only for a SC_CTHREAD.

- Asynchronous resets must be specified during elaboration,
preferably within the SC_CTOR section.

19-100

Using SystemC

Installing VG GNU Package

VCS MX supports gcc compiler versions 4.5.2, 4.2.2, and 3.4.6. It
supports (besides the SUN "CC" Compiler) Gnu gcc 3.3.2 on Solaris.

Synopsys strongly recommends using the VG GNU package for
SystemC.

The FTP instructions to download VG GNU package are available in
VCS MX Release Notes under the section Downloading and
Installing VG GNU Package under General Platform Support.

Static and Dynamic Linking

The main difference between static and dynamic linking is the time
at which the object files are linked into an application program. In
case of static linking, object files are linked during elaboration,
whereas in the case of dynamic linking, linking is done at runtime.

Static Linking in VCS MX

You can compile C/C++/SystemC files into object files and archive
them in a common object file (.a's), as shown below:

% g++ -03 -Wall -I. -c ext_inv.cpp -o ext_inv.o
% g++ -03 -Wall -I. -c ext_buf.cpp -o ext_buf.o
% ar -r extenv.a ext_inv.o ext_buf.o

Note:
Add the -I${VCS_HOME}/include/systemc_version
option to C/C++ compiler to compile SystemC files.

19-101

Using SystemC

The archive can be statically linked by just passing the archive as
any other file on the vcs command line.

% vcs top.v ./extenv.a

Note:
Add the -sysc option to the vcs command line, if the object file
is for SystemC.

Dynamic Linking in VCS MX (For C/C++ Files)

You can compile C/C++ files into a shared object file or you can have
a pre-compiled shared object.

Note:
The pre-compiled shared object should be built on the same
compiler as supported by VCS.

The shared object file uses the following naming convention:

liblibrary_name.so.version

It begins with the lib keyword, followed by any specified name
library_name, followed by .so.version.

The version is optional and is user defined. Linker/loader
automatically locates and picks the shared object file using -L and
-l options as explained below.

 For example, the library name in libfoo.so or libfoo.so.1 is
foo. The commands to create a shared object file are as shown:

% gcc -fPIC -o foo.o -c -I$VCS_HOME/include foo.c
% gcc -shared -o libfoo.so foo.o

19-102

Using SystemC

The shared object file can be dynamically linked by using -LDFLAGS
with the -Lpath_to_shared_object and -llibrary_name
options on the vcs command line.

-LDFLAGS options
Specifies the options to the linker/loader.

-Lpath_to_shared_object
Specifies the path, where shared objects reside.

-llibrary_name
Specifies the library name of the shared object file.

If there are more then one shared object located in different
directories, you can specify -Lpath_to_the_shared_object
multiple times for each directory and -llibrary_name multiple
times for each shared object file.

% vcs top -LDFLAGS "-L<path_to_libfoo.so> -lfoo
 -L<path_to_libhello.so> -lhello"

You can also specify the linker options directly to the vcs command
line.

% vcs top -Lpath_to_libfoo.so -lfoo
 -Lpath_to_libhello.so -lhello

Dynamic Linking in VCS MX (For SystemC Files)

Following are the steps for dynamic linking of SystemC files:

19-103

Using SystemC

• Create a shared object file

% gcc -fPIC -o foo.o -c -I$VCS_HOME/include/systemc22
 foo.cpp
% gcc -shared -o libfoo.so foo.o

• Analyze your SystemC top file (which is instantiated in HDL
design) to create a HDL wrapper.

% syscan sc_top.cpp:sc_top -sysc=2.2

• The shared object can be dynamically linked by using the
-Lpath_to_shared_object and -llibrary_name options
on the vcs MX command line.

% vcs -sysc=2.2 top -Lpath_to_shared_object file -lfoo

LD_LIBRARY_PATH Environment Variable

You can set the LD_LIBRARY_PATH environment variable to the
directory where the shared object file resides.

% setenv LD_LIBRARY_PATH
 path_to_shared_objectfile:$LD_LIBRARY_PATH

Now, for any change in the C/C++/SystemC files, you simply need to
rebuild the shared object file with the commands as mentioned
above and execute the simv. You do not have to rebuild the simv.

Limitations

The following limitations apply to the VCS MX/SystemC interface.

19-104

Using SystemC

• No Donuts / Sandwiches

VCS/SystemC does not support having "donuts" or "sandwiches"
in SystemC and HDL (Verilog or VHDL) modules. Therefore, you
cannot have a SystemC instance that is instantiated under an HDL
design unit and itself instantiates another HDL design unit.
Similarly, a SystemC-HDL-SystemC instance hierarchy is not
supported. In other words, following the design hierarchy from a
leaf instance towards the root, you can transition from SystemC
to HDL or
vice-versa only once.

• Number of ports

There is no limitation regarding the number of port for an interface
model. It may have none, one, or multiple ports.

• You cannot compile mixed designs (SystemC+HDL) in a directory
where the directory path/name contains the symbol ‘:’. For
instance, if you have a ’:’ in your directory path/name, as illustrated
below, you might face a compilation error. Depending on the
complexity of your flow, you might even face an elaboration error.

 /remote/vg/work/mixed_design:example/build/

Verilog wrapper needed for pure VHDL-top-SystemC
down

The topology with VHDL-on-top and SystemC-down is supported in
the UUM flow, but the following restriction is observed:

• A Verilog wrapper must be created for at least one SystemC
interface model.

19-105

Using SystemC

SystemC modules that are to be instantiated in VHDL entities are
analyzed with option -vhdl in the syscan call. Example:

 syscan -vhdl mymodel1.cpp:mymodel1

You can continue to use the -vhdl option for the majority of
SystemC interface models, however, at least one module that is
used within the design must be created without this option. Example:

 syscan -vhdl mymodel1.cpp:mymodel1
 syscan -vhdl mymodel2.cpp:mymodel2
 syscan mymodel3.cpp:mymodel3
 vhdlan bottom.vhd top.vhd
 vcs -sysc TOP

Note that the syscan call for mymodel3 has no "-vhdl" option,
which means that a Verilog wrapper in created.

Incremental Compile of SystemC Source Files

SystemC source files are compiled with syscan. VCS supports the
incremental compile of SystemC source files to reduce the
recompilation time. Only the files that have changed (or, the files
affected by a change in a header file that they use) are recompiled;
all other files are not recompiled. You can choose from among the
following different usage models:

• Full build from scratch

• Full incremental build

• Partial build with object files

• Partial build with shared libraries

19-106

Using SystemC

Incremental compile does not require any change in existing compile
scripts. VCS MX automatically figures out when a syscan command
needs to trigger compiling a source file with gcc.

Full Build from Scratch

When you compile a design for the first time, there are no object files
(for SystemC sources) from a previous compilation. A typical
command sequence looks like the following example:

Analyzing SC source files:
% syscan B1.cpp
% syscan B2.cpp
% syscan A.cpp:A

Analyzing Verilog/VHDL source files:
% vlogan top.v ...
% vhdlan middle.vhd ...

Elaboration:
% vcs -sysc Top

Here, all SC source files are compiled. Each invocation of syscan
triggers a compilation of the specified SC source files. Object files
are stored in csrc/sysc or the mydir/sysc directory if you use the
-Mdir mydir option.

This is called a full build from scratch. It serves as a basis for later
incremental builds.

19-107

Using SystemC

Full Incremental Build

If you specify the same commands again (see “Full Build from
Scratch” on page 106), incremental compilation kicks in. It is
important not to remove the csrc/sysc directory; otherwise, you get
another full build.

Each call of syscan now checks if the specified files really need to
be compiled again. For example, the command:

% syscan B1.cpp

will compile B1.cpp only if either the file B1.cpp, or a header file
has changed since the last invocation of syscan. The dependency
check to header files includes any header that is directly or indirectly
included by B1.cpp.

Note that any compiler option specified with -cflags (such as
-Imydir or -DMODE=1) is not considered during the dependency
check. If the flags change but the source files remain the same, the
files are not recompiled.

Syscan calls can also create a Verilog or VHDL wrapper. For
example, you can use the following command:

% syscan A.cpp:A

Here, source file A.cpp is compiled again if either A.cpp, or a
header file has changed. This syscan call also checks if the
signature (the set of interface ports) of the interface has changed. If
(and only if) the signature has changed, then the interface file is
generated and compiled again. The interface file is only created and
compiled again when the signature changes.

19-108

Using SystemC

Incremental compilation of SystemC files reduces the time spent in
syscan calls. When the remaining commands:

% vlogan top.v ...
% vhdlan middle.vhd ...
% vcs -sysc Top ...

are issued again, the Verilog or VHDL files are analyzed and
elaborated again, so these phases of the overall compilation do not
benefit directly from the SystemC incremental compilation. However,
generation of object code for Verilog or VHDL files may be skipped
by VCS MX if this feature is enabled.

Partial Build with Object Files

The overall turn-around-time (TAT) to get an updated simulation
(simv) after a change in a SC source file can be further reduced in
same cases. If you are sure that only SC source files have changed,
and none of the changes affects the signature of the SC interface file,
then invoke a partial build with the following command:

% vcs -sysc=incr [-full64]

All SC source files that have previously been compiled with syscan
are checked and automatically compiled again if necessary. Finally,
the simulation (simv) is linked again.

You cannot specify any other VCS MX option together with
-sysc=incr. Only the option -full64 (aka -mode64) can, and
must be specified again.

You can call syscan before calling vcs -sysc=incr. For example:

% syscan B1.cpp

19-109

Using SystemC

% vcs -sysc=incr

Using this example, if B1.cpp, or a header file has changed, then
B1.cpp is compiled again by the syscan call. The subsequent vcs
-sysc=incr does not compile B1.cpp in this case. That means
issuing the syscan call neither increase nor decrease the TAT; it just
triggers the compilation of B1.cpp earlier.

If the signature of an SC interface file has changed, VCS MX prints
an error message and aborts the compilation. You need to do a full
incremental build in this case.

This compile flow applies only when the SC source files change. You
must use a full incremental build in all other situations; for example:

• a Verilog or VHDL source file has changed

• the signature of an SC interface file has changed

• SC models instantiate VHDL or Verilog models, and the set of
instances has changed.

Partial Build with Shared Libraries

By default, syscan creates object files (for example. B1.o) which
are part of the final link command to create the simulation (simv)
during elaboration. For example:

g++ -o simv ... B1.o B2.o A.o ...

To use shared libraries instead of object files, use this command:

% syscan [-Mdir mydir] -shared

19-110

Using SystemC

This command has to be specified without any other options except
the optional -Mdir argument. It sets a “sticky” flag which applies to
the csrc (or mydir) library. If the flag is present, the final link
command uses a shared library. For example:

g++ -o simv ... libcsrc_sysc.so ...

Updating the Shared Library

The shared library is updated whenever necessary, meaning
whenever an SC source file is changed and recompiled. The update
is triggered when you invoke the following command:

% syscan -shared

or during elaboration with the following command:

% vcs -sysc Top ...

or, with a partial build:

% vcs -sysc=incr

Using Different Libraries

Each library specified with -Mdir can use either object files or a
shared library. For example:

% syscan -Mdir=lib1 B1.cpp
% syscan -Mdir=lib1 B2.cpp
% syscan -Mdir=lib1 -shared
% syscan -Mdir=lib2 A.cpp
% vcs -sysc ... -Mlib=lib1,lib2 ...

19-111

Using SystemC

The above example specifies to use a shared library for lib1, but
object files for lib2.

Partial Build Invoked with vcs

You can get a simple use model and short TAT by just calling vcs
-sysc=incr once the “sticky” flag has been set for one or more
libraries.

VCS MX goes over all SC source files that were previously specified
with syscan, recompiles them as necessary, updates the shared
libraries as necessary, and finally links the simulation.

Partial Build if Just One Shared Library is Updated

If only the SC source files located in one shared library change, but
everything else is not modified, then it is sufficient to update the
library. Linking the simulation again is not needed. For example, to
specify content of shared library lib1:

% syscan -Mdir=lib1 B1.cpp
% syscan -Mdir=lib1 B2.cpp
% syscan -Mdir=lib1 -shared
...
% vcs -sysc -Mlib=lib1 ...

Now, you can modify B1.cpp and update just the shared library as
follows:

edit B1.cpp // modify src code
% syscan -Mdir=lib1 -shared // update shared lib
% ./simv // run simulation

19-112

Using SystemC

Adding or Deleting SC Source Files in Shared Library

Whenever a new file is specified with syscan, it is compiled and
automatically added to the library later on. This means the library
remembers the files that were specified with syscan.

You cannot directly delete a file from a shared library. Instead,
remove the entire csrc/sysc directory and do a full build again with
the remaining SC source files.

Changing From a Shared Library Back to Object Files

Once you specify syscan -shared, this library always remains as
a shared library later on. If you want to revert back to using object
files, remove the csrc/sysc/info-comp file. This removes the
“sticky flag.” Existing object files remain valid.

Suppressing Automatic Dependency Checking

By default, VCS MX checks dependencies of all SC source files
specified with syscan during elaboration. There might be situations
when a common header file has changed, but you do not want to
recompile all files. You can suppress dependency checking and
automatic recompilation using the -sysc=nodep option. For
example, if you specify:

% vcs ... -sysc=nodep ...

then the dependency checking for all SC libraries is suppressed. If
you specify:

% vcs ... -sysc=nodep:lib1,lib3

19-113

Using SystemC

then dependency checking for lib1 and lib3 is suppressed, but
other libraries are still checked.

Restrictions

On Solaris, gmake (Gnu make) must be installed. Old versions of
Sun make cannot be used because they do not understand the
Makefiles generated by syscan/vcs.

TLI Direct Access

This section describes the following topics:

• “Accessing SystemC Members from SystemVerilog” on page 114

• “Accessing Struct or Class Members of a SystemC Module from
SystemVerilog” on page 130

• “Accessing Verilog Variables from SystemC” on page 141

• “Accessing SystemVerilog Functions and Tasks from SystemC”
on page 147

• “Accessing SystemC Members from SystemVerilog Using the
tli_get_<type> or tli_set_<type> Functions” on page 157

• “Generating C++ Struct Definition from SystemVerilog Class
Definition” on page 168

19-114

Using SystemC

Accessing SystemC Members from SystemVerilog

This section describes how to directly access SystemC variables
from SystemVerilog.

TLI Adaptor

The SystemVerilog Transaction Level Interface (TLI) is created
automatically and represents the SystemC instance inside the SV
world. It allows the user to directly access public member variables
and member functions of a SystemC instance.

The TLI adaptor is created by calling syscan with specific
arguments. It has a collection of SV functions to access SystemC
member variables and call methods. These arguments and functions
are described in the following sections.

Instantiating the TLI adaptor in SV

The TLI adaptor, which is an SV interface, is generated
automatically, but it needs to be instantiated in the SV design to
make it accessible. The SV interface has no ports, but it has one
string parameter to specify the hierarchical path of the SystemC
instance.

The path refers to the mixed SC or HDL module hierarchy. This path
can be absolute, or a relative path name. Consistent with Verilog, a
relative path name is resolved relative to the SV module, where the
TLI function call occurs.

19-115

Using SystemC

Direct Variable Access

The TLI adaptor has a function for each public SystemC member
variable, for which access from SV is to be enabled. The function is
named get_<member_variable>. The function has no
arguments, and returns the value of the member variable. The TLI
adaptor provides a function set_<member_variable>() to write
SystemC members from SV with value.

Calling SystemC Member Function

The public member functions of the SC instance can be called from
SV code. The member function is represented by an SV function in
the TLI adaptor. Both SV and SC functions have the same signature.

The SC function is represented by an SV task in the TLI adaptor. If
the SC member has a return value other than void, then the SV task
has an additional output argument at the end into which the return
value is written.

The SC function may be “blocking,” meaning it is allowed to call
function wait() from the SC kernel and consume simulation time.

Example

Definition of the SystemC instance:

 #include <systemc.h>
 class ABC
 {
 public:
 int AAA;
 sc_int<10> BBB;
 bool CCC(const char* p1);
 ...
 };

19-116

Using SystemC

Definition of automatically generated TLI adaptor:

 (* vcs_systemc_1 *)
 interface tli_ABC;
 ...

 // DPI definition for SystemC method calls
 task CCC(output bit param_0, input string param_1); ...

 // DPI definition for SystemC var access
 function int get_AAA(); ...
 function void set_AAA(input int AAA); ...

 function bit[9:0] get_BBB(); ...
 function void set_BBB(input bit[9:0] BBB); ...

 ...
endinterface

Usage of TLI adaptor in SV code:

 module top;
 ...
 TLI_ABC #("top.sysc_a.inst0") sc_inst0();
 TLI_ABC #("sysc_b.reader.inst1") sc_inst1();
 ...
 int a;
 initial begin
 ...
 a = sc_inst0.get_AAA();
 a = a + sc_inst1.get_BBB();
 sc_inst0.set_AAA(a+10);
 if (sc_inst0.CCC("final test")) ...
 ...
 end
 endmodule

19-117

Using SystemC

Arguments of Type char* used in Blocking Member
Functions

Arguments of type char*, or const char* passed from Verilog
into a blocking SystemC method need special attention.

It is not guaranteed that the string remains valid when a blocking
statement (a wait() statement) is executed. You must therefore
make a local copy of the string at the beginning of the method, and
then release the string when the method ends. This can be done by
using type std::string.

Example
void my_blocking_systemC_method(const char* S_from_sv)
{
 std::string S = S_from_sv;
 wait(10,SC_NS);
 ... printf("string=%s", S.c_str()); ...
}

Supported Data Types

Basic Types

Only a few data types like ANSI integer types, native SystemC bit
vector types, bool, sc_logic, std::string, and char* that are
used within SystemC classes can be accessed.

Data types of SystemC and SV are mapped as follows:

SystemC SV
----------------- --------------------------
bool bit
sc_logic wire (4-state)
char byte

19-118

Using SystemC

short int shortint
int int
long long longint
double real
float shortreal
sc_int<n> bit[n-1:0]
sc_uint<n> bit[n-1:0]
sc_bigint<n> bit[n-1:0]
sc_biguint<n> bit[n-1:0]
sc_bv<n> bit[n-1:0]
sc_lv<n> wire[n-1:0] (4-state)
std::string string
char* string (copy-by-value)
pointers/references chandle

SystemC char* Type

Set method for char* type takes optional bool argument which
controls whether to free the current SystemC char* memory or not.

Example
SV Code

function void set_CCC(input string ccc, \
input bit free_mem=0);

tli_set_CCC(SC_OBJECT_PATH, CD, free_mem);

endfunction

Plumbing Code

void tli_set_CCC(const char* id, const char* ccc, \
bool free_mem=false);
{
 SCObject* p = tli_adaptor.find_sc_object(id);
 if (free_mem && p->ccc) free(p->ccc);
 p->ccc = strdup(ccc);

19-119

Using SystemC

}

The default value for free_mem is false. This could mean a potential
memory leak. You need to carefully set this value depending on how
SC object is constructed.

SystemC Channel Types

The following templatized SystemC classes C can be accessed if the
template type is supported:

• sc_signal_in_if

• sc_signal_inout_if

Classes derived from these classes are also supported. For
example:

• sc_signal

• sc_signal_resolved datatype is sc_logic

• sc_signal_rv datatype is sc_lv

• sc_in

• sc_out

• sc_inout

• sc_buffer

Read/write accesses go directly to the underlying channel.

Example

Definition of SystemC instance:

19-120

Using SystemC

 SC_MODULE(ABC)
 ...
 sc_signal<int> DDD;
 ...
 };
Access in SV code:
 int a;
 a = sc_inst0.get_DDD();

Arrays

Arrays are supported. Individual elements can be accessed if the
type of the element is generally supported. Accessing entire arrays,
or sub-arrays (rows, columns) is not supported.

Read or write access takes place with SV function get or set.
Whereby, the index(es) are specified as 2nd, 3rd,... etc. arguments.

Example

SystemC instance definition:

 SC_MODULE(ABC) {
 ...
 int BBB[10];
 bool CCC[1024,500];
 ...
 };
Usage of TLI adaptor in SV code:
 a = sc_inst0.get_BBB(7); // read BBB[7]
 b = sc_inst0.get_CCC(700,2); // read CCC[700,2]
 sc_inst0.set_CCC(!b,700,2); // write CCC[700,2]

SC_FIFO

Class sc_fifo can be accessed if the template argument type is
supported. The access functions permit non-blocking access, and
support queries for the number of free or stored elements.

19-121

Using SystemC

Access to blocking functions read() and write() is not
supported.

Example

Definition of SystemC instance:

 SC_MODULE(ABC)
 ...
 sc_fifo<int> FFF;
 ...
 };

Access in SV code:

 int a, num;
 num = sc_inst0.get_FFF_num_available();
 num = sc_inst0.get_FFF_num_free();
 a= sc_inst0.get_FFF(); //function, will not block
 sc_inst0.set_FFF(a); //function, will not block

Non-SystemC Classes

A SystemC module definition is a C++ class derived from
sc_module. It is often specified with a macro SC_MODULE.

All SystemC modules are C++ classes, but all C++ classes are not
SystemC modules. The C++ classes that are not SystemC modules
are referred to as non-SC-classes.

Accessing members of non-SC-classes is not supported. The top-
level class has to be an sc_module derived class.

19-122

Using SystemC

Sub-classes

A class may have a member which itself is a class. Members of such
sub-classes can also be accessed (if they are to be imported, see
TLI file below). Members of sub-classes, or sub-sub-classes are
accessed by SV functions in the TLI adaptor that reflect the C++
scope name.

Example

Definition of C++ classes:

 class C2 {
 public:
 int P;
 int Q;
 };
 struct C1 {
 int M;
 C2 N;
 };
 SC_MODULE(ABC) {
 ...
 int AAA;
 C1 SSS;
 ...
 };

Usage in SV code:

 a = sc_inst0.get_SSS_get_M ();
 sc_inst0.set_SSS_set_N_set_Q (a+10);

Only the sub-classes instantiated as regular members are
supported. The sub-classes that are connected to the main class as
pointers or arrays are not accessible.

19-123

Using SystemC

Example

Definition of C++ classes:

 struct C1 {
 int M;
 C2 N;
 };
 SC_MODULE(ABC) {
...
C1 SSS;
 C1* TTT;
 C1 UUU[4];
 ...
 };

Members of SSS are accessible, but members of TTT and UUU are
not accessible.

Name Clashes

Name clashes can take place in these two types of scenarios:

• var name clashes

• var name clashes with method names

var Name Clashes

Consider the following example:

class A { int b; };
class Foo { A a; int a_get_b; }

19-124

Using SystemC

In this case, access methods for a.b and a_get_b would be
get_a_get_b(). To handle this scenario, use the following rules:

• Keep the original user methods as is. For example, user method
foo::get_A() is accessible as foo.get_A() in SV.

• In case of name clash, find a new name (based on naming
sequence) which does not clash. This is the naming sequence
used to find new name: get_A() get_A1() get_A2() ...
get_A().

var Name Clashes with Method Names

Consider the following example:

class foo
{
 int A;
 int get_A(); //user defined method
};

Now, the generated access method get_A() for variable A clashes
with the user-defined method get_A(). Note that the name clash in
this case is only in the SV domain. The internal plumbing generated
names get_A() (to access A) and call_get_A() (to call
get_A()) are unique.

To handle this case, keep the get_A() method (for calling
get_A()) in the SV domain as is. Change the access method to
escaped name
\:get_A().

19-125

Using SystemC

Error Handling

Locating SystemC Instance

The hierarchical path specified as an actual parameter of the TLI
adaptor is checked during the startup of the simulation. An error is
reported and the simulation aborts when the path cannot be resolved
to a SystemC instance.

Out-of-array Accesses

Reading or writing an array element depends on valid data for the
indexes. Invalid indexes may accidentally go over the allocated area
and access unrelated memory addresses.

Such an illegal access may trigger a segmentation fault (SEGV) or
page zero signal. Currently, there is no protection against such
crashes.

Write accesses with invalid indexes may corrupt other memory
locations, and do not trigger a signal, so they go unnoticed.

Compile Flow

The TLI adaptor is generated automatically by calling syscan as
follows:

syscan -tli <tli-file> <cpp-source-file> \
[-o <tli-file>] [-cmp]...

The C++ file is parsed, and most of the necessary data is extracted
from there. The TLI file has the function to supplement the
information; for example, to define for which classes access
functions are to be generated.

19-126

Using SystemC

The call generates the following files:

 <tli_file>.sv TLI interface
 <tli_file>.cpp helpers for TLI interface
 <tli_file>.h helpers for TLI interface

The generated files are not automatically compiled or analyzed. This
step is under the control of the user.

You can specify C++ compiler directives such as include paths. For
example:

-cflags -I/some/dir/include

Syntax of TLI File

Rules for TLI File/Syntax
1. One TLI file for each adaptor/top-level SC_MODULE class.

2. Directives:

- adaptor name must match top-level sc_module class in a cpp
file

- import member [name|glob_pattern]

- skip member [name|glob_pattern]

- where

-glob_pattern includes a special char *

-* matches everything

-name could be name.[name|glob_pattern]

3. By default, all plain members of adaptor class are imported.

19-127

Using SystemC

4. By default, all members of inner class members (bar.* in example
above) are skipped.

5. Precedence rules:

- order of lines is not important

- For precedence rules we use the following three types of match-
sequences:

-name (plain name without any *)

-name could name.name

-match_all (match_all is single * at any level)

-examples are *, *.*, *.*.*,

-select_pattern (name with a * but not match_all)

-examples are nam*, *ame, na*e, name.*ame etc.

- precedence from lowest to highest

-import member * (match_all)

-skip member * (match_all)

-import member name* (select_pattern)

-skip member name* (select_pattern)

-import member name

-skip member name

- rules with higher precedence override rules with lower
precedence. For example, skip member * skips all members
even if there is an import member * directive.

19-128

Using SystemC

6. TLI option syntax

- syscan -tli src_file

- syscan does not support multiple files with the -tli option.

Example
syscan command

% syscan -tli foo_file.tli foo.cpp

output files

foo_file.[h|cpp|sv]
foo_file.idf (intermediate file)

foo.cpp

class Bar
{
 int a1, a2, b1, b2, c1, c2;
}
class Foo
{
 int aname1, aname2, bname1, bname2, cname1, cname2;
 int x1, x2, y1, y2, z1, z2;
 Bar* bar;
}

foo_file.tli

adaptor sc_data

// (implicit) import *
skip *

19-129

Using SystemC

import *name*
skip bname*

import bname1
skip cname2

// (implicit) skip bar.*
import bar.c*
import bar.b1
skip bar.c1
Is the word "member" accidentally missing? E.g.
"skip member *" instead of "skip *" ?

Foo.idf

adaptor Foo
direction sv_to_sc
verilog_module tli_Foo
systemc_module tli_Foo

var int aname1
var int aname2
var int bname1
var int cname1

var int bar.b1
var int bar.c2

Debug Flow

The TLI implementation uses the existing CBug debug features
given below:

• Display in combined HDL or SC design hierarchy: All access
functions are visible on the SV side as functions or tasks of the
SV interface.

19-130

Using SystemC

• Underlying DPI functions of the adaptor are visible in the list of
DPI, PLI, or DirectC functions.

• Cross-step from calling SV statement into adaptor code, and from
there into the user’s C function.

Accessing Struct or Class Members of a SystemC
Module from SystemVerilog

This section describes how to access the user-defined struct or class
members in SystemC modules and exchange the generic C++ struct
or classes with SystemVerilog, using the TLI byte pack or unpack
functionality.

This section contains the following topics:

• “Enhancements to TLI for Providing Access to SystemC/C++
Class Members from SystemVerilog” on page 131

• “Accessing Struct or Class Members of a SystemC Module Object
from SystemVerilog” on page 131

• “Accessing Generic C++ Struct or Class” on page 135

• “Extensions of TLI Input File” on page 139

• “Invoking Pack or Unpack Adaptor Code Generation” on page 140

• “Limitations” on page 141

19-131

Using SystemC

Enhancements to TLI for Providing Access to SystemC/
C++ Class Members from SystemVerilog

The TLI adaptor feature restricts the access to a single member of a
struct or class. You can specify this member in the TLI file, as
member *.*. The TLI adaptor does not provide a way to access
nested members of a struct or class.

This topic describes the following enhancements made to the TLI
adaptor for accessing struct or class members of a SystemC module
from SystemVerilog.

• “Accessing Struct or Class Members of a SystemC Module Object
from SystemVerilog”

• “Accessing Generic C++ Struct or Class”

Access to a member of a SystemC module is only possible if a
module is instantiated in the design. An instantiation (object) of the
SystemC module can be identified with the hierarchical instance
path.

The actual TLI adaptor code makes use of this. You can access
SystemC module objects (and their members) using the instance
path. In this scenario, only the access to an entire struct or class
member is missing.

Accessing Struct or Class Members of a SystemC
Module Object from SystemVerilog

You can use the following functions to access an entire struct or
class member in a SystemC module object from SystemVerilog:

• scSetScopeByName() — Specifies the hierarchical path to an
instance or object of a SystemC module

19-132

Using SystemC

• get(logic[7:0]ba[]) — Gets the entire structure

• set(logic[7:0]ba[]) — Sets the entire structure

• set_<member_name>('Value') — Sets the Value to the
member specified by <member_name>

• get_<member_name>() — Gets the current value of the
<member_name>

These functions are extensions to the TLI-2 adaptor code generated
for scalar member access. For backward compatibility reasons, the
old syntax is still supported.

The following SystemC code example illustrates the usage of above
functions:

struct simple {
 int A;
 sc_int<8> B;
} simple;
....
SC_MODULE(S){
.....
public:
 simple P;
......
}

The content of the member variable P of struct type simple is
supposed to be exchanged with SystemVerilog.

SystemVerilog consists of a corresponding simple-struct
compliant class. This class does not display the required `defines
for VMM byte packing, as shown in the following example:

19-133

Using SystemC

Example
class simple_SV;
 int A;
 bit[7:0] B;
endclass:simple_SV

......
// declare a variable of SV class simple_SV
simple_SV cl1;
// SV byte pack array
logic[7:0]ba[];

tli_S sc();
sc.scSetScopeByName("top.sc_inst1");
....
// get an entire struct from SC and fill it into class object
//cl1;
sc.P.get(ba);
cl1.byte_unpack(ba);
.....
// fill an entire struct on the SC side with contents of
class object cl1
cl1.byte_pack(ba);
sc.P.set(ba);
.....

// Current individual struct member access
cl1.A = sc.get_P_get_A();
sc.set_P_set_A(cl1.A);

// new additional individual member access, old syntax still
supported
cl1.A = sc.P.get_A();
sc.P.set_A(cl1.A);
.............

19-134

Using SystemC

In the above code, the tli_S interface is generated. This interface
must be instantiated by referring to a hierarchical path to an instance
of sc_module S in the SystemVerilog source code. You can change
the hierarchical path using the interface function
scSetScopeByName().

A second interface named tli_S_P is generated, and this is
instantiated in the tli_S interface as the member name (P) of the
struct within a SystemC module. The interface tli_S_P contains
the get(logic[7:0]ba[])and set(logic[7:0]ba[])
functions to set and get the entire struct.

You cannot check whether the C++ struct or class is compliant with
the SystemVerilog class or not. There is no restriction for you to use
only VMM byte pack/unpack when passing the packed byte stream
as an argument.

You can write your own SystemVerilog pack/unpack routines, but
these routines must be VMM byte pack/unpack compatible. The
set_<member_name>('Value') and get_<member_name>
functions are provided for scalar members of the struct. For
example, member A of a struct or class can be accessed as
set_A(val) and get_A().

There is no change in the compile steps to generate and compile the
generated files compared to the adaptor code generation and byte
pack or unpack functionality.

Generating Adaptor Code

The adaptor code is generated using a syscan call and a TLI input
file, as shown in the following command:

% syscan -tli <input_file> <SC/C++_file>

19-135

Using SystemC

where,

• <input_file> is the TLI input file

• <SC/C++_file> is the SystemC/C++ file for which you want to
create an adaptor

The adaptor code is the content (the specified directives) of a TLI file,
which specifies what is generated. You must use the TLI file with the
syscan -tli option. If you specify this option with the TLI file, then
the byte pack or unpack routines and VMM classes are generated.

There is a change in the TLI input file to inform syscan that the code
for the functionality, described above, needs to be generated. For
more information on the TLI input file extensions, see “Extensions of
TLI Input File” on page 139.

Accessing Generic C++ Struct or Class

If a struct or class object is not a member of sc_module, then you
cannot use the instance path approach to find or access the struct or
class object.

A new approach is introduced to access generic C++ class objects
from SystemVerilog. With C++, the struct or class object is registered
with a global unique identifier, and SystemVerilog can access the
struct or class object with the same global unique identifier.

If a C++ object is supposed to be deleted, or an access is not
necessary from the SystemVerilog side, then the object should be
unregistered on the C++ side. You should perform the registration
and unregistration in the C++ code.

You can use the following functions to access the generic C++ struct
or class from SystemVerilog:

19-136

Using SystemC

C++ Functions TLI_UNREGISTER_ID() and TLI_REGISTER_ID()
• TLI_UNREGISTER_ID(char *) — Unregisters the structure or

class specified by the passed unique identifier. It does not check
whether the unique identifier exists or not.

• TLI_REGISTER_ID(char *, <class_object_pointer>)
— Registers the passed pointer to a struct or class object under
the given unique identifier. This function has two arguments, a
string holding the global unique identifier and a pointer to the struct
or class object.

Note:
VCS generates an error message when:

- A null object pointer to be registered is passed

- The unique identifier is already in use, and is independent of
the pointer type (address)

SystemVerilog function attach_by_id()

attach_by_id() — Stores the unique identifier in the interface
instance. There is no check on whether the identifier exists until the
first access with the set or get routines.

SystemVerilog set or get function

The set() or get() functions do not use a caching mechanism.
The pointer stored with the unique identifier is checked for each set
or get call.

Note:
VCS generates an error message when:

- An identifier is not set in the interface

19-137

Using SystemC

- An identifier is not registered

- A stored address has the wrong type (not the expected one)

The following SystemC code example illustrates the usage of the
functions mentioned above:

struct simple {
 int A;
 sc_int<8> B;
} simple;
....

The content of a variable of the struct type simple is supposed to
be exchanged with SystemVerilog.

The register or unregister function declarations are in the following
file provided by VCS:

tli_global_generic_class_info.h

This file must be included in the C++ code to make use of the register
or unregister functions, as shown in the following example:

Example
// user must include file with registration/unregistration
function
// declaration
#include "tli_global_generic_class_info.h"
.....
simple *P;
P = new simple();

// registration of P with global unique id
TLI_REGISTER_ID("my_unique_id1", P);
.....
// unregister P
TLI_UNREGISTER_ID("my_unique_id1");

19-138

Using SystemC

......
On the SV side we have a corresponding and "simple-struct"
compliant class, not showing the required `defines for VMM
byte packing
class simple_SV;
 int A;
 bit[7:0] B;
endclass:simple_SV

......
class simple_SV;
// SV byte pack array
logic[7:0]ba[];

tli_simple P();
P.attach_by_id("my_unique_id1");
....
// get an entire struct from SC and fill it into class object
cl1;
P.get(ba);
cl1.byte_unpack(ba);
.....
// fill an entire struct on the SC side with contents of
class object cl1
cl1.byte_pack(ba);
P.set(ba);
.....

// individual member access
cl1.A = P.get_A();
P.set_A(cl1.A);
.............

The tli_simple interface is generated with the generic C++
access functions in SystemVerilog. This is similar to the interface
generated for the C++ struct or class member of a SystemC module.
The difference is that there is no function named
scSetScopeByName(), and the attach_by_id() function is
used. The argument is a string representing a global unique
identifier.

19-139

Using SystemC

Access in SystemVerilog is similar to the struct or class members of
a SystemC module. There is no change in the compile steps to
generate and compile the generated files compared to the adaptor
code generation and byte pack or unpack functionality.

The adaptor code is generated using the syscan call and a TLI input
file. For more information on adaptor code generation, see
“Generating Adaptor Code” on page 134.

Extensions of TLI Input File

The adaptor code generator must know the structs or classes for
which the routines should be generated to exchange data values on
the entire struct or class. The following directives are used in the TLI
files:

class GG_BusModel
import method *
import member *.*
create VMM
create packunpack

class BusModel
import method *
import member *
create directaccess
create adaptor

The TLI input file is extended using the following directive:

use <struct_type_name> pack:my_pack unpack:my_unpack
/ab/cd/huhu.h

19-140

Using SystemC

You can specify the struct or class members for which pack/unpack
adaptor code should be generated, using the above directive. In the
case of user-provided code, you must specify the function names of
pack and unpack routines and the header file using the function
declarations.

The adaptor code is generated using the create adaptor
directive. The import member directive specifies the struct or class
members for which the byte pack/unpack adaptor code should be
generated.

The create VMM and create packunpack directives generate
VMM classes and byte pack/unpack routines for the structs or
classes specified using the import member directive. In these
cases, the generated pack/unpack routines are used in the adaptor
code for pack/unpack of struct or class members.

The C++ byte pack/unpack functions are void functions, and have
two arguments. The prototypes are:

• For Pack: (tli_pack_data&, const <class_type>&)

• For Unpack: (tli_pack_data&, <class_type>&)

Invoking Pack or Unpack Adaptor Code Generation

The pack or unpack adaptor code generation is invoked if:

• The adaptor code generation is enabled in the TLI input file

• A member of type struct or class can be accessed using the import
member directive

• The use and/or create packunpack directive is available in
the TLI file

19-141

Using SystemC

Limitations

The following are the limitations of accessing struct or class
members of a SystemC module from SystemVerilog:

• The structs in method calls are not supported

• sc_fifo and tlm_fifo are not supported

• Nested classes or structs are not supported

Accessing Verilog Variables from SystemC

This section describes how to access the variables of Verilog
instances from the SystemC code in the following topics:

• “Usage Model” on page 141

• “Access Functions” on page 142

• “Supported Data Types” on page 143

• “Usage Example” on page 144

• “Type Conversion Mechanism” on page 145

Usage Model

You can access the variables of Verilog instances from the SystemC
code by calling the tli_get_<type> (path)or
tli_set_<type> (val, path) functions, where
<type> = logic|int64|uint64|bv|lv|string, path is the
absolute path to the variable in a Verilog instance, and val is the
value to be set on the variable. The following topic describes the
prototypes of these functions.

19-142

Using SystemC

These functions either get or set the value and return immediately.
You can call them either from SystemC methods or from regular C++
functions.

Specify the location of the variable in the code using the absolute
path. For example, in tli_get_int64 (“top.inst0.D”),
top.inst0 is the absolute path name of a Verilog instance,
whereas D refers to the variable D of that instance.

All tli_get_<type> or tli_set_<type> APIs are stored in a
header file called systemc_user.h. You should include this header
file in the SystemC file which uses these APIs. Also, you must enable
the VPI read/write capabilities during VCS elaboration using either
the -debug or -debug_all option.

Access Functions

The following are the prototypes of tli_get_<type> (path)or
tli_set_<type> (val, path) functions:

function sc_logic tli_get_logic
 (const char* path);
function void tli_set_logic
 (sc_logic val, const char* path);

function unsigned long long tli_get_uint64
 (const char* path);
function void tli_set_uint64
 (unsigned long long val, const char* path);

function long long tli_get_int64
 (const char* path);
function void tli_set_int64
 (long long val, const char* path);

function sc_bv_base tli_get_bv
 (const char* path);

19-143

Using SystemC

function void tli_set_bv
 (const sc_bv_base& val, const char* path);

function sc_lv_base tli_get_lv
 (const char* path);
function void tli_set_lv
 (const sc_lv_base& val, const char* path);

function std::string tli_get_string
 (const char* path);
function void tli_set_string
 (const char* val, const char* path);

Supported Data Types

The tli_get_<type> (path)or tli_set_<type> (val,
path) functions allow access only to certain member variables of
Verilog module instances. These functions internally use VPI calls to
get or set a variable. Therefore, any variable which is accessible
through VPI can be accessed using these TLI functions.

Following are the data types that can be accessed through these TLI
APIs:

• Signed and unsigned versions of all integer types: bit, reg, logic,
byte, shortint, longint, and integer

• All net types in Verilog (read only)

• Vectors/memories of the above supported types

• SystemVerilog strings

• Enum types defined as one of the above supported types

• Typedefs to one of the above supported types

19-144

Using SystemC

• Sub-members of classes, interfaces, structures, or unions can be
accessed only if they are of the above supported types

• Parameters (read only)

Unsupported Data Types

The following data types cannot be accessed with the
tli_get_<type> (path)or tli_set_<type> (val, path)
functions:

• Double, float, real, and all other floating point types

• Any type of SystemVerilog array

• SystemVerilog event types

Using any TLI API to access a variable of incompatible type results
in an error. For example, accessing a string type using
tli_get_int64 or accessing a bit vector using tli_get_logic
results in an error.

Usage Example

The following example shows how you can use the TLI APIs to
access SystemVerilog variables:

Top.v:
module bot;

reg [3:0] r = 4’b1100;
endmodule
module top;

int i1 = 100000;
bot b1();

endmodule

sc_bot.h:
#include <systemc.h>

19-145

Using SystemC

#include <systemc_user.h>
SC_MODULE(sc_bot)

 {
…
void Func();

 }

sc_bot.cpp
#include “sc_bot.h”
void sc_bot::Func()

 {
sc_bv_base bv = tli_get_bv(“top.b1.r”);
tli_set_bv(bv.reverse(), “top.b1.r”);
long long val = tli_get_int64(“top.i1”);
tli_set_int64(val+1, “top.i1”);

 }

Follow the regular compile and run steps:

% syscan sc_bot.cpp:sc_bot
% vlogan –sv top.v
% vcs –sysc -debug_all top
% ./simv

Type Conversion Mechanism

The type of the variable being accessed must match the type of the
TLI access function. You can access:

• All single-bit values using the tli_get_logic function.

• All 2-state bit vectors and integer types using the tli_get_bv
function.

• All 4-state bit vectors using the tli_get_lv and corresponding
tli_set* functions.

19-146

Using SystemC

If a 4-state value is accessed with a function that accepts only 2-state
values (such as tli_get_bv), then all X and Z bits are converted
to 0. Also, If the source vector (on SystemC side) passed to a set
function (such as tli_set_bv) is smaller than the destination
vector (on Verilog side), then the source vector is padded with 0 bits
or sign extended (if it is signed type).

If the source is larger than the destination vector, the upper bits are
removed. The tli_get_bv and tli_get_lv functions preserve
bit width; that is, they return a vector whose size is the same as the
actual vector on the Verilog side.

Example 19-4 Accessing 4-state value with a function that accepts only
2-state values

tli_get_bv("top.S2.A")

In the above example, if top.S2.A refers to a logic vector of size 8,
then this function call converts the 4-state value fetched from the
Verilog side to 2-state values (by replacing all X and Z with 0), and
returns sc_bv_base<8>.

If the variable A has the binary value 8’b1x1z0x01, then
tli_get_bv() converts all X and Z to 0, and returns the value
10100001 in the sc_bv_base variable.

Example 19-5 Padding the upper bits

tli_set_lv(val,"top.S2.A")

In the above example, if val is a logic vector of size 8 and
top.S2.A refers to a bit vector of size 20, then this function call first
converts all X and Z in val to 0, and then pads the upper 12 bits with
0 and assigns it to the referred variable.

19-147

Using SystemC

If the variable has the binary value 8’11xxzz11, then the
tli_set_lv() function first converts all X and Z to 0, and then
adds 12 zeros, so the resulting value is the binary value
20’b000…00011000011 or integer value 12.

Example 19-6 Accessing signed variables

tli_get_bv("top.S2.B")

In the above example, top.S2.B refers to an 8-bit signed register
(reg signed [7:0] B). It has the binary value 8’b11111110,
which corresponds to hex value 32’hfe or decimal value -2.

The above example returns sc_bv<8>, which holds the value
8’b11111110. The assumption here is that you know the
signedness of the referred variable when you call tli_get_bv and
convert the retrieved value appropriately. Instead, you can use
tli_get_int64 to access signed values less than 64-bit.

The tli_get_logic and tli_set_logic functions operate on
single-bit variables only. If you pass a vector value to
tli_set_logic or try to access a vector value using
tli_get_logic, then it results in an error. You can access
SystemVerilog string type variables using the tli_get_string
and tli_set_string functions only.

Accessing SystemVerilog Functions and Tasks from
SystemC

This section describes how to directly access SystemVerilog
functions and tasks from SystemC code in the following topics:

• “Introduction” on page 148

19-148

Using SystemC

• “Usage Model” on page 148

• “Function Declaration Hierarchy” on page 149

• “Passing Arguments” on page 151

• “Supported Types” on page 152

• “Usage Example” on page 152

• “Compile Flow” on page 154

• “Usage Guidelines” on page 155

• “Limitations” on page 156

Introduction

The existing idf file-based mechanism allows you to access
variables or function calls on the Verilog side from SystemC class
methods. But this mechanism expects you to write an idf file,
instantiate the corresponding interfaces in SystemC source files, and
access variables or functions using the interface objects.

From this release onwards, you can use the TLI-DirectAccess (TLI-
DA) mechanism to directly access SystemVerilog functions and
tasks from SystemC code. This mechanism allows you to easily
interact across language boundaries.

Usage Model

Use the following syntax to directly access SystemVerilog functions
or tasks from SystemC code:

19-149

Using SystemC

TLI::<Function declaration
hierarchy>::<Function_name>
(“<design_hierarchy>”, <comma separate list of
actual arguments>);

Following is an example of a TLI function call:

TLI::Mid::Add(“top.m1”, arg1, arg2);

You must call a function with the design hierarchy string (xmr) as the
first argument, followed by the list of actual arguments.

Note:
The design hierarchy specified in the call should be a string literal
(for example, top.m1). You cannot use a variable of type string
or char*.

You must prefix the function call with the function declaration
hierarchy. This hierarchy is the scope where a function is declared in
the SystemVerilog design. For more information, see the “Function
Declaration Hierarchy”section.

You must include the generated TLI header file
tli_sc_calls_sv.h in SystemC files which access the TLI
function calls.

Function Declaration Hierarchy

Function declaration hierarchy is the scope where the function is
declared in the SystemVerilog design. It consists of a module name
which is optionally prefixed by the enclosing library name, and
optionally suffixed by the containing class or interface name.

The function declaration hierarchy is used to:

19-150

Using SystemC

• Locate the function in a SystemVerilog design and extract its
prototype. This prototype is required to automatically generate the
corresponding DPI wrappers.

• Avoid conflicts with other function calls having the same name,
but declared in different scopes.

Use the following syntax to declare function hierarchy:

[<lib_name>::]<module_name/program_name/
package_name>::[<class_name>/<interface_name>/
<named_block_name>::]

Note:
- If there are any conflicts, then the module_name or
package_name is the only mandatory item.

- Use library_name if a module with the same name exists in
a different library, and that module also has a function with same
name.

- Use class_name, interface_name or
named_block_name if a function with the same name is
present in two different scopes in the same module.

- You must separate all the above-mentioned strings with a scope
resolution operator (::).

19-151

Using SystemC

Passing Arguments

The type of actual arguments passed to the TLI functions should
match the corresponding SystemVerilog type used in the function
declaration. Following is the list of compatible types:

Note:
- The SystemC compiler generates an error if the sizes of the

vectors passed as actual arguments do not match the sizes of
the formal parameters.

- Use plain types for input arguments and pointers for output or
inout arguments. You must allocate enough space for these
pointers. Also, use pointers to collect the return values from
these function calls.

Table 19-1 Compatible Types

SystemVerilog Data Type SystemC Data Type

bit bool

logic sc_logic

reg sc_logic

reg vector sc_lv

logic vector sc_lv

bit vector sc_bv

int int

shortint short int

longint long int

byte char

19-152

Using SystemC

- Functions can have reference arguments which are treated as
inout types on the SystemC side.The SystemVerilog ref
semantics are not maintained on the SystemC side. That is,
any change to the ref variable in the function or task is not
immediately visible on the SystemC side.

Supported Types

The following types are supported:

• You can call functions having arguments of basic data types from
SystemC code. Supported argument types include: all integral
types, reg, logic, bit, string, and so on.

• Bit vectors of basic types are allowed in the argument list.

• In Verilog- or VHDL-top designs, the design hierarchy should only
consist of Verilog or VHDL instances.

• In SystemC top designs, the design hierarchy should start in
SystemC and end in Verilog. Donuts are not allowed.

Usage Example

class C; //In $unit scope
 function int Add(bit [3:0] r1, reg [3:0] r2, output

logic [3:0] r3);
…

 endfunction
endclass

module Mid;
class C;

function int Add(bit [3:0] r1, reg [3:0] r2,
output logic [3:0] r3);

…
endfunction

function int Sub(bit [3:0] r1, reg [3:0] r2, output logic

19-153

Using SystemC

[3:0] r3);
…
endfunction

endclass;

C c1 = new;

function int Add(bit [3:0] r1, reg [3:0] r2, ,
output logic [3:0] r3);

…
endfunction

endmodule

package P;
class C;

function int Sub(bit [3:0] r1, reg [3:0] r2, output
logic [3:0] r3);

…
endfunction

endclass
endpackage

module top;
Mid m1();
C c1 = new;
P::C c2 = new;

endmodule

File: sc_top.cpp
#include <tli_sc_calls_sv.h>
…
Sc_bv<4> arg1;
Sc_lv<4> arg2;
Sc_lv<4>* arg3 = new sc_lv<4>;
int* I1 = TLI::Mid::Add(“top.m1”, arg1, arg2, arg3);
int* I2 = TLI::Mid::C::Add(“top.m1.c1”, arg1, arg2,

arg3);
int* I3 = TLI::Mid::Sub(“top.c1”, arg1, arg2, arg3);

int* I4 = TLI::$unit::C::Add(“top.c1”, arg1, arg2,
arg3);

int* I5 = TLI::P::Sub(“top.c2”, arg1, arg2, arg3);

19-154

Using SystemC

In the above example:

• The int* i = TLI::Mid::Add(“top.m1”, arg1, arg2,
arg3); function call is equivalent to XMR function call
top.m1.Add(arg1, arg2). This function call refers to the
function Add in module Mid.

• The int* i = TLI::Mid::C::Add(“top.m1.c1”, arg1,
arg2, arg3); function call is equivalent to XMR function call
top.m1.c1.Add(arg1, arg2). This function call refers to the
function Add in class C of module Mid. Here, you must mention
the class name along with the module name because the module
has another function with same name.

• The int* i = TLI::Mid::Sub(“top.m1.c1”, arg1,
arg2); function call refers to the function Sub in class C of
module Mid. Since the function name is unique in the given
module scope, there is no need for you to prefix the function call
with the class name. However, you can use the class name to call
this function, as follows:

res3 = TLI::Mid::C::Sub(“top.m1.c1”, arg1, arg2);

• The int* i = TLI::$unit::C::Add(“top.c1”, arg1,
arg2); function call calls the function Add in class C. This class
resides in $unit scope, which is outside of all modules.

• The int* i = TLI::P::Sub(“top.c2”, arg1, arg2);
function call refers to the function Sub in package P.

Compile Flow

Follow these steps to enable direct function access using TLI:

1. Compile Verilog or VHDL files using vlogan or vhdlan:

19-155

Using SystemC

% vlogan –sverilog top.v …

2. Run syscan using the -tli_F option, and then pass all the
SystemC files to it (especially the files having TLI function calls).
Also, pass all the required include directories using -cflags.

% syscan –tli_F sc_top.cpp …

Note:
This is an extra step required to automatically generate the TLI
adaptor code.

3. Compile all SystemC files:

% syscan sc_top.cpp:sc_top …

4. Run VCS elaboration:

% vcs –sysc top …

Usage Guidelines

The following are the guidelines for accessing SystemVerilog
functions or tasks from SystemC:

• You must compile all Verilog files before SystemC compilation
(with syscan –tli_F).

• You must analyze the SystemC source files having TLI function
calls with the syscan -tli_F command before they are
compiled with syscan.

• You should specify all files that contain TLI function calls together
to the syscan –tli_F command. You may observe some
slowdown if this command is run on each file separately.

19-156

Using SystemC

• If there are any changes to the TLI function calls in any of the
source files, then you must process the files with the
syscan –tli_F command before compiling them with syscan.

• You must include the tli_sc_calls_sv.h file in all source files
that access TLI function calls.

• The widths of the formal arguments should match the widths of
actual arguments. Also, the types of arguments should be
compatible as per SystemC semantics. For example, you cannot
pass a sc_bv vector to a function that expects a logic vector.

• You must specify appropriate declaration hierarchy to handle
conflicting function calls.

Limitations

The following limitations apply when accessing SystemVerilog
functions or tasks from SystemC:

• Compound data types (arrays, structures, classes, and so on),
enums, and typedefs are not allowed in function arguments.

• Floating point types are not allowed as function arguments.

• Functions declared in nested modules cannot be called from
SystemC.

• Donuts (design hierarchies like Verilog-SC-Verilog) are not
supported.

• The TLI function call and its first argument should be on the same
line. That is, the function name and its first argument should not
spread over multiple lines.

19-157

Using SystemC

Accessing SystemC Members from SystemVerilog
Using the tli_get_<type> or tli_set_<type> Functions

This section describes how to access the members of SystemC
instances from SystemVerilog code by calling the
tli_get_<type> or tli_set_<type> functions.

This section consists of the following topics:

• “Using the tli_get_<type> and tli_set_<type> Functions” on page
157

• “Prototypes of tli_get_<type> and tli_set_<type> Functions” on
page 158

• “Supported Data Types” on page 159

• “Member Variables” on page 162

• “Type Conversion Mechanism” on page 164

• “Compile Flow” on page 166

Using the tli_get_<type> and tli_set_<type> Functions

You can access the members of SystemC instances from the
SystemVerilog code by calling the
tli_get_<type> (path [, member_name])or
tli_set_<type> (val, path [, member_name]) functions,
where:

• <type> = logic|int64|uint64|string

19-158

Using SystemC

• path is the absolute path to the member of a SystemC module
instance. For example, top.S2.D refers to member D of SystemC
instance top.S2. Only absolute path names are supported.
Relative paths are not supported.

• val is the value to be set on the member variable.

• member_name is optional. It is the name of the member variable
in a SystemC object. If this argument is not specified, then the
first argument is considered as the full path of the variable. For
more information on this argument, see the “Member Variables”
topic.

The tli_get_<type> and tli_set_<type> functions either get
or set the value and return immediately.

Prototypes of tli_get_<type> and tli_set_<type>
Functions

This topic describes the prototypes of the tli_get_<type> and
tli_set_<type> functions.

The following are the prototypes of the
tli_get_<type> (path [, member_name])or
tli_set_<type> (val, path [, member_name]) functions:

function logic tli_get_logic
 (input string path, input string m_name = "");
function void tli_set_logic
 (input logic val, input string path, input string m_name
= "");

function longint unsigned tli_get_uint64
 (input string path, input string m_name = "");
function void tli_set_uint64
 (input longint unsigned val, input string path, input
string m_name = "");

19-159

Using SystemC

function longint tli_get_int64
 (input string path, input string m_name = "");
function void tli_set_int64
 (input longint val, input string path, input string
m_name = "");

function logic[63:0] tli_get_logic64
 (input string path, input string m_name = "");
function void tli_set_logic64
 (input logic[63:0] val, input string path, input string
m_name = "");

function string tli_get_string
 (input string path, input string m_name = "");
function void tli_set_string
 (input string val, input string path, input string
m_name="", input bit free_mem=0);

These functions can access only the:

• Objects of a SystemC module, which are derived from
sc_core::sc_module.

• Member variables that are public. You cannot access private and
protected members.

Note:
You can view all SystemC module instances in the static design
hierarchy shown by DVE.

Supported Data Types

The tli_get_<type> (path [, member_name])or
tli_set_<type> (val, path [, member_name]) functions
allow access only to certain member variables of SystemC module
instances. There are restrictions regarding the data type,
accessibility, and compile flow.

19-160

Using SystemC

The tli_get_<type> (path [, member_name])or
tli_set_<type> (val, path [, member_name]) functions
can access the following data types:

• bool, sc_logic

• All ANSI integer types. For example, int, signed char, long int,
unsigned short int, and so on

• Native SystemC bit-vectors with a length of no more than 64-bit:
sc_int, sc_uint, sc_bigint, sc_biguint, sc_lv, sc_bv

• Signals and ports: sc_signal<T>, sc_signal_rv,
sc_signal_resolved, sc_in<T>, sc_inout<T>,
sc_out<T>, sc_inout_rv, sc_inout_resolved

• Strings of type std::string or char*

• Sub-members that have one of the above types

Note:
- The bool and sc_logic data types are single-bit entities.

They can only be accessed using the tli_get_logic and
tli_set_logic functions. Z and X are preserved while
accessing the sc_logic variable. Using any other
tli_get_<type> or tli_set_<type> function for these
types results in an error.

- The std::string and char* data types can only be
accessed through the tli_get_string and
tli_set_string functions. Using any other TLI function
results in an error.

19-161

Using SystemC

- The tli_set_string function has a fourth argument
free_mem, which applies only if the SystemC variable is of type
char*. If the type is free_mem=1, then the TLI does a
free()of the current string value before assigning the new
value.You must ensure that the value is freed.

Sub-members

The tli_get_<type> (path [, member_name])or
tli_set_<type> (val, path [, member_name]) functions
can access the members of sub-classes or sub-structs, if these
members contain supported type as int. This corresponds to an
import member *.* directive within a TLI file.

Example:

struct my_struct2 {
 int D;
};
struct my_struct1 {
 int C;
 my_struct2 S2;
};
SC_MODULE(foo) {
 sc_int<40> A;
 my_struct1 S1;
};

In the above example, members A and S1.C of foo are accessible,
and are of type int. Members S1 and S1.S2 are not accessible
because they refer to entire user-defined structs.

Member S1.S2.D is also of type int, but is not accessible if the
corresponding source file is compiled with the –tli_D flag. This flag
makes the first-level (A) and second-level (S1.C) members
accessible, but not the third-level (S1.S2.D) or any further levels.

19-162

Using SystemC

Member S1.S2.D is accessible if the corresponding source file is
compiled with an explicit TLI file which specifies to import this third-
level member.

Unsupported Data Types

The tli_get_<type> and tli_set_<type> functions cannot
access the following data types:

• Base types of native SystemC bit-vectors: sc_int_base,
sc_uint_base, sc_signed, sc_unsigned, sc_lv_base,
and sc_bv_base.

• Resolved input and output ports: sc_in_rv, sc_out_rv,
sc_in_resolved, and sc_out_resolved.

• Other SystemC channel types. For example, sc_fifo,
sc_buffer.

• Arrays of fixed or varying size. For example, int[8], int[].

• Double, float, and all native SystemC fix-point types. For example,
sc_fix.

Using any TLI API to access a variable of incompatible type results
in an error. For example, accessing string types using
tli_get_int64 or accessing a bit vector using tli_get_logic
results in an error.

Member Variables

The member_name argument is optional. SystemC instance names
have their own name space. They do not clash with other member
variables defined in the same class. If sub-members are also

19-163

Using SystemC

supported, then you might face difficulties in differentiating between
member variables. You can overcome these difficulties by using the
member_name argument.

For example, consider the following code:

struct mystruct {
 int B;
};
SC_MODULE(sub) { // instance top.inst.A
 int B;
};
SC_MODULE(foo) { // instance top.inst
 sub inst_A;
 my_struct A;
 SC_CTOR(foo): inst_A(“A”) {}
};

In the above code, member inst_A forms sub-instance
top.inst.A. The constructor (SC_CTOR) defines the hierarchical
name of C++ member inst_A to be A.

Member inst_A does not clash with member A within class foo, at
least for the C++ compiler. However, it constitutes a clash for the
hierarchy, such that the path top.inst.A.B can now refer to:

• Member B of instance top.inst.A

• Member A.B of instance top.inst

Using any API with the path top.inst.A.B creates ambiguity. This
ambiguity is resolved by the optional argument member_name.

Example
tli_get_int("top.inst.A.B") // ambiguous situation
tli_get_int("top.inst.A", "B") // member “B” of
// instance “top.inst.A”

19-164

Using SystemC

tli_set_int(value, "top.inst.A.B")) // member “A.B” of
//instance “top.inst”

tli_set_int(value, "top.inst.A", "B")// member “B” of
//instance “top.inst.A”
tli_get_int("top.inst", "A.B")
tli_set_int(value, "top.inst", "A.B")// member “A.B” of
//instance “top.inst”

Type Conversion Mechanism

The type of the variable being accessed must match the type of the
TLI access function. VCS generates an error message if the type of
variable being accessed is incompatible with the type of the TLI
access function. If the type of variable being accessed is compatible
with the type of the TLI access function, then you can do appropriate
conversions as follows:

• If a 4-state value logic is accessed with a function that accepts
only 2-state values, then all X and Z bits are converted to 0.

• If the source vector passed to a set function is smaller than the
destination vector, then the source vector is padded with 0 bits or
sign extended (if it is a signed type). If the source is larger than
the destination vector, then the upper bits are removed.

• Sign extension is done only when the source is a signed integer
type is called; (for example, int, signed char, sc_int,
sc_bigint) and tli_get_int64()or tli_get_uint64().
0 bits are added in all other cases.

Example 19-7 Accessing 4-state value with a function that accepts only 2-
state values

Consider the following function call:

tli_get_int64("top.S2.A")

19-165

Using SystemC

If the above function refers to sc_lv<8> (a vector of 8 bits of four
values each), it converts the 4-state value to 2-state values (by
replacing all X and Z with 0) and the missing 24 bits are filled with
zeros.

If the variable A has the binary value 8’bxxzz1100, then
tli_get_in64() first converts all X and Z to 0 and then adds 24
zeros, so that the resulting value is the binary value
64’b000…0001100 or integer value 12.

Example 19-8 Function returning signed values

Consider the following function call:

tli_get_<type>("top.S2.B")

If top.S2.B refers to sc_int<8>(signed data type with binary
value 8’b11111110, which corresponds to hex value 32’hfe or
decimal value -2), then:

• tli_get_int64(“top.S2.B”) returns integer value -2 or hex
value 64’hffff ffff ffff fffe.

• tli_get_uint64(“top.S2.B”) returns the same hex value
64’hffff ffff ffff fffe, which corresponds to a very large
positive number (18446744073709551490) because
tli_get_uint64() always returns an unsigned number.

• tli_get_logic64(“top.S2.B”) returns hex value
64’h0000 0000 0000 00fe.

19-166

Using SystemC

Example 19-9 Setting bit vectors

If the variable has the binary value 8’b11xxzz11, then
tli_set_logic64() first converts all X and Z to 0, and then adds
12 zeros. Therefore, the resulting value is the binary value
20’b000…00011000011 or integer value 195.

Compile Flow

Access for tli_get_<type> or tli_set_<type> must be
enabled during compilation of SystemC source files with syscan.

Using tli_D Option

Use the -tli_D option along with syscan, as shown below:

% syscan -tli_D <source file>

Access is enabled for all SystemC module classes that are present
during compilation of the source file. If this option is used for
compiling the top-most model of an entire SystemC design tree, then
all SystemC modules are supported.

Example
File bottom.h:
SC_MODULE(bottom) {…};

File middle.h:
#include “bottom.h”
SC_MODULE(middle) { bottom inst; };
File top.h:
#include “middle.h”
SC_MODULE(top) { middle inst; }

File top.cpp:
#include “top.h”
…

19-167

Using SystemC

Calling syscan –tli_D top.cpp enables tli_get_<type> or
tli_set_<type> access for any instance of SystemC module
types top, middle, or bottom.

Using the –tli_D option is convenient; however, it may also be
expensive in terms of extra compilation time because there is no limit
to the number of SystemC modules for which tli_get_<type> or
tli_set_<type> support is built. Therefore, a warning message is
generated when the total number of variables from all SystemC
modules exceeds 2000.

Modifying SystemC Code

The information needed for tli_get_<type> or
tli_set_<type> is stored in the
tli_<source_body_file_name>_DirectAccessM.cpp file,
which is automatically generated. It must be included at the end of
the cpp file from which it was generated.

Example
File top.cpp:
#include “top.h”
…
…
… at the end of the file add: …
#include “tli_top_DirectAccessM.cpp”

Modifying SystemVerilog Code

You must analyze and import the TLI package where all
tli_get_<type> or tli_set_<type> functions are defined.

Example

Analyze the package:

19-168

Using SystemC

% vlogan –sverilog \
$VCS_HOME/etc/systemc/tlm/tli/tli_directaccesspackage.sv

Add an import statement to your SystemVerilog code, as shown
below:

File: testbench.sv
…
import tli_direct_access_package::*;
…
int y = tli_get_int64(“top.inst.A”);
…

TLI Directive (create directaccess)

The –tli_D option only creates information needed for the
tli_get_<type> or tli_set_<type> functions. For example, it
does not create any helper code to call member functions. If this is
needed, then you must call syscan with an explicit TLI file.

Generating C++ Struct Definition from SystemVerilog
Class Definition

This section describes how to generate a C++ struct definition from
a SystemVerilog class definition in the following topics:

• “Use Model for Generating C++ Struct from SystemVerilog Class”
on page 169

• “Data Type Conversion from SystemVerilog to C++” on page 170

• “Example for Generating C++ Struct from SystemVerilog Class”
on page 171

• “Limitations” on page 172

19-169

Using SystemC

Use Model for Generating C++ Struct from
SystemVerilog Class

Use the -tli_gen_struct option to invoke the C++ struct
generation, as shown in the following command:

% syscan -tli_gen_struct [-v] <file_name> -class
<class_name> [-o <output_header_file>]

where,

• -v is the verbose switch. The generated C++ struct is also printed
to stdout.

• <file_name> is the SystemVerilog input file.

• -class <class_name> specifies the SystemVerilog class, for
which a corresponding C++ struct is generated.

• -o <output_header_file> is an optional argument. If
specified, the C++ struct is created in this file.

As shown in the above command example, the struct generator
requires a SystemVerilog file and the class name, for which the
corresponding C++ struct should be created, as inputs. Therefore, a
SystemVerilog class is required in the specified SystemVerilog file.

The SystemVerilog file is read for all data members in the class, and
the corresponding C++ data types are generated in a struct.

The name of the C++ struct is tli_struct_<class_name>. If you
do not specify an output file, then the file name is
tli_struct_<class_name>.h; else it is same as the name
specified with the -o option.

19-170

Using SystemC

A comment is printed in the preceding line of each C++ struct data
member. This comment contains information about the
SystemVerilog input file, line number, and the complete line of the
corresponding SystemVerilog class data member.

Data Type Conversion from SystemVerilog to C++

The following table describes the type conversion rules from
SystemVerilog to C++.

Table 19-2 Type Conversion Rules from SystemVerilog to C++

SystemVerilog Data Type C++ Data Type

bit bool

bit[] bool*

bit[size1] bool[size1]

logic sc_dt::sc_logic

logic[] sc_dt::sc_logic*

logic[size1] sc_dt::sc_logic[size1]

byte char

byte[] char*

byte[size1] char[size1]

byte unsigned unsigned char

byte signed signed char

string std::string

string[] std::string*

string[size1] std::string[size1]

shortint short int

shortint[] short int*

shortint[size1] short int[size1]

shortint unsigned unsigned short int

19-171

Using SystemC

Example for Generating C++ Struct from SystemVerilog
Class

The following example shows how a SystemVerilog class
my_payload in the SystemVerilog file my_payload.sv, is
converted into a C++ struct:

class my_payload;
 byte my_byte[3]; // holds 3 byte values
 shortint myshort; /* some short */
endclass

The following call generates a C++ struct named
tli_struct_my_payload in the tli_struct_my_payload.h
file:

shortint signed signed short int

int int

int[] int*

int[size1] int[size1]

int unsigned unsigned int

int signed signed int

longint long long

longint[] long long*

longint[size1] long long[size1]

longint unsigned unsigned long long

longint signed signed long long

bit[nr-1:0] sc_dt::sc_bv<nr>

logic[nr-1:0] sc_dt::sc_lv<nr>

integer sc_lv<32>

Table 19-2 Type Conversion Rules from SystemVerilog to C++

SystemVerilog Data Type C++ Data Type

19-172

Using SystemC

% syscan -tli_gen_struct my_payload.sv -class my_payload

The following are the contents of the tli_struct_my_payload.h
file:

#ifndef tli_struct_my_payload_H
#define tli_struct_my_payload_H

#include <string>
#include <systemc.h>

struct tli_struct_my_payload {
// SV declaration (my_payload.sv, 4): byte my_byte[3];
 char my_byte[3];
// SV declaration (my_payload.sv, 5): shortint myshort;
/* some short */
 short int myshort;

};
#endif

Limitations

The following are the limitations of creating a C++ struct from a
SystemVerilog class:

• The syscan -tli_gen_struct option cannot recognize legal
SystemVerilog class definitions. For example, the following types
are not supported:

- User-defined structs

- Enums

- Multidimensional arrays

19-173

Using SystemC

Note:
Data members that could not be converted are created in a
comment. By default, the data type is void, and appears as
shown below:

// TODO: void <variable_name>;

• The typedef, function, and task constructs cannot be converted
to any C++ construct. The syscan script ignores these constructs
if they are specified in the SystemVerilog class definition.

• Splitting data member definitions over multiple lines is not
supported.

• Preprocessor directives are not supported.

Supporting Designs with Donut Topologies

Donut or “sandwich” topologies are designs where SystemC models
are embedded into HDL (Verilog/VHDL) models, or vice-versa.
These models are embedded into each other on both top and
bottom, or vice-versa. In other words, following the design hierarchy
from a leaf instance towards the root, there are multiple transitions
from SystemC to HDL (Verilog/VHDL), or vice-versa.

For example, a design topology SystemC->Verilog->VHDL-
>SystemC defines a donut because there are two transitions
between SystemC and HDL.The first transition is from SystemC-
>Verilog, and the second is from VHDL->SystemC.

19-174

Using SystemC

However, a design topology SystemC->Verilog->VHDL->Verilog is
not a SystemC/HDL donut because there is only one transition
between SystemC and HDL. Transitions inside HDL between Verilog
and VHDL are not relevant in this context.

VCS MX SystemC generally does not support donuts, with one
exception (described below). An attempt to compile a donut structure
in VCS MX triggers an error message.

One specific donut topology is supported: Verilog->SystemC
->Verilog, with no VHDL models at any level. Multiple layers of
Verilog modules at the top and bottom are allowed. Multiple
SystemC layers in the middle are also allowed. So, a design
topology of Verilog->Verilog->SystemC->SystemC->Verilog is also
supported.

This style of donuts can be useful for using SystemVerilog assertions
for SystemC models in a Verilog-top design. The assertions must be
embedded in a Verilog model, which is then instantiated underneath
a SystemC model. All signals to be observed by the assertions must
be fed through ports.

This type of donut must be compiled according to the UUM flow.
Verilog models must be analyzed with vlogan, SystemC models
with syscan, and elaboration with vcs -sysc Interface
models are created as described before.

Example

Design topology is V1->S2->S3->V4->V5, with V1, V4, V5 being
Verilog models, and S2, S3 being SystemC models. With this
topology, you must compile the simulator as follows:

% vlogan V5.v
% vlogan V4.v -sc_model V4

19-175

Using SystemC

% syscan S3.cpp
% syscan S2.cpp:S2
% vlogan V1.v

% vcs -sysc V1

Exchanging Data Between SystemVerilog and SystemC
Using Byte Pack/Unpack

Transaction-Level Interface (TLI) allows you to exchange user-
defined C++ classes or data in struct object between
SystemVerilog(SV) and SystemC/C++ using the byte packing and
unpacking mechanism. This mechanism allows you to put bits of all
the class members into an array of bytes. That is, the values of data
types are packed in a byte stream for exchanging the data between
SystemVerilog and SystemC/C++. These packed values of data
types can be retrieved or unpacked from the byte stream at the other
end.

SystemC uses the tli_pack_data class object, which contains
APIs, to pack and unpack of the data type values.

19-176

Using SystemC

This chapter contains the following sections:

• “Use Model”

• “Supported Data Types”

• “Mapping of SystemC/C++ and SystemVerilog/VMM Data Types”

• “Usage Examples”

• “Using Pack and Unpack Functions”

• “Using Code Generator”

Use Model

To pack and unpack the data type values using the APIs in SystemC/
C++:

1. Include the tli_packunpack.h header file.

2. Create a class object tli_pack_data which contains the API
to provide the pack and unpack functionality.

3. Use the pack operator (<<) or the pack() function to put data
into the byte array. This operator converts data into a byte stream.
Similarly, use the unpack operator (>>) or unpack() function
to extract data from the byte array. This operator converts the data
of the byte stream into the type coming along with the variable
declaration.

Note:
The class tli_pack_data provides pack and unpack
functionality using:

- The << and >> operators for basic data types.

19-177

Using SystemC

- The pack() and unpack() functions for 1-dim arrays (fixed
size and dynamic) of the supported basic data types.

Supported Data Types

The following basic integral and SystemC data types are supported:

• bool

• enum

• Integer Data Types: char, signed char, short, int, long, long long,
sc_int, sc_bigint

• Unsigned Data Types: unsigned (char, short, int, long, long long),
sc_uint, sc_biguint

• String Types: const char*, char*, std::string

• std::vector

• sc_bv

• sc_logic, sc_lv

• 1-dim fixed-size arrays of the base types listed above.

• 1-dim dynamic arrays (pointers of) of the base types listed above,
except std::vector.

Unsupported Data Types

The following data types are not supported:

• float, double

• sc_fixed, sc_fix

19-178

Using SystemC

• sc_ufixed, sc_ufix

• sc_bit

• Struct or Classes: These types cannot be supported by the API.
The pack or unpack routines must be written with the knowledge
of a single member.

• Unions

• Pointer

Mapping of SystemC/C++ and SystemVerilog/VMM Data
Types

The following table lists the data types to map from SystemVerilog/
VMM to SystemC/C++.

SystemVerilog Type SystemC/C++ Type

string std::string, char*

string[] std::string*, char**

string[size] std::string[size], char*[size], std::vector<T>(of size)

bit bool

bit[] bool*

bit[size] bool[size], std::vector<T>(of size)

bit[nr:0] sc_bv<nr+1>

bit[nr:0][] sc_bv<nr+1>*

bit[nr:0][] sc_bv<nr+1>[size], std::vector<sc_bv<nr+1> >(of size)

logic sc_logic

logic[] sc_logic*

logic[size] sc_logic[size], std::vector<sc_logic>[size]

logic[nr:0] sc_lv<nr+1>

19-179

Using SystemC

logic[nr:0][] sc_lv<nr+1>*

logic[nr:0][size] sc_lv<nr+1>[size], std::vector<sc_lv<nr+1> >[size]

reg sc_logic

reg[] sc_logic*

reg[size] sc_logic[size], std::vector<sc_logic>[size]

reg[nr:0] sc_lv<nr+1>

reg[nr:0][] sc_lv<nr+1>*

reg[nr:0][size] sc_lv<nr+1>[size], std::vector<sc_lv<nr+1> >[size]

byte signed char

byte[] signed char*

byte[size] signed char[size], std::vector<char>(of size)

shortint short

shortint[] short

shortint[size] short[size], std::vector<short>(of size)

 int int

 int[] int*

int[size] int[size], std::vector<int>(of size)

longint long long

longint[] long long

longint[size] long long[size], std::vector<long long>(of size)

integer sc_lv<32>

integer[] sc_lv<32>*

integer[size] sc_lv<32>[size], std::vector<sc_lv<32> >(of size)

 Unsigned Versions

byte unsigned unsigned char

shortint unsigned unsigned short

int unsigned unsigned int

long int unsigned unsigned long long

SystemVerilog Type SystemC/C++ Type

19-180

Using SystemC

The following table lists the data types to map from SystemC/C++ to
SystemVerilog/VMM:

integer unsigned sc_lv<32>

 Signed Versions

bit signed bool, sc_bit (deprecated)

bit signed[nr:0][size] sc_bv<nr+1>[size]

reg signed sc_logic

reg signed[nr:0[size] sc_lv<nr+1>[size], std::vector<sc_lv<nr+1> >[size]

logic signed sc_logic

 logic
signed[nr:0][size]

sc_lv<nr+1>[size], std::vector<sc_lv<nr+1> >[size]

 SystemC/C++ Type SystemVerilog Type

bool bit

bool* bit[]

bool[size] bit[size]

char byte, bit[7:0]

char[size] byte[size], bit[7:0][size]

char* string

char** string[]

char*[size] string[size]

std::string string

std::string* string[]

std::string[size] string[size]

short shortint

short* shortint[]

short[size] shortint[size]

int int

SystemVerilog Type SystemC/C++ Type

19-181

Using SystemC

int* int[]

int[size] int[size]

long longint

long* longint[]

long[size] longint[size]

long long longint

long long* longint[]

long long[size] longint[size]

sc_int<nr> bit[nr-1:0]

sc_int<nr>* bit[nr-1:0][]

sc_int<nr>[size] bit[nr-1:0[size]

sc_bigint<nr> bit[nr-1:0]

sc_bigint<nr>* bit[nr-1][]

sc_bigint<nr>[size] bit[nr-1][size]

sc_bit bit

sc_bit* bit[]

sc_bit[size] bit[size]

sc_logic logic, reg

sc_logic* logic[], reg[]

sc_logic[size] logic[size], reg[size]

sc_bv<nr> bit[nr-1:0]

sc_bv<nr>* bit[nr-1:0][]

sc_bv<nr>[size] bit[nr-1:0][size]

sc_lv<nr> logic[nr-1:0], reg[nr-1:0]

sc_lv<nr>* logic[nr-1:0][], reg[nr-1:0][]

sc_lv<nr>[size] logic[nr-1:0][size], reg[nr-1][size]

 Unsigned Versions

unsigned char byte unsigned, bit[7:0]

 SystemC/C++ Type SystemVerilog Type

19-182

Using SystemC

Note:
Byte-packing cannot perform type checking between the byte
pack/unpack routines from VMM on one side and the
corresponding pack/unpack routines on the SystemC/C++ side.

Once data is packed into bytes and sent across, then only the
actual values of data members exist without any information about
the structure. The function that unpacks the data must match
exactly to the one that packed it. If both do not match, then an
invalid object results after unpacking. It is not possible to
automatically detect this, no error message is printed.

unsigned char* byte unsigned[], bit[7:0]

unsigned char[size] byte unsigned[size], bit{7:0][size]

unsigned short shortint unsigned

unsigned int int unsigned

unsigned long longint unsigned

unsigned long long longint unsigned

sc_uint<nr> bit[nr-1:0]

sc_biguint<nr> bit[nr-1:0]

 Signed Versions

signed char byte, bit signed[7:0]

 signed char* byte[], bit signed[7:0][]

signed char[size] byte[size], bit signed[7:0]size

 SystemC/C++ Type SystemVerilog Type

19-183

Using SystemC

Usage Examples

This section provides examples to use the pack and unpack
operators and functions.

Using the Pack Operator

You can use the pack operator << to put data into the byte array. You
can also use this operator for the data types listed in the above
section. The following example illustrates how to use pack operator
using an int, std::string, and a sc_bv variable.

Example 19-10 Packing Using Pack Operator

// variable declaration for variables supposed to be packed
 int my_int = 42;
 std::string my_str = "This is a string";
 sc_bv<9> my_sc_bv = 127;

 // Object of class tli_pack_data
 tli_pack_data pack_ba;

 // The pack can be done for these 3 variables in one
 // statement or in multiple pack-stmts.

 // First possibility, pack is done in one stmt
 pack_ba << my_int << my_string << my_sc_bv;

 // Second possibility, pack is done with 3 stmts
 pack_ba << my_int;
 pack_ba << my_string;
 pack_ba << my_sc_bv;

19-184

Using SystemC

Using Unpack Operator

The unpack operator >> is used to unpack the content or value into
a variable. The variable into which the information is unpacked
should be compatible with the variable which was used to pack. The
following example illustrates how to use unpack operator using an
int, std::string, and a sc_bv variable.

Example 19-11 Unpacking Using the Unpack Operator

 int my_int;
 std::string my_str;
 sc_bv<9> my_sc_bv;
 // Object pack_ba has the packed data and the order
 // the data is packed
 // is the same as in the example above.

 // The unpack can be done for these 3 variables in
 // one statement or in
 // multiple unpack-stmts.

 // First possibility, unpack is done in one stmt
 pack_ba >> my_int >> my_string >> my_sc_bv;

 // Second possibility, unpack is done with 3 stmts
 pack_ba >> my_int;
 pack_ba >> my_string;
 pack_ba >> my_sc_bv;

Using Pack and Unpack Functions

The tli_pack_data class in the tli_packunpack.h file
provides:

19-185

Using SystemC

• Single pack() function to be used for 1-dim arrays (fixed and/or
dynamic). Following is the syntax:

template <class T> tli_pack_data& pack(const T& val,
unsigned int nrOfElems= 0)

• Two unpack() functions (one for fixed size arrays and one for
dynamic arrays (pointers)), as shown below:

 template <class T> tli_pack_data& unpackArray(T& val,
 bool isCharArray=false)

template <class T> tli_pack_data& unpackDynArray(T& val,
bool isCharArray=false)

Note:
The pack()and unpack()functions support only arrays of string
types. They do not support const char*, char*, or
std::string.

Arrays (fixed or dynamic) are packed using the pack()function. In
case of a dynamic array, you should provide the number of array
elements as second argument to this function.

If the number of array elements to be packed is given in the pack
routine for a fixed size array, then only the first given number
elements of the array are packed.

For unpacking an array with fixed size, you must use the
unpackArray() function.

You can use the unpackDynArray() function for unpacking an
array with dynamic size (pointer), if the array is not allocated. This
method allocates appropriate memory, even if you have allocated
memory before calling the unpackDynArray() function.

19-186

Using SystemC

Use the unpackArray()function for unpacking an array with
dynamic size, if the array is allocated before calling an unpack
routine. The unpackDynArray()function always allocates
memory. The following example with arrays of type int illustrates
this scenario:

Example 19-12 Using Pack and Unpack Functions

 // variable decl. and init. used for pack
 int my_arr[3] = {2,3,4};
 int* my_ptr = new int[3];
 my_ptr[0] = 6; my_ptr[1] = 7; my_ptr[2] = 8;

 // variable decl. used for unpack
 int my_t_arr[3];
 int* my_t_ptr_null = 0;
 int* my_t_ptr_all = new int[3];

 tli_pack_data pack_ba;
 // PACK the different int variables
 pack_ba.pack(my_arr);
 pack_ba.pack(my_ptr, 3);
 pack_ba.pack(my_arr);
 pack_ba.pack(my_ptr, 3);

 // UNPACK
 // to unpack into "int[3]" the following method has
 // to be used
 pack_ba.unpackArray(my_t_arr);
 // to unpack into "the NULL-pointer of int*" the following
 // method has to be used.
 pack_ba.unpackDynArray(my_t_ptr_null);
 // to unpack into "allocated int* pointer" the method
 // "unpackArray" should be used
 pack_ba.unpackArray(my_t_ptr_all);
 // Calling "unpackDynArray" will allocate new memory,
 // and the address of my_t_ptr_all will not be the same
 // after the call of unpackDynArray.
 pack_ba.unpackDynArray(my_t_ptr_all);

19-187

Using SystemC

Using Code Generator

Exchanging user-defined class or struct objects between VMM and
SystemC/C++ using byte-packing requires user interaction and
coding. You can use the code generator to automatically create
SystemVerilog (SV) class definition corresponding to a SystemC/
C++ class and functions to pack or unpack the class members.

The code generator automatically creates source code for:

• The SV class definition that correspond to the C++ class definition.

• The C++ tli_pack or tli_unpack functions for all members
of the class.

19-188

Using SystemC

Naming Convention

The following naming conventions are used for the following sections
of this chapter:

Input Files

The code generator requires the following two input files to create
source code automatically:

• TLI file

• C source file containing the struct or class

TLI File

The TLI file defines the name of the class. It provides instructions to
generate the corresponding SV/VMM class and the pack or unpack
routines. This TLI file is used to create adaptor code. The adaptor

Table 0-1. Naming Conventions

Name Description

C side Refers to C domain which can be C, C++, or SystemC
application.

SV side Refers to the SystemVerilog, whereby the application is
expected to use VMM.

Class Refers to a user-defined C++ class or C struct on the C side. On
the SV side, it refers to a SV class.

Complex Data types Complex data types are the types which require additional
arguments in the pack/unpack routines. For example, enum,
length of a dynamic array. These types are not supported in the
provided pack/unpack routines, such as structs and multi
dimensional arrays. These data types require manual corrections
or modifications in the generated code.

Simple Data Types Simple data types are the non-pointer built-in data types, such
as, std::string, std::vector and fixed-size arrays.

19-189

Using SystemC

code for the specified module or class is generated using the
keyword adaptor followed by class_name. The syntax is as
follows:

 adaptor <class_name>

You can modify or extend the above syntax as follows:

• The class name is specified with the class keyword

• The target, for which code is created, is specified with the keyword
create. Target can be one of the following:

- adaptor

- VMM

- packunpack

The adaptor code generation is invoked with create adaptor
statement after the class_name is specified with class
class_name. Following is an example for creating adaptor code:

 class <class_name>
 create adaptor

The VMM class and the vmm_data_member defines are created for
the members found in the class specified with the class keyword
using create VMM. The pack and unpack functions for the
members of the class specified with the class keyword are created

19-190

Using SystemC

using create packunpack.Therefore, VMM class and pack and
unpack code generation is invoked if the TLI file contains the
following commands:

 class <class_name>
 create VMM
 create packunpack

Note:
Only the parts of code which are specified with the create
keyword are generated. For example, for the following TLI file,
only the VMM class is created:

 class <class_name>
 create VMM

C source file containing the struct or class

The provided C, C++, or SystemC source file contains the class
definition.

Output Files

Generated SV class

The SV VMM class declaration together with vmm_data_member
defines are created in the tli_vmm_class_name file. This file
contains:

• VMM class member declaration

• VMM vmm_data_member defines

This generated file should be included in the SV file which will pack
or unpack the class members.

19-191

Using SystemC

Generated C files

Two files are generated for the C pack or unpack functions: A header
file with pack or unpack function definition and another with the
function bodies.

• The following are the names of these two functions:

tli_conv2_pack_class_name

tli_conv2_unpack_class_name

• The following are the signatures of these two functions:

- The first argument is an object of tli_pack_data.

- The second argument is the class (with the members to be
packed or unpacked).

• The following are the names of the generated files:

tli_packunpack_class_name.h

tli_packunpack_class_name.cpp

The generated header file should be included in the file in which the
conversion (pack/unpack) happens.

Supported Data types for Automatic Code Generation

• bool, char, signed char, short, int, long, long long, sc_int,
sc_big_int

• unsigned (char, short, int, long, long long), sc_uint, sc_biguint

• std::string, char*

19-192

Using SystemC

• sc_logic

• sc_bv, sc_lv

• Array types: std::vector of types listed above and 1-dim fixed-size
arrays of types listed above

Note:
- The const char* data type is not supported. You cannot

unpack a variable of this data type into the same data type.

- Pointer of C scalar types are seen as dynamic arrays, and
mapped to SV open array data types. The byte packing on the
C side requires the size of the dynamic arrays. The size cannot
be automatically detected, so the code generated is put into
comment. C data types, which are not based directly on scalar
types, are mapped to a chandle data type. A chandle cannot
be packed/unpacked by VMM, so this code is generated in
comment.

Correcting the Generated Files

You must manually modify or correct the generated files for member
variables that contain complex data types.

The generated code is put into comments marked with TODO (see
“Usage Example for Code Generator”) for all the portions of the code
that require manual corrections or modifications. You must manually
correct or modify the code of all complex data types.

19-193

Using SystemC

Compile Flow

Perform the following steps to compile:

1. Generate the VMM class and the C pack/unpack routines. This
step does not compile the C sources. The following syscan
command generates the VMM-class declaration (with the
vmm_data_member defines) and the pack and unpack functions.

syscan -tli tli_input_file class_header.h

Where, tli_input_file specifies the class_name (followed
by the class keyword) and whether the VMM and/or class pack/
unpack functions have to be created (create keyword). The file
class_header.h contains the class definition of the class to be
packed or unpacked.

2. Compile the generated pack and unpack functions and the
source file containing the class to be packed or unpacked, after
manually correcting the generated files (SV and C) which contains
complex data types. This is done with the following syscan call:

syscan -tlm2 class_source.cpp
tli_packunpack_class_name.cpp

3. Generate interface for the class which will pack or unpack the
class. Include the include statement of the generated header file
tli_packunpack_class_name.h in the test_class.h file,
as shown below:

syscan -tlm2 -debug_all
test_class.cpp:test_class_name

Other syscan calls for files required for building
and running the simulation.

19-194

Using SystemC

4. Compile the provided package with the tli_upload or
tli_download tasks, as given below:

vlogan -sverilog ${VCS_HOME}/etc/systemc/tlm/
tli/tli_packunpack.sv

5. The SV file test.v contains a module which packs or unpacks
the data on the SV side. The test.sv file includes the generated
tli_vmm_class_name VMM class file. Analyze the generated
tli_vmm_class_name VMM class file with vlogan, as given
below:

vlogan -sverilog -ntb_opts rvm test.sv

Analyze other SV files required for simulation

6. Create simulation with the vcs command, a given below:

vcs -sysc -debug_all top -timescale=1ns/1ps -o simv1

Usage Example for Code Generator

The test case in this example consists of a Verilog top module called
top, and a SystemC module BusModel. The struct used for byte
packing is called MemAccess. The file memaccess.h contains the
user-defined struct MemAccess, and the TLI file memaccess.tli
contains the create statements. The TLI file contains the following
commands:

class MemAccess
create VMM
create packunpack

19-195

Using SystemC

The memaccess.h file contains the following:

#ifndef MEMACCESS_H
#define MEMACCESS_H
struct MemAccess {
 unsigned int adr; // address
 bool RW; // true=read, false=write
 unsigned char* data; // data[len] to be read or written
 int len; // number of bytes
};
#endif

Code Generation

The struct contains a dynamic array, data. You must manually
modify the generated code, if you want to pack this struct member.

Invoke the code generator with the syscan command:

syscan -tli memaccess.tli memaccess.h

The following files are generated:

• VMM-SV file: tli_vmm_MemAccess.sv

• C files: tli_packunpack_MemAccess.h,
 tli_packunpack_MemAccess.cpp

19-196

Using SystemC

The following is the generated tli_vmm_MemAccess.sv VMM file:

 // VMM class for C++ class MemAccess
`include "vmm.sv"
class MemAccess extends vmm_data;
 int unsigned adr;
 bit RW;
 // TODO: handled as dynamic array
 // TODO: byte unsigned data[];
 int len;

 `vmm_data_member_begin(MemAccess)
 `vmm_data_member_scalar(adr, DO_ALL)
 `vmm_data_member_scalar(RW, DO_ALL)
 //TODO: handled as dynamic array
 //TODO: `vmm_data_member_scalar_da(data, DO_ALL)
 `vmm_data_member_scalar(len, DO_ALL)
 `vmm_data_member_end(MemAccess)
endclass:MemAccess

The following is the generated C header file
tli_packunpack_MemAccess.h:

#ifndef TLI_PACKUNPACK_MemAccess_H
#define TLI_PACKUNPACK_MemAccess_H
#include "tli_packunpack.h"
#include "memaccess.h"

void tli_conv2_pack_MemAccess(tli_pack_data& P, const
MemAccess& MemAccess_obj);
void tli_conv2_unpack_MemAccess(tli_pack_data& P,
MemAccess& MemAccess_obj);

#endif

19-197

Using SystemC

The following is the generated C source file,
tli_packunpack_MemAccess.cpp, with the two function bodies:

#include "tli_packunpack.h"
#include "memaccess.h"

// pack/unpack routines for public members of class MemAccess
void tli_conv2_pack_MemAccess(tli_pack_data& P, const
MemAccess& MemAccess_obj)
{
 P << MemAccess_obj.adr;
 P << MemAccess_obj.RW;
 // TODO: handled as dynamic array, length is missing
 // TODO: P.pack(MemAccess_obj.data, data_length());
 P << MemAccess_obj.len;
}
void tli_conv2_unpack_MemAccess(tli_pack_data& P,
MemAccess& MemAccess_obj)
{
 P >> MemAccess_obj.adr;
 P >> MemAccess_obj.RW;
 // TODO: handled as dynamic array, corresponding pack
routine must be fixed before
 // TODO: P.unpackDynArray(MemAccess_obj.data, true);
 P >> MemAccess_obj.len;
}

Manual Modifications

The input struct contains a member with a complex data type, so the
generated code must be modified manually. The member data is a
dynamic array, therefore the assumption of the code generator is
correct.

The generated code for this data member contains to be
uncommented in the VMM class declaration and in the C pack and
unpack functions. The second argument of the byte pack call of
complex data must get the correct variable name containing the size
of the data.

19-198

Using SystemC

After manual corrections, the tli_vmm_MemAccess.sv file
appears, as shown below:

 // VMM class for C++ class MemAccess
`include "vmm.sv"
class MemAccess extends vmm_data;
 int unsigned adr;
 bit RW;
 byte unsigned data[];
 int len;

 `vmm_data_member_begin(MemAccess)
 `vmm_data_member_scalar(adr, DO_ALL)
 `vmm_data_member_scalar(RW, DO_ALL)
 `vmm_data_member_scalar_da(data, DO_ALL)
 `vmm_data_member_scalar(len, DO_ALL)
 `vmm_data_member_end(MemAccess)
endclass:MemAccess

After manual corrections, the tli_packunpack_MemAccess.cpp
file appears, as shown below:

#include "tli_packunpack.h"
#include "memaccess.h"

// pack/unpack routines for public members of class MemAccess
void tli_conv2_pack_MemAccess(tli_pack_data& P, const
MemAccess& MemAccess_obj)
{
 P << MemAccess_obj.adr;
 P << MemAccess_obj.RW;
 P.pack(MemAccess_obj.data, MemAccess_obj.len);
 P << MemAccess_obj.len;
}
void tli_conv2_unpack_MemAccess(tli_pack_data& P,

19-199

Using SystemC

MemAccess& MemAccess_obj)
{
 P >> MemAccess_obj.adr;
 P >> MemAccess_obj.RW;
 P.unpackDynArray(MemAccess_obj.data, true);
 P >> MemAccess_obj.len;
}

You must compile the generated and corrected C file
tli_packunpack_MemAccess.cpp, using the syscan
command:

syscan -tlm2 tli_packunpack_MemAccess.cpp

SystemC Module Using Byte Packing

The SystemC module, which is instantiated, requires two byte pack
includes, tli_packunpack.h and
tli_packunpack_MemAccess.h.

19-200

Using SystemC

The following is the BusModel.h header file:

#ifndef BUS_MODEL_H
#define BUS_MODEL_H

#include <systemc.h>
#include <tli_packunpack.h>
#include "memaccess.h"
#include "tli_packunpack_MemAccess.h"

SC_MODULE(BusModel)
{
 sc_in<bool> clock;
 SC_CTOR(BusModel)
 : clock("clock")
 {
 m_mem = new unsigned char[m_size];
 for (int n=0; n<m_size; n++)
 m_mem[n] = n % 100;

 SC_THREAD(do_transactions);
 sensitive_pos << clock;
 }

 void do_transactions();
 private:
 static const int m_size;
 unsigned char* m_mem;
};
#endif

The BusModel method do_transaction calls for byte packing the
function tli_conv2_pack_MemAccess(pba, trans) and for
unpacking tli_conv2_unpack_MemAccess(pba, trans),

19-201

Using SystemC

where pba is a tli_pack_data object and trans is a
MemAccess instantiation. With the tli_pack_data upload and
download functions, the byte buffer is loaded or sent from or to SV.

#include <BusModel.h>

void BusModel::do_transactions()
{
 tli_pack_data pba;
 MemAccess trans;

 while(1) {
 // get next transaction
 wait();
 wait(5,SC_NS);
 pba.download(0);
 tli_conv2_unpack_MemAccess(pba, trans);

 // execute transaction
 for (int n=0; (n<trans.len) && ((trans.adr+n)<m_size);
n++) {
 if (trans.RW) {
 trans.data[n] = m_mem[trans.adr + n];
 } else {
 m_mem[trans.adr + n] = trans.data[n];
 }
 }

 wait(10,SC_NS);
 pba.reset();
 tli_conv2_pack_MemAccess(pba, trans);
 pba.upload(0);
 }
}
const int BusModel::m_size = 1000;

With the following syscan command, the interface file is generated
and the BusModel source code is compiled.

syscan -tlm2 -debug_all BusModel.cpp:BusModel

19-202

Using SystemC

The provided SV package with the tli_upload and
tli_download tasks is analyzed with the following command:

vlogan -sverilog ${VCS_HOME}/etc/systemc/tlm/tli/
tli_packunpack.sv

Verilog Module Using Byte Packing

The Verilog module top is in file top.v, and it includes the
generated VMM file tli_vmm_MemAccess.sv. It imports the
tli_packunpack package using the tli_upload and
tli_download tasks. The Verilog module top instantiates the
SystemC module BusModel, and data exchange happens with byte
packing/unpacking of MemAccess class.

19-203

Using SystemC

`include "tli_vmm_MemAccess.sv"
import tli_packunpack::*;

module top;
 reg clock;
 BusModel ref_model(clock);
 MemAccess trans;
 pB bytes;
 chandle ID;
 int n;
 initial clock=0;
 always #50 clock=!clock;
 initial begin
 ID = null;
 trans = new;

 @(posedge clock);
 trans.adr = 98;
 trans.RW = 1'b1;
 trans.len = 5;
 trans.data = new[trans.len];
 trans.byte_pack(bytes);
 tli_upload(bytes, ID);

 #20 ;
 tli_download(bytes, null);
 trans.byte_unpack(bytes);
 for (n=0; n<trans.len; n=n+1)
 $display("trans.data[%3d]=%d", n, trans.data[n]);
 #100 $finish;
 end
endmodule // top

The file top.v is analyzed using the following command:

 vlogan -sverilog -ntb_opts rvm top.v

19-204

Using SystemC

Building simulation

The simulation simv is then build using the following vcs command:

 vcs -sysc -debug_all top -timescale=1ns/1ps

Using Direct Program Interface Based Communication

This section describes how to use Direct Programming Interface
(DPI) based communication to achieve data transfer speedups
between Verilog and SystemC.

Use the -sysc=dpi_if option to select the required interface while
generating interface code for a SystemC module to be instantiated
in Verilog, or for a Verilog module to be instantiated in SystemC.

Note:
You can use the -sysc=nodpi_if option, which is the default
behavior, to disable the DPI-based interface.

Example
• The following command creates a wrapper for a SystemC module

to be instantiated in verilog:

% syscan -sysc=2.2 -sysc=dpi_if my_sysc.cpp:my_sysc

• The following command creates a wrapper for a Verilog module
to be instantiated in SystemC:

% vlogan -sysc=2.2 -sysc=dpi_if my_vlog.v -sc_model \
my_vlog

19-205

Using SystemC

You can use both PLI- and DPI-based interfaces within the same
simulator. That is, you can use one SystemC model using the DPI-
based interface and another SystemC model using the PLI-based
interface, within the same simulator.

Limitations of Using DPI-based Communication
Between Verilog and SystemC

• The DPI-based interface does not work for models containing
inout ports. This is detected automatically, and a warning
message is generated. The PLI-based interface is used instead.

• You can use the DPI-based interface only with Verilog. It is not
possible to generate a DPI-based interface from a VHDL module.

• You cannot use the DPI-based interface while generating a VHDL
interface of a SystemC module. For example, if you use the
following command, a warning is generated, and the normal
interface code (in this case, to vhpi) is created.

% syscan -sysc=2.2 -sysc=dpi_if -vhdl my_sysc.cpp:my_sysc

Improving VCS-SystemC Compilation Speed Using
Precompiled C++ Headers

This section describes how to use precompiled C++ headers in the
VCS-SystemC compile flow to improve compilation speed.

This section contains the following topics:

• “Introduction to Precompiled Header Files” on page 206

19-206

Using SystemC

• “Using Precompiled Header Files” on page 206

• “Example to Use the Precompiled Header Files” on page 208

• “Invoking the Creation of Precompiled Header Files” on page 209

• “Limitations” on page 210

Introduction to Precompiled Header Files

The precompiled header files systemc.h and systemc must be
generated before you use them. The g++ compiler first searches for
a precompiled header file in the specified include paths. If found, the
g++ compiler uses the matching precompiled header file. If not, it
parses the specified header file (ASCII version).

A non-match can be caused by the use of different compile options,
such as -m32 and -m32 –fPIC, while creating the precompiled
header file and the g++ call.

Using Precompiled Header Files

Use the following syscan option to create precompiled header files
(systemc.h and systemc) and compile the given SystemC files
with an additional search path to the location of the precompiled
header file:

% syscan -prec[=<target_directory>]<file1>[<file2>...]

Where,

• <target_directory> is the user-specified path. If specified, this
path is the first path searched for all includes.

19-207

Using SystemC

• <file1>, <file2> are the SystemC source files.

Note:
The above command creates the precompiled header files
systemc.h and systemc, if they do not exist. Otherwise, it uses
the precompiled header files which are already present.

If you mention target_directory, then the g++ call first searches
this directory for precompiled header files.This ensures that you get
the best performance improvement, and that the precompiled
header files are used if they exist.

If you do not specify a directory, then g++ creates a precompiled
header file in each of the following two directories:

./csrc/sysc/prec/$hostname/<SC_version>/<GCC_version>/
<VCS_version>/systemc_.h.gch/

./csrc/sysc/prec/$hostname/<SC_version>/<GCC_version>/
<VCS_version>/systemc_.gch/

The file name is based on the compile-time options (for example,
m32_fPIC for -m32 –fPIC).

If -Mdir is specified as an argument to syscan –prec, then the
directory structure appears as follows:

<mdir_path>/prec/$hostname/<SC_version>/<GCC_version>/
<VCS_version_id>/systemc_.h.gch/

and

<mdir_path>/prec/$hostname/<SC_version>/<GCC_version>/
<VCS_version_id>/systemc_.gch/

19-208

Using SystemC

If you specify a directory name with the -prec option, then the
precompiled header files are generated in the subdirectory prec/
systemc_.h.gch/ and in prec/systemc_.gch/ of the
specified directory. If you use -Mdir with -prec with a path, then
the -Mdir option is ignored for the location of the precompiled
headers.

The generation of the precompiled header files is done using make
files, so that in case of no change, a precompiled header file is not
generated again.

Example to Use the Precompiled Header Files

The following example shows how to use precompiled header files.
This example assumes that the Verilog module my_top instantiates
a SystemC module called my_sc_top.

Example
% syscan –prec –tlm2 my_sc_top.cpp:my_sc_top

This command creates the precompiled header files:

% syscan –prec my_sc_module.cpp

These commands use the precompiled header files created by the
above command:

% vlogan –sverilog my_top.sv
% vcs -sysc my_top

19-209

Using SystemC

Invoking the Creation of Precompiled Header Files

If any of the following changes takes place, a precompiled header file
must be created with the changes to make use of the precompiled
header file in a compile call. The syscan –prec call takes care of
this, and creates appropriate precompiled header files.

• gcc version is different from the one used for the creation of the
precompiled header files systemc.h and/or systemc

• Compile flags are not the same

• SystemC-related defines passed with -D as argument(s) of the
-cflags option are not the same

• $VCS_HOME (version) changes

• SystemC version changes

• Host changes (different system include files)

If the -prec option is called with a user-specified path, then a sanity
check is done if precompiled header files are already generated at
the specified location. If any of the above-mentioned changes takes
place, an appropriate message is generated, and the creation and
usage of precompiled header files is skipped. This occurs for VCS,
gcc, SystemC version, and host name changes.

If the changes are only in compile flags, then the precompiled header
files are generated if they do not exist.

19-210

Using SystemC

Limitations

Limitations of GNU Precompiled Header Files

The following are the limitations of the GNU precompiled header
files:

• The option used for creating the precompiled header file and the
actual must be the same. If not, the precompiled header file is
skipped.

• Only one precompiled header file can be used in one compilation
step.

• Any C token before a precompiled header file is skipped.

• From gcc 4.5.2 version: You cannot include a precompiled
header from inside another header. That means the “systemc.h”
include statement should be the on the top of the source file (.cpp),
only then the precompiled header files are used. Otherwise
precompiled header files are skipped. Older gcc versions were
not very stringent of the position of the include directive.

• The g++ used for creating the precompiled header file and the
actual g++ must be the same compiler binary.

• Any macro defined before the precompiled header file must be
the same when creating and using it.

Limitations of syscan -prec

The following are the limitations of the syscan -prec call:

• gcc supports precompiled header files from version 4.2.2.

19-211

Using SystemC

• The include statement of a SystemC header file must be on top
of a file. Any C/C++ token used before the SystemC header file
skips the usage of the precompiled header file and parses the
ASCII source file.

Note:
A C/C++ token is any valid C/C++ source code like a typedef
or variable declaration. Preprocessor directives (for example,
#define, #include) are not C/C++ tokens.

• Two precompiled header files are created, one for systemc.h
and one for systemc.

• The size of a precompiled header file is at least 2.5 MB. The size
depends on the options passed in a sysc –prec call.

• All syscan calls must use the -prec option to make use of
precompiled header files.

• A change in compile flags and/or SystemC related defines in a
syscan -prec call results in creation of precompiled header
files with these settings.

• If there are SystemC-related defines in front of a SystemC header
file, you must create the precompiled SystemC header file with
the same defines (names and values) using the -D option (as part
of –cflags in a syscan –prec command).

The defines in front of a SystemC header file must match the set
of defines used in the precompiled header file creation step. If no
matching precompiled file is found, the ASCII version of the
SystemC header file is used.

19-212

Using SystemC

Limitations of using -prec with path

If there are already precompiled header files stored in the path-
location, a sanity check is done with respect to changes to
hostname, SystemC version, gcc version, and VCS
version (time stamp).

If one of these does not match, a warning message is generated,
and the creation (and usage) of the precompiled header files is
skipped. The result is that the precompiled header files are not used
in the compile step. Putting the host name as part of the path
prevents skipping (and usage) of precompiled header files in case of
any host name changes. All the rest must match.

Limitations of Sharing Precompiled Header Files

• You must call the -prec option, along with an absolute path, to
share precompiled header files. You should have read (and
maybe write) permissions.

If there is a change with respect to name of the host, then VCS,
gcc, and SystemC version sharing is not possible. In this case the
sanity check creates a warning, and the usage of precompiled
header files is skipped.

The most likely thing to change is the name of the host. If the host
name is part of the path (like /some_dir/${hostname}/), then
the precompiled header files can be used. The downside is that
the precompiled header files are created in this specific directory
with the information used by VCS, SystemC, and gcc version.

19-213

Using SystemC

• You must call the syscan executable with the -prec option with
the same path. Any change in the compile flags (passed with -
cflags) invokes the creation of precompiled header files, if they
do not exist for the changed combination of compile flags.

Increasing Stack and Stack Guard Size

SystemC assigns an individual call stack for each SC thread
(SC_THREAD, SC_CTHREAD, and spawned function or method).
Since this stack is limited in size, you need to choose an appropriate
stack size.

If an SC thread uses more stack space than available (for example,
for large arrays that are local variables or due to an infinite recursion)
then memory corruption occurs, or the simulation may crash with an
SEGV (segmentation violation) error.

The memory allocated for each SC thread is divided into two areas,
stack and stack guard (or redzone). Stack guard has no access
rights. If an SC thread overruns its stack (for example, due to an
endless recursion) then it reaches the stack guard which triggers an
SEGV error. The default size of stack and stack guard is 60 KB and
4 KB, respectively.

One way to increase the size is calling the sc_stack_size()
method, as described in the SystemC LRM. VCS provides an
additional way to modify the stack size and stack guard size using
runtime options described in the following sections. This allows you
to extend the stack size without the need to recompile the simulation.

19-214

Using SystemC

Increasing the Stack Size

You can use the following VCS runtime option to increase the stack
size of all SC threads:

-sysc=stacksize:[0...9]+[K|k|M|m]

The signed_number passed with this option must be in the range
between 64 KB and 10 MB, else VCS generates a warning message.
If the size is less than 64 KB, then this option has no effect on the
stack size, and the default stack size (60 KB) is used.

If you explicitly specify a size of 10 MB or less using the
sc_stack_size() method in the SystemC source code, then this
option can only increase this limit by using the larger of
sc_stack_size() and -sysc=stacksize.

If you specify more than 10 MB with sc_stack_size(), then this
option does not override this setting. The decision on which size to
use is done individually for each SC thread.

Example
simv -sysc=stacksize:1024k

This runtime option increases the stack size of all SC_THREADs,
SC_CTHREADs, and spawned functions to at least 1 MB.

Increasing the Stack Guard Size

You can use the following VCS runtime option to increase the stack
guard size of all SC threads:

-sysc=stackguardsize:[0...9]+[K|k|M|m]

19-215

Using SystemC

If the size is less than 4 KB, then this option has no effect on the
stack guard size, and the default size of 4 KB is used. If the
signed_number is greater than 1 MB, then the stack guard is
increased accordingly, but a warning is generated.

Example
simv -sysc=stackguardsize:100k

This runtime option increases the stack guard size to 100 KB.

Guidelines to Diagnose Stack Overrun

Following are the recommended guidelines to use the above
mentioned runtime options to diagnose a stack overrun:

• If you suspect that the simulation crashes, because one or more
SC threads overrun their stacks, then first try to increase the stack
to a large value, for example to 100 MB, as shown below:

 % simv -sysc=stacksize:100M

• If the crash goes away, then there is a chance that a stack overrun
has occurred before. If so, then leave the stack at its previous size
(which is too small), but increase the stack guard size to a large
value (for example, 200 MB).

This increases the chance for the simulation to abort with an
SEGV on the first time, when a stack overrun occurs. Compile all
SystemC source code with debug information, and start the
simulation from a debugger such as gdb or from DVE/CBug, as
shown below:

 syscan -cflags -g file1.cpp file2.cpp ...
 ...
 gdb simv

19-216

Using SystemC

 (gdb) run -sysc=stackguardsize:200M
 ... SEGV occurred in file1.cpp line 123 ...

Identify the SC thread that used more memory and increase its
stack size by calling sc_stack_size() in the constructor. For
more information on sc_stack_size(), see the SystemC LRM.

Debugging SystemC Runtime Errors

You can debug SystemC runtime errors effectively during
elaboration time and runtime. Besides, VCS also has a mechanism
to clearly report runtime crashes caused by certain problems with
quick-threads during runtime.The following two sections provide you
more details:

• Debugging SystemC Kernel Errors

• Diagnosing Quickthread Issues

Debugging SystemC Kernel Errors

VCS now provides an effective mechanism to debug your design
issues during elaboration and runtime. Whenever a SystemC Kernel
error occurs, error messages were not really helpful to enable you
identify which part of your source code was causing the error.
Debugging such errors was way too tedious.

Now, VCS provides a new function cbug_stop_here() that is
called whenever a SystemC kernel error occurs. You can make use
of this function to place a breakpoint in this function and see the
stack trace to know the source code that is causing the error.

19-217

Using SystemC

The next section describes how you can troubleshoot your
elaboration and runtime issues using the newly introduced function:

• Troubleshooting Your Elaboration Errors

• Troubleshooting Your Runtime Errors

Troubleshooting Your Elaboration Errors

In SystemC on top designs, during elaboration, all SystemC
constructors, end_of_elaboration() methods and other statements
(before sc_start) in sc_main function are executed. It is possible that
something goes wrong in these parts of source code.

Until now, whenever there is a SystemC kernel error during
elaboration there was no executable to debug where this error is
coming from (in the SystemC source code), hence it was difficult to
know which part of SystemC code is causing these elaboration
errors.

Hereafter, VCS generates an executable file simv.elab.error. This
can be used for debugging the elaboration error with GDB. This way
you can know which part of your source code is causing the
elaboration error.

Example

Let us consider a scenario where an SC-top design calls wait() within
the sc_main() function. This is not allowed by the SystemC language
and an SC kernel error will occur. This in turn breaks the entire
elaboration and results in an error SC-VCS-SYSC-ELAB. This is
illustrated in the following example.

% vlogan dut.v –sc_model dut

19-218

Using SystemC

% syscan main.cpp –cflags –g
% vcs –sysc sc_main
…
…
…
Error: (E519) wait() is only allowed in SC_THREADs and
SC_CTHREADs:
 in SC_METHODs use next_trigger() instead
In file: sc_wait.cpp:224

Error-[SC-VCS-SYSC-ELAB] SystemC elaboration error
 The design could not be fully elaborated due to an early
termination of the SystemC part of the design.
 Please read the hints in file simv.elab.error.README or
review the details in the SystemC chapter of the VCS
documentation.
%

No simv has been generated because the elaboration failed. But you
will find an executable file simv.elab.error that can be used for
debugging and a test file simv.README is also generated which
gives hints on how to debug the failure.

Now, you must debug the design to find the source code line that
calls wait(). To debug the issue, you must perform the following
steps:

1. Rename simv.elab.error to simv

mv simv.elab.error simv
2. Set the environment variable SYSTEMC_ELAB_ONLY to 1

 setenv SYSTEMC_ELAB_ONLY 1
3. Start simv from gdb (neither UCLI, CBug nor DVE can be used

because the simulation is not yet fully elaborated).

 <VCS_HOME>/<arch>/bin/cbug-gdb-64/bin/gdb --args simv

4. Place a breakpoint in function cbug_stop_here() and run the
simulation

19-219

Using SystemC

 (gdb) break cbug_stop_here
(gdb) run

Starting program: …/simv
[Thread debugging using libthread_db enabled]

Breakpoint 1, cbug_stop_here (reason=0x829beb0 "Throw:
sc_report is about to be thrown",
 details=0x829c460 "wait() is only allowed in SC_THREADs
and SC_CTHREADs") at bf_cbug_helpers.c:23

23 no++;
5. see the stack to see which part of SystemC code caused this

elaboration issue.

(gdb) backtrace
#0 cbug_stop_here
 (reason=0x829beb0 "Throw: sc_report is about to be
thrown",
 details=0x829c460 "wait() is only allowed in SC_THREADs
and
 SC_CTHREADs")
 at bf_cbug_helpers.c:23
#1 0x081ff4fc in
sc_core::sc_report_handler::default_handler(…)
#2 0x08200825 in sc_core::sc_report_handler::report(…)
#3 0x081f8f5c in sc_core::wait(…)
#4 0x080e700b in sc_core::wait (v=10,
tu=sc_core::SC_NS,simc=…)
#5 0x080e6bf2 in sc_main (…)at …/main.cpp:60
#6 0x0813ae9a in bf_main ()
#7 0x080e2905 in main ()

Notice that the execution stopped inside the function
cbug_stop_here and the stack trace reveals information useful for
debugging. In this example, frame #5 shows the erroneous
statement at main.cpp, line 60.

19-220

Using SystemC

Troubleshooting Your Runtime Errors

Whenever a SystemC kernel error occurs that will terminate the
simulation, it is difficult to know which part of the source is causing
this issue. Hereafter, you can use cbug_stop_here() function to
debug such issues.

You must stop the simulation in cbug_stop_here() and look at the
stack to find out which user source code statement is triggering the
error.

In UCLI flow, follow these steps:

• Start simv with –ucli –ucli2Proc

• Attach CBug

• Enter command ‘stop –in cbug_stop_here’

• Run simulation until the SC kernel error occurs and simulation
stops inside function cbug_stop_here

• Use the ‘stack’ command to find out which user statement
caused the error

• Advance the simulation with ‘run’ to get past this error in case
there are multiple errors.

For example:

% ./simv –ucli –ucli2Proc
ucli% cbug
CBug - Copyright Synopsys Inc 2003-2011
Please wait while CBug is loading symbolic information ...
... done. Thanks for being patient!
ucli% stop -in cbug_stop_here
1
ucli% run

19-221

Using SystemC

Stop point #1 @ 1000 PS;
CBug% stack
0: cbug_stop_here(
 reason="Throw:sc_reportisabouttobethrown",
 details="SC-MSG-ID") (bf_cbug_helpers.c, line 23)
1: sc_core::sc_report_handler::default_handler(…)
2: sc_core::sc_report_handler::report(…)
3: s_stim::action(this=0x96f2e98) (main.cpp, line 38)
4: $kernel::SystemC::process_activation() (<VCS_HOME>/etc/
cbug/kernel.txt,line 1)

Function cbug_stop_here() has two arguments. Argument
‘reason’ explains why the function is called, usually an error that will
terminate the simulation shortly. Argument ‘details’ is giving
additional information in some cases or may be empty. The callstack
provides more information and will reveal in most cases the
statement that triggered the error.

In DVE, follow these steps:

• Attach CBug

• Enter command ‘stop –in cbug_stop_here’ in the DVE
console

• Click the continue button until the SC kernel error occurs and
simulation stops inside function cbug_stop_here()

• Use the stack pane to locate and debug the user source code that
triggered the SC kernel error.

• Click continue to get past this error in case there are multiple
errors.

19-222

Using SystemC

Function cbug_stop_here()

Whenever a SystemC kernel error occurs that may terminate the
simulation, VCS calls the function cbug_stop_here(). The
function itself does nothing but is useful for debugging. It helps you
to find out from which user source code statement is triggering the
error.

Function cbug_stop_here() has two arguments. Argument
‘reason’ explain why the function is called, usually an error that will
terminate the simulation shortly. Argument ‘details’ is giving
additional information in some cases or may be empty.

The function is only available when SystemC is part of the
simulation. It can not be used, for example, for a simulation that has
just Verilog and DPI but no SystemC.

Function cbug_stop_here() will stop in the following situation:

• Argument reason=”P: sc_stop() called”:

The sc_stop() function is called, either from your SC source
code or the SC kernel. The simulation will end now. Depending
on the SystemC version and settings, it may stop instantly or finish
other SystemC and HDL processes also scheduled in the current
delta cycle.

• Argument reason=”Stop: SC_STOP in sc_report”:

An sc_report is being processed and now about to call the
SC_STOP action.

• Argument reason=”Interrupt: SC_INTERRUPT in
sc_report”:

19-223

Using SystemC

An sc_report is being processed and now calls the
SC_INTERRUPT action. The simulation may continue or end now,
depending on other actions from this sc_report.

• Argument reason=”Abort: SC_ABORT in sc_report”:

An sc_report is being processed and now calls the SC_ABORT
action. The simulation will end instantly.

• Argument reason=”Throw: sc_report is about to be
thrown”:

An sc_report is being processed and now throws an
sc_report object. The simulation will end soon in most cases,
however, it may also continue:

If there is a 'catch' statement in the surrounding user source
code, then it may take care of the sc_report and the simulation
will continue. But if the exception is not caught in your source
code, then the SC or VCS kernel will catch it and terminate the
simulation. If so, then cbug_stop_here() will be called again
with reason 'Error from SC kernel'.

• Argument reason=”Error from SC kernel: sc_report
was not caught and terminates simulation”:

An sc_report was thrown and not caught. The simulation will
end now. This is typically the case when SC_REPORT_ERROR was
called. Look in argument 'details' for the error message.

• Argument reason=”C++ exception was not caught and
terminates simulation”:

Some kind of C++ exception was thrown and not caught in user
code. The simulation will end now.

19-224

Using SystemC

If the function is reached multiple times during a simulation and you
want to stop only at a specific call, then you must use a local variable
‘no’ and a condition breakpoint. The variable is incremented with
each call.

There is a case statement inside the function with a case for each
reason. You can use it to set a breakpoint to a specific reason.

Note that the exact wording of the string inside ‘reason’ is subject to
change between the releases. The signature (the set of arguments)
may also change between or within a release.

Limitations

Debugging capabilities are very limited when the Virtualizer/
Innovator flow (-sysc=snps_vp) is used. Function
cbug_stop_here() still exists, but is called only in a few cases.
Most SystemC kernel errors do not call cbug_stop_here().

Diagnosing Quickthread Issues

VCS is now equipped with a better mechanism to report VCS
runtime crashes caused by certain problems with quickthreads used
during VCS runtime. You will get clear feedback as to what went
wrong and which thread is causing the crash thereby enabling you
to take specific action to circumvent the issue. For more information
on this feature, see Diagnosing Quickthread Issues in SystemC.

19-225

Using SystemC

Using HDL and SystemC Sync Loops

VcsSystemC enables you to simulate both HDL (Verilog,
SystemVerilog, VHDL) and SystemC together. A sync loop drives the
kernels of both HDL and SystemC parts and ensures that simulation
events stay aligned. There are two different sync-loops to select
from. They differ in simulation speed, accuracy of the alignment and
other aspects.

The two sync loops are:

• The coarse-grained sync loop (blocksync).

• The fine-grained sync loop (deltasync). This is default.

The Coarse-Grained Sync Loop (blocksync)

This sync loop aligns HDL and SystemC at a coarse but efficient
level. If there are multiple delta cycles on the SystemC side, then
some or all of those SystemC delta cycles are executed
consecutively before control is handed back to the HDL side.
Similarly, multiple Verilog/VHDL delta cycles may happen before the
next set of SystemC delta cycles will be started. This schema is
efficient in terms of simulation time but the interaction between HDL
and SystemC is difficult to predict.

This is done by specifying argument -sysc=blocksync during
elaboration, for example:

vcs -sysc ... -sysc=blocksync ...

19-226

Using SystemC

The Fine-Grained Sync Loop (deltasync)

If a fine-grained and easy-to-predict alignment between HDL and
SystemC is preferred, then use the fine-grained SC/HDL sync loop.

Run Time

The simulation speed may be affected by using the fine-grained sync
loop. The difference depends on the individual design, so there is no
simple rule-of-thump. However, there is a general tendency that
simulations will run slower when using the fine-grained sync loop.

Alignment of Delta Cycles

In the fine-grained SC/HDL sync loop, delta cycles of SystemC and
Verilog are aligned. If at a given simulation time there are both
SystemC and Verilog events present that span over multiple delta
cycles each, then execution of events is aligned as follows:

1. Handle SystemC and Verilog events:

- If SystemC events are present at current simulation time:

Execute one SystemC delta cycle;

- If Verilog events present at current simulation time:

Execute all Verilog events at the current simulation time until
there are only NBAs left;

2. Update all SystemC signals, execute all Verilog NBAs, and
exchange all value updates between SystemC and Verilog;

19-227

Using SystemC

The steps repeat until there are no more events at the current time,
then proceed to the next simulation time. In short, SystemC delta
cycles and Verilog NBAs are strictly aligned.

The order in which the step 1 operations are executed is not
specified. However, step 2 happens only after both step 1 operations
are done. The order should not matter because value updates are
only done after both sides have finished their delta cycle. If there are
no SystemC events in a specific delta cycle, then the SystemC event
operation in step 1 is skipped. If there are no Verilog events exist
then the Verilog event operation in step 1 is skipped.

Example Syntax

vlogan verilog_dut.v verilog_top.v

syscan -sysc=22 ./stimulus.cpp:stimulus ./
gen_clk.cpp:gen_clk -cflags "-g"

vcs top -sysc=22 -debug_all -cflags "-g"
simv -ucli -i dump.tcl

Restrictions

The fine-grained SC/HDL sync loop has few restrictions:

• SystemC 2.2 or above must be used: an error is printed if another
SystemC version is used.

• Pure SystemC mode (=no HDL modules) is not supported. An
error is printed when the fine-grained sync loop is used is this
situation.

19-228

Using SystemC

• The time resolution between SystemC and HDL must match. An
error is printed and the simulation is aborted during startup of simv
when this restriction is violated.

• SystemC inout ports are not supported in combination with the
fine-grained sync loop: no error message is printed and the
simulation may hang.

Restrictions That No Longer Apply

The VCS slave-mode ("vcs -e ...") was never available with the
default coarse sync loop. VCS slave-models are now available when
the fine-grained sync loop is used

Newsync is Now Default

The ‘newsync’ loop has been renamed as ‘deltasync’ loop and is
now default.

As this switch is default, you may see differences in your simulation
behavior. The ‘oldsync’ loop which was default in the previous
releases has been introduced as ‘blocksync’ loop to help you revert
to the old flow.To revert to the old flow, use –sysc=blocksync.

For more information on the advantages of deltasync loop and the
possible backward compatibility issues, refer to the migration helper
document.

19-229

Using SystemC

Controlling Simulation Run From sc_main

VCS supports multiple calls to sc_start() inside sc_main().
This allows you to control the simulation from sc_main () and
enables you to add more functionality in sc_main() after a call to
sc_start(). Sometimes you need to add functionality after a call
to sc_start when you know that a particular condition for end of
simulation is not met.

For SystemC-on-top and pure SystemC designs, you write the entry
point function sc_main() where the top-level SystemC modules
are instantiated. The simulation starts by calling sc_start() inside
sc_main(). When you call the sc_start() routine with a time
argument, the simulation runs until the specified time and returns to
sc_main(). This allows you to control the simulation by taking
appropriate actions at different simulation times. This functionality is
only available in the SystemC deltasync flow.

Note:
In previous releases, VCS started the simulation with a call to
sc_start () and kept running until the simulation terminated.
Therefore, control never came back to the sc_main() function.
To revert back to the old flow, use -sysc=nomulti_start.

This feature removes the following restrictions on coding style inside
sc_main() that were required for the save/restore feature:

• No need to use dynamic allocation for sc_objects inside
sc_main(). However, it is recommended to use dynamic
allocation to avoid stack overflow in the sc_main thread.

• Multiple sc_start() calls are supported and statements located
after sc_start() are executed.

19-230

Using SystemC

Note:
The function sc_main() is treated as a thread in VCS-SystemC
cosimulation.

The sc_main thread is run with the default stack size, which is
usually 10 MB. At times, the sc_main function may create several
SystemC objects and hence consume a huge amount of stack
space. So, the following three ways are provided to alter the stack
size of the sc_main thread.

• Use the runtime switch -sysc=stacksize:1024k to set the
stack size. This is the same switch used to set the stack size for
SC_THREADS. Since the sc_main thread is usually heavier
compared to SC_THREADS, VCS allocates 16 times to the value
specified with this switch.

• Use the environment variable setenv VCS_SYSC_STACKSIZE
1024k to set the stack size. This is just an alternative to the above
switch. Here also, VCS allocates 16 times to the specified value.
The runtime switch takes precedence over this environment
setting.

• Use the following API call to set the stack size:

sc_snps::sc_set_stack_size_sc_main(const char*
size_string)

You can call this API and specify the stack size as a string (for
example, 1024k). Call this routine before the sc_main()
function gets called. You can do this by placing this function call
in a static initializer outside the sc_main function. Note that the
header file systemc_user.h must be included since the
namespace sc_snps is declared in the header file.

19-231

Using SystemC

Example

static int tmp =
sc_snps::sc_set_stack_size_sc_main("1024K");

When you use any or all of the above methods to alter the stack size,
the final size is the maximum value of:

• The default size

• Size set using runtime switch or environment variable

• Size set using the API call

Since VCS executes sc_main within a thread, you should use
dynamic allocation for the sc_object created inside sc_main and
thus minimize the stack utilization.

Effect on end_of_simulation Callbacks

At the end of simulation, the SystemC kernel provides callbacks to a
user-defined function named end_of_simulation which can be
defined in any SC_MODULE. This is possible only if the entire
SystemC design is present when the simulation ends. SystemC
simulation is terminated in the following cases:

• sc_stop() is called

• $finish is called on the Verilog side

• sc_main function returns

Two of the above conditions can be detected before the design gets
cleaned up, but the last condition cannot be detected before the
design gets freed up. Once the sc_main returns, all sc_objects
that are statically allocated are deleted. Therefore, the SystemC

19-232

Using SystemC

kernel cannot issue end_of_simulation callbacks on these
deleted sc_objects. Therefore, you must add an sc_stop() call
at the end of the sc_main() function (before returning from it).
Example 19-13 shows a code snippet with multiple sc_start calls.

Example 19-13 Multiple sc_start Calls

 int sc_main(...)
 {
 ...
 sc_start(t); /* Execute till time t */
 ...
 sc_start(t1); /* Execute till time t1 */
 ...
 sc_stop(); /* Call end_of_simulation routines for

sc_modules */
 return 0;
 }

Compile the design as follows:

% vcs -sysc -lca -sysc=multi_start ...

UCLI Save Restore Support for SystemC-on-top and
Pure-SystemC

VCS provides the UCLI save and restore commands to save the
state of a simulation and to resume the simulation from a given
saved state. In the presence of SystemC, UCLI save and restore
commands work only with Verilog-top and SystemC-down designs.
This feature now works for SystemC-on-top and pure SystemC
designs as well.

19-233

Using SystemC

The following sections explain the usage, coding guidelines, and
limitations of using the UCLI save and restore commands with
SystemC-on-top and pure SystemC designs.

• “SystemC with UCLI Save and Restore Use Model” on page 233

• “SystemC with UCLI Save and Restore Coding Guidelines” on
page 233

• “Saving and Restoring Files During Save and Restore” on page
235

• “Restoring the Saved Files from the Previous Saved Session” on
page 236

• “Limitations of UCLI Save Restore Support” on page 236

SystemC with UCLI Save and Restore Use Model

UCLI save and restore commands work only with the SystemC
deltasync flow for SystemC-on-top and pure SystemC designs.

For more information about the UCLI save and restore commands,
see the Unified Command-line Interface User Guide.

SystemC with UCLI Save and Restore Coding Guidelines

For SystemC-on-top or pure SystemC designs, you must write the
entry point function sc_main().This sc_main() function is not
part of the SystemC kernel, and therefore needs to adhere to the
following guidelines to function in the save and restore
environment.

19-234

Using SystemC

• Allocate all SystemC module instances and objects dynamically
using the malloc()/new function. This is necessary because
the UCLI save and restore commands can only save and
restore the heap memory.

• Do not call constructors for SystemC modules again when the
sc_main() function is called during the restore process. You can
meet this requirement by guarding the code appropriately with a
static variable.

Similarly, functions like sc_set_time_resolution() should
not be called again during the restore process.

• The sc_start() call starts the simulation and continues until
simulation terminates. Control never comes back to the
sc_main() function after sc_start() is called. Therefore, do
not place any statements after the sc_start() call (these
statements are never executed).

Example 19-14 shows the supported coding style.

Example 19-14 Supported SystemC Coding Style for Save and Restore

int sc_main(int argc, char* argv[])
 {
 static int isRestore = 0;
 if (isRestore == 0) {
 isRestore = 1;
 sc_core::sc_set_time_resolution(100, SC_PS);
 Stimuli* stim_inst = new Stimuli("stim_inst");
 CPU_BFM* dut = new CPU_BFM("stim_inst");
 }
 sc_start();
 return 0;
 }

19-235

Using SystemC

Saving and Restoring Files During Save and Restore

You can save all files that are open in read or write mode at the time
of save using the following runtime options. All these files are saved
in the directory named:

<name_of_the_saved_image>.FILES.

-save

Saves all open files in writable mode.

-save_file <file name> | <directory name>

Saves all open files in writable mode, and all files that open in
read-only mode, depending on the option you specify:

- With <file name>, saves the specified open file in read/write
mode.

- WIth <directory name>, saves all files in the specified
directory open in read/write mode.

-save_file_skip <file name> | <directory name>

This allows you to skip saving one or more files depending on the
option:

- With <file name>, skips saving the specified file that is open
in read/write mode.

- WIth <directory name>, skips all files in the specified
directory that are open in read/write mode.

19-236

Using SystemC

Restoring the Saved Files from the Previous Saved
Session

At restore time you can remap any old path where files were open at
the time of save to the new place where restore searches using the
–pathmap option. For example:

% simv -pathmap <file_with_pathmaps>

where,

<file_with_pathmaps>:

<old_directory_path_name>:<new_directory_path_name>

Limitations of UCLI Save Restore Support

• SC_THREADS must be implemented using quick threads, which
are enabled by default. Do not enable POSIX threads using the
SYSC_USE_PTHREADS environment variable.

• The save operation is not allowed when simulation is stopped
inside the C domain.

• Cbug needs to be disabled before invoking save and restore
commands. You can re-enabled it later, when needed.

• The save operation just after the simulation starts is not allowed.
Advance the simulation with run 0 command and then try saving.

19-237

Using SystemC

Enabling Unified Hierarchy for VCS and SystemC

The following sections explain how to enable the unified hierarchy for
VCS and SystemC:

• “Using Unified Hierarchy Elaboration” on page 237

• “Using the –sysc=show_sc_main Switch” on page 241

Using Unified Hierarchy Elaboration

You can use the -sysc=unihier switch to represent the unified
hierarchy for HDL-SystemC for cosimulation. This is useful for
designs with SystemC modules on top and Verilog or VHDL
instantiated within SystemC. When you use the -sysc=unihier
switch, the internal structure for how the SystemC-on-top design is
implemented changes. The SystemC unified hierarchy flow is not
active by default (except for the partition compile with SystemC-on-
top flow). Otherwise, you need to be explicitly activated the unified
hierarchy flow using:

• –sysc=unihier

or

• -sysc=show_sc_main

For example, if you elaborate your SystemC design in the usual way:

% vcs … -sysc …

the SystemC unified hierarchy flow is not active. This is the default.

19-238

Using SystemC

But if you use the -sysc=unifier switch to elaborate your
SystemC design:

% vcs … -sysc … -sysc=unihier …

the SystemC unified hierarchy flow is active.

When you open a SystemC-on-top design with DVE, you see the
correct logical design structure: all SystemC, Verilog, and VHDL
instances are visible and located in the correct structure. This
structure is also properly displayed when you dump the design using
UCLI dump commands or traverse the design using UCLI scope
commands (or with the MHPI interface). All these interfaces are
aware of SystemC.

However, there are other APIs that expose the underlying
implementation and show a different picture of the hierarchy,
because they are not aware of SystemC. For example:

• XMR paths within Verilog source code

• %m within a Verilog display statement

• DPI access functions

• VPI, and so on

These APIs do not have a concept of SystemC and are therefore
unable to deal with the SystemC layer on top in HDL-SC
cosimulation.

These APIs expose:

• How the SystemC and Verilog/VHDL parts are internally
combined in the HDL-SC cosimulation environment.

19-239

Using SystemC

• Implementation details that do not reflect the logical structure. For
example, if you add the following statement in your design:

$display("Inst '%m' of Verilog module VLOG_BOT");

//vlog child vlog_bot
 module vlog_bot{…….}

 //SystemC child “sc_mod”
 SC_MODULE(sc_mod){
 vlog_bot vlog_inst_A;
 SC_CTOR(sc_top) : vlog_inst_A(“vlog_inst_A”) {…..}

};

 //SystemC top module sc_top
 SC_MODULE(sc_top){
 //instantiate vlog_mod and sc_mod here
 vlog_bot vlog_inst_0;
 sc_mod sc_inst_1;
 sc_mod sc_inst_2;
 SC_CTOR(sc_top) : vlog_inst_0(“vlog_inst_0”),
sc_inst_1(“sc_inst_1”), sc_inst_2(“sc_inst_2”) {…… } };

 int sc_main(int argc, char** argv) {
 ” sc_top sc_top_o(“sc_top);
 sc_start(100,SC_NS)
}

Then you get the following:

Inst 'sYsTeMcToP.SC_TOP.VLOG_INST_0' of Verilog module
VLOG_BOT

Inst 'sYsTeMcToP.\SC_TOP.SC_INST_1 .VLOG_INST_A' of
Verilog module VLOG_BOT

Inst 'sYsTeMcToP.\SC_TOP.SC_INST_2 .VLOG_INST_A' of
Verilog module VLOG_BOT

19-240

Using SystemC

Note:
The sYsTeMcToP at the beginning is not part of the logical
hierarchy, but exposes an implementation detail. Also, the usage
of Verilog escaped identifiers with character \.

Remember that the %m exposes implementation details, including
details that may change from one VCS release to another or even
within a release from one patch to the next.

Value Added by Option –sysc=unihier

If you are using DVE, UCLI, or MHPI to look at the hierarchy, these
implementation details are irrelevant because they remain hidden.
DVE, UCLI, or MHPI always show the correct logical structure, even
if the internals change.

But if you need to use any other API (for example, VPI or the %m) the
new SystemC unified hierarchy flow (option -sysc=unihier) is
important because it aligns the internal implementation structures as
much as possible with the logical structure. The instance tree is
visible to APIs that deal only with Verilog and/or VHDL and it has the
correct logical structure. SystemC instances appear as dummy
Verilog instances on all locations needed to represent the logical
structure.

In the example above, the $display statement now prints:

Inst 'SC_TOP.SC_INST_1.VLOG_INST_A' of Verilog module
VLOG_BOT
Inst 'SC_TOP.SC_INST_2.VLOG_INST_A' of Verilog module
VLOG_BOT
Inst 'SC_TOP.VLOG_INST_0' of Verilog module VLOG_BOT

19-241

Using SystemC

Note:
Only the SystemC instances are represented as Verilog
instances. SystemC ports, signals, processes, and so on are not
represented. The Verilog modules representing SystemC
instances are therefore mostly empty.

Using the –sysc=show_sc_main Switch

All SystemC-on-top designs start with a user-written sc_main()
function. sc_main is a C function and not a SystemC module
instance. This function is not part of the reported instance hierarchy.
However, there are situations in the SystemC unified hierarchy flow
where it is necessary to report sc_main() as part of the hierarchy.
To do this, you use the -sysc=show_sc_main option:

• when the top-level module name is sc_main().

• if a top-level module has at least one port.

In the example above, the $display statement now prints:

Inst 'sc_main.SC_TOP.SC_INST_1.VLOG_INST_A' of Verilog
module VLOG_BOT
Inst 'sc_main.SC_TOP.SC_INST_2.VLOG_INST_A' of Verilog
module VLOG_BOT
Inst 'sc_main.SC_TOP.VLOG_INST_0' of Verilog module VLOG_BOT

The reported hierarchy may change when top-level modules are
changed. The sc_main may come or go. This could be problematic
for automated tests or UCLI scripts because reported path names
change. To prevent this problem, add the -sysc=show_sc_main
option to the elaboration; this ensures that sc_main is always used.
For example:

% vcs … -sysc=show_sc_main …

19-242

Using SystemC

Note:
Using the -sysc=show_sc_main option implies the SystemC
unified hierarchy flow. You don’t need to add the –sysc=unihier
option.

SystemC Unified Hierarchy Flow Limitations

The following limitations apply for the SystemC unified hierarchy
flow:

• Generally only available for designs that have SystemC on top of
the hierarchy and HDL instantiated below SystemC.

• Not available for designs that have VHDL or Verilog on top and
instantiate SystemC below Verilog/VHDL.

• Not available for donut designs (Verilog-SystemC-Verilog).

• Only available with UUM flow (not with non-UUM flow).

Aligning VMM and SystemC Messages

This section describes how you can align both VMM and SC
messages with the same API.

This chapter consists of the following topics:

• “Introduction” on page 243

• “Use Model” on page 243

• “Changing Message Alignment Settings” on page 244

19-243

Using SystemC

• “Mapping SystemC to VMM Severities” on page 246

• “Filtering Messages” on page 246

• “Limitations” on page 249

Introduction

Both SystemC and VMM contain APIs, which control the functionality
of a message (info, warning, and error). Both concepts are similar,
but the APIs and underlying implementation is completely
independent. For example, if you want to skip all warnings or re-
direct warnings into a log file, then you must call both the SystemC
and VMM APIs. This is tedious.

The scenario explained in the following use model, enables you to
decide whether you want to align SystemC messages with VMM or
not.

Use Model

To align VMM messages with SystemC:

1. Instantiate the tli_vmm_sc_msg_align module in the top
module

2. Include the tli_vmm_sc_msg_align.sv file before the SV top
module.

19-244

Using SystemC

For Example:

`include "tli_vmm_sc_msg_align.sv"
 module top;
 tli_vmm_sc_msg_align vmm_msg_align();
 test tb();
 sc_top sysc();
 endmodule

Only those messages, which are not suppressed from SystemC, are
aligned with VMM. If you are registering your own
sc_report_handler, then the report_handler will not be
aligned with VMM messaging, and the user-defined report handler
takes precedence.

The default setting for VMM message alignment creates a vmm_log
instance for each SystemC process-id (name for a SystemC
process). This process-id is the instName of a vmm_log instance.
You can change this default behavior to use one vmm_log instance
for all SystemC processes and messages, or you can disable the
VMM message alignment.

Changing Message Alignment Settings

This section explains how you can change certain settings, using
APIs, for aligning messages.

19-245

Using SystemC

The following SystemC API disables VMM message alignment, and
changes the type of vmm_log to be used. VMM message alignment
and to change the type of vmm_log to be used.

 // multiple vmm_logs for SystemC-VMM message
 sc_snps::align_sc_report_with_VMM(sc_snps::MultipleVMMLogs);
 // single vmm_log for all SystemC-VMM messages
 sc_snps::align_sc_report_with_VMM(sc_snps::SingleVMMLog);
 // switch off VMM message alignment
 sc_snps::align_sc_report_with_VMM(sc_snps::NoVMMLog);

You can disable VMM message alignment, or switch to the usage of
one vmm_log for all SystemC processes, only once. There will be no
messages generated, and the calls does not have effect on the VMM
message behavior.

To use a SystemC API, you must include the systemc_user.h file,
as shown in the following example. This example shows how to
disable the VMM message alignment.

Note:
Disabling of the VMM message alignment takes place before the
start of the simulation.

Example:

#include "systemc_user.h"
...
sc_main(...)
{
 ...
 sc_snps::align_sc_report_with_VMM(sc_snps::NoVMMLog);
 ...
 sc_start(...);
 ...
}

19-246

Using SystemC

Mapping SystemC to VMM Severities

The concept of severity applies to both VMM and SystemC. The
process of mapping SystemC severities to VMM is:

• SC_REPORT_INFO message is converted into a vmm_note

• SC_REPORT_WARNING is converted into a vmm_warning

• SC_REPORT_ERROR is converted into a vmm_error

• SC_REPORT_FATAL is converted into a vmm_fatal

The SystemC messages consists of an ID, which is turned into a
prefix of the VMM message. For example, if you have the following
message definition:

SC_DEFINE_MESSAGE(TLM_PKG_FAIL, 801, "failure in package
processing");

then the call of the following message definition in SystemC:

SC_REPORT_INFO(TLM_PKG_FAIL, "Package got lost");

is printed as a VMM message, as shown below:

Normal[NOTE] on SystemC(top.sysc.tli1.driver) at 7000:
SC_I_801 [failure in package processing] : Package got lost
In file: /u/me/src/my_systemc_src.cpp:42

Filtering Messages

All messages generated with SC_REPORT_INFO or similar calls are
aligned with VMM. The decision on whether a specific SC message
is suppressed or not, is not influenced within the SystemC kernel. If

19-247

Using SystemC

it is normally (no VMM present) suppressed, then it will also be
suppressed when VMM is present. If it is normally processed, then
this also occurs in context with VMM.

An SC message triggers a set of actions within the
sc_report_handler. If VMM message alignment is active, and if
print to stdout and print to log actions are influenced,
then other actions (such as stopping the simulator) proceed as
usual.

If VMM alignment is active, a message is generated, but not
suppressed by the sc_report_handler. This message is
forwarded to the VMM message handler, which decides what to do
with it.

Note:
The filter setting for VMM messages influences the type of SC
messages that are printed. For example, if you run simv to print
only errors, then less severe messages (for example, warnings)
are not printed to stdout. This applies to both VMM and SC
messages.

There are two methods for filtering messages:

• Printing messages into a log file.

• Skipping messages with a specific severity, by influencing the
simulator runtime options such as +vmm_log_default and -l.

Perform the following steps to archive the changes in the settings of
SystemC-VMM specific to the vmm_log instantiations:

1. Get the actual vmm_log instantiation of a SystemC-instName
(SystemC process-id(name)).

19-248

Using SystemC

2. Call the vmm_log related methods with the appropriate
arguments.

The following SV-task returns the current vmm_log used by the
SystemC-VMM message alignment as the second argument,
depending on the vmm_log settings (single or multiple vmm_logs).

tli_util_get_sysc_vmm_log_by_instName(<string>, <vmm_log>);

Where, <string> is the process name. If SystemC-VMM alignment
is disabled, then the second task argument, vmm_log, is 0. The task
is declared in the tli_vmm_sc_msg_align module. To use this
task, the module must be instantiated within the top module. You can
then access the task using the following command:

<top_module_name>.<instance_name_of_tli_vmm_sc_msg_align>.
tli_util_get_sysc_vmm_log_by_instName(...);

For example, if the name of the top SV module is mentioned as top,
then the tli_vmm_sc_msg_align module is instantiated in the top
SV module, and the instance name is vmm_msg_align, as shown
in the following example:

Example:

 ...
 vmm_log log;
 string process_name = "top.sysc.vmmconn1.driver";
 // call task with XMR path starting with top

top.vmm_msg_align.tli_util_get_sysc_vmm_log_by_instName
(process_name,log);

 if (log)
 log.set_verbosity(vmm_log::WARNING_SEV, , ,);
 ...

19-249

Using SystemC

If multiple vmm_logs are used (default) and vmm_log is not created,
then a vmm_log with the instName provided in the string parameter
is created. If VMM message alignment is switched-off, then the
return value of vmm_log is 0.

The name of the vmm_logs used by SystemC message alignment is
SystemC. The instance name for single vmm_log is reporter, and
it is process id (process name) for multiple vmm_logs.

SystemC can generate messages to stdout, in a specified SC-log
file, to both stdout and SC-log file. If VMM message alignment is
active, then the messages are not generated in a specified SC-log
file. If the SC-message is not suppressed from SystemC, then the
VMM message settings decides what and how to print. As a result,
the messages are printed to stdout only, and not in a SC-log file.

Calling the VMM message handler requires a valid (and existing) SV
scope. If there is no VMM-scope, then all SystemC messages are
generated using the default sc_report_handler. If you have
registered your own report_handler, it will be used for messages
even if VMM alignment is active.

Limitations

The default setting, using multiple vmm_logs, can be changed only
once, before start of simulation. It can be changed either to use
single vmm_log or to switch-off the SystemC-VMM message
alignment.

19-250

Using SystemC

UVM Message Alignment

SystemC and UVM both have APIs to produce messages (for
example, info, warning, error) and an API to control what happens
with such messages. Both concepts are similar but the APIs and
underlying implementations are totally independent, so you must call
both the APIs if you want, for example, to skip all the warnings or re-
direct warnings into a log file.

With the functionality described below, you can decide whether you
want SystemC messages aligned with UVM or not.

Enabling UVM Message Alignment

To enable UVM message alignment, you must either include the
provided tli_uvm_sc_msg_align.sv file before the SV top
module or analyze this file. The path to the SV file is $VCS_HOME/
etc/systemc/tlm/tli/tli_uvm_sc_msg_align.sv. The
module tli_uvm_sc_msg_align residing in this file must be
instantiated in the top module to enable UVM message alignment
(see Example 19-15).

Example 19-15 UVM Message Align with SV File not Analyzed

`include "tli_uvm_sc_msg_align.sv"
module top;
 tli_uvm_sc_msg_align uvm_msg_align();

 test tb();
 sc_top sysc();
endmodule

19-251

Using SystemC

Using an `ifdef - `endif pair around the uvm_msg_align
module instantiation, you can control whether you want message
alignment enabled or not at compile time (see Example 19-15).

Example 19-16 Ifdef for UVM Message Alignment

module top;
`ifdef UMV_MSG_ALIGN
 tli_uvm_sc_msg_align uvm_msg_align();
`endif
 test tb();
 sc_top sysc();
endmodule
compile it with "vlogan -sverilog -ntb_opts uvm
+define+UMV_MSG_ALIGN top.sv ...

Only those messages are aligned with UVM, which are not
suppressed from SystemC. If you are registering your own
sc_report_handler, this report handler does not align with UVM
messaging. The user-defined report handler takes precedence.

The default setting for UVM message alignment is that for each
SystemC process-id a UVM report object is created with the
process-id as the instName of a UVM report instance. You can
change this default behavior to use one UVM report instance for all
SystemC processes or you can disable the UVM message
alignment.

The following API (see Example 19-17, Example 19-18, and
Example 19-19) is provided for SystemC to disable UVM message
alignment or change the kind of UVM report object to be used.

Example 19-17 Multiple UVM Report Objects for SystemC-UVM Message

sc_snps::align_sc_report_with_UVM(sc_snps::MultipleUVMLogs);

19-252

Using SystemC

Example 19-18 Single UVM Report Object for all SystemC-UVM Messages

sc_snps::align_sc_report_with_UVM(sc_snps::SingleUVMLog);

Example 19-19 Switch off UVM Message Alignment

sc_snps::align_sc_report_with_UVM(sc_snps::NoUVMLog);

Disabling UVM message alignment or switching to one UVM report
object for all SystemC processes can only be done once. Disabling
UVM message alignment can only be done before simulation starts.
In this case no messages are generated. The calls have no effect on
the UVM message behavior.

To use the API in SystemC, include the systemc_user.h file at
compile time. Example 19-20 shows how to disable UVM message
alignment. Note that disabling happens before simulation starts.

Example 19-20 Disabling UVM Message Alignment

#include "systemc_user.h"
...
sc_main(...)
{
 ...
 sc_snps::align_sc_report_with_UVM(sc_snps::NoUVMLog);
 ...
 sc_start(...);
 ...
}

UVM and SystemC messages both have severities, and the
mapping of SystemC severities to UVM is as you might expect:

• SC_REPORT_INFO maps to UVM info message

• SC_REPORT_WARNING maps to UVM warning message

• SC_REPORT_ERROR maps to a UVM error message

19-253

Using SystemC

• SC_REPORT_FATAL maps to a UVM fatal message.

The SystemC messages have an ID. For UVM, this ID is prefixed
with SC.

Here are some examples of converted messages. Assume the
following SystemC message definition (as define):

SC_DEFINE_MESSAGE(TLM_PKG_FAIL, 801, "failure in
package processing");

The following call:

SC_REPORT_INFO(TLM_PKG_FAIL, "Package got lost");

if SystemC, is printed as a UVM message.

In the case of single UVM report object:

UVM_INFO my_sc_file.cpp(18) @ 50000: SystemC(reporter)
SC-801] failure in package processing : Package got lost

In SystemC process: top.sysc.do_transactions

In the case of multiple UVM message objects:

UVM_INFO my_sc_file.cpp(18) @ 50000:
SystemC(top.sysc.do_transactions) [SC-801] failure in
package processing : Package got lost

The following SystemC report handler call with an SC message
without an ID in a file called my_sc_file.cpp:

SC_REPORT_INFO("failure in package processing", "Package got
lost");

results in:

19-254

Using SystemC

UVM_INFO my_sc_file.cpp(31) @ 50000:
SystemC(top.sysc.do_transactions) [SC-NAN] failure in
package processing : Package got lost

An SC message triggers a set of actions within the
sc_report_handler. If a UVM message alignment is active
“print to stdout” and “print to log” action is influenced.
Other actions (such as stopping the simulator) proceed as usual.

If UVM message alignment is active, a message is emitted and not
suppressed by the sc_report_handler. Then it is forwarded to
the UVM message handler, which decides what to do with it.

Note that setting the filter for UVM messages also influences which
SC messages are printed. For example, if you tell simv to filter
uvm_note, then only more severe messages like warnings, errors,
and fatal are printed to stdout. This applies to UVM and SC
messages.

There are two ways to filter messages. You can print them into a log
file and skip messages with a specific severity for SC-messages
using the +UVM_VERBOSITY= and -l simulator runtime options.

Accessing UVM Report Object of SystemC Instance

You can get the actual UVM report object of a SystemC instance
(SystemC process-id(name)) and call the UVM report object related
methods. Below is the SV task used to get the UVM report object of
a SystemC instance.

uvm_report_object log =
tli_util_uvm_sc_get_log_by_instName(<string>);

where,

19-255

Using SystemC

<string> is the process name.

If SystemC-UVM alignment is disabled, the returned UVM report
object is 0. The function is declared in the package
tli_uvm_sc_msg_align_pkg. To use this function, you must
include or analyze the provided tli_uvm_sc_msg_align.sv file
beforehand. You can access the task explicitly as follows:

uvm_report_object log =
tli_uvm_sc_msg_align_pkg::tli_util_uvm_sc_get_log_by_instN
ame(<string>);

or by previously importing the package function, as follows:

import
tli_uvm_sc_msg_align_pkg::tli_util_uvm_sc_get_log_by_instN
ame;

uvm_report_object log =
tli_util_uvm_sc_get_log_by_instName(<string>);

For example, assuming that the top SV module is named top, the
module tli_uvm_sc_msg_align is instantiated in the top SV
module, and the instance name is uvm_msg_align, you can access
the UVM report object of the SystemC instance as shown in Example
19-21.

Example 19-21 Accessing UVM Report Object in SystemC Instance

...
uvm_report_object log;
string process_name = "top.sysc.uvmconn1.driver";
// call task with package-XMR
log =
tli_uvm_msg_align_pkg::tli_util_uvm_sysc_get_log_by_instNa
me(process_name);
 if (log)
 // switch off warnings
 log.set_report_severity_action(UVM_WARNING,

19-256

Using SystemC

UVM_NO_ACTION);
 ...

Note the following naming conventions:

• The name used by SystemC message alignment in a UVM report
object is always “SystemC”.

• The instance name in case of a single UVM report object is always
“reporter”.

The instance name in case of multiple UVM report objects is the
SystemC/nop> process id (process name).

VCS TLI Adapters (SystemVerilog - SystemC TLM 2.0) enables
transaction-level communication between SystemVerilog (SV) and
SystemC (SC). VCS provides a built-in TLI adapter to connect the
SV to SystemC OSCI TLM 2.0 interface.

The TLI adapter consists of SV and SystemC adapters. These
adapters communicate with each other using Direct Programming
Interface (DPI). The SV adapter consists of the following packages:

• User Package

• Global Package

The SV interface of TLI adapter is generic and user-extensible. The
present SV implementation of TLI adapter connects the following SV
interfaces:

• VMM Channel Interface

• VMM TLM Interface

Apart from the above two interfaces, you can connect any other SV
interface with minimum changes in the TLI adapter.

19-257

Using SystemC

Note:
TLI adapters provided by VCS are only for
vmm_tlm_generic_payload data objects. If the data objects
are of different data type, you must modify the User Package in
TLI adapters.

Introducing TLI Adapters

This section describes the overview of TLI Adapters and packages
associated with these adapters. This section includes the following
topics:

• “TLI Adapter Overview”

• “SystemC Adapters”

• “Global Package”

• “User Package”

TLI Adapter Overview

Figure 19-3 shows the block diagram of TLI Adapters.

The User SV Transaction Level Interface communicates the
transaction information to the User Package. The User Package and
Global Package communicate the data with each other using API.
The SystemC Adapter gets the transaction information from the
Global Package through DPI calls and process the information to
SystemC module.

19-258

Using SystemC

Figure 19-3 Block Diagram of TLI Adapters

Similarly, SystemC Adapter communicates information from
SystemC module to the Global Package. The User Package gets
information from the Global Package and process the information to
User SV Transaction Level Interface.

SystemC Adapters

The SystemC adapter implements OSCI TLM 2.0 LT/AT initiator or
target to connect to the SystemC world.

Global Package

The Global Package is the SV package, where the User Package
and TLI SystemC adapters exchange data through the API’s
provided by this package. The TLI SystemC adapters transfer the

19-259

Using SystemC

data in either direction across the Global Package using the DPI
tasks or functions. The User Package transfers the data across the
Global Package using its API’s, as described below.

The Global Package provides following tasks and functions:

Global Package APIs

task put_data (tlmpkt) // SV Producer

// tlmpkt is the generic payload type defined by TLI

This task performs the following:

- Transmits data to the global package

- Generates a data event to indicate global package that the data
is transmitted

- Waits for the received event from the global package, to make
sure data is received by the SystemC world.

function put_data_func (tlmpkt) //SV Producer

This function transmits data to global package and generates data
event. This function can be called from the user package in case
of non-blocking communication.

task get_resp (tlmpkt) // SV Producer

This task waits for the put response event from the global
package to make sure response is received by the global
package, and then reads the data response from the global
package.

task get_data (tlmpkt) // SV Consumer

19-260

Using SystemC

This task waits for the data event and reads data from the global
package.

task put_resp (tlmpkt) // SV Consumer

This task calls the send_rsp_to_fifo(chandle sc_obj)dpi
imported function to put the response into the SystemC adapter.

Except the put_data_func function, which returns immediately, all
other tasks are blocking tasks.

In addition to the above API functions, the global package also
provides the register_unique_id(string) function to register
the unique id. The user package should call this function in the
implementation of the bind function.

Note:
The TLI adaptor can be used with other SV interfaces (other than
vmm_channel/vmm_tlm) by modifying the user package. You
must not modify the global package implementation while using
any SV interface including vmm_channel or vmm_tlm.

The vmm_tlm package also supports the AT phase communication
between SC and SV. This package uses the phase enum
vmm_tlm::phase_e and sync enum vmm_tlm::sync_e of
vmm_tlm (similar to the OSCI TLM2 standard). However, you can
also use your own phasing by modifying your user package
accordingly.

User Package

The VCS TLI adaptor provides the following packages for the VMM
channel interface and VMM TLM interface respectively:

19-261

Using SystemC

• vmm_channel_binds

• vmm_tlm_binds

The VCS TLI adaptor supports only the
vmm_tlm_generic_payload data objects. For different interface
(other than VMM channel or VMM TLM) and data type (other than
vmm_tlm_generic_payload), you must modify the user package
by implementing conversion functions.

User Package for VMM Channel Interface

This package imports Global Package and consists of the following:

• Bind Function

• Conversion Functions

• Processes

Bind Function

 tli_channel_bind (SV channel object, unique id,
direction)

This function registers its unique id using the
register_unique_id(id) function provided by the global
package to register its ID with DPI. The direction argument in the
bind function is an enum which indicates the direction SV-SC or
SC-SV for both blocking and non-blocking communication. It
invokes separate processes based on the direction.

Conversion Functions

The following conversion functions are implemented to convert
vmm_tlm_generic_payload to tlmpkt (generic payload type of
TLI) and vice versa.

19-262

Using SystemC

conv_userdata_to_tlmpkt (user data, tlmpkt)

If tlmpkt is not allocated before, this function allocates a new
object of tlmpkt and converts user data to tlmpkt.

conv_tlmpkt_to_userdata(tlmpkt, user data)

If user data is not allocated before, this function allocates a new
object of vmm generic payload and converts tlmpkt to vmm
generic payload.

Processes

Depending on the direction, one of the following processes will be
forked off from the bind function:

• channel_get_b_process()

• channel_get_nb_process()

• channel_put_b_process()

• channel_put_nb_process()

For more information on the above processes, see “VMM Channel
Interface Details”.

User Package for VMM TLM Interface

This package imports the Global Package, and consists of the
following:

• Bind function

• Conversion Functions

• Processes

19-263

Using SystemC

• Target Class

Bind function

 tli_tlm_bind (SV port/export object, port type,
unique id)

The SV port/export object is bind to export/port of type
specified by you. This function registers its unique id using
register_unique_id(id) provided by the global package to
register its ID with DPI. The port type in the bind function is an
enum define in VMM TLM intf_e, which indicates the type of
port/export to be connected to. It invokes separate processes
based on this enum value. For more information, see VMM TLM
User Guide.

Conversion Functions

See "Conversion Functions".

 Processes

Depending on the port type, one of the following processes will be
forked off from the bind function:

• call_transport_process ()

• call_nb_transport_fw_process ()

• call_write_process ()

For more information on the above processes, see “VMM Channel
Interface Details”.

Target Class

19-264

Using SystemC

This class provides the implementation of all VMM TLM functions or
tasks.

• b_transport()

• nb_transport_fw()

• nb_transport_bw()

• write()

For more information on the above processes, see “VMM Channel
Interface Details”.

Use Model

This section describes how to use TLI adapters to connect SV to
SystemC OSCI TLM2.0 interface. You can have the following SV
interfaces with data type as vmm_tlm_generic_payload.

• “VMM Channel Interface (vmm_tlm_generic_payload)”

• “VMM TLM Interface (vmm_tlm_generic_payload)”

VMM Channel Interface (vmm_tlm_generic_payload)

Perform the following steps, if SV has VMM channel interface
(vmm_tlm_generic_payload).

Perform the following steps for SV:

1. Include tli_sv_bindings.sv, where SV adaptor packages
(User Package and Global Package) are available.

`include tli_sv_bindings.sv

19-265

Using SystemC

2. Import the vmm_channel_binds package into the SV program
block.

import vmm_channel_binds::*;

3. Call the bind function, which is defined in vmm_channel_binds
package, in vmm_group connect phase (connect_ph).

tli_channel_bind(vmm_tlm_generic_payload_channe
l obj, string unique_id, direction_e dir);

//direction_e is the enum inside the channel
package

Example:
tli_channel_bind(chan_obj,”initiator0”,SV_SC_B)
;

Note:
For SC Producer–SV Consumer flow, you should invoke the same
bind function with SC_SV_B/SC_SV_NB direction_e enum
value.

Perform the following steps for SC:

1. In the SC top, include the tli_sc_bindings.h file.

#include tli_sc_bindings.h

2. Call the bind function defined in the tli_sc_bindings.h file.

tli_tlm_bind_target(tlm::tlm_target_socket<>
socket, init_type_e type, std::string unique_id,
bool debug_en, bool is_sv_phase)

// init_type_e type is the enum inside the header
file

19-266

Using SystemC

// is_sv_phase must be true, if SV phasing communication is
required, otherwise TLI adapter takes care of phasing on SC side
when set to false.

For example, if SC has target socket:

tli_tlm_bind_target(tgt_socket, LT,
”initiator0”, false, false);

Call the following bind function, if SC has the initiator socket:

tli_tlm_bind_initiator(tlm::tlm_initiator_socket<
> socket, init_type_e type, std::string unique_id,
bool debug_en, bool is_sv_phase)

//init_type_e type is the enum inside header file

// is_sv_phase must be true, if SV phasing communication is
required, otherwise TLI adapter takes care of phasing on SC side
when set to false.

Example:

tli_tlm_bind_initiator(init_socket, LT,
”initiator1”, false, false);

Call the following bind function, if SC has analysis port:

tli_tlm_bind_analysis_parent
(tlm::tlm_analysis_port<> socket, std::string
unique_id, bool debug_en)

Example:

tli_tlm_bind_analysis_parent(anal_port,”parent1”,
false);

19-267

Using SystemC

Call the following bind function, if SC is analysis subscriber:

tli_tlm_bind_analysis_subscriber
(tlm::tlm_analysis_if<> socket, std::string
unique_id, bool debug_en)

Example:

tli_tlm_bind_analysis_subscriber(subs_inst,
”subscriber1”, false);

Note:
Unique id in all the bind functions should be same as given in the
corresponding SV bind function.

VMM TLM Interface (vmm_tlm_generic_payload)

Perform the following steps, if SV has VMM TLM Interface
(vmm_tlm_generic_payload).

Perform the following steps for SV:

1. Include tli_sv_bindings.sv, where SV adaptor packages
(User Package and Global Package) are available.

`include tli_sv_bindings.sv

2. Import the vmm_tlm_binds package into the SV program block.

import vmm_tlm_binds::*;

3. Call the bind function, which is defined in vmm_tlm_binds
package, in vmm_group connect phase (connect_ph).

tli_tlm_bind(vmm_tlm_base user_port,
vmm_tlm::intf_e, string unique_id);

19-268

Using SystemC

//vmm_tlm::intf_e is the enum defined in VMM TLM

Example:

tli_tlm_bind(userport_obj,
vmm_tlm::TLM_BLOCKING_PORT, ”initiator0”);

Note:
For SC Producer–SV Consumer flow, you should invoke the
same bind function with SC_SV_B/SC_SV_NB direction_e
enum value.

Perform the following steps for SC:

1. In the SC top, include the tli_sc_bindings.h file.

#include tli_sc_bindings.h

2. Call the bind function defined in the tli_sc_bindings.h file.

tli_tlm_bind_target(tlm::tlm_target_socket<>
socket, init_type_e type, std::string unique_id,
bool debug_en, bool is_sv_phase)

// init_type_e type is the enum inside the header
file

// is_sv_phase must be true, if SV phasing communication is
required, otherwise TLI adapter takes care of phasing on SC side
when set to false.

For example, if SC has target socket:

tli_tlm_bind_target(tgt_socket, LT,
”initiator0”, false, false);

Call the following bind function, if SC has the initiator socket:

19-269

Using SystemC

tli_tlm_bind_initiator(tlm::tlm_initiator_socket<
> socket, init_type_e type, std::string unique_id,
bool debug_en, bool is_sv_phase)

// init_type_e type is the enum inside header file

// is_sv_phase must be true, if SV phasing communication is
required, otherwise TLI adapter takes care of phasing on SC side
when set to false.

Example:

tli_tlm_bind_initiator(init_socket, LT,
”initiator1”, false, false);

Call the following bind function, if SC has analysis port:

tli_tlm_bind_analysis_parent
(tlm::tlm_analysis_port<> socket, std::string
unique_id, bool debug_en)

Example:

tli_tlm_bind_analysis_parent(anal_port,”parent1”,
false);

Call the following bind function, if SC is analysis subscriber:

tli_tlm_bind_analysis_subscriber
(tlm::tlm_analysis_if<> socket, std::string
unique_id, bool debug_en)

Example:

19-270

Using SystemC

tli_tlm_bind_analysis_subscriber(subs_inst,
”subscriber1”, false);

Note:

Unique id in all the bind functions should be same as given in the
corresponding SV bind function.

VMM Channel/TLM Interface (Other data type)

If you have the data type other than vmm_tlm_generic_payload,
you must rewrite the conversion functions in user package. The
function should convert the user data type to tlmpkt of TLI.

SV Interface Other Than vmm_channel/vmm_tlm

Follow the below instructions to create a new package, if you have
interface other than VMM channel or VMM TLM.

• Package should implement a bind function like tli_tlm_bind
and tli_channel_bind, which binds the user interface to
package interface.

• In the bind function, call the register_unique_id(string
id) function to register its id with DPI. This is a global function
defined by global package.

• Call tli_imc.put_data() to send data to SC, and call
tli_imc.get_resp () to get the response from SC. These
functions are provided by the global package. See section global
package (SC Consumer).

• Call tli_imc.get_data () to get the data from SC, and call
tli_imc.put_resp () to update the response to SC (SC
Producer).

19-271

Using SystemC

• Even when the SV interface is unidirectional, you must call
tli_imc.put_resp() after calling tli_imc. get_data().
Since SC is bidirectional, you can call tli_imc.put_resp()
with same object received from SC.

• If the interface does not have any virtual functions, then calling
the above API’s can happen in a process forked off from the bind
functions (like in channel interface).

• Implement the conversion functions to convert user data type to
tlmpkt (data type for TLI) and tlmpkt to user data type.

• All the API functions take the type tlmpkt.Therefore, you must
convert the data before calling an API.

Note:
You must call API functions using the tli_imc object. This is the
object of the class tli_interconnect in the global package,
where all these API’s are defined.

 VMM Channel Interface Details

This package imports the Global Package, and consists of the
following:

• Bind Function

• Conversion Functions

• Processes

Bind Function

See "VMM Channel Interface"

19-272

Using SystemC

Conversion Functions

See “VMM Channel Interface”

Processes

Depending on the direction, one of the following processes will be
forked off from the bind function:

channel_get_b_process()

This process is forked off when the direction is from SV blocking
to SC blocking.

- This process reads the data from the SV channel using
channel.peek(obj).

- Converts the data into tlmpkt using a conversion function.

- Calls the put_data (tlmpkt obj) API provided by the global
package.

- Calls the get_resp (tlmpkt obj) API provided by the
global package.

- Again converts back the tlmpkt to user data object using
conversion function.

- Indicates the user data::ENDED

- Deletes the object from the SV channel using
channel.get(obj).

channel_get_nb_process()

This process is forked off when the direction is from SV non-
blocking to SC non-blocking.

19-273

Using SystemC

- This process reads the data from the SV channel using
channel.peek(obj).

- Converts the data into tlmpkt using a conversion function.

- Calls the put_data(tlmpkt obj) API provided by the global
package.

- Deletes the object from the SV channel using
channel.get().

- Forks off a task to call the get_resp(tlmpkt) API and to
indicate data::ENDED.

channel_put_b_process()

This process is forked off when the direction is from SV blocking
to SC blocking.

- Calls the get_data(tlmpkt obj) API provided by the global
package.

- Converts the data into user data using conversion function.

- Puts the data into SV channel using channel.put(obj).

- Calls the put_resp(tlmpkt) API provided by the global
package. Since this is blocking, channel.put() is blocked
till the SV updates the transaction with a response.

channel_put_nb_process()

This process is forked off when the direction is from SV non-
blocking to SC non-blocking.

- Calls the get_data(tlmpkt) API provided by the global
package.

- Converts the data into user data using conversion function.

19-274

Using SystemC

- Puts the data into SV channel using channel.put().

- Forks off a task to wait for data::ENDED, to convert the data
into tlmpkt, and finally, to call the put_resp(tlmpkt) API
provided by the global package.

For more information on the API’s used above, see “Global
Package”.

VMM TLM Interface Details

This package imports the Global Package, and consists of the
following:

• Bind Function

• Conversion Functions

• Processes

• Target Class

• Non-blocking Extended Class

Bind Function

See “VMM TLM interface”

Conversion Functions

See “VMM TLM interface”

Processes

Depending on the port type, one of the following processes will be
forked off from the bind function.

19-275

Using SystemC

call_transport_process()

This process is forked off when SV has blocking export. It must
call b_transport() of VMM TLM.

- Call the get_data(tlmpkt) API provided by the global
package.

- Convert data(tlmpkt) to user data using a conversion
function.

- Call port.b_transport(data).

- Convert back the user data to tlmpkt using the conversion
function.

- Call the put_resp(tlmpkt)API provided by the global
package.

call_nb_transport_fw_process()

This process is forked off when SV has non-blocking forward
export. It is required to call nb_transport_fw() of VMM TLM.

- Call the get_data(tlmpkt) API provided by the global
package.

- Convert data(tlmpkt) into user data using a conversion
function.

- Call port.nb_transport_fw(data)

- There is no backward path here. However, since SC requires
it, call the API put_resp() with the same object.

call_write_process()

This process is forked off when SV has analysis export. It is
required to call write()of VMM TLM.

19-276

Using SystemC

- Call the get_data(tlmpkt) API provided by the global
package.

- Convert data(tlmpkt) into user data using a conversion
function.

- Call port.write(data)

Target Class

This class provides the implementation of all VMM TLM functions or
tasks.

b_transport()

This implementation is required when SV has blocking port.

- Convert user data to tlmpkt using a conversion function.

- Call the put_data(tlmpkt) API provided by the global
package.

- Call the get_resp(tlmpkt) API provided by the global
package.

- Convert back the tlmpkt object to user data object of
b_transport().

nb_transport_fw()

This implementation is required when SV has a non-blocking port.

- Convert user data to tlmpkt using a conversion function.

- Call the put_data_func(tlmpkt) API provided by the
global package. Since put_data API is a blocking task,
put_data_func is used here.

- Return TLM::ACCEPTED.

19-277

Using SystemC

nb_transport_bw()

This implementation is required when SV has non-blocking
export.

- Get the tlmpkt object from user data obj.

- Call the put_resp(tlmpkt) API.

- Return TLM::COMPLETED

write()

This implementation is required when SV has analysis port.

- Convert the user data to tlmpkt using a conversion function.

- Call the put_data_func(tlmpkt) API provided by the
global package. Since this is a function, the put_data API task
cannot be called.

Non-blocking Extended Class

This class is extended from a base class provided by global
package, to support AT phasing function call mechanism.

nb_transport_fw_call()

This implementation is required when SV has vmm tlm interface
with non-blocking target ports and SC is the initiator.

- Convert tlmpkt to user data

- Call nb_transport_fw()of SV

- Convert user data back to tlmpkt

nb_transport_bw_call()

19-278

Using SystemC

This implementation is required when SV has vmm tlm interface
with non-blocking initiator ports and SC is the target.

- Convert tlmpkt to user data

- Call nb_transport_bw() of SV

- Convert user data back to tlmpkt

Examples

This section explains different combinations with the help of the
examples given below. These examples are located at
$VCS_HOME/doc/examples.

• “SV Producer Channel Connected to SC OSCI TLM2.0 LT
Consumer”

• “SV Producer Channel Connected to SC OSCI TLM2.0 AT
Consumer”

• “SV Producer VMM_TLM (Blocking Interface) Connected to SC
OSCI TLM2.0 LT Consumer”

• “SV Producer VMM_TLM (Non-Blocking Interface) Connected to
SC OSCI TLM2.0 AT Consumer”

• “SC Producer OSCI TLM2.0 LT Connected to SV Channel
Consumer”

• “SC Producer OSCI TLM2.0 AT Initiator Connected to SV Channel
Consumer”

• “SC Producer OSCI TLM2.0 LT Connected to SV VMM-TLM
(Blocking Interface) Consumer”

19-279

Using SystemC

• “SC Producer OSCI TLM2.0 AT Initiator Connected to SV VMM-
TLM (Non-Blocking Interface) Consumer”

• “SV Producer VMM-TLM (Analysis Port) Connected to SC OSCI
TLM2.0 Subscriber”

• “SC Producer OSCI TLM2.0 Analysis Parent Connected to SV
VMM-TLM Analysis Subscriber”

Example-1

SV Producer Channel Connected to SC OSCI TLM2.0 LT
Consumer

In this example, SV channel acts as a producer and SC OSCI
TLM2.0 LT acts as a consumer. SV channel is connected to TLI
adaptor using the tli_channel_bind function (see “Use Model”),
similarly SC LT target is connected to TLI adaptor using
tli_tlm_bind_target function. This example shows these
connections:

19-280

Using SystemC

Example 19-22 producer.sv

19-281

Using SystemC

Example 19-23 producer.sv

19-282

Using SystemC

Example 19-24 consumer.h

Example 19-25 sc_top.h

19-283

Using SystemC

Example-2

SV Producer Channel Connected to SC OSCI TLM2.0 AT
Consumer

In this example, SV channel acts as a producer and SC OSCI
TLM2.0 AT acts as a consumer. SV channel is connected to TLI
adaptor using the tli_channel_bind function (see “Use Model”),
similarly SC AT target is connected to TLI adaptor using the
tli_tlm_bind_target function. This example shows these
connections:

19-284

Using SystemC

Example 19-26 producer.sv

19-285

Using SystemC

Example 19-27 consumer.h

Example 19-28 sc_top.h

19-286

Using SystemC

Example-3

SV Producer VMM_TLM (Blocking Interface) Connected to SC
OSCI TLM2.0 LT Consumer

In this example, SV VMM_TLM acts as a producer and SC OSCI
TLM2.0 LT acts as a consumer. SV VMM_TLM is connected to TLI
adaptor using the tli_tlm_bind function (see “Use Model”),
similarly SC LT target is connected to TLI adaptor using the
tli_tlm_bind_target function. This example shows these
connections. For SystemC code snippets, refer Example 19-22 and
Example 19-23.

19-287

Using SystemC

Example 19-29 producer.sv

19-288

Using SystemC

Example-4

SV Producer VMM_TLM (Non-Blocking Interface) Connected to
SC OSCI TLM2.0 AT Consumer

In this example, SV VMM_TLM acts as a producer and SC OSCI
TLM2.0 AT acts as a consumer. SV VMM_TLM is connected to TLI
adaptor using the tli_tlm_bind function (see “Use Model”),
similarly SC AT consumer is connected to TLI adaptor using the
tli_tlm_bind_target function. This example shows these
connections. For SystemC code snippets, refer Example 19-27 and
Example 19-28.

19-289

Using SystemC

Example 19-30 producer.sv

19-290

Using SystemC

Example-5

SC Producer OSCI TLM2.0 LT Connected to SV Channel
Consumer

In this example, SC OSCI TLM2.0 LT acts as a producer and SV
channel acts as a consumer. SV channel is connected to TLI adaptor
using the tli_channel_bind function (see “Use Model”), similarly
SC LT producer is connected to TLI adaptor using the
tli_tlm_bind_initiator function. This example shows these
connections.

19-291

Using SystemC

Example 19-31 producer.h

19-292

Using SystemC

Example 19-32 sc_top.h

19-293

Using SystemC

Example 19-33 consumer.sv

19-294

Using SystemC

Example-6

SC Producer OSCI TLM2.0 AT Initiator Connected to SV
Channel Consumer

In this example, SC OSCI TLM2.0 AT acts as a producer and SV
channel acts as a consumer. SV channel is connected to TLI adaptor
using the tli_channel_bind function (see “Use Model”), similarly
SC AT producer is connected to TLI adaptor using the
tli_tlm_bind_initiator function. This example shows these
connections.

19-295

Using SystemC

Example 19-34 producer.h

Example 19-35 sc_top.h

19-296

Using SystemC

Example 19-36 consumer.sv

19-297

Using SystemC

Example-7

SC Producer OSCI TLM2.0 LT Connected to SV VMM-TLM
(Blocking Interface) Consumer

In this example, SC OSCI TLM2.0 LT acts as a producer and SV
VMM TLM acts as a consumer. SV VMM TLM is connected to TLI
adaptor using the tli_tlm_bind function (see “Use Model”),
similarly SC LT producer is connected to TLI adaptor using the
tli_tlm_bind_initiator function. This example shows these
connections. For SystemC code snippets, refer Example 19-31 and
Example 19-32.

19-298

Using SystemC

Example 19-37 consumer.sv

19-299

Using SystemC

Example-8

SC Producer OSCI TLM2.0 AT Initiator Connected to SV VMM-
TLM (Non-Blocking Interface) Consumer

In this example, SC OSCI TLM2.0 AT acts as a producer and SV
VMM TLM acts as a consumer. SV VMM TLM is connected to TLI
adaptor using the tli_tlm_bind function (see “Use Model”),
similarly SC LT producer is connected to TLI adaptor using the
tli_tlm_bind_initiator function. This example shows these
connections. For SystemC code snippets, refer Example 19-34 and
Example 19-35.

19-300

Using SystemC

Example 19-38 consumer.sv

19-301

Using SystemC

Example-9

SV Producer VMM-TLM (Analysis Port) Connected to SC OSCI
TLM2.0 Subscriber

In this example, SV VMM-TLM analysis port acts as a producer and
SC OSCI TLM2.0 analysis subscriber acts as a consumer. SV VMM
TLM is connected to TLI adaptor using the tli_tlm_bind function
(see “Use Model”), similarly SC analysis subscriber is connected to
TLI adaptor using the tli_tlm_bind_analysis_subscriber
function. This example shows these connections.

19-302

Using SystemC

Example 19-39 producer.sv

19-303

Using SystemC

Example 19-40 consumer.h

Example 19-41 sc_top.h

19-304

Using SystemC

Example-10

SC Producer OSCI TLM2.0 Analysis Parent Connected to SV
VMM-TLM Analysis Subscriber

In this example, SC OSCI TLM2.0 analysis parent acts as a producer
and SV VMM-TLM analysis subscriber acts as a consumer. SV VMM
TLM is connected to TLI adaptor using the tli_tlm_bind function
(see “Use Model”), similarly SC analysis parent is connected to TLI
adaptor using the tli_tlm_bind_analysis_parent function.
This example shows these connections.

19-305

Using SystemC

Example 19-42 producer.h

19-306

Using SystemC

Example 19-43 sc_top.h

19-307

Using SystemC

Example 19-44 consumer.sv

19-308

Using SystemC

Using VCS UVM TLI Adapters

VCS UVM TLI adapters (UVM SV TLM interface – SC TLM2.0
interface) enable transaction-level communication between UVM SV
and SC models. VCS provides a built-in UVM TLI adapter to connect
UVM SV TLM models to SC TLM2.0 models.

The UVM TLI adapter consists of a UVM SV adapter which
communicates with existing SystemC adapters. These adapters
communicate with each other using the DPI. The UVM TLI adapter
consists of the uvm_tlm2_sv_bind_pkg package. This package
contains a parameterized UVM wrapper class
(uvm_tlm2_sv_bind). This class is parameterized with payload
type and TLM phase type. So the UVM TLI adapters provided by
VCS are supported for any user-defined payload and phase.

Using the UVM TLI Adapters

This section explains how to use the UVM TLI adapters to connect
SV models with the UVM TLM interface and SC models with the
TLM2.0 interface. You can have any type of payload (like uvm
tlm2_generic_payload payload) extended from
uvm_transaction or uvm_sequence_item.

Note:
You must define the SC flag -DUSER_PAYLOAD SC flag for
payloads other than tlm_generic_payload.

UVM TLM Interface

When SV has a UVM TLM interface, follow these steps:

19-309

Using SystemC

Steps for SV

1. Include the uvm_tlm2_sv_bind.svh file where the UVM SV
adapter is defined.

`include “uvm_tlm2_sv_bind.svh

2. Import uvm_tlm2_sv_bind_pkg.

import uvm_tlm2_sv_bind_pkg::*;

3. Call the connect functions in the connect_phase of uvm_env.

uvm_tlm2_sv_bind#(payload_type)::connect(user socket,
uvm_tlm_typ_e(Eg:UVM_TLM_B_TARGET),unique_id);

Here, the second argument indicates the type of socket to which
the user socket is connected:

- When SV is a blocking initiator, the second argument is
UVM_TLM_B_TARGET.

- When SV is a non-blocking initiator, the second argument is
UVM_TLM_NB_TARGET.

- When SV is a blocking target, the second argument is
UVM_TLM_B_INITIATOR.

- When SV is a non-blocking target, the second argument is
UVM_TLM_NB_INITIATOR.

Steps for SC

1. Include the file uvm_tlm2_sc_bind.h.

#include “uvm_tlm2_sc_bind.h”

2. Call the bind functions in the SystemC top constructor:

// SC Target

19-310

Using SystemC

uvm_tlm2_bind_sc_target(target socket, UVM_TLM_B,
(UVM_TLM_NB, if non blocking) unique_id, dbg_prints);

// SC Initiator

uvm_tlm2_bind_sc_initiator(initiator socket, UVM_TLM_B,
(UVM_TLM_NB, if non blocking) unique_id, dbg_prints);

3. Set up the SC pack/unpack functions for user-defined payloads.
For user-defined payloads, SC has to provide pack/unpack
functions for the following two functions and should compile and
link these functions.

void tli_conv2_pack_tlmgp(tli_pack_data& P, T &gp)
 // T user payload

void tli_conv2_unpack_tlmgp(tli_pack_data& P, T &gp)

The implementation of these functions is provided by VCS TLI
adapters for the generic payload. For other payload types, you
must provide these functions.

Use the UVM-SC Byte pack/unpack feature for packing/
unpacking the user fields in the above functions. For more
information, see the UVM-SC Byte pack/unpack document.

UVM Analysis Interface

When SV has a UVM analysis interface, follow these steps:

Steps for SV

1. Include the uvm_tlm2_sv_bind.svh file where the UVM SV
adapter is defined:

`include “uvm_tlm2_sv_bind.svh”

2. Import uvm_tlm2_sv_bind_pkg:

19-311

Using SystemC

import uvm_tlm2_sv_bind_pkg::*;

3. Call the connect functions in the connect_phase of uvm_env:

typedef payload_type T; typedef phase_type P; typedef
uvm_tlm_if_base#(T,T) IF;
uvm_tlm2_sv_bind#(T,P,IF)::connect(user analysis port,
uvm_tlm_typ_e(Eg:UVM_TLM_ANALYSIS_EXPORT), unique_id);

Here, the second argument indicates the type of socket to which
the user socket is connected:

- When SV is an analysis parent, the second argument is
UVM_TLM_ANALYSIS_EXPORT.

- When SV is an analysis subscriber, second argument is
UVM_TLM_ANALYSIS_PORT.

Steps for SC

1. Include the uvm_tlm2_sc_bind.h file:

#include “uvm_tlm2_sc_bind.h”

2. Call the bind functions in the SystemC-top constructor:

// SC subscriber

tli_tlm_bind_analysis_subscriber(user port, unique_id,
is_debug_prints, // enables debug messages
is_uvm) // Set to 1 if SV has UVM interface

// SC parent

tli_tlm_bind_analysis_parent(user port, unique_id,
is_debug_prints, // enables debug messages
is_uvm) // Set to 1 if SV has UVM interface

19-312

Using SystemC

Handling Multiple Subscribers

When SV/SC has n subscribers, the parent should call the bind
functions n number of times. With each call, the first argument
(parent’s analysis port) remains the same; only the unique id of each
bind call should match with the unique names of the subscribers.

UVM TLM Communication Examples

This section explains UVM TLM blocking and non-blocking
communication with the help of the following examples, which you
can find in $VCS_HOME/doc/examples:

• “uvm_tlm_blocking Example” on page 312

• “uvm_tlm_nonblocking Example” on page 314

• “uvm_tlm_analysis Example” on page 316

uvm_tlm_blocking Example

In this example, there is one SV blocking initiator connected to one
SC LT target and one SC LT initiator connected to one SV blocking
target. The example files are shown in Example 19-45, Example 19-
46, and Example 19-47.

• SV UVM TLM blocking initiator <-> SC TLM2.0 LT target

• SV UVM TLM blocking target <-> SC TLM2.0 LT initiator

Example 19-45 top.v File

// Include "uvm_tlm2_sv_bind.svh" where the UVM TLI adapter
// is defined.
`include "uvm_tlm2_sv_bind.svh"
...

19-313

Using SystemC

module top;
 import uvm_pkg::*;
// Import the "uvm_tlm2_sv_bind_pkg" package where adapter
// for vmm_channel interface is available.
 import uvm_tlm2_sv_bind_pkg::*
...
endmodule

Example 19-46 tb_env.sv File

class tb_env extends uvm_env;
`uvm_component-utils(tb_env);
initiator initiator0; // SV UVM TLM initiator instance
target target0; // SV UVM TLM target instance

function new(..);
endfunction

function build_phase(..)
// build initiator
// build target
endfunction

function void connect_phase(uvm_phase phase);
// Connect function to connect SV initiator to SC target.
uvm_tlm2_sv_bind#(payload)::connect(initiator0.socket,
UVM_TLM_B_TARGET, "port0");
//Connect function to connect SV target to SC initiator.
uvm_tlm2_sv_bind#(payload)::connect(target0.socket,
UVM_TLM_B_INITIATOR, "port1");
 endfunction
endclass

Example 19-47 sc_top.h File

#include "initiator.h"
#include "target.h"
// Include this file which defines the bind functions.
#include "uvm_tlm2_sc_bind.h"

class sc_top : public sc_module {

19-314

Using SystemC

public:

 initiator init1;
 target trgt0;
 SC_CTOR(sc_top) : trgt0("trgt0"), init1("init1")
{

// Bind function to connect SV initiator to SC target and
// SV target to SC initiator respectively.
uvm_tlm2_bind_sc_target(trgt0.target_socket, UVM_TLM_B,"
port0");
uvm_tlm2_bind_sc_initiator(init1.initiator_socket,
UVM_TLM_B," port1");
 }
};

uvm_tlm_nonblocking Example

In this example there is one SV non-blocking initiator connected to
one SC AT target and one SC AT initiator connected to one SV non-
blocking target. The example files are shown in Example 19-48,
Example 19-49, and Example 19-50.

• SV UVM TLM non-blocking initiator <->SC TLM2.0 AT target

• SV UVM TLM non-blocking target <-> SC TLM2.0 AT initiator

Example 19-48 top.v File

//Include "uvm_tlm2_sv_bind.svh" where the UVM TLI adapter
//is defined.
`include "uvm_tlm2_sv_bind.svh"
...
module top;
import uvm_pkg::*;
//Import the "uvm_tlm2_sv_bind_pkg" package where adapter
//for vmm_channel interface is available.
import uvm_tlm2_sv_bind_pkg::*
...
endmodule

19-315

Using SystemC

Example 19-49 tb_ebv.sv File

class tb_env extends uvm_env;
`uvm_component_utils(tb_env);
initiator initiator0; // SV UVM TLM initiator instance
target target0; // SV UVM TLM target instance

function new(..);
endfunction

function build_phase(..)
// build initiator
// build target
endfunction

function void connect_phase(uvm_phase phase);

// Connect function to connect SV initiator to SC target.
uvm_tlm2_sv_bind#(payload)::connect(initiator0.socket,
UVM_TLM_NB_TARGET, "port0");

// Connect function to connect SV target to SC initiator.
uvm_tlm2_sv_bind#(payload)::connect(target0.socket,
UVM_TLM_NB_INITIATOR, "port1");

 endfunction
endclass

Example 19-50 sc_top.h File

#include "initiator.h"
#include "target.h"
//Include this file which defines the bind functions.
#include "uvm_tlm2_sc_bind.h"

class sc_top : public sc_module {
public:

 initiator init1;
 target trgt0;
 SC_CTOR(sc_top) : trgt0("trgt0"), init1("init1")

19-316

Using SystemC

{

// Bind function to connect SV initiator to SC target and
// SV target to SC initiator respectively.
uvm_tlm2_bind_sc_target(trgt0.target_socket, UVM_TLM_NB,"
port0");
uvm_tlm2_bind_sc_initiator(init1.initiator_socket,
UVM_TLM_NB," port1");
 }
};

uvm_tlm_analysis Example

In this example, there is one SV analysis parent connected to two SC
analysis subscribers and one SC analysis parent connected to two
SV analysis subscribers:

• SV UVM TLM analysis parent <-> Two SC TLM2.0 analysis
subscribers (2)

• Two SV UVM TLM analysis subscribers (2) <-> SC TLM2.0 AT
analysis parent

Example 19-51 top.v File

// Include "uvm_tlm2_sv_bind.svh" where the UVM TLI adapter
// is defined.
`include "uvm_tlm2_sv_bind.svh"
...
module top;
import uvm_pkg::*;
// Import the "uvm_tlm2_sv_bind_pkg" package where adapter
// for vmm_channel interface is available.
import uvm_tlm2_sv_bind_pkg::*
...
endmodule

Example 19-52 tb_ebv.sv File

class tb_env extends uvm_env;

19-317

Using SystemC

`uvm_component_utils(tb_env);
initiator initiator0; // SV UVM analysis parent
target target0; // SV UVM analysis subscriber1
target target1; // SV UVM analysis subscriber2

typedef uvm_tlm_generic_payload T;
typedef uvm_tlm_phase_e P;
typedef uvm_tlm_if_base#(T,T) IF;
function new(..);
endfunction

function build_phase(..)
 // build initiator
 // build target
endfunction

function void connect_phase(uvm_phase phase);
// Connect function to connect SV parent to two SC
//subscribers.

uvm_tlm2_sv_bind#(T, P, IF)::connect(initiator0.an_port,
UVM_TLM_ANALYSIS_EXPORT, "port0");

uvm_tlm2_sv_bind#(T, P, IF)::connect(initiator0.an_port,
UVM_TLM_ANALYSIS_EXPORT, "port1");

uvm_tlm2_sv_bind#(T, P, IF)::connect(target0.socket,
UVM_TLM_ANALYSIS_PORT, "ex_port0");

// Connect function to connect two SV targets to SC initiator.
uvm_tlm2_sv_bind#(T, P, IF)::connect(target1.socket,
UVM_TLM_ANALYSIS_PORT, "ex_port1");

 endfunction
endclass

Example 19-53 sc_top.h File

#include "initiator.h"
#include "target.h"
//Include this file which defines the bind functions.
#include "uvm_tlm2_sc_bind.h"

19-318

Using SystemC

class sc_top : public sc_module {
public:

consumer m_target0;
consumer m_target1;
parent m_parent;
SC_CTOR(sc_top) : m_target0("trgt0"), m_target1("trgt1"),
m_parent("parent");

{

// Bind functions to connect SV parent to SC subscribers and
// SV subscribers to SC analysis parents respectively.

tli_tlm_bind_analysis_subscriber(m_target0, "port0",
false, true);

tli_tlm_bind_analysis_subscriber(m_target1, "port1",
false, true);

tli_tlm_bind_analysis_parent(m_parent, "ex_port0", false,
true);

tli_tlm_bind_analysis_parent(m_parent, "ex_port1", false,
true);

 }

};

Modeling SystemC Designs with SCV

You can easily model your designs containing SystemC and SCV
(SystemC Verification Standard), hereafter, using VCS. The
following is a list of features covered in this section:

3. SCV library in VCS

19-319

Using SystemC

4. msglog extensions for transaction recording with SCV in VCS

SCV Library in VCS

The SCV library is now shipped along with the VCS image. SCV
library is supported for SystemC-2.2 and SystemC-2.3 for all the
compilers. SCV library is not binary compatible with OSCI-SystemC,
but belongs to the SystemC version shipped with VCS.

Use model

Use the option -sysc=scv on syscan while compiling the source
code containing SCV. This option adds the required include
directories within the VCS image during analysis. Also, use the
option -sysc=scv on VCS command which selects the correct
library to be linked.

For example:

syscan –sysc=scv myscv.cpp
syscan –sysc=scv mymod.cpp:mymod
vlogan vtop.v
vcs –sysc –sysc=scv vtop

19-320

Using SystemC

Note: SCV library is only supported on RHEL32 and RHEL64
platforms, and not on any solaris platform. If you attempt to use
on Solaris OS, the tool flags an error message.

msglog Extensions for Transaction Recording with SCV
in VCS

VCS provides a capability to record SCV transactions using msglog.
SCV provides callbacks, which are implemented to record the user
transactions during the below calls:

• begin_transaction()

• end_transaction()

• record_attribute()

You can view the SCV transactions in DVE waveform window using
this feature. The callback functions provided by SCV, which are
executed when the above methods are called are implemented in
VCS. This way you don’t need to write any custom code to record the
SCV transactions in MSGLOG apart from registering the callback
functions implemented in VCS.

Use Model

You must register the callback functions implemented in VCS. Since
these callback functions are declared in vcs_scv_callback.h,
you must include this file before registering these functions. The
source file has to be compiled with the option -sysc=scv as these
are a part of the SCV library.

For example:

19-321

Using SystemC

#include "vcs_scv_callback.h"
scv_tr_handle::callback_h tr_handle1, tr_handle2;

//registering the call back function for recording the begin and end
attributes

tr_handle1 =
scv_tr_handle::register_class_cb(&vcs_scv_callback);

//registering the call back function for recording the special attributes

tr_handle2 =
scv_tr_handle::register_record_attribute_cb(&vcs_scv_callb
ack_record_attribute);
syscan –sysc=scv main.cpp

By default, all the transactions are recorded in the same stream,
assuming that the second transaction starts only after finishing the
first transaction and so on. If there are overlapping transactions in
your SCV testbench (second transaction starting even before first
transaction has finished), then compile your source code along with
the define -DSNPS_MSGLOG_OVERLAP=1 on syscan. This way
transactions are recorded in multiple streams.

Viewing SystemC sc_report_handler Messages from
Log File

Until now, you could only see HDL/HVL messages in a log file but not
the messages from SystemC. Hereafter, simv –l logfile will
capture all the messages sent to sc_report_handler() in the log
file. The log file will now have all the HDL/HVL messages along with
the sc_report_handler messages.

19-322

Using SystemC

20-1

C Language Interface

20
C Language Interface 1

It is common to mix C and C++ with both Verilog and VHDL. There
are many different mechanisms and what you do will depend on your
objective as well as the performance and restrictions of each
mechanism. VCS MX supports the following ways to use C and C++
with your design:

• “Using PLI”

• “Using VPI Routines”

• “Using VHPI Routines”

VHPI enables you to use foreign architecture-based models
written in C language in the VCS MX VHDLUsing DirectC.

• “Using DirectC”

• Using SystemC - See the Using SystemC chapter.

• Using SystemVerilog DPI routines - See the SystemVerilog LRM.

20-2

C Language Interface

For the description of PLI 1.0, PLI2.0, and VHPI routines, see the C
Language Interface Reference Manual.

Note:
PLI1.0 refers to TF and ACC routines, and PLI2.0 refers to VPI.

Using PLI

PLI is the programming language interface (PLI) between C/C++
functions and VCS MX. It helps to link applications containing C/C++
functions with VCS MX, so that they execute concurrently. The C/
C++ functions in the application use the PLI to read and write delay
and simulation values in the VCS MX executable, and VCS MX can
call these functions during simulation.

VCS MX supports PLI 1.0 and PLI 2.0 routines for the PLI. Therefore,
you can use VPI, ACC or TF routines to write the PLI application.

This chapter covers the following topics:

• “Writing a PLI Application”

• “Functions in a PLI Application”

• “Header Files for PLI Applications”

• “PLI Table File”

• “Enabling ACC Capabilities”

20-3

C Language Interface

Writing a PLI Application

When writing a PLI application, you need to do the following:

1. Write the C/C++ functions of the application calling the VPI, ACC
or TF routines to access data inside VCS MX.

2. Associate user-defined system tasks and system functions with
the C/C++ functions in your application. VCS MX will call these
functions when it compiles or executes these system tasks or
system functions in the Verilog source code. In VCS MX, associate
the user-defined system tasks and system functions with the C/
C++ functions in your application using a PLI table file (see “PLI
Table File” on page 6). In this file, you can also limit the scope and
operations of the ACC routines for faster performance.

3. Enter the user-defined system tasks and functions in the Verilog
source code.

4. Analyze, elaborate, and simulate your design, specifying the table
file and including the C/C++ source files (or compiled object files
or libraries) so that the application is linked with VCS MX in the
simv executable. If you include object files, use the -cc and -
ld options to specify the compiler and linker that generated them.
Linker errors occur if you include a C/C++ function in the PLI table
file, but omit the source code for this function at compile-time.

To use the debugging features, perform the following:

1. Write a PLI table file, limiting the scope and operations of the ACC
routines used by the debugging features.

2. Analyze, elaborate, and simulate your design, specifying the table
file.

20-4

C Language Interface

These procedures are not mutually exclusive. It is, for example, quite
possible that you have a PLI application that you write and use
during the debugging phase of your design. If so, you can write a PLI
table file that both:

• Associates user-defined system tasks or system functions with
the functions in your application and limits the scope and
operations called by your functions for faster performance.

• Limits scope and operations of the functions called by the
debugging features in VCS MX.

Functions in a PLI Application

When you write a PLI application, you typically write a number of
functions. The following are PLI functions that VCS MX expects with
a user-defined system task or system function:

• The function that VCS MX calls when it executes the user-defined
system task. Other functions are not necessary but this call
function must be present. It is not unusual for there to be more
than one call function. You’ll need a separate user-defined system
task for each call function. If the function returns a value then you
must write a user-defined system function for it instead of a
user-defined system task.

• The function that VCS MX calls during compilation to check if the
user-defined system task has the correct syntax. You can omit
this check function.

20-5

C Language Interface

• The function that VCS MX calls for miscellaneous reasons such
as the execution of $stop, $finish, or other reasons such a
value change. When VCS MX calls this function, it passes a
reason argument to it that explains why VCS MX is calling it. You
can omit this miscellaneous function.

These are the functions you tell VCS MX about in the PLI table file;
apart from these PLI applications can have several more functions
that are called by other functions.

Note:
You do not specify a function to determine the return value size
of a user-defined system function; instead you specify the size
directly in the PLI table file.

Header Files for PLI Applications

For PLI applications, you need to include one or more of the
following header files:

vpi_user.h

For PLI Applications whose functions call IEEE Standard VPI
routines as documented in the IEEE Verilog Language Reference
Manual.

acc_user.h

For PLI Applications whose functions call IEEE Standard ACC
routines as documented in the IEEE Verilog Language Reference
Manual.

vcsuser.h

20-6

C Language Interface

For PLI applications whose functions call IEEE Standard TF
routines as documented in the IEEE Verilog Language Reference
Manual.

vcs_acc_user.h

For PLI applications whose functions call the special ACC routines
implemented exclusively for VCS MX.

These header files are located in the
$VCS_HOME/your_platform/lib directory.

PLI Table File

The PLI table file (also referred to as the pli.tab file) is used to:

• Associate user-defined system tasks and system functions with
functions in a PLI application. This enables VCS MX to call these
functions when it compiles or executes the system task or
function.

• Limit the scope and operation of the PLI 1.0 or PLI 2.0 functions
called by the debugging features. See “Specifying Access
Capabilities for PLI Functions” on page 11 and “Specifying Access
Capabilities for VCS MX Debugging Features” on page 16.

Syntax

The following is the syntax of the PLI table file:

$name PLI_specifications [access_capabilities]

20-7

C Language Interface

Here:

$name

Specify the name of the user-defined system task or function.

PLI_specifications

Specify one or more specifications such as the name of the C
function (mandatory), size of the return value (mandatory only for
user-defined system functions), and so on. For a complete list of
PLI specifications, see “PLI Specifications” on page 7.

access_capabilities

Specify the access capabilities of the functions defined in the PLI
application. Use this to control the PLI 1.0 or PLI 2.0 functions’
ability to access the design hierarchy. See “Access Capabilities”
on page 10 for more information.

Synopsys recommends you enable this feature while using PLIs
to improve the runtime performance.

PLI Specifications

The PLI specifications are as follows:

call=function

Specifies the name of the function defined in the PLI application.
This is mandatory.

check=function

Specifies the name of the check function.

20-8

C Language Interface

misc=function

Specifies the name of the misc function.

data=integer

Specifies the value passed as the first argument to the call, check,
and misc functions. The default value is 0.

Use this argument if you want more than one user-defined system
task or function to use the same call, check, or misc function. In
such a case, specify a different integer for each user-defined
system task or function that uses the same call, check, or misc
function.

size=number

Specifies the size of the returned value in bits. While this is
mandatory for user-defined system functions, you can ignore or
specify 0 for user-defined system tasks. For user-defined system
functions, specify a decimal value for the number of bits. For
example, size=64. If the user-defined system function returns a
real value, specify r. For example, size=r

args=number

Specifies the number of arguments passed to the user-defined
system task or function.

minargs=number

Specifies the minimum number of arguments.

maxargs=number

Specifies the maximum number of arguments.

20-9

C Language Interface

nocelldefinepli

Disables the dumping of value change and simulation time data
of modules defined under the ‘celldefine compiler directive
into a VPD file created by the $vcdpluson system task. This
capability is only used for batch simulation.

persistent

Checks if the specified function is defined in the PLI application,
even if the corresponding system task or function is not used in
the Verilog file. If the function is not found or defined in the PLI
application, VCS MX exits with an undefined reference error
message.

Note that if you use the -debug, -debug_all, or -debug_pp
options during elaboration, VCS MX performs these checks on
every function mapped in the tab file.

To ignore this check, which is enabled by the above debug options
or the persistent specification, set the PERSISTENT_FLAG
environment variable to 1.

Example 1

$val_proc call=val_proc check=check_proc misc=misc_proc

In this line, VCS MX calls the function named val_proc when it
executes the associated user-defined system task named
$val_proc. It calls the check_proc function at compile-time to
see if the user-defined system task has the correct syntax, and calls
the misc_proc function in special circumstances like interrupts.

Example 2

$set_true size=16 call=set_true

20-10

C Language Interface

In this line, there is an associated user-defined system function that
returns a 15-bit return value. VCS MX calls the function named
set_true when it executes this system function.

Note:
Do not enter blank spaces inside a PLI specification. The following
copy of the last example of PLI specifications does not work:

$set_true size = 16 call = set_true

Access Capabilities

You can specify access capabilities in a PLI table file for the following
reasons:

• PLI functions associated with your user-defined system task or
system function. To do this, specify the access capabilities on a
line in a PLI table file after the name of the user-defined system
task or system function and its PLI specifications. See “Specifying
Access Capabilities for PLI Functions” on page 11 for more details.

• For the debugging features VCS MX can use. To do this, specify
access capabilities alone on a line in a PLI table file, without an
associated user-defined system task or system function. See
“Specifying Access Capabilities for VCS MX Debugging Features”
on page 16 for more details.

In many ways, specifying access capabilities for your PLI functions,
and specifying them for VCS MX debugging features, is the same.
However, the capabilities that you enable, and the parts of the design
to which you can apply them are different.

20-11

C Language Interface

Specifying Access Capabilities for PLI Functions

The format for specifying access capabilities is as follows:

acc=|+=|-=|:=capabilities:module_names[+]|%CELL|%TASK|*

Here:

acc

Keyword that begins a line for specifying access capabilities.

=|+=|-=|:=

Operators for adding, removing, or changing access capabilities.
The operators in this syntax are as follows:

=

A shorthand for +=.

+=

Specifies adding the access capabilities that follow to the parts
of the design that follow, as specified by module name,
%CELL,%TASK, or * wildcard character.

-=

Specifies removing the access capabilities that follow from the
parts of the design that follow, as specified by module name,
%CELL,%TASK, or * wildcard character.

:=

20-12

C Language Interface

Specifies changing the access capabilities of the parts of the
design that follow, as specified by module name, %CELL,%TASK,
or * wildcard character, to only those in the list of capabilities
on this specification. A specification with this operator can
change the capabilities specified in a previous specification.

capabilities

Comma-separated list of access capabilities. The capabilities that
you can specify for the functions in your PLI specifications are as
follows:

r or read

Reads the values of nets and registers in your design.

rw or read_write

Both reads from and writes to the values of registers or variables
(but not nets) in your design.

wn

Enables writing values to nets.

cbk or callback

To be called when named objects (nets registers, ports) change
value.

cbka or callback_all

To be called when named and unnamed objects (such as
primitive terminals) change value.

frc or force

Forces values on nets and registers.

20-13

C Language Interface

prx or pulserx_backannotation

Sets pulse error and pulse rejection percentages for module
path delays.

s or static_info

Enables access to static information, such as instance or signal
names and connectivity information. Signal values are not static
information.

tchk or timing_check_backannotation

Back-annotates timing check delay values.

gate or gate_backannotation

Back-annotates delay values on gates.

mp or module_path_backannotation

Back-annotates module path delays.

mip or module_input_port_backannotation

Back-annotates delays on module input ports.

mipb or module_input_port_bit_backannotation

Back-annotates delays on individual bits of module input ports.

module_names

Comma-separated list of module identifiers (or names).

Specifying modules enables, disables, or changes (depending on
the operator) the ability of the PLI function to use the access
capability in all instances of the specified module.

20-14

C Language Interface

+

Specifies adding, removing, or changing the access capabilities
for not only the instances of the specified modules but also the
instances hierarchically under the instances of the specified
modules.

%CELL

Enables, disables, or changes (depending on the operator) the
ability of the PLI function to use the access capability in all
instances of module definitions compiled under the ‘celldefine
compiler directive and all module definitions in Verilog library
directories and library files (as specified with the -y and -v
analysis options).

%TASK

Enables, disables, or changes (depending on the operator) the
ability of the PLI function to use the access capability in all
instances of module definitions that contain the user-defined
system task or system function associated with the PLI function.

*

Enables, disables, or changes (depending on the operator) the
ability of the PLI function to use the access capability throughout
the entire design. Using wildcard characters could seriously
impede the performance of VCS MX.

Note:
There are no blank spaces when specifying access capabilities.

20-15

C Language Interface

The following examples are the PLI specification examples from the
previous section with access capabilities added to them. The
examples wrap to more than one line, but when you edit your PLI
table file, be sure there are no line breaks in these lines.

Example 1

$val_proc call=val_proc check=check_proc misc=misc_proc
acc+= rw,tchk:top,bot acc-=tchk:top

This example adds the access capabilities for reading and writing to
nets and registers, and for back-annotating timing check delays, to
these PLI functions, and enables them to do these things in all
instances of modules top and bot. It then removes the access
capability for back-annotating timing check delay values from these
PLI functions in all instances of module top.

Example 2

$value_passer size=0 args=2 call=value_passer persistent
acc+=rw:%TASK acc-=rw:%CELL

This example adds the access capability to read from and write to the
values of nets and registers to these PLI functions. It enables them
to do these things in all instances of modules declared in module
definitions that contain the $value_passer user-defined system
task. The example then removes the access capability to read from
and write to the values of nets and registers, from these PLI
functions, in module definitions compiled under the ‘celldefine

compiler directive and all module definitions in Verilog library
directories and library files.

Example 3

$set_true size=16 call=set_true acc+=rw:*

20-16

C Language Interface

This example adds the access capability to read from and write to the
values of nets and registers to the PLI functions. It enables them to
do this throughout the entire design.

Specifying Access Capabilities for VCS MX Debugging
Features

The format for specifying these capabilities for VCS MX debugging
features is as follows:

acc=|+=|-=|:=capabilities:module_names[+]|%CELL|*

Here:

acc

Keyword that begins a line for specifying access capabilities.

=|+=|-=|:=

Operators for adding, removing, or changing access capabilities.

capabilities

Comma separated list of access capabilities.

module_names

Comma-separated list of module identifiers. The specified access
capabilities will be added, removed, or changed for all instances
of these modules.

+

Specifies adding, removing, or changing the access capabilities
for not only the instances of the specified modules but also the
instances hierarchically under the instances of the specified
modules.

20-17

C Language Interface

%CELL

Specifies all modules compiled under the ‘celldefine compiler
directive and all modules in Verilog library directories and library
files (as specified with the -y and -v options.)

*

Specifies all modules in the design. Using a wildcard character is
no more efficient than using the -debug option with vcs.

The access capabilities and the interactive commands they enable
are as follows:

ACC Capability What it enables your PLI functions to do

r or read For specifying “reads” in your design, it enables commands
for performing the following:

• Creating an alias for another UCLI command (alias)

• Displaying UCLI help

• Specifying the radix of displayed simulation values
(oformat)

• Displaying simulation values

• Descending and ascending the module hierarchy

• Depositing values on registers

• Displaying the set breakpoints on signals

• Displaying the port names of the current location, and the
current module instance or scope, in the module hierarchy

• Displaying the names of instances in the current module
instance or scope

• Displaying the nets and registers in the current scope

• Moving up the module hierarchy

• Deleting an alias for another UCLI command

20-18

C Language Interface

Example 1

The following specification enables many interactive commands
including those for displaying the values of signals in specified
modules and depositing values to the signals that are registers:

acc+=r:top,mid,bot

Notice that there are no blank spaces in this specification. Blank
spaces cause a syntax error.

• Ending the simulation

rw or read_write For specifying “reads and writes” in your design but r
enables everything that rw does. A longer way to specify
this capability is with the read_write keyword.

cbk or callback Commands for performing the following:

• Setting a repeating breakpoint. In other words always
halting simulation, when a specified signal changes value

• Setting a one shot breakpoint. In other words halting
simulation the next time the signal changes value but not
the subsequent times it changes value

• Removing a breakpoint from a signal

• Showing the line number or number in the source code of
the statement or statements that causes the current value
of a net

•A longer way to specify this capability is with the callback
keyword.

frc or force Commands for performing the following:
• Forcing a net or a register to a specified value so that this

value cannot be changed by subsequent simulation events
in the design

• Releasing a net or register from its forced value

A longer way to specify this capability is with the force
keyword.

ACC Capability What it enables your PLI functions to do

20-19

C Language Interface

Example 2

The following specifications enable most interactive commands for
most of the modules in a design. They then change the ACC
capabilities preventing breakpoint and force commands in instances
of modules in Verilog libraries and modules designated as cells with
the ‘celldefine compiler directive.

acc+=rw,cbk,frc:top+ acc:=rw:%CELL

In this example, the first specification enables the interactive
commands that are enabled by the rw, cbk, and frc capabilities for
module top, which, in this example, is the top-level module of the
design, and all module instances under it. The second specification
limits the interactive commands for the specified modules to only
those enabled by the rw (same as r) capability.

Using the PLI Table File

You specify the PLI table file with the -P compile-time option,
followed by the name of the PLI table file (by convention, the PLI
table file has a .tab extension). For example:

-P pli.tab

When you enter this option on the vcs command line, you can also
enter C source files, compiled .o object files, or .a libraries on the
vcs command line, to specify the PLI application that you want to
link with VCS MX. For example:

vcs -P pli.tab pli.c my_design

20-20

C Language Interface

One advantage to entering .o object files and .a libraries is that you
do not have to recompile the PLI application every time you compile
your design.

Enabling ACC Capabilities

As well as specifying ACC capabilities in only specific parts of your
design (as described in “PLI Table File” on page 6), VCS MX allows
you to enable ACC capabilities throughout your design. It also
enables you to specify selected write capabilities using a
configuration file. Since enabling ACC capabilities has an adverse
effect on performance, VCS MX also allows you to enable only the
ACC capabilities you need.

Globally

You can enter the +acc+level_number compile-time option to
globally enable ACC capabilities throughout your design.

Note:
Using the +acc+level_number option significantly impedes the
simulation performance of your design. Synopsys recommends
that you use a PLI table file to enable ACC capabilities for only
the parts of your design where you need them. For more details
on doing this, see “PLI Table File” on page 6.

The level_number in this option specifies additional ACC
capabilities as follows:

+acc+1 or +acc

Enables all capabilities except value change callbacks and delay
annotation.

20-21

C Language Interface

+acc+2

Above, plus value change callbacks.

+acc+3

Above, plus module path delay annotation.

+acc+4

Above, plus gate delay annotation.

Using the Configuration File

Specify the configuration file with the +optconfigfile compile-
time option. For example:

+optconfigfile+filename

The VCS MX configuration file enables you to enter statements that
specify:

• Using the optimizations of Radiant Technology on part of a design

• Enabling PLI ACC write capabilities for all memories in the design,
disabling them for the entire design, or enabling them for part or
parts of the design hierarchy

• Four state simulation for part of a design

The entries in the configuration file override the ACC write-enabling
entries in the PLI table file.

The syntax of each type of statement in the configuration file to
enable ACC write capabilities is as follows:

20-22

C Language Interface

set writeOnMem;

or

set noAccWrite;

or

module {list_of_module_identifiers} {accWrite};

or

instance {list_of_module_instance_hierarchical_names}
{accWrite};

or

tree [(depth)] {list_of_module_identifiers} {accWrite};

or

signal {list_of_signal_hierarchical_names}
{accWrite};

Here:

set

Keyword preceding a property that applies to the entire design.

writeOnMem

Enables ACC write to memories (any single or multi-dimensional
array of the reg data type) throughout the entire design.

noAccWrite

Disables ACC write capabilities throughout the entire design.

accWrite

20-23

C Language Interface

Enables ACC write capabilities.

module

Keyword specifying that the accWrite attribute in this statement
applies to all instances of the modules in the list, specified by
module identifier.

list_of_module_identifiers

Comma-separated list of module identifiers (also called module
names).

instance

Keyword specifying that the accWrite attribute in this statement
applies to all instances in the list.

list_of_module_instance_hierarchical_names

Comma-separated list of module instance hierarchical names.

Note:
Follow the Verilog syntax for signal names and hierarchical
names of module instances.

tree

Keyword specifying that the accWrite attribute in this statement
applies to all instances of the modules in the list, specified by
module identifier, and also applies to all module instances
hierarchically under these module instances.

20-24

C Language Interface

depth

An integer that specifies how far down the module hierarchy
from the specified modules you want to apply the accWrite
attribute. You can specify a negative value. A negative value
specifies descending to the leaf level and counting up levels of
the hierarchy to apply these attributes. This specification is
optional. Enclose this specification in parentheses: ()

signal

Keyword specifying that the accWrite attribute in this statement
applies to all signals in the list.

list_of_signal_hierarchical_names

Comma-separated list of signal hierarchical names.

Selected ACC Capabilities

There are compile-time and runtime options that enable VCS MX
and PLI applications to use only the ACC capabilities they need and
no more. The procedure to use these options is as follows:

1. Use the +vcs+learn+pli runtime option to tell VCS MX to keep
track of, or learn, the ACC capabilities that are used by different
modules in your design. VCS MX uses this information to create
a secondary PLI table file, named pli_learn.tab. You can use
this table file to recompile your design so that subsequent
simulations use only the ACC capabilities that are needed.

2. Tell VCS MX to apply what it has learned in the next compilation
of your design, and specify the secondary PLI table file, with the
+applylearn+filename compile-time option (if you omit
+filename from the +applylearn compile-time option, VCS
MX uses the pli_learn.tab secondary PLI table file).

20-25

C Language Interface

3. Simulate again with a simv executable in which only the ACC
capabilities you need are enabled.

Learning What Access Capabilities are Used

You include the +vcs+learn+pli runtime option to tell VCS MX to
learn the access capabilities that were used by the modules in your
design and write them into a secondary PLI table file named,
pli_learn.tab.

This file is considered a secondary PLI table file because it does not
replace the first PLI table file that you used (if you used one). This file
does, however, modify whatever access capabilities are specified in
a first PLI table file, or other means of specifying access capabilities,
so that you enable only the capabilities you need in subsequent
simulations.

You should look at the contents of the pli_learn.tab file that VCS
MX writes to see what access capabilities were actually used during
simulation. The following is an example of this file:

////////////////// SYNOPSYS INC ////////////////
// PLI LEARN FILE
// AUTOMATICALLY GENERATED BY VCS(TM) LEARN MODE
//
acc=r:testfixture

//SIGNAL STIM_SRLS:r
acc=rw:SDFFR

//SIGNAL S1:rw

The following line in this file specifies that during simulation, the read
capability was needed for signals in the module named
testfixture.

acc=r:testfixture
//SIGNAL STIM_SRLS:r

20-26

C Language Interface

The comment lets you know that the only signal for which this
capability was needed was the signal named, STIM_SRLS. This line
is in the form of a comment because the syntax of the PLI table file
does not permit specifying access capabilities on a signal-by-signal
basis.

The following line in this file specifies that during simulation, the read
and write capabilities were needed for signals in the module named,
SDFFR, specifically for the signal named S1.

acc=rw:SDFFR
//SIGNAL S1:rw

Signs of a Potentially Significant Performance Gain

You might see one of following comments in the pli_learn.tab
file:

//!VCS_LEARNED: NO_ACCESS_PERFORMED

This indicates that none of the enabled access capabilities were
used during the simulation.

//!VCS_LEARNED: NO_DYNAMIC_ACCESS_PERFORMED

This indicates that only static information was accessed through
access capabilities and there was no value change information
during simulation.

These comments indicate that there is a potentially significant
performance gain when you apply the access capabilities in the
pli_learn.tab file.

20-27

C Language Interface

Compiling to Enable Only the Access Capabilities You Need

After you have run the simulation to learn what access capabilities
were actually used by your design, you can then recompile the
design with the information you have learned, so the resulting simv
executable uses only the access capabilities you require.

When you recompile your design, include the +applylearn
compile-time option.

If, for some reason, you renamed the pli_learn.tab file that VCS
MX writes when you include the +vcs+learn+pli runtime option,
specify the new filename in the compile-time option by appending it
to the option with the following syntax:

+applylearn+filename

When you recompile your design with the +applylearn
compile-time option, it is important that you also re-enter all the
compile-time options that you used for the previous compilation. For
example, if in a previous compilation, you specified a PLI table file
with the -P compile-time option, specify this PLI table file again,
using the -P option, along with the +applylearn option.

Note:
If you change your design after VCS MX writes the
pli_learn.tab file, and you want to make sure that you are
using only the access capabilities you need, you will need to have
VCS MX write another one, by including the +vcs+learn+pli
runtime option and then compiling your design again with the
+applylearn option.

20-28

C Language Interface

Limitations

VCS MX is not able maintain a history of all access capabilities.
However, the capabilities it does maintain, and specify in the
pli_learned.tab file, are as follows:

• r - read

• rw - read and write

• cbk - callbacks

• cbka - callback all including unnamed objects

• frc - forcing values on signals

The +applylearn compile-time option does not work if you also
use either the +multisource_int_delays or
+transport_int_delays compile-time option, because
interconnect delays need global access capabilities.

If you enter the +applylearn compile-time option more than once
on the vcs command line, VCS MX ignores all instances, except for
the first occurrence.

PLI Access to Ports of Celldefine and Library Modules

VCS provides a compile-time option +nocelldefinepli that
blocks debug access to celldefine and library modules. This option
deletes (Programming Language Interface) PLI capabilities from the
modules that are cell-defined or library modules.

However, you can access the ports inside such modules even in the
presence of +nocelldefinepli optimization with an additional
option +ports.

20-29

C Language Interface

+nocelldefinepli+1+ports

Removes the PLI caps from `celldefine modules and allows PLI
access to port nodes and parameters.

+nocelldefinepli+2+ports

Removes the PLI caps from library and ‘celldefine modules and
allows PLI access to port nodes and parameters.

Example

Following is a sample Verilog code in which the dut is a cell define
module.

test.sv

`celldefine
module ram (Addr, Data, CS, WE, OE);

parameter AddrSize = 4;
parameter WordSize = 1;

input [AddrSize-1:0] Addr;
inout [WordSize-1:0] Data;
input CS, WE, OE;

reg [WordSize-1:0] Mem [0:1<<AddrSize];

assign Data = (!CS && !OE) ? Mem[Addr] : {WordSize{1'bz}};

always @(CS or WE)
 if (!CS && !WE)
 Mem[Addr] = Data;

endmodule
`endcelldefine

module ramTop;

20-30

C Language Interface

reg [7:0] addr;
wire [7:0] data;
reg cs, we, oe;
reg [7:0] data_temp;

ram #(8,8) dut (addr, data, cs, we, oe);

assign data = (!cs && !we) ? data_temp : data;

initial begin
 $vcdpluson;
 $vcdplusmemon;
 repeat (10) begin
 #10;
 { cs, we, oe} = {$urandom%2, $urandom%2, $urandom%2};
 addr = {$urandom%2, $urandom%2, $urandom%2, $urandom%2,
$urandom%2, $urandom%2, $urandom%2, $urandom%2};
 data_temp = {$urandom%2, $urandom%2, $urandom%2,
$urandom%2, $urandom%2, $urandom%2, $urandom%2,
$urandom%2};
 end
end
endmodule

To compile this example code, use the following commands:

vcs test.sv -debug_all -sverilog +nocelldefinepli+2+ports
simv -gui &

20-31

C Language Interface

Visualization in DVE

In the following illustration, you can see that “Mem” which is an
internal signal for the “ram” module is not shown in the Data pane
anymore. However other signals, which are ports or parameters, are
visible.

Limitations
• Only Direct Kernel Interface (DKI) applications can access the

ports, PLI applications cannot access.

Ports

Parameters

20-32

C Language Interface

Using VPI Routines

To enable VPI capabilities in VCS MX, use the elaboration option
+vpi. as shown in the following example:

% vcs +vpi top -P test.tab test.c

The header file for the VPI routines is $VCS_HOME/include/
vpi_user.h.

You can register your user-defined system tasks/function-related
callbacks using the vpi_register_systf VPI routine, see
“Support for the vpi_register_systf Routine” on page 33.

You can also use a PLI .tab file to associate your user-defined
system tasks with your VPI routines, see “PLI Table File for VPI
Routines” on page 36.

Support for VPI Callbacks for Reasons cbForce and
cbRelease

The vpi_register_cb() callback mechanism can be registered
for callbacks to occur for simulation events, such as value changes
on an expression or terminal, or the execution of a behavioral
statement. When the cb_data_p-> reason field is set to one of
the following, the callback occurs as described below:

• cbForce/cbRelease — After a force or release has occurred

• cbAssign/cbDeassign — After a procedural assign or
deassign statement has been executed

20-33

C Language Interface

VPI callbacks reasons cbForce and cbRelease are now
supported with the following limitations:

• The force and release commands generates a callback only if
cb_data_p > obj is a valid handle. If it is set to NULL, it doesn’t
generate a callback.

• For cbForce, cbRelease, cbAssign, and cbDeassign
callbacks, the handle that you supplied while registering the
callback is returned and not the corresponding statement handle
[NULL handles are not allowed].

For more information about the VPI callbacks, see the section
Simulation-event-related callbacks in the Verilog IEEE LRM 1364-
2001.

Support for the vpi_register_systf Routine

VCS MX supports the vpi_register_systf VPI access routine.
To use this routine, you need to make an entry in the vpi_user.c
file. You can copy this file from $VCS_HOME/etc/vpi.

The following is an example::
/*==
 Copyright (c) 2003 Synopsys Inc
==*/

/* Fill your start up routines in this array, Last entry
should be
zero, use -use_vpiobj to pick up this file */
extern void register_me();
void (*vlog_startup_routines[])() = {
register_me,

0 /* Last Entry */
}; entry here

20-34

C Language Interface

In this example:

• The routine named register_me is externally declared.

• It is also included in the array named
vlog_startup_routines.

• The last entry in the array is zero.

You specify this file with the -use_vpiobj elaboration option. For
example:

% vcs top -use_vpiobj vpi_user.c +vpi

You can also write a PLI table file for VPI routines. See “PLI Table
File for VPI Routines” .

Integrating a VPI Application With VCS MX

If you create one or more shared libraries for a VPI application, the
application should not contain the vlog_startup_routines
array.

Instead, enter the -load compile-time option to specify the
registration routine. The syntax is as follows:

-load shared_library:registration_routine

You do not have to specify the path name of the shared library, if that
path is part of your LD_LIBRARY_PATH environment variable.

The following are some examples of using this option:

• -load lib1.so:my_register

20-35

C Language Interface

The my_register() routine is in lib1.so. The location of
lib1.so is in the LD_LIBRARY_PATH environment variable.

• -load lib1.so:my_register,new_register

The registration routines my_register() and
new_register() are in lib1.so. The location of lib1.so is
in the LD_LIBRARY_PATH environment variable.

• -load lib1.so:my_register -load
lib2.so:new_register

The registration routine my_register() is in lib1.so and the
second registration routine new_register() is in lib2.so.
The path to both of these libraries are in the LD_LIBRARY_PATH
environment variable. You can enter more than one -load option
to specify multiple shared libraries and their registration routines.

• -load lib1.so:my_register

The registration routine my_register() is in lib1.so. The
location of lib1.so is in the LD_LIBRARY_PATH environment
variable.

• -load /usr/lib/mylib.so:my_register

The registration routine my_register() is in lib1.so, which
is in /usr/lib/mylib.so, and not in the LD_LIBRARY_PATH
environment variable.

20-36

C Language Interface

PLI Table File for VPI Routines

The PLI table file for VPI routines works the same way, and with the
same syntax as a PLI table file for user-defined system tasks that
execute C functions. The following is an example of such a PLI table
file:

$set_mipd_delays call=PLIbook_SetMipd_calltf
check=PLIbook_SetMipd_compiletf
acc=mip,mp,gate,tchk,rw:test+

Note that this entry includes acc= even though the C functions in the
PLI specification call VPI routines instead of PLI 1.0 routines. The
syntax has not changed; you use the same syntax for enabling PLI
1.0 and PLI 2.0 routines.

This PLI table file is used for an example file named
set_mipd_delays_vpi.c, which is available with The Verilog PLI
Handbook by Stuart Sutherland, Kluwer Academic Publishers,
Boston, Dordrect, and London.

Virtual Interface Debug Support

You can debug the Virtual Interface object. A Virtual Interface is a
reference object that can either be initially assigned at its declaration
or not assigned.

You can debug the Virtual Interface object when it is initially assigned
or not assigned within a module or a class.

20-37

C Language Interface

To debug the Virtual Interface objects, the VPI properties defined in
the SystemVerilog LRM, such as vpiVirtual, vpiActual, and
vpiInterfaceDecl, are supported. For more information about
these properties, see the IEEE SystemVerilog LRM.

Example

The following example show the VPI routines usage for Virtual
Interface Debug:

virtual_interface.sv

interface ifc (input logic clk);
 event reset;
 int ifci;
 modport tracker (input clk);
endinterface: ifc

package p;

class C;

 virtual ifc.tracker busmpIF;

 virtual ifc busIF;
 int i;

 function new (virtual ifc inf);
 busIF = inf;
 endfunction // new

 function test(virtual ifc inf);
 busIF = inf;
 $display("hello");
 endfunction: test
endclass: C
endpackage: p

VI declared in Class
scope

20-38

C Language Interface

module mod(input logic clk);
 import p::*;
 ifc trkIF(.clk(clk));

 virtual ifc modbusIF = trkIF;
 virtual ifc.tracker modportIF2;

 C c;

 initial begin
`ifdef DUMP
 $vcdpluson;
`endif
 c = new(trkIF);
 c.test(modbusIF);
 modbusIF.ifci <= 10;
 #1
 $getVar;
 $display("end the first round\n");
 #1
 modbusIF.ifci <= 11;

$getVar;
 $display("end the second round.");
 end
endmodule: mod
pli.c

#include <stdio.h>
#include <stdlib.h>
#include "vcs_vpi_user.h"
#include "sv_vpi_user.h"

void traverse(){
vpiHandle Han, iterHan, scanHan, cls, obj, intfHan,

Href, Hactual;

vpi_configure(vpiDisplayWarnings,"true");

 intfHan = vpi_handle_by_name("mod.vbusIF",NULL);
 vpi_printf("\tVAR `%s'\n", vpi_get_str(vpiName,intfHan
));

VI declared in Module
scope

20-39

C Language Interface

 vpi_printf("\t--- DefName `%s'\n\t--- FullName:%s\n\t-
-- vpiType:%s\n",
 vpi_get_str(vpiDefName,intfHan),
vpi_get_str(vpiFullName,intfHan),
 vpi_get_str(vpiType,intfHan));
 if(vpi_get(vpiVirtual, intfHan)){
 vpi_printf("\t%s is Virtual
Interface\n",vpi_get_str(vpiName,intfHan));
 }
 Hactual = vpi_handle(vpiActual, intfHan);
 if (Hactual)
 {
 vpi_printf("\n\tActual `%s'\n",
vpi_get_str(vpiName,Hactual));
 vpi_printf("\t--- DefName ̀ %s'\n\t--- FullName:%s\n\t-
-- vpiType:%s\n",
 vpi_get_str(vpiDefName,Hactual),
vpi_get_str(vpiFullName,Hactual),
 vpi_get_str(vpiType,Hactual));
 if(vpi_get(vpiVirtual, Hactual)){
 vpi_printf("\tActual Handle is Virtual Interface\n");
 }
 }
}
pli.tab

$getVar call=traverse acc+=r:* acc+=cbk:*

To compile this example code, use the following commands:

vcs -P pli.tab pli.c virtual_interface.sv -debug_all
-sverilog

simv -gui &

To view how the virtual interface objects appear in DVE, see the DVE
User Guide.

20-40

C Language Interface

Limitations

• Virtual Interface passed as a method port is not shown in DVE.

• Virtual Interface as an array is not supported.

• Virtual Interface debugging is not supported in UCLI.

• $vcdplustblog and $vcdplusmsglog do not dump Virtual
Interface.

Unimplemented VPI Routines

VCS MX has not implemented everything specified for VPI routines
in the IEEE Verilog Language Reference Manual, because some
routines would be rarely used and some of the data access
operations of other routines would be rarely used. The
unimplemented routines are as follows:

• vpi_get_data

• vpi_put_data

• vpi_sim_control

Object data model diagrams in the IEEE Verilog Language
Reference Manual specify that some VPI routines should be able to
access data that is rarely needed. These routines, and the data they
cannot access, are as follows:

vpi_get_value

- Cannot retrieve the value of var select objects (diagram 26.6.8
Variables) and func call objects (diagram 26.6.18 Task,
function declaration).

20-41

C Language Interface

- Cannot retrieve the value of VPI operators (expressions) unless
they are arguments to system tasks or system functions.

- Cannot retrieve the value of UDP table entries (vpiVectorVal
not implemented).

vpi_put_value

Cannot set the value of var select objects (diagram 26.6.8
Variables) and primitive objects (diagram 26.6.13 Primitive, prim
term).

vpi_get_delays

Cannot retrieve the values of continuous assign objects (diagram
26.6.24 Continuous assignment) or procedurally assigned
objects.

vpi_put_delays

Cannot put values on continuous assign objects (diagram 26.6.24
Continuous assignment) or procedurally assigned objects.

vpi_register_cb

Cannot register the following types of callbacks that are defined
for this routine:

Also, the cbValueChange callback is not supported for the
following objects:

- A memory or a memory word (index or element)

- VarArray or VarSelect

cbEndOfSimulation cbError cbPliError

cbTchkViolation cbSignal

20-42

C Language Interface

Using VHPI Routines

VHPI enables you to use foreign architecture-based models written
in C language in the VCS MX VHDL

Diagnostics for VPI/VHPI PLI Applications

As per LRM, VPI/VHPI remain silent when an error occurs. The
application checks for error status to report an error. If error detection
mechanisms are not in place, the C code of the application must be
modified and recompiled. In addition, you may need to recompile the
HDL code, if required.

However, you can use the following new runtime diagnostics options
to make the PLI application to report errors without code
modification:

• –diag vpi

• –diag vhpi

For more information, see “Diagnostics for VPI/VHPI PLI
Applications” .

Using DirectC

DirectC is an extended interface between Verilog and C/C++. It is an
alternative to the PLI that, unlike the PLI, enables you to do the
following:

20-43

C Language Interface

• More efficiently pass values between Verilog module instances
and C/C++ functions by calling the functions directly, along with
actual parameters, in your Verilog code.

• Pass more types of data between Verilog and C/C++. With the
PLI, you can only pass Verilog information to and from a C/C++
application. With DirectC you do not have this limitation.

With DirectC, for example, you can model a simulation environment
for your design in C/C++ in which you can pass pointers from the
environment to your design and store them in Verilog signals, and at
a later simulation time, pass these pointers to the simulation
environment.

Similarly, you can use DirectC to develop applications to run with
VCS MX to which you can pass pointers to the location of simulation
values for your design.

DirectC is an alternative to, but not a replacement for, the PLI. You
can do things with the PLI that you cannot do with DirectC. For
example, there are PLI TF and ACC routines to implement a callback
to start a C/C++ function when a Verilog signal changes value. You
cannot do this with DirectC.

You can use Direct C/C++ function calls for existing and proven C
code as well as C/C++ code that you write in the future. You can also
use them without much rewriting of, or additions to, your Verilog
code. You call them the same way you call (or enable) a Verilog
function or Verilog task.

This section describes the DirectC interface in the following sections:

• “Using Direct C/C++ Function Calls”

• “Using Direct Access”

20-44

C Language Interface

• “Using Abstract Access”

• “Enabling C/C++ Functions”

• “Extended BNF for External Function Declarations”

Using Direct C/C++ Function Calls

To enable a direct call of a C/C++ function during simulation, perform
the following:

1. Declare the function in your Verilog code.

2. Call the function in your Verilog code.

3. Elaborate your design and C/C++ code using elaboration options
for DirectC.

However, there are complications to this otherwise straightforward
procedure.

DirectC allows the invocation of C++ functions that are declared in
C++ using the extern "C" linkage directive. The extern "C"
directive is necessary to protect the name of the C++ function from
being mangled by the C++ compiler. Plain C functions do not
undergo mangling, and therefore, do not need any special directive.

The declaration of these functions involves specifying a direction for
the parameters of the C function, because, in the Verilog
environment, they become analogous to Verilog tasks as well as
functions. Verilog tasks are similar to void C functions in that they do
not return a value. However, Verilog tasks do have input, output, and
inout arguments, whereas C function parameters do not have
explicitly declared directions. See “Declaring the C/C++ Function” .

20-45

C Language Interface

There are two access modes for C/C++ function calls. These modes
do not make much difference in your Verilog code; they only pertain
to the development of the C/C++ function. They are as follows:

• The slightly more efficient direct access mode - this mode has
rules for how values of different types and sizes are passed to
and from Verilog and C/C++. This mode is explained in detail in
the section, “Using Direct Access” .

• The slightly less efficient, but with better error handling abstract
access mode - in this implementation, VCS MX creates a
descriptor for each actual parameter of the C function. You access
these descriptors using a specially defined pointer called a
handle. All formal arguments are handles. DirectC comes with a
library of accessory functions for using these handles. This mode
is explained in detail in the section, “Using Abstract Access” .

The abstract access library of accessory functions contains
operations for reading and writing values and for querying about
argument types, sizes, etc. An alternative library, with perhaps
different levels of security or efficiency, can be developed and used
in abstract access without changing your Verilog or C/C++ code.

If you have an existing C/C++ function that you want to use in a
Verilog design, you consider using direct access and see if you really
need to edit your C/C++ function or write a wrapper so that you can
use direct access inside the wrapper. There is a small performance
gain by using direct access compared to abstract access.

If you are about to write a C/C++ function to use in a Verilog design,
first decide how you wish to use it in your Verilog code and write the
external declaration for it, then decide which access mode you want.
You can change the mode later with perhaps a small change in your
Verilog code.

20-46

C Language Interface

Using abstract access is “safer” because the library of accessory
functions for abstract access has error messages to help you to
debug the interface between C/C++ and Verilog. With direct access,
errors simply result in segmentation faults, memory corruption, etc.

Abstract access can be generalized more easily for your C/C++
function. For example, with open arrays you can call the function with
8-bit arguments at one point in your Verilog design and call it again
some place else with 32-bit arguments. The accessory functions can
manage the differences in size. With abstract access you can have
the size of a parameter returned to you. With direct access you must
know the size.

How C/C++ Functions Work in a Verilog Environment

Like Verilog functions, and unlike Verilog tasks, no simulation time
elapses during the execution of a C/C++ function.

C/C++ functions work in two-state and four-state simulation, and in
some cases, work better in two-state simulation. Short vector values,
32-bits or less, are passed by value instead of by reference. Using
two-state simulation makes a difference in how you declare a C/C++
function in your Verilog code.

The parameters of C/C++ functions, are analogous to the arguments
of Verilog tasks. They can be input, output, or inout just like the
arguments of Verilog tasks. You don’t specify them as such in your C
code, but you do when you declare them in your Verilog code.
Accordingly your Verilog code can pass values to parameters
declared to be input or inout, but not output, in the function
declaration in your Verilog code, and your C function can only pass
values from parameters declared to be inout or output, but not input,
in the function declaration in your Verilog code.

20-47

C Language Interface

If a C/C++ function returns a value to a Verilog register (the C/C++
function is in an expression that is assigned to the register) the return
value of the C/C++ function is restricted to the following:

• The value of a scalar reg or bit

Note:
In two-state simulation, a reg has a new name, bit.

- The value of the C type int

- A pointer

- A short, 32 bits or less, vector bit

- The value of a Verilog real which is represented by the C type
double

So C/C++ functions cannot return the value of a four-state vector
reg, long (longer than 32 bits) vector bit, or Verilog integer,
realtime, or time data type. You can pass these type of values out
of the C/C++ function using a parameter that you declare to be inout
or output in the declaration of the function in your Verilog code.

Declaring the C/C++ Function

A partial EBNF specification for external function declaration is as
follows:

source_text ::= description +

description ::= module | user_defined_primitive | extern_declaration

extern_declaration ::= extern access_mode ? attribute ? return_type function_id
 (extern_func_args ?) ;

access_mode ::= ("A" | "C")

20-48

C Language Interface

attribute ::= pure

return_type ::= void | reg | bit | DirectC_primitive_type
| small_bit_vector

small_bit_vector ::= bit [(constant_expression : constant_expression)]

extern_func_args ::= extern_func_arg (, extern_func_arg) *

extern_func_arg ::= arg_direction ? arg_type arg_id ?
arg_direction ::= input | output | inout

arg_type ::= bit_or_reg_type | array_type | DirectC_primitive_type

bit_or_reg_type ::= (bit | reg) optional_vector_range ?

optional_vector_range ::= [(constant_expression : constant_expression) ?]

array_type ::= bit_or_reg_type array [(constant_expression :
 constant_expression) ?]

DirectC_primitive_type ::= int | real | pointer | string

Here:

extern

Keyword that begins the declaration of the C/C++ function
declaration.

access_mode

Specifies the mode of access in the declaration. Enter C for direct
access, or A for abstract access. Using this entry enables some
functions to use direct access and others to use abstract access.

attribute

An optional attribute for the function. The pure attribute enables
some optimizations. Enter this attribute if the function has no side
effects and is dependent only on the values of its input parameters.

return_type

20-49

C Language Interface

The valid return types are int, bit, reg, string, pointer, and
void. See Table 20-1 for a description of what these types
specify.

small_bit_vector

Specifies a bit-width of a returned vector bit. A C/C++ function
cannot return a four-state vector reg, but it can return a vector
bit if its bit-width is 32 bits or less.

function_id

The name of the C/C++ function.

direction

One of the following keywords: input, output, inout. In a C/
C++ function, these keywords specify the same thing that they
specify in a Verilog task; see Table 20-2.

arg_type

The valid argument types are real, reg, bit, int, pointer,
string.

[bit_width]

Specifies the bit-width of a vector reg or bit that is an argument
to the C/C++ function. You can leave the bit-width open by entering
[].

array

Specifies that the argument is a Verilog memory.

[index_range]

20-50

C Language Interface

Specifies a range of elements (words, addresses) in the memory.
You can leave the range open by entering [].

arg_id

The Verilog register argument to the C/C++ function that becomes
the actual parameter to the function.

Note:
Argument direction (i.e., input, output, inout) applies to all
arguments that follow it until the next direction occurs; the default
direction is input.

Table 20-1 C/C++ Function Return Types

Return Type Specifies

int The C/C++ function returns a value for type int.

bit The C/C++ function returns the value of a bit, which is a Verilog
reg in two state simulation, if it is 32 bits or less.

reg The C/C++ function returns the value of a Verilog scalar reg.

string The C/C++ function returns a pointer to a character string.

pointer The C/C++ function returns a pointer.

void The C/C++ function does not return a value.

Table 20-2 C/C++ Function Argument Directions

keyword Specifies

input The C/C++ function can only read the value or address of the
argument. If you specify an input argument first, you can omit
the input keyword.

20-51

C Language Interface

Example 1

extern "A" reg return_reg (input reg r1);

This example declares a C/C++ function named return_reg. This
function returns the value of a scalar reg. When we call this function,
the value of a scalar reg named r1 is passed to the function. This
function uses abstract access.

output The C/C++ function can only write the value or address of the
argument.

inout The C/C++ function can both read and write the value or address
of the argument.

Table 20-3 C/C++ Function Argument Types

keyword Specifies

real The C/C++ function reads or writes the address of a Verilog real
data type.

reg The C/C++ function reads or writes the value or address of a
Verilog reg.

bit The C/C++ function reads or writes the value or address of a
Verilog reg in two state simulation.

int The C/C++ function reads or writes the address of a C/C++ int
data type.

pointer The C/C++ function reads or writes the address that a pointer
is pointing to.

string The C/C++ function reads from or writes to the address of a
string.

Table 20-2 C/C++ Function Argument Directions

keyword Specifies

20-52

C Language Interface

Example 2

extern "C" bit [7:0] return_vector_bit (bit [7:0] r3);

This example declares a C/C++ function named
return_vector_bit. This function returns an 8-bit vector bit (a
reg in two state simulation). When we call this function, the value of
an 8-bit vector bit (a reg in two state simulation) named r3 is passed
to the function. This function uses direct access.

The keyword input is omitted. This keyword can be omitted if the
first argument specified is an input argument.

Example 3

extern string return_string();

This example declares a C/C++ function named return_string.
This function returns a character string and takes no arguments.

Example 4

extern void receive_string(input string r5);

This example declares a C/C++ function named receive_string.
It is a void function. At some time earlier in the simulation, another C/
C++ function passed the address of a character string to reg r5.
When we call this function, it reads the address in reg r5.

Example 5

extern pointer return_pointer();

This example declares a C/C++ function named return_pointer.
When we call this function, it returns a pointer.

20-53

C Language Interface

Example 6

extern void receive_pointer (input pointer r6);

This example declares a C/C++ function named
receive_pointer. When we call this function the address in reg
r6 is passed to the function.

Example 7

extern void memory_reorg (input bit [32:0] array [7:0] mem2,
output bit [32:0] array [7:0] mem1);

This example declares a C/C++ function named memory_reorg.
When we call this function, the values in memory mem2 are passed
to the function. After the function executes, new values are passed
to memory mem1.

Example 8

extern void incr (inout bit [] r7);

This example declares a C/C++ function named incr. When we call
this function, the value in bit r7 is passed to the function. When it
finishes executing, it passes a new value to bit r7. We did not specify
a bit width for vector bit r7. This allows us to use various sizes in the
parameter declaration in the C/C++ function header.

Example 9

extern void passbig (input bit [63:0] r8,
 output bit [63:0] r9);

This example declares a C/C++ function named passbig. When we
call this function, the value in bit r8 is passed by reference to the
function because it is more than 32 bits; see “Using Direct Access”
on page 62. When it finishes executing, a new value is passed by
reference to bit r9.

20-54

C Language Interface

Calling the C/C++ Function

After declaring the C/C++ function, you can call it in your Verilog
code. You call a void C/C++ function in the same manner as you call
a Verilog task-enabling statement, that is, by entering the function
name and its arguments, either on a separate line in an always or
initial block, or in the procedural statements in a Verilog task or
function declaration. Unlike Verilog tasks, you can call a C/C++
function in a Verilog function.

You call a non-void (returns a value) C/C++ function in the same
manner as you call a Verilog function call, that is, by entering its
name and arguments, either in an expression on the RHS of a
procedural assignment statement in an always or initial block,
or in a Verilog task or function declaration.

Examples

r2=return_reg(r1);

The value of scalar reg r1 is passed to C/C++ function
return_reg. It returns a value to reg r2.

r4=return_vector_bit(r3);

The value of vector bit r3 is passed to C/C++ function
return_vector_bit. It returns a value to vector bit r4.

r5=return_string();

The address of a character string is passed to reg r5.

receive_string(r5);

20-55

C Language Interface

The address of a character string in reg r5 is passed to C/C++
function receive_string.

r6=return_pointer();

The address pointed to in a pointer in C/C++ function
return_pointer is passed to reg r6.

get_pointer(r6);

The address in reg r6 is passed to C/C++ function get_pointer.

memory_reorg(mem1,mem2);

In this example, all the values in memory mem2 are passed to C/C++
function memory_reorg, and when it finishes executing, it passes
new values to memory mem1.

incr(r7);

In this example, the value of bit r7 is passed to C/C++ function incr,
and when it finishes executing, it passes a new value to bit r7.

Storing Vector Values in Machine Memory

Users of direct access need to know how vector values are stored in
memory. This information is also helpful for users of abstract access.

20-56

C Language Interface

Verilog four-state simulation values (1, 0, x, and z) are represented
in machine memory with data and control bits. The control bit
differentiates between the 1 and x and the 0 and z values, as shown
in the following table:

When a routine returns Verilog data to a C/C++ function, how that
data is stored depends on whether it is from a two-state or four-state
value, and whether it is from a scalar, a vector, or from an element in
a Verilog memory.

For a four-state vector (denoted by the keyword reg), the Verilog data
is stored in type vec32, which for abstract access is defined as
follows:

typedef unsigned int U;
typedef struct { U c; U d;} vec32;

So, type vec32* has two members of type U; member c is for control
bits and member d is for data bits.

For a two-state vector bit, the Verilog data is stored in type U*.

Vector values are stored in arrays of chunks of 32 bits. For four-state
vectors there are chunks of 32 bits for data values and 32 bits for
control values. For two-state vectors, there are chunks of 32 bits for
data values.

Simulation Value Data Bit Control Bit

1 1 0

x 1 1

0 0 0

z 0 1

20-57

C Language Interface

Figure 20-1 Storing Vector Values

Long vectors, more than 32 bits, have their value stored in more than
one group of 32 bits and can be accessed by chunk. Short vectors,
32 bits or less, are stored in a single chunk.

For long vectors, the chunk for the least significant bits come first,
followed by the chunks for the more significant bits.

Figure 20-2 Storing Vector Values of More than 32 Bits

In an element in a Verilog memory, for each eight bits in the element,
there is a data byte and a control byte with an additional set of bytes
for remainder bit. So, if a memory had 9 bits, it would need two data
bytes and two control bytes. If it had 17 bits, it would need three data

control data

data

four-state

two-state

control data

data

four-state

two-state

control data

data data data

Chunk for the least significant bits

20-58

C Language Interface

bytes and three control bytes. All the data bytes precede the control
bytes. Two-state memories have both data and control bytes, but the
bits in the control bytes always have a zero value.

Figure 20-3 Storing Verilog Memory Elements in Machine Memory

Converting Strings

There are no *true* strings in Verilog, and a string literal, like
"some_text," is just a notation for vectors of bits, based on the same
principle as binary, octal, decimal, and hexadecimal numbers. So
there is a need for a conversion between the two representations of
"strings": the C-style representation (which actually is a pointer to
the sequence of bytes terminated with null byte) and the Verilog
vector encoding a string.

DirectC comes with the vc_ConvertToString() routine that you
can use to convert a Verilog string to a C string. Its syntax is as
follows:

void vc_ConvertTo String(vec32 *, int, char *)

There are scenarios in which a string is created on the Verilog side
and is passed to C code, and therefore, has to be converted from
Verilog representation to C representation. Consider the following
example:

extern void WriteReport(string result_code, /* other
stuff */);

Example of a valid call:

0 1 2 3 4 5

data data data control control control

20-59

C Language Interface

WriteReport("Passes",);

Example of incorrect code:

reg [100*8:1] message;
.
.
.
message = "Failed";
.
.
.
WriteReport(message,);

This call causes a core dump because the function expects a pointer
and gets some random bits instead.

It may happen that a string, or different strings, are assigned to a
signal in Verilog code and their values are passed to C. For example:

task DoStuff(...., result_code); ... output reg [100*8:1]
result_code;
begin
.
.
.
if (...) result_code = "Bus error";
.
.
.
if (...) result_code = "Erroneous address";
.
.
.
else result_code = "Completed");
end
endtask

reg [100*8:1] message;

20-60

C Language Interface

....
DoStuff(..., message);

You cannot directly call the function as follows:

WriteReport(message, ...)

There are two solutions:

Solution 1: Write a C wrapper function, pass "message" to this
function and perform the conversion of vector-to-C string in C, calling
vc_ConvertToString.

Solution 2: Perform the conversion on the Verilog side. This requires
some additional effort, as the memory space for a C string has to be
allocated as follows:

extern "C" string malloc(int);
extern "C" void vc_ConvertToString(reg [], int, string);
// this function comes from DirectC library

reg [31:0] sptr;
.
.
.
// allocate memory for a C-string
sptr = malloc(8*100+1);
//100 is the width of 'message', +1 is for NULL terminator
// perform conversion
vc_ConvertToString(message, 800, sptr);
WriteReport(sptr, ...);

20-61

C Language Interface

Avoiding a Naming Problem

In a module definition, do not call an external C/C++ function with the
same name as the module definition. The following is an example of
the type of source code you should avoid:

extern void receive_string (input string r5);
.
.
.
module receive_string;
.
.
.
always @ r5
begin
.
.
.
receive_string(r5);
.
.
.
end
endmodule

Using Pass by Reference

You can use pass by reference with DirectC. The following source
files: main.v and pythag.c, illustrate using pass by reference.

main.v

extern void pythag(inout real);
module main;
real p;
initial begin
 p = 7.89;
 pythag(p);
 $finish;

20-62

C Language Interface

end
endmodule

pythag.c

#include <stdio.h>
void pythag(double *p)
{
 printf ("Passed real value from verilog p=%f \n",*p);
}

You can try out this example with the following command-line:

vcs +vc main.v pythag.c -R -l somv.log

At runtime, VCS displays the following:

Passed real value from verilog p=7.890000

Using Direct Access

Direct access was implemented for C/C++ routines whose formal
parameters are of the following types:

Some of these type identifiers are standard C/C++ types; those that
are not, were defined with the following typedef statements:

typedef unsigned int U;
typedef unsigned char UB;
typedef unsigned char scalar;
typedef struct {U c; U d;} vec32;

int int* double* void* void**

char* char** scalar scalar*

U* vec32 UB*

20-63

C Language Interface

The type identifier you use depends on the corresponding argument
direction, type, and bit-width that you specified in the declaration of
the function in your Verilog code. The following rules apply:

• Direct access passes all output and inout arguments by reference,
so their corresponding formal parameters in the C/C++ function
must be pointers.

• Direct access passes a Verilog bit by value only if it is 32 bits or
less. If it is larger than 32 bits, direct access passes the bit by
reference so the corresponding formal parameters in the C/C++
function must be pointers if they are larger than 32 bits.

• Direct access passes a scalar reg by value. It passes a vector reg
direct access by reference, so the corresponding formal
parameter in the C/C++ function for a vector reg must be a pointer.

• An open bit-width for a reg makes it possible for you to pass a
vector reg, so the corresponding formal parameter for a reg
argument, specified with an open bit-width, must be a pointer.
Similarly, an open bit-width for a bit makes it possible for you to
pass a bit larger than 32 bits, so the corresponding formal
parameter for a bit argument specified with an open bit width must
be a pointer.

• Direct access passes by value the following types of input
arguments: int, string, and pointer.

• Direct access passes input arguments of type real by reference.

20-64

C Language Interface

The following tables show the mapping between the data types you
use in the C/C++ function and the arguments you specify in the
function declaration in your Verilog code.

Table 20-4 For Input Arguments

argument type C/C++ formal
parameter data type

Passed by

int int value

real double* reference

pointer void* value

string char* value

bit scalar value

reg scalar value

bit [] - 1-32 bit wide vector U value

bit [] - open vector, any vector wider than
32 bits

U* reference

reg [] - 1-32 bit wide vector vec32* reference

array [] - open vector, any vector wider
than 32 bits

UB* reference

Table 20-5 For Output and Inout Arguments

argument type C/C++ formal
parameter data type

Passed by

int int* reference

real double* reference

pointer void** reference

string char** reference

bit scalar* reference

reg scalar* reference

bit [] - any vector, including open vector U* reference

20-65

C Language Interface

In direct access, the return value of the function is always passed by
value. The data type of the returned value is the same as the input
argument.

Example 1

Consider the following C/C++ function declared in the Verilog source
code:

extern reg return_reg (input reg r1);

In this example, the function named return_reg returns the value
of a scalar reg. The value of a scalar reg is passed to it. The header
of the C/C++ function is as follows:

extern "C" scalar return_reg(scalar reti);
scalar return_reg(scalar reti);

If return_reg() is a C++ function, it must be protected from name
mangling, as follows:

extern "C" scalar return_reg(scalar reti);

Note:
The extern "C" directive has been omitted in subsequent
examples, for brevity.

reg[] - any vector, including open vector vec32* reference

array[] - any array, 2 state or 4 state, including
open array

UB* reference

Table 20-5 For Output and Inout Arguments

argument type C/C++ formal
parameter data type

Passed by

20-66

C Language Interface

A scalar reg is passed by value to the function so the parameter is
not a pointer. The parameter’s type is scalar.

Example 2

Consider the following C/C++ function declared in the Verilog source
code:

extern "C" bit [7:0] return_vector_bit (bit [7:0] r3);

In this example, the function named return_vector_bit returns
the value of a vector bit. The "C" entry specifies direct access.
Typically, a declaration includes this when some other functions use
abstract access. The value of an 8-bit vector bit is passed to it. The
header of the C/C++ function is as follows:

U return_vector_bit(U returner);

A vector bit is passed by value to the function because the vector bit
is less than 33 bits so the parameter is not a pointer. The parameter’s
type is U.

Example 3

Consider the following C/C++ function declared in the Verilog source
code:

extern void receive_pointer (input pointer r6);

In this example, the function named receive_pointer does not
return a value. The argument passed to it is declared to be a pointer.
The header of the C/C++ function is as follows:

void receive_pointer(*pointer_receiver);

20-67

C Language Interface

A pointer is passed by value to the function so the parameter is a
pointer of type void, a generic pointer. In this example, we don’t
need to know the type of data that it points to.

Example 4

Consider the following C/C++ function declared in the Verilog source
code:

extern void memory_rewriter (input bit [1:0] array [1:0]
 mem2, output bit [1:0] array [1:0] mem1);

In this example, the function named memory_rewriter has two
arguments, one declared as an input, the other as an output. Both
arguments are bit memories. The header of the C/C++ function is as
follows:

void memory_rewriter(UB *out[2],*in[2]);

Memories are always passed by reference to a C/C++ function so
the parameter named in is a pointer of type UB with the size that
matched the memory range. The parameter named out is also a
pointer, because its corresponding argument is declared to be
output. Its type is also UB because it outputs to a Verilog memory.

Example 5

Consider the following C/C++ function declared in the Verilog source
code:

extern void incr (inout bit [] r7);

In this example, the function named incr, that does not return a
value, has an argument declared as inout. No bit-width is
specified, but the [] entry for the argument specifies that it is not a
scalar bit. The header of the C/C++ function is as follows:

20-68

C Language Interface

void incr (U *p);

Open bit-width parameters are always passed to by reference. A
parameter whose corresponding argument is declared to be inout
is passed to and from by reference. So there are two reasons for
parameter p to be a pointer. It is a pointer to type U because its
corresponding argument is a vector bit.

Example 6

Consider the following C/C++ function declared in the Verilog source
code:

extern void passbig1 (input bit [63:0] r8,
 output bit [63:0] r9);

In this example, the function named passbig1, that does not return
a value, has input and output arguments declared as bit and larger
than 32 bits. The header of the C/C++ function is as follows:

void passbig (U *in, U *out)

In this example, the parameters in and out are pointers to type U.
They are pointers because their corresponding arguments are larger
than 32 bits and type U because their corresponding arguments are
type bit.

Example 7

Consider the following C/C++ function declared in the Verilog source
code:

extern void passbig2 (input reg [63:0] r10,
 output reg [63:0] r11);

20-69

C Language Interface

In this example, the function named passbig2, that does not return
a value, has input and output arguments declared as non-scalar reg.
The header of the C/C++ function is as follows:

void passbig2(vec32 *in, vec32 *out)

In this example, the parameters in and out are pointers to type
vec32. They are pointers because their corresponding arguments
are non-scalar type reg.

Example 8

Consider the following C/C++ function declared in the Verilog source
code:

extern void reality (input real real1, output real real2);

In this example, the function named reality, that does not return a
value, has input and output arguments of declared type real. The
header of the C/C++ function is as follows:

void reality (double *in, double *out)

In this example, the parameters in and out are pointers to type
double because their corresponding arguments are type real.

Using the vc_hdrs.h File

When you elaborate your design for DirectC (by including the +vc
elaboration option), VCS MX writes a file in the current directory
named vc_hdrs.h. In this file, there are extern declarations for all
the C/C++ functions that you declared in your Verilog code. For
example, if you elaborate the Verilog code that contains all the C/
C++ declarations in the examples in this section, the vc_hdrs.h file
contains the following extern declarations:

20-70

C Language Interface

extern void memory_rewriter(UB* mem2, /*OUT*/UB* mem1);
extern U return_vector_bit(U r3);
extern void receive_pointer(void* r6);
extern void incr(/*INOUT*/U* r7);
extern void* return_pointer();
extern scalar return_reg(scalar r1);
extern void reality(double* real1, /*OUT*/double* real2);
extern void receive_string(char* r5);
extern void passbig2(vec32* r8, /*OUT*/vec32* r9);
extern char* return_string();
extern void passbig1(U* r8, /*OUT*/U* r9);

These declarations contain the /*OUT*/ comment in the parameter
specification if its corresponding argument in your Verilog code is of
type output in the declaration of the function.

These declarations contain the /*INOUT*/ comment in the
parameter specification if its corresponding argument in your Verilog
code is of type inout in the declaration of the function.

You can copy from these extern declarations to the function
headers in your C code. If you do, you will always use the right type
of parameter in your function header and you do not have to learn
the rules for direct access. Let VCS MX do this for you.

Access Routines for Multi-Dimensional Arrays

DirectC requires that Verilog multi-dimensional arrays be linearized
(turned into arrays of the same size, but with only one dimension).
VCS MX provides routines for obtaining information about Verilog
multi-dimensional arrays when using direct access. This section
describes these routines.

20-71

C Language Interface

UB *vc_arrayElemRef(UB*, U, ...)

The UB* parameter points to an array, either a single dimensional
array or a multi-dimensional array, and the U parameters specify
indices in the multi-dimensional array. This routine returns a pointer
to an element of the array or NULL if the indices are outside the
range of the array or there is a null pointer.

U dgetelem(UB *mem_ptr, int i, int j) {
 int indx;
 U k;
 /* remaining indices are constant */
 UB *p = vc_arrayElemRef(mem_ptr,i,j,0,1);
 k = *p;
 return(k);
}

There are specialized versions of this routine for one-, two-, and
three-dimensional arrays:

UB *vc_array1ElemRef(UB*, U)
UB *vc_array2ElemRef(UB*, U, U)
UB *vc_array3ElemRef(UB*, U, U, U)

U vc_getSize(UB*,U)

This routine is similar to the vc_mdaSize() routine used in
abstract access. It returns the following:

• If the U type parameter has a value of 0, it returns the number of
indices in an array.

• If the U type parameter has a value greater than 0, it returns the
number of values in the index specified by the parameter. There
is an error condition if this parameter is out of the range of indices.

If the UB pointer is null, this routine returns 0.

20-72

C Language Interface

Using Abstract Access

In abstract access, VCS MX creates a descriptor for each argument
in a function call. The corresponding formal parameters in the
function uses a specially defined pointer to these descriptors called
vc_handle. In abstract access, you use these “handles” to pass
data and values by reference to and from these descriptors.

The idea behind abstract access is that you do not have to worry
about the type you use for parameters, because you always use a
special pointer type called vc_handle.

In abstract access, VCS MX creates a descriptor for every argument
that you enter in the function call in your Verilog code. The
vc_handle is a pointer to the descriptor for the argument. It is
defined as follows:

typdef struct VeriC_Descriptor *vc_handle;

Using vc_handle

In the function header, the vc_handle for a Verilog reg, bit, or
memory is based on the order that you declare the vc_handle and
the order that you entered its corresponding reg, bit, or memory in

20-73

C Language Interface

the function call in your Verilog code. For example, you could have
declared the function and called it in your Verilog code as follows:

This is using abstract access so VCS MX created descriptors for
bit1 and bit2. These descriptors contain information about their
value, but also other information such as whether they are scalar or
vector, and whether they are simulating in two- or four-state
simulation.

extern "A" void my_function(input bit [31:0] r1,
 input bit [32:0] r2);

module dev1;
reg [31:0] bit1;
reg [32:0] bit2;
initial
begin
.
.
.
my_function(bit1,bit2);
.
.
.
end
endmodule

Declare the function

Enter first bit1 then bit2 as arguments
in the function call

20-74

C Language Interface

The corresponding header for the C/C++ function is as follows:

After declaring the vc_handles, you can use them to pass data to and
from these descriptors.

Using Access Routines

Abstract access comes with a set of access routines that enable your
C/C++ function to pass values to and from the descriptors for the
Verilog reg, bit, and memory arguments in the function call.

These access routines use the vc_handle to pass values by
reference, but the vc_handle is not the only type of parameter for
many of these routines. These routines also have the following types
of parameters:

• Scalar — an unsigned char

• Integers — uninterpreted 32 bits with no implied semantics

• Other types of pointers — primitive types “string” and “pointer”

• Real numbers

.

.
my_function(vc_handle h1, vc_handle h2)
{
.
.

 up1=vc_2stVectorRef(h1);
 up2=vc_2stVectorRef(h2);
.
.
.
}

h1 is the vc_handle for bit1
h2 is the vc_handle for bit2

A routine that accesses the data
structures for bit1 and bit2 using
their vc_handles

20-75

C Language Interface

The access routines were named to help you to remember their
function. Routine names beginning with vc_get are for retrieving
data from the descriptor for the Verilog parameter. Routine names
beginning with vc_put are for passing new values to these
descriptors.

These routines can convert Verilog representation of simulation
values and strings to string representation in C/C++. Strings can also
be created in a C/C++ function and passed to Verilog, but you should
keep in mind that they can be overwritten in Verilog. Therefore, you
should copy them to local buffers if you want them to persist.

The following are the access routines, their parameters, and return
values, and examples of how they are used. There is a summary of
the access routines at the end of this chapter; see “Summary of
Access Routines” .

int vc_isScalar(vc_handle)

Returns a 1 value if the vc_handle is for a one-bit reg or bit; returns
a 0 value for a vector reg or bit or any memory including memories
with scalar elements. For example:

extern "A" void scalarfinder(input reg r1,
 input reg [1:0] r2,
 input reg [1:0] array [1:0] r3,
 input reg array [1:0] r4);
module top;
reg r1;
reg [1:0] r2;
reg [1:0] r3 [1:0];
reg r4 [1:0];
initial
scalarfinder(r1,r2,r3,r4);
endmodule

20-76

C Language Interface

In this example, we declare a routine named scalarfinder and
input a scalar reg, a vector reg and two memories (one with scalar
elements).

The declaration contains the "A" specification for abstract access.
You typically include it in the declaration when other functions will
use direct access, that is, you have a mix of functions with direct and
abstract access.

#include <stdio.h>
#include "DirectC.h"

scalarfinder(vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{
int i1 = vc_isScalar(h1),
 i2 = vc_isScalar(h2),
 i3 = vc_isScalar(h3),
 i4 = vc_isScalar(h4);
printf("\ni1=%d i2=%d i3=%d i4=%d\n\n",i1,i2,i3,i4);
}

Parameters h1, h2, h3, and h4 are vc_handles to regs r1 and r2
and memories r3 and r4, respectively. The function prints the
following:

i1=1 i2=0 i3=0 i4=0

int vc_isVector(vc_handle)

This routine returns a 1 value if the vc_handle is to a vector reg or
bit. It returns a 0 value for a vector bit or reg or any memory. For
example, using the Verilog code from the previous example, and the
following C/C++ function:

scalarfinder(vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{

20-77

C Language Interface

int i1 = vc_isVector(h1),
 i2 = vc_isVector(h2),
 i3 = vc_isVector(h3),
 i4 = vc_isVector(h4);
printf("\ni1=%d i2=%d i3=%d i4=%d\n\n",i1,i2,i3,i4);
}

The function prints the following:

i1=0 i2=1 i3=0 i4=0

int vc_isMemory(vc_handle)

This routine returns a 1 value if the vc_handle is to a memory. It
returns a 0 value for a bit or reg that is not a memory. For example,
using the Verilog code from the previous example and the following
C/C++ function:

#include <stdio.h>
#include "DirectC.h"

scalarfinder(vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{
int i1 = vc_isMemory(h1),
 i2 = vc_isMemory(h2),
 i3 = vc_isMemory(h3),
 i4 = vc_isMemory(h4);
printf("\ni1=%d i2=%d i3=%d i4=%d\n\n",i1,i2,i3,i4);
}

The function prints the following:

i1=0 i2=0 i3=1 i4=1

20-78

C Language Interface

int vc_is4state(vc_handle)

This routine returns a 1 value if the vc_handle is to a reg or
memory that simulates with four states. It returns a 0 value for a bit
or a memory that simulates with two states. For example, the
following Verilog code uses metacomments to specify four- and two-
state simulation:

extern void statefinder (input reg r1,
 input reg [1:0] r2,
 input reg [1:0] array [1:0] r3,
 input reg array [1:0] r4,
 input bit r5,
 input bit [1:0] r6,
 input bit [1:0] array [1:0] r7,
 input bit array [1:0] r8);
module top;
reg /*4value*/ r1;
reg /*4value*/ [1:0] r2;
reg /*4value*/ [1:0] r3 [1:0];
reg /*4value*/ r4 [1:0];
reg /*2value*/ r5;
reg /*2value*/ [1:0] r6;
reg /*2value*/ [1:0] r7 [1:0];
reg /*2value*/ r8 [1:0];
initial
statefinder(r1,r2,r3,r4,r5,r6,r7,r8);
endmodule

The C/C++ function that calls the vc_is4state routine is as
follows:

#include <stdio.h>
#include "DirectC.h"

statefinder(vc_handle h1, vc_handle h2, vc_handle h3,
 vc_handle h4,vc_handle h5, vc_handle h6,
 vc_handle h7, vc_handle h8)
{
printf("\nThe vc_handles to 4state are:");

20-79

C Language Interface

printf("\nh1=%d h2=%d h3=%d h4=%d\n\n",
 vc_is4state(h1),vc_is4state(h2),
 vc_is4state(h3),vc_is4state(h4));
printf("\nThe vc_handles to 2state are:");
printf("\nh5=%d h6=%d h7=%d h8=%d\n\n",
 vc_is4state(h5),vc_is4state(h6),
 vc_is4state(h7),vc_is4state(h8));
}

The function prints the following:

The vc_handles to 4state are:
h1=1 h2=1 h3=1 h4=1

The vc_handles to 2state are:
h5=0 h6=0 h7=0 h8=0

int vc_is2state(vc_handle)

This routine does the opposite of the vc_is4state routine. For
example, using the Verilog code from the previous example and the
following C/C++ function:

#include <stdio.h>
#include "DirectC.h"

statefinder(vc_handle h1, vc_handle h2, vc_handle h3,
 vc_handle h4, vc_handle h5, vc_handle h6,
 vc_handle h7, vc_handle h8)
{
printf("\nThe vc_handles to 4state are:");
printf("\nh1=%d h2=%d h3=%d h4=%d\n\n",
 vc_is2state(h1),vc_is2state(h2),
 vc_is2state(h3),vc_is2state(h4));
printf("\nThe vc_handles to 2state are:");
printf("\nh5=%d h6=%d h7=%d h8=%d\n\n",
 vc_is2state(h5),vc_is2state(h6),
 vc_is2state(h7),vc_is2state(h8));
}

20-80

C Language Interface

The function prints the following:

The vc_handles to 4state are:
h1=0 h2=0 h3=0 h4=0

The vc_handles to 2state are:
h5=1 h6=1 h7=1 h8=1

int vc_is4stVector(vc_handle)

This routine returns a 1 value if the vc_handle is to a vector reg. It
returns a 0 value if the vc_handle is to a scalar reg, scalar or vector
bit, or memory. For example, using the Verilog code from the
previous example, and the following C/C++ function:

#include <stdio.h>
#include "DirectC.h"

statefinder(vc_handle h1, vc_handle h2,
 vc_handle h3, vc_handle h4,
 vc_handle h5, vc_handle h6,
 vc_handle h7, vc_handle h8)
{
printf("\nThe vc_handle to a 4state Vector is:");
printf("\nh2=%d \n\n",vc_is4stVector(h2));
printf("\nThe vc_handles to 4state scalars or
 memories and 2state are:");
printf("\nh1=%d h3=%d h4=%d h5=%d h6=%d h7=%d h8=%d\n\n",
 vc_is4stVector(h1), vc_is4stVector(h3),
 vc_is4stVector(h4),vc_is4stVector(h5),
 vc_is4stVector(h6), vc_is4stVector(h7),
 vc_is4stVector(h8));
}

The function prints the following:

The vc_handle to a 4state Vector is:
h2=1

20-81

C Language Interface

The vc_handles to 4state scalars or
 memories and 2state are:
h1=0 h3=0 h4=0 h5=0 h6=0 h7=0 h8=0

int vc_is2stVector(vc_handle)

This routine returns a 1 value if the vc_handle is to a vector bit. It
returns a 0 value if the vc_handle is to a scalar bit, scalar or vector
reg, or to a memory. For example, using the Verilog code from the
previous example and the following C/C++ function:

#include <stdio.h>
#include "DirectC.h"

statefinder(vc_handle h1, vc_handle h2,
 vc_handle h3, vc_handle h4,
 vc_handle h5, vc_handle h6,
 vc_handle h7, vc_handle h8)
{
printf("\nThe vc_handle to a 2state Vector is:");
printf("\nh6=%d \n\n",vc_is2stVector(h6));
printf("\nThe vc_handles to 2state scalars or
 memories and 4state are:");
printf("\nh1=%d h2=%d h3=%d h4=%d h5=%d h7=%d h8=%d\n\n",
 vc_is2stVector(h1), vc_is2stVector(h2),
 vc_is2stVector(h3), vc_is2stVector(h4),
 vc_is2stVector(h5), vc_is2stVector(h7),
 vc_is2stVector(h8));
}

The function prints the following:

The vc_handle to a 2state Vector is:
h6=1

The vc_handles to 2state scalars or
 memories and 4state are:
h1=0 h2=0 h3=0 h4=0 h5=0 h7=0 h8=0

20-82

C Language Interface

int vc_width(vc_handle)

Returns the width of a vc_handle. For example:

void memcheck_int(vc_handle h)
{
 int i;

int mem_size = vc_arraySize(h);

 /* determine minimal needed width, assuming signed int */
 for (i=0; (1 << i) < (mem_size-1); i++) ;

 if (vc_width(h) < (i+1)) {
 printf("Register too narrow to be assigned %d\n",
(mem_size-1));
 return;
 }

 for(i=0;i<8;i++) {
 vc_putMemoryInteger(h,i,i*4);
 printf("memput : %d\n",i*4);
 }
 for(i=0;i<8;i++) {
 printf("memget:: %d \n",vc_getMemoryInteger(h,i));
 }

}

int vc_arraySize(vc_handle)

Returns the number of elements in a memory or multi-dimensional
array. The previous example also shows a usage of
vc_arraySize().

scalar vc_getScalar(vc_handle)

Returns the value of a scalar reg or bit. For example:

void rotate_scalars(vc_handle h1, vc_handle h2, vc_handle

20-83

C Language Interface

h3)
{

scalar a;

a = vc_getScalar(h1);
vc_putScalar(h1, vc_getScalar(h2));
vc_putScalar(h2, vc_getScalar(h3));
vc_putScalar(h3, a);
return;

}

void vc_putScalar(vc_handle, scalar)

Passes the value of a scalar reg or bit to a vc_handle by reference.
The previous example also shows a usage of vc_putScalar().

char vc_toChar(vc_handle)

Returns the 0, 1, x, or z character. For example:

void print_scalar(vc_handle h) {
 printf("%c", vc_toChar(h));
 return;
}

int vc_toInteger(vc_handle)

Returns an int value for a vc_handle to a scalar bit or a vector bit
of 32 bits or less. For a vector reg or a vector bit with more than 32
bits this routine returns a 0 value and displays the following warning
message:

DirectC interface warning: 0 returned for 4-state value
(vc_toInteger)

The following is an example of Verilog code that calls a C/C++
function that uses this routine:

20-84

C Language Interface

extern void rout1 (input bit onebit, input bit [7:0] mobits);

module top;
reg /*2value*/ onebit;
reg /*2value*/ [7:0] mobits;
initial
begin
rout1(onebit,mobits);
onebit=1;
mobits=128;
rout1(onebit,mobits);
end
endmodule

Notice that the function declaration specifies that the parameters are
of type bit. It includes metacomments for two-state simulation in the
declaration of reg onebit and mobits. There are two calls to the
function rout1, before and after values are assigned in this Verilog
code.

The following C/C++ function uses this routine:

#include <stdio.h>
#include "DirectC.h"

void rout1 (vc_handle onebit, vc_handle mobits)
{
printf("\n\nonebit is %d mobits is %d\n\n",
 vc_toInteger(onebit), vc_toInteger(mobits));
}

This function prints the following:

onebit is 0 mobits is 0

onebit is 1 mobits is 128

20-85

C Language Interface

char *vc_toString(vc_handle)

Returns a string that contains the 1, 0, x, and z characters. For
example:

extern void vector_printer (input reg [7:0] r1);

module test;
reg [7:0] r1,r2;

initial
begin
#5 r1 = 8’bzx01zx01;
#5 vector_printer(r1);
#5 $finish;
end
endmodule

void vector_printer (vc_handle h)
{
vec32 b,*c;
c=vc_4stVectorRef(h);
b=*c;
printf("\n b is %x[control] %x[data]\n\n",b.c,b.d);
printf("\n b is %s \n\n",vc_toString(h));
}

In this example, a vector reg is assigned a value that contains x and
z values, as well as, 1 and 0 values. In the abstract access C/C++
function, there are two ways of displaying the value of the reg:

• Recognize that type vec32 is defined as follows in the
DirectC.h file:

typdef struct {U c; U d;} vec32;

20-86

C Language Interface

In machine memory, there are control, as well as, data bits for
Verilog data to differentiate X from 1 and Z from 0 data, so there
are c (control) and d (data) data variables in the structure and you
must specify which variable when you access the vec32 type.

• Use the vc_toString routine to display the value of the reg that
contains X and Z values.

This example displays:

 b is cc[control 55[data]

 b is zx01zx01

char *vc_toStringF(vc_handle, char)

Returns a string that contains the 1, 0, x, and z characters and allows
you to specify the format or radix for the display. The char
parameter can be ’b’, ’o’, ’d’, or ’x’.

So, if we modify the C/C++ function in the previous example, it is as
follows:

void vector_printer (vc_handle h)
{
vec32 b,*c;
c=vc_4stVectorRef(h);
b=*c;
printf("\n b is %s \n\n",vc_toStringF(h,’b’));
printf("\n b is %s \n\n",vc_toStringF(h,’o’));
printf("\n b is %s \n\n",vc_toStringF(h,’d’));
printf("\n b is %s \n\n",vc_toStringF(h,’x’));
}

This example now displays:

 b is zx01zx01

20-87

C Language Interface

 b is XZX

 b is X

 b is XX

void vc_putReal(vc_handle, double)

Passes by reference a real (double) value to a vc_handle. For
example:

void get_PI(vc_handle h)
{
 vc_putReal(h, 3.14159265);
}

double vc_getReal(vc_handle)

Returns a real (double) value from a vc_handle. For example:

void print_real(vc_handle h)
{
 printf("[print_real] %f\n", vc_getReal(h));
}

void vc_putValue(vc_handle, char *)

This function passes, by reference, through the vc_handle, a value
represented as a string containing the 0, 1, x, and z characters. For
example:

extern void check_vc_putvalue(output reg [] r1);

module tester;
reg [31:0] r1;

20-88

C Language Interface

initial
begin
check_vc_putvalue(r1);
$display("r1=%0b",r1);
$finish;
end
endmodule

In this example, the C/C++ function is declared in the Verilog code
specifying that the function passes a value to a four-state reg (and,
therefore, can hold X and Z values).

#include <stdio.h>
#include "DirectC.h"

void check_vc_putvalue(vc_handle h)
{
 vc_putValue(h,"10xz");
}

The vc_putValue routine passes the string "10xz" to the reg r1
through the vc_handle. The Verilog code displays:

r1=10xz

void vc_putValueF(vc_handle, char *, char)

This function passes by reference, through the vc_handle, a value
for which you specify a radix with the third parameter. The valid
radixes are ’b’, ’o’, ’d’, and ’x’. For example the following
Verilog code declares a function named assigner that uses this
routine:

extern void assigner (output reg [31:0] r1,
 output reg [31:0] r2,
 output reg [31:0] r3,
 output reg [31:0] r4);

module test;

20-89

C Language Interface

reg [31:0] r1,r2,r3,r4;
initial
begin
assigner(r1,r2,r3,r4);
$display("r1=%0b in binary r1=%0d in decimal\n",r1,r1);
$display("r2=%0o in octal r2 =%0d in decimal\n",r2,r2);
$display("r3=%0d in decimal r3=%0b in binary\n",r3,r3);
$display("r4=%0h in hex r4= %0d in decimal\n\n",r4,r4);
$finish;
end
endmodule

The following is the C/C++ function:

#include <stdio.h>
#include "DirectC.h"

void assigner (vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{
vc_putValueF(h1,"10",’b’);
vc_putValueF(h2,"11",’o’);
vc_putValueF(h3,"10",’d’);
vc_putValueF(h4,"aff",’x’);
}

The Verilog code displays the following:

r1=10 in binary r1=2 in decimal

r2=11 in octal r2 =9 in decimal

r3=10 in decimal r3=1010 in binary

r4=aff in hex r4= 2815 in decimal

20-90

C Language Interface

void vc_putPointer(vc_handle, void*)
void *vc_getPointer(vc_handle)

These functions pass a generic type of pointer or string to a
vc_handle by reference. Do not use these functions for passing
Verilog data (the values of Verilog signals). Use them for passing C/
C++ data instead. vc_putPointer passes this data by reference to
Verilog and vc_getPointer receives this data in a pass by
reference from Verilog. You can also use these functions for passing
Verilog strings.

For example:

extern void passback(output string, input string);
extern void printer(input pointer);

module top;
reg [31:0] r2;
initial
begin
passback(r2,"abc");
printer(r2);
end
endmodule

This Verilog code passes the string "abc" to the passback C/C++
function by reference, and that function passes it by reference to reg
r2. The Verilog code then passes it by reference to the C/C++
function printer from reg r2.

passback(vc_handle h1, vc_handle h2)
{
vc_putPointer(h1, vc_getPointer(h2));
}

printer(vc_handle h)
{
printf("Procedure printer prints the string value %s\n\n",

20-91

C Language Interface

 vc_getPointer (h));
}

The function named printer prints the following:

Procedure printer prints the string value abc

void vc_StringToVector(char *, vc_handle)

Converts a C string (a pointer to a sequence of ASCII characters
terminated with a null character) into a Verilog string (a vector with
8-bit groups representing characters). For example:

extern "C" string FullPath(string filename);
// find full path to the file
// C string obtained from C domain

extern "A" void s2v(string, output reg[]);
// string-to-vector
// wrapper for vc_StringToVector().

`define FILE_NAME_SIZE 512

module Test;
 reg [`FILE_NAME_SIZE*8:1] file_name;
// this file_name will be passed to the Verilog code that
expects
// a Verilog-like string
.
.
.
 initial begin
s2v(FullPath("myStimulusFile"), file_name); // C-string to
Verilog-string
// bits of 'file_name' represent now 'Verilog string'
end
.
.
.
endmodule

20-92

C Language Interface

The C code is as follows:

void s2v(vc_handle hs, vc_handle hv) {
 vc_StringToVector((char *)vc_getPointer(hs), hv);

 }

void vc_VectorToString(vc_handle, char *)

Converts a vector value to a string value.

int vc_getInteger(vc_handle)

Same as vc_toInteger.

void vc_putInteger(vc_handle, int)

Passes an int value by reference through a vc_handle to a scalar
reg or bit or a vector bit that is 32 bits or less. For example:

void putter (vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{
int a,b,c,d;
a=1;
b=2;
c=3;
d=9999999;

vc_putInteger(h1,a);
vc_putInteger(h2,b);
vc_putInteger(h3,c);
vc_putInteger(h4,d);
}

vec32 *vc_4stVectorRef(vc_handle)

Returns a vec32 pointer to a four-state vector. Returns NULL if the
specified vc_handle is not to a four-state vector reg. For example:

20-93

C Language Interface

typedef struct vector_descriptor {
 int width; /* number ofbits */
 int is4stte; /* TRUE/FALSE */
} VD;

void WriteVector(vc_handle file_handle, vc_handle a_vector)
{
 FILE *fp;
 int n, size;
 vec32 *v;
 VD vd;
 fp = vc_getPointer(file_handle);

 /* write vector’s size and type */
 vd.is4state = vc_is4stVector(a_vector);
 vd.width = vc_width(a_vector);
 size = (vd.width + 31) >> 5; /* number of 32-bit chunks */
 /* printf("writing: %d bits, is 4 state: %d, #chunks:
 %d\n", vd.width, vd.is4state, size); */
 n = fwrite(&vd, sizeof(vd), 1, fp);
 if (n != 1) {
 printf("Error: write failed.\n");
 }

 /* write the vector into a file; vc_*stVectorRef
 is a pointer to the actual Verilog vector */
 if (vc_is4stVector(a_vector)) {
 n = fwrite(vc_4stVectorRef(a_vector), sizeof(vec32),
 size, fp);
 } else {
 n = fwrite(vc_2stVectorRef(a_vector), sizeof(U),
 size, fp);
 }
 if (n != size) {
 printf("Error: write failed for vector.\n");
 }
}

20-94

C Language Interface

U *vc_2stVectorRef(vc_handle)

Returns a U pointer to a bit vector that is larger than 32 bits. If you
specify a short bit vector (32 bits or fewer) this routine returns a
NULL value. For example:

extern void big_2state(input bit [31:0] r1,
 input bit [32:0] r2);

module test;
reg [31:0] r1;
reg [32:0] r2;
initial
begin
r1=4294967295;
r2=33’b100000000000000000000000000000010;
big_2state(r1,r2);
end
endmodule

In this example, the Verilog code declares a 32-bit vector bit, r1, and
a 33-bit vector bit, r2. The values of both are passed to the C/C++
function big_2state.

When we pass the short bit vector r1 to vc_2stVectorRef, it
returns a null value because it has fewer than 33 bits. This is not the
case when we pass bit vector r2 because it has more than 32 bits.
Notice that from right to left, the first 32 bits of r2 have a value of 2
and the MSB 33rd bit has a value of 1. This is significant in how the
C/C++ stores this data.

#include <stdio.h>
#include "DirectC.h"

big_2state(vc_handle h1, vc_handle h2)
{
 U u1,*up1,u2,*up2;
 int i;

20-95

C Language Interface

 int size;

 up1=vc_2stVectorRef(h1);
 up2=vc_2stVectorRef(h2);
 if (up1){ /* check for the null value returned to up1 */
 u1=*up1;} else{
 u1=0;
 printf("\nShort 2 state vector passed to up1\n");
 }
 if (up2){ /* check for the null value returned to up2 */
 size = vc_width (h2); /* to find out the number of bits */
 /* in h2 */
 printf("\n width of h2 is %d\n",size);
 size = (size + 31) >> 5; /* to get number of 32-bit chunks */
 printf("\n the number of chunks needed for h2 is %d\n\n",
 size);
 printf("loading into u2");
 for(i = size - 1; i >= 0; i--){
 u2=up2[i]; /* load a chunk of the vector */
 printf(" %x",up2[i]);}
 printf("\n");}
 else{
 u2=0;
 printf("\nShort 2 state vector passed to up2\n");}
}

In this example, the short bit vector is passed to the
vc_2stVectorRef routine, so it returns a null value to pointer up1.
Then the long bit vector is passed to the vc_2stVectorRef
routine, so it returns a pointer to the Verilog data for vector bit r2 to
pointer up2.

It checks for the null value in up1. If it doesn’t have a null value,
whatever it points to is passed to u1. If it does have a null value, the
function prints a message about the short bit vector. In this example,
you can expect it to print this message.

20-96

C Language Interface

Still later in the function, it checks for the null value in up2 and the
size of the long bit vector that is passed to the second parameter.
Then, because Verilog values are stored in 32-bit chucks in C/C++,
the function finds out how many chunks are needed to store the long
bit vector. It then loads one chunk at a time into u2 and prints the
chunk starting with the most significant bits. This function displays
the following:

Short 2 state vector passed to up1

 width of h2 is 33

 the number of chunks needed for h2 is 2

loading into u2 1 2

void vc_get4stVector(vc_handle, vec32 *)
void vc_put4stVector(vc_handle, vec32 *)

Passes a four-state vector by reference to a vc_handle to and from
an array in C/C++ function. vc_get4stVector receives the vector
from Verilog and passes it to the array and vc_put4stVector
passes the array to Verilog.

These routines work only if there are enough elements in the array
for all the bits in the vector. The array must have an element for every
32 bit in the vector plus an additional element for any remaining bits.
For example:

extern void copier (input reg [67:0] r1,
output reg [67:0] r2);

module top;

reg [67:0] r1,r2;

initial

20-97

C Language Interface

begin
r1 [67:65] = 3’b111;
r1 [64:33] = 32’bzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz;
r1 [32:0] = 32’b00000000000000000000000000000000;
copier(r1,r2);
$display("r1=%0b\n",r1);
$display("r2=%0b\n",r2);

end
endmodule

In this example, there are two 68-bit regs. Values are assigned to all
the bits of one reg and both of these regs are parameters to the C/
C++ function named copier.

copier(vc_handle h1, vc_handle h2)
{
vec32 holder[3];
vc_get4stVector(h1,holder);
vc_put4stVector(h2,holder);
}

This function declares a vec32 array of three elements named
holder. It uses three elements because its parameters are 68-bit
regs so we need an element for every 32 bits and one more for the
remaining four bits.

The Verilog code displays the following:

r1=111zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz000000000000000000000000000000000

r2=111zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz000000000000000000000000000000000

20-98

C Language Interface

void vc_get2stVector(vc_handle, U *)
void vc_put2stVector(vc_handle, U *)

Passes a two-state vector by reference to a vc_handle to and from
an array in C/C++ function. vc_get2stVector receives the vector
from Verilog and passes it to the array and vc_put4stVector
passes the array to Verilog.

There routines, just like the vc_get4stVector and
vc_put4stVector routines, work only if there are enough
elements in the array for all the bits in the vector. The array must
have an element for every 32 bit in the vector plus an additional
element for any remaining bits.

The only differences between these routines and the
vc_get4stVector and vc_put4stVector routines are the type
of data they pass, two- or four-state simulation values, and the type
you declare for the array in the C/C++ function.

UB *vc_MemoryRef(vc_handle)

Returns a pointer of type UB that points to a memory in Verilog. For
example:

extern void mem_doer (input reg [1:0] array [3:0]
 memory1, output reg [1:0] array
 [31:0] memory2);

module top;
reg [1:0] memory1 [3:0];
reg [1:0] memory2 [31:0];
initial
begin
memory1 [3] = 2’b11;
memory1 [2] = 2’b10;
memory1 [1] = 2’b01;
memory1 [0] = 2’b00;
mem_doer(memory1,memory2);

20-99

C Language Interface

$display("memory2[31]=%0d",memory2[31]);
end
endmodule

In this example, we declare two memories, one with 4 addresses,
memory1, the other with 32 addresses, memory2. We assign values
to the addresses of memory1, and then pass both memories to the
C/C++ function mem_doer.

#include <stdio.h>
#include "DirectC.h"

void mem_doer(vc_handle h1, vc_handle h2)
{
 UB *p1, *p2;
 int i;

 p1 = vc_MemoryRef(h1);
 p2 = vc_MemoryRef(h2);

 for (i = 0; i < 8; i++){
 memcpy(p2,p1,8);
 p2 += 8;
 }
}

The purpose of the C/C++ function mem_doer is to copy the four
elements in Verilog memory memory1 into the 32 elements of
memory2.

The vc_MemoryRef routines return pointers to the Verilog
memories and the machine memory locations they point to are also
pointed to by pointers p1 and p2. Pointer p1 points to the location of
Verilog memory memory1, and p2 points to the location of Verilog
memory memory2.

20-100

C Language Interface

The function uses a for loop to copy the data from Verilog memory
memory1 to Verilog memory memory2. It uses the standard memcpy
function to copy a total of 64 bytes by copying eight bytes eight times.

This example copies a total of 64 bytes because each element of
memory2 is only two bits wide, but for every eight bits in an element
in machine memory there are two bytes, one for data and another for
control. The bits in the control byte specify whether the data bit with
a value of 0 is actually 0 or Z, or whether the data bit with a value of
1 is actually 1 or X.

Figure 20-4 Storing Verilog Memory Elements in Machine Memory

In an element in a Verilog memory, for each eight bits in the element
there is a data byte and a control byte with an additional set of bytes
for a remainder bit. So, if a memory had 9 bits it would need two data
bytes and two control bytes. If it had 17 bits it would need three data
bytes and three control bytes. All the data bytes precede the control
bytes.

Therefore, memory1 needs 8 bytes of machine memory (four for
data and four for control) and memory2 needs 64 bytes of machine
memory (32 for data and 32 for control). Therefore, the C/C++
function needs to copy 64 bytes.

The Verilog code displays the following:

memory2[31]=3

0 1 2 3 4 5

data data data data control control control control

6 7

20-101

C Language Interface

UB *vc_MemoryElemRef(vc_handle, U indx)

Returns a pointer to an element (word, address or index) of a Verilog
memory. You specify the vc_handle of the memory and the
element. For example:

extern void mem_elem_doer(inout reg [25:1] array [3:0]
memory1);

module top;
reg [25:1] memory1 [3:0];
initial
begin
memory1 [0] = 25’bz00000000xxxxxxxx11111111;
$display("memory1 [0] = %0b\n", memory1[0]);
mem_add_doer(memory1);
$display("\nmemory1 [3] = %0b", memory1[3]);
end
endmodule

In this example, there is a Verilog memory with four addresses, each
element has 25 bits. This means that the Verilog memory needs
eight bytes of machine memory because there is a data byte and a
control byte for every eight bits in an element, with an additional data
and control byte for any remainder bits.

In this example, in element 0 the 25 bits are assigned, from right to
left, eight 1 bits, eight unknown x bits, eight 0 bits, and one high
impedance z bit.

#include <stdio.h>
#include "DirectC.h"

void mem_elem_doer(vc_handle h)
{

 U indx;
 UB *p1, *p2, t [8];

20-102

C Language Interface

 indx = 0;
 p1 = vc_MemoryElemRef(h, indx);
 indx = 3;
 p2 = vc_MemoryElemRef(h, indx);
 memcpy(p2,p1,8);

 memcpy(t,p2,8);
 printf(" %d from t[0], %d from t[1]\n",
 (int)t[0], (int) t[1]);
 printf(" %d from t[2], %d from t[3]\n",
 (int)t[2], (int) t[3]);
 printf(" %d from t[4], %d from t[5]\n",
 (int)t[4], (int)t[5]);
 printf(" %d from t[6], %d from t[7]\n",
 (int)t[6], (int)t[7]);

}

C/C++ function mem_elem_doer uses the vc_MemoryElemRef
routine to return pointers to addresses 0 and 3 in Verilog memory1
and pass them to UB pointers p1 and p2. The standard memcpy
routine then copies the eight bytes for address 0 to address 3.

The remainder of the function is additional code to show you data
and control bytes. The eight bytes pointed to by p2 are copied to
array t and then the elements of the array are printed.

The combined Verilog and C/C++ code displays the following:

memory1 [0] = z00000000xxxxxxxx11111111

 255 from t[0], 255 from t[1]
 0 from t[2], 0 from t[3]
 0 from t[4], 255 from t[5]
 0 from t[6], 1 from t[7]

memory1 [3] = z00000000xxxxxxxx11111111

20-103

C Language Interface

As you can see, function mem_elem_doer passes the contents of
the Verilog memory memory1 element 0 to element 3.

In array t, the elements contain the following:

scalar vc_getMemoryScalar(vc_handle, U indx)

Returns the value of a one-bit memory element. For example:

extern void bitflipper (inout reg array [127:0] mem1);

module test;
reg mem1 [127:0];
initial
begin
mem1 [0] = 1;
$display("mem1[0]=%0d",mem1[0]);
bitflipper(mem1);
$display("mem1[0]=%0d",mem1[0]);
$finish;
end
endmodule

In this example of Verilog code, we declare a memory with 128 one-
bit elements, assign a value to element 0, and display its value
before and after we call a C/C++ function named bitflipper.

#include <stdio.h>

[0] The data bits for the eight 1 values assigned to the element.

[1] The data bits for the eight X values assigned to the element

[2] The data bits for the eight 0 values assigned to the element

[3] The data bit for the Z value assigned to the element

[4] The control bits for the eight 1 values assigned to the element

[5] The control bits for the eight X values assigned to the element

[6] The control bits for the eight 0 values assigned to the element

[7] The control bit for the Z value assigned to the element

20-104

C Language Interface

#include "DirectC.h"

void bitflipper(vc_handle h)
{
scalar holder=vc_getMemoryScalar(h, 0);
holder = ! holder;
vc_putMemoryScalar(h, 0, holder);
}

In this example, we declare a variable of type scalar, named
holder, to hold the value of the one-bit Verilog memory element.
The routine vc_getMemoryScalar returns the value of the
element to the variable. The value of holder is inverted and then
the variable is included as a parameter in the
vc_putMemoryScalar routine to pass the value to that element in
the Verilog memory.

The Verilog code displays the following:

mem[0]=1
mem[0]=0

void vc_putMemoryScalar(vc_handle, U indx, scalar)

Passes a value of type scalar to a Verilog memory element. You
specify the memory by vc_handle and the element by the indx
parameter. This routine is used in the previous example.

int vc_getMemoryInteger(vc_handle, U indx)

Returns the integer equivalent of the data bits in a memory element
whose bit-width is 32 bits or less. For example:

extern void mem_elem_halver (inout reg [] array [] memX);

module test;
reg [31:0] mem1 [127:0];

20-105

C Language Interface

reg [7:0] mem2 [1:0];
initial
begin
mem1 [0] = 999;
mem2 [0] = 8’b1111xxxx;
$display("mem1[0]=%0d",mem1[0]);
$display("mem2[0]=%0d",mem2[0]);
mem_elem_halver(mem1);
mem_elem_halver(mem2);
$display("mem1[0]=%0d",mem1[0]);
$display("mem2[0]=%0d",mem2[0]);
$finish;
end
endmodule

In this example, when the C/C++ function is declared on our Verilog
code it does not specify a bit-width or element range for the inout
argument to the mem_elem_halver C/C++ function, because in the
Verilog code we call the C/C++ function twice, with a different
memory each time and these memories have different bit widths and
different element ranges.

Notice that we assign a value that included X values to the 0 element
in memory mem2.

#include <stdio.h>
#include "DirectC.h"

void mem_elem_halver(vc_handle h)
{
int i =vc_getMemoryInteger(h, 0);
i = i/2;
vc_putMemoryInteger(h, 0, i);
}

This C/C++ function inputs the value of an element and then outputs
half that value. The vc_getMemoryInteger routine returns the
integer equivalent of the element you specify by vc_handle and

20-106

C Language Interface

index number, to an int variable i. The function halves the value in
i. Then the vc_putMemoryInteger routine passes the new value
by value to the specified memory element.

The Verilog code displays the following before the C/C++ function is
called twice with the different memories as the arguments:

mem1[0]=999
mem2[0]=X

Element mem2[0] has an X value because half of its binary value
is x and the value is displayed with the %d format specification and,
in this example, a partially unknown value is just an unknown value.
After the second call of the function, the Verilog code displays:

mem1[1]=499
mem2[0]=127

This occurs because before calling the function, mem1[0] had a
value of 999, and after the call it has a value of 499 which is as close
as it can get to half the value with integer values.

Before calling the function, mem2[0] had a value of 8’b1111xxxx,
but the data bits for the element would all be 1s (11111111). It’s the
control bits that specify 1 from x and this routine only deals with the
data bits. So, the vc_getMemoryInteger routine returned an
integer value of 255 (the integer equivalent of the binary 11111111) to
the C/C++ function, which is why the function outputs the integer
value 127 to mem2[0].

void vc_putMemoryInteger(vc_handle, U indx, int)

Passes an integer value to a memory element that is 32 bits or fewer.
You specify the memory by vc_handle and the element by the
indx argument. This routine is used in the previous example.

20-107

C Language Interface

void vc_get4stMemoryVector(vc_handle, U indx, vec32 *)

Copies the value in an Verilog memory element to an element in an
array. This routine copies both the data and control bytes. It copies
them into an array of type vec32 which is defined as follows:

typedef struct { U c; U d;} vec32;

Therefore, type vec32 has two members, c and d, for control and
data information. This routine always copies to the 0 element of the
array. For example:

extern void mem_elem_copier (inout reg [] array [] memX);

module test;
reg [127:0] mem1 [127:0];
reg [7:0] mem2 [64:0];
initial
begin
mem1 [0] = 999;
mem2 [0] = 8’b0000000z;
$display("mem1[0]=%0d",mem1[0]);
$display("mem2[0]=%0d",mem2[0]);
mem_elem_copier(mem1);
mem_elem_copier(mem2);
$display("mem1[32]=%0d",mem1[32]);
$display("mem2[32]=%0d",mem2[32]);
$finish;
end
endmodule

In the Verilog code, a C/C++ function is declared that is called twice.
Notice the value assigned to mem2[0]. The C/C++ function copies
the values to another element in the memory.

#include <stdio.h>
#include "DirectC.h"

void mem_elem_copier(vc_handle h)

20-108

C Language Interface

{
vec32 holder[1];
vc_get4stMemoryVector(h,0,holder);
vc_put4stMemoryVector(h,32,holder);
printf(" holder[0].d is %d holder[0].c is %d\n\n",
 holder[0].d,holder[0].c);
}

This C/C++ function declares an array of type vec32. We must
declare an array for this type, but as shown here, we specify that it
have only one element. The vc_get4stMemoryVector routine
copies the data from the Verilog memory element (in this example,
specified as the 0 element) to the 0 element of the vec32 array. It
always copies to the 0 element. The vc_put4stMemoryVector
routine copies the data from the vec32 array to the Verilog memory
element (in this case, element 32).

The call to printf is to show you how the Verilog data is stored in
element 0 of the vec32 array.

The Verilog and C/C++ code display the following:

mem1[0]=999
mem2[0]=Z
 holder[0].d is 999 holder[0].c is 0

 holder[0].d is 768 holder[0].c is 1

mem1[32]=999
mem2[32]=Z

As you can see, the function does copy the Verilog data from one
element to another in both memories. When the function is copying
the 999 value, the c (control) member has a value of 0; when it is
copying the 8’b0000000z value, the c (control) member has a value
of 1 because one of the control bits is 1, the rest are 0.

20-109

C Language Interface

void vc_put4stMemoryVector(vc_handle, U indx, vec32 *)

Copies Verilog data from a vec32 array to a Verilog memory
element. This routine is used in the previous example.

void vc_get2stMemoryVector(vc_handle, U indx, U *)

Copies the data bytes, but not the control bytes, from a Verilog
memory element to an array in your C/C++ function. For example, if
you use the Verilog code from the previous example, but simulate in
two-state and use the following C/C++ code:

#include <stdio.h>
#include "DirectC.h"

void mem_elem_copier(vc_handle h)
{
U holder[1];
vc_get2stMemoryVector(h,0,holder);
vc_put2stMemoryVector(h,32,holder);

}

The only difference here is that we declare the array to be of type U
instead and we do not copy the control bytes, because there are
none in two-state simulation.

void vc_put2stMemoryVector(vc_handle, U indx, U *)

Copies Verilog data from a U array to a Verilog memory element.
This routine is used in the previous example.

20-110

C Language Interface

void vc_putMemoryValue(vc_handle, U indx, char *)

This routine works like the vc_putValue routine except that is for
passing values to a memory element instead of to a reg or bit. You
enter an argument to specify the element (index) to which you want
the routine to pass the value. For example:

#include <stdio.h>
#include "DirectC.h"

void check_vc_putvalue(vc_handle h)
{
 vc_putMemoryValue(h,0,"10xz");
}

void vc_putMemoryValueF(vc_handle, U indx, char, char *)

This routine works like the vc_putValueF routine except that it is
for passing values to a memory element instead of to a reg or bit. You
enter an argument to specify the element (index) to which you want
the routine to pass the value. For example:

#include <stdio.h>
#include "DirectC.h"

void assigner (vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{
vc_putMemoryValueF(h1, 0, "10", ’b’);
vc_putMemoryValueF(h2, 0, "11", ’o’);
vc_putMemoryValueF(h3, 0, "10", ’d’);
vc_putMemoryValueF(h4, 0, "aff", ’x’);
}

20-111

C Language Interface

char *vc_MemoryString(vc_handle, U indx)

This routine works like the vc_toString routine except that it used
is for passing values to/from memory elements instead of to a reg or
bit. You enter an argument to specify the element (index) whose
value you want the routine to pass. For example:

extern void memcheck_vec(inout reg[] array[]);

module top;
reg [0:7] mem[0:7];
integer i;

initial
begin
 for(i=0;i<8;i=i+1) begin

 mem[i] = 8’b00000111;
 $display("Verilog code says \"mem [%0d] = %0b\"",

 i,mem[i]);
 end

 memcheck_vec(mem);
end

endmodule

The C/C++ function that calls vc_MemoryString is as follows:

#include <stdio.h>
#include "DirectC.h"

void memcheck_vec(vc_handle h)
{

 int i;

 for(i= 0; i<8;i++) {
 printf("C/C++ code says \"mem [%d] is %s
\"\n",i,vc_MemoryString(h,i));

20-112

C Language Interface

 }
}

The Verilog and C/C++ code display the following:

Verilog code says "mem [0] = 111"
Verilog code says "mem [1] = 111"
Verilog code says "mem [2] = 111"
Verilog code says "mem [3] = 111"
Verilog code says "mem [4] = 111"
Verilog code says "mem [5] = 111"
Verilog code says "mem [6] = 111"
Verilog code says "mem [7] = 111"
C/C++ code says "mem [0] is 00000111 "
C/C++ code says "mem [1] is 00000111 "
C/C++ code says "mem [2] is 00000111 "
C/C++ code says "mem [3] is 00000111 "
C/C++ code says "mem [4] is 00000111 "
C/C++ code says "mem [5] is 00000111 "
C/C++ code says "mem [6] is 00000111 "
C/C++ code says "mem [7] is 00000111 "

char *vc_MemoryStringF(vc_handle, U indx, char)

This routine works like the vc_MemoryString function except that
you specify a radix with the third parameter. The valid radixes are
’b’, ’o’, ’d’, and ’x’. For example:

extern void memcheck_vec(inout reg[] array[]);

module top;
reg [0:7] mem[0:7];

initial begin
mem[0] = 8’b00000111;
$display("Verilog code says \"mem[0]=%0b radix b\"",mem[0]);
$display("Verilog code says \"mem[0]=%0o radix o\"",mem[0]);
$display("Verilog code says \"mem[0]=%0d radix d\"",mem[0]);
$display("Verilog code says \"mem[0]=%0h radix h\"",mem[0]);
memcheck_vec(mem);

20-113

C Language Interface

end

endmodule

The C/C++ function that calls vc_MemoryStringF is as follows:

#include <stdio.h>
#include "DirectC.h"

void memcheck_vec(vc_handle h)
{

printf("C/C++ code says \"mem [0] is %s radix b\"\n",
 vc_MemoryStringF(h,0,’b’));
printf("C/C++ code says \"mem [0] is %s radix o\"\n",
 vc_MemoryStringF(h,0,’o’));
printf("C/C++ code says \"mem [0] is %s radix d\"\n",
 vc_MemoryStringF(h,0,’d’));
printf("C/C++ code says \"mem [0] is %s radix x\"\n",
 vc_MemoryStringF(h,0,’x’));
}

The Verilog and C/C++ code display the following:

Verilog code says "mem [0]=111 radix b"
Verilog code says "mem [0]=7 radix o"
Verilog code says "mem [0]=7 radix d"
Verilog code says "mem [0]=7 radix h"
C/C++ code says "mem [0] is 00000111 radix b"
C/C++ code says "mem [0] is 007 radix o"
C/C++ code says "mem [0] is 7 radix d"
C/C++ code says "mem [0] is 07 radix x"

void vc_FillWithScalar(vc_handle, scalar)

This routine fills all the bits or a reg, bit, or memory with all 1, 0, x, or
z values (you can choose only one of these four values).

20-114

C Language Interface

You specify the value with the scalar argument, which can be a
variable of the scalar type. The scalar type is defined in the
DirectC.h file as:

typedef unsigned char scalar;

You can also specify the value with integer arguments as follows:

If you declare a scalar type variable, enter it as the argument, and
assign only the 0, 1, 2, or 3 integer values to it, they specify filling the
Verilog reg, bit, or memory with the 0, 1, z, or x values.

You can use the following definitions from the DirectC.h file to
specify these values:

#define scalar_0 0
#define scalar_1 1
#define scalar_z 2
#define scalar_x 3

The following Verilog and C/C++ code shows you how to use this
routine to fill a reg and a memory using the following values:

extern void filler (inout reg [7:0] r1,
 inout reg [7:0] array [1:0] r2,
 inout reg [7:0] array [1:0] r3);
module top;
reg [7:0] r1;
reg [7:0] r2 [1:0];
reg [7:0] r3 [1:0];
initial

0 Specifies 0 values

1 Specifies 1 values

2 Specifies z values

3 Specifies x values

20-115

C Language Interface

begin
$display("r1 is %0b",r1);
$display("r2[0] is %0b",r2[0]);
$display("r2[1] is %0b",r2[1]);
$display("r3[0] is %0b",r3[0]);
$display("r3[1] is %0b",r3[1]);
filler(r1,r2,r3);
$display("r1 is %0b",r1);
$display("r2[0] is %0b",r2[0]);
$display("r2[1] is %0b",r2[1]);
$display("r3[0] is %0b",r3[0]);
$display("r3[1] is %0b",r3[1]);
end
endmodule

The C/C++ code for the function is as follows:

#include <stdio.h>
#include "DirectC.h"

filler(vc_handle h1, vc_handle h2, vc_handle h3)
{
scalar s = 1;
vc_FillWithScalar(h1,s);
vc_FillWithScalar(h2,0);
vc_FillWithScalar(h3,scalar_z);
}

The Verilog code displays the following:

r1 is xxxxxxxx
r2[0] is xxxxxxxx
r2[1] is xxxxxxxx
r3[0] is xxxxxxxx
r3[1] is xxxxxxxx
r1 is 11111111
r2[0] is 0
r2[1] is 0
r3[0] is zzzzzzzz
r3[1] is zzzzzzzz

20-116

C Language Interface

char *vc_argInfo(vc_handle)

Returns a string containing the information about the argument in the
function call in your Verilog source code. For example, if you have
the following Verilog source code:

extern void show(reg [] array []);
module tester;
reg [31:0] mem [7:0];
reg [31:0] mem2 [16:1];
reg [64:1] mem3 [32:1];
initial begin
 show(mem);
 show(mem2);
 show(mem3);
end
endmodule

Verilog memories mem, mem2, and mem3 are all arguments to the
function named show. If that function is defined as follows:

#include <stdio.h>
#include "DirectC.h"

void show(vc_handle h)
{
 printf("%s\n", vc_argInfo(h)); /* notice \n after the
string */
}

This routine prints the following:

input reg[0:31] array[0:7]
input reg[0:31] array[0:15]
input reg[0:63] array[0:31]

20-117

C Language Interface

int vc_Index(vc_handle, U, ...)

Internally, a multi-dimensional array is always stored as a one-
dimensional array and this makes a difference in how it can be
accessed. In order to avoid duplicating many of the previous access
routines for multi-dimensional arrays, the access process is split into
two steps. The first step, which this routine performs, is to translate
the multiple indices into a single index of a linearized array. The
second step is for another access routine to perform an access
operation on the linearized array.

This routine returns the index of a linearized array or returns -1 if the
U-type parameter is not an index of a multi-dimensional array or the
vc_handle parameter is not a handle to a multi-dimensional array of
the reg data type.

/* get the sum of all elements from a 2-dimensional slice
 of a 4-dimensional array */
int getSlice(vc_handle vh_array, vc_handle vh_indx1,
vc_handle vh_indx2) {

 int sum = 0;
 int i1, i2, i3, i4, indx;

 i1 = vc_getInteger(vh_indx1);
 i2 = vc_getInteger(vh_indx2);
 /* loop over all possible indices for that slice */
 for (i3 = 0; i3 < vc_mdaSize(vh_array, 3); i3++) {

 for (i4 = 0; i4 < vc_mdaSize(vh_array, 4); i4++) {

 indx = vc_Index(vh_array, i1, i2, i3, i4);
 sum += vc_getMemoryInteger(vh_array, indx);
 }
 }
 return sum;
}

20-118

C Language Interface

There are specialized, more efficient versions for two- and three-
dimensional arrays. They are as follows:

int vc_Index2(vc_handle, U, U)

Specialized version of vc_Index() where the two U parameters
are the indices in a two-dimensional array.

int vc_Index3(vc_handle, U, U, U)

Specialized version of vc_Index() where the two U parameters
are the indices in a three-dimensional array.

U vc_mdaSize(vc_handle, U)

Returns the following:

• If the U-type parameter has a value of 0, it returns the number of
indices in the multi-dimensional array.

• If the U-type parameter has a value greater than 0, it returns the
number of values in the index specified by the parameter. There
is an error condition if this parameter is out of the range of indices.

• If the vc_handle parameter is not an array, it returns 0.

Summary of Access Routines

Table 20-6 summarizes all the access routines described in the
previous section.

20-119

C Language Interface

Table 20-6 Summary of Access Routines
 Access Routine Description

int vc_isScalar(vc_handle) Returns a 1 value if the vc_handle is for a one-bit
reg or bit. It returns a 0 value for a vector reg or bit
or any memory including memories with scalar
elements.

int vc_isVector(vc_handle) This routine returns a 1 value if the vc_handle is to
a vector reg or bit. It returns a 0 value for a vector
bit or reg or any memory.

int vc_isMemory(vc_handle) This routine returns a 1 value if the vc_handle is to
a memory. It returns a 0 value for a bit or reg that is
not a memory.

int vc_is4state(vc_handle) This routine returns a 1 value if the vc_handle is to
a reg or memory that simulates with four states. It
returns a 0 value for a bit or a memory that simulates
with two states.

int vc_is2state(vc_handle) This routine does the opposite of the vc_is4state
routine.

int
vc_is4stVector(vc_handle)

This routine returns a 1 value if the vc_handle is to
a vector reg. It returns a 0 value if the vc_handle is
to a scalar reg, scalar or vector bit, or to a memory.

int
vc_is2stVector(vc_handle)

This routine returns a 1 value if the vc_handle is to
a vector bit. It returns a 0 value if the vc_handle is
to a scalar bit, scalar or vector reg, or to a memory.

int vc_width(vc_handle) Returns the width of a vc_handle.

int
vc_arraySize(vc_handle)

Returns the number of elements in a memory.

scalar
vc_getScalar(vc_handle)

Returns the value of a scalar reg or bit.

void
vc_putScalar(vc_handle,
scalar)

Passes the value of a scalar reg or bit to a vc_handle
by reference.

char vc_toChar(vc_handle) Returns the 0, 1, x, or z character.

int
vc_toInteger(vc_handle)

Returns an int value for a vc_handle to a scalar bit
or a vector bit of 32 bits or less.

char
*vc_toString(vc_handle)

Returns a string that contains the 1, 0, x, and z
characters.

20-120

C Language Interface

char
*vc_toStringF(vc_handle,
char)

Returns a string that contains the 1, 0, x, and z
characters and allows you to specify the format or
radix for the display. The char parameter can be ’b’,
’o’, ’d’, or ’x’.

void
vc_putReal(vc_handle,
double)

Passes by reference a real (double) value to a
vc_handle.

double
vc_getReal(vc_handle)

Returns a real (double) value from a vc_handle.

void
vc_putValue(vc_handle,
char *)

This function passes, by reference through the
vc_handle, a value represented as a string
containing the 0, 1, x, and z characters.

void
vc_putValueF(vc_handle,
char, char *)

This function passes by reference through the
vc_handle a value for which you specify a radix with
the third parameter. The valid radixes are ’b’, ’o’, ’d’,
and ’x’.

void
vc_putPointer(vc_handle,
void*)
void
*vc_getPointer(vc_handle)

These functions pass, by reference to a vc_handle,
a generic type of pointer or string. Do not use these
functions for passing Verilog data (the values of
Verilog signals). Use it for passing C/C++ data.
vc_putPointer passes this data by reference to
Verilog and vc_getPointer receives this data in a
pass by reference from Verilog. You can also use
these functions for passing Verilog strings.

void
vc_StringToVector(char *,
vc_handle)

Converts a C string (a pointer to a sequence of ASCII
characters terminated with a null character) into a
Verilog string (a vector with 8-bit groups
representing characters).

void
vc_VectorToString(vc_handl
e, char *)

Converts a vector value to a string value.

int
vc_getInteger(vc_handle)

Same as vc_toInteger.

void
vc_putInteger(vc_handle,
int)

Passes an int value by reference through a
vc_handle to a scalar reg or bit or a vector bit that
is 32 bits or less.

 Access Routine Description

20-121

C Language Interface

vec32
*vc_4stVectorRef(vc_handle
)

Returns a vec32 pointer to a four state vector.
Returns NULL if the specified vc_handle is not to a
four-state vector reg.

U
*vc_2stVectorRef(vc_handle
)

This routine returns a U pointer to a bit vector that
is larger than 32 bits. If you specify a short bit vector
(32 bits or fewer), this routine returns a NULL value.

void
vc_get4stVector(vc_handle,
vec32 *)
void
vc_put4stVector(vc_handle,
vec32 *)

Passes a four-state vector by reference to a
vc_handle to and from an array in C/C++ function.
vc_get4stVector receives the vector from Verilog
and passes it to the array. vc_put4stVector passes
the array to Verilog.

void
vc_get2stVector(vc_handle,
U *)
void
vc_put2stVector(vc_handle,
U *)

Passes a two state vector by reference to a
vc_handle to and from an array in C/C++ function.
vc_get2stVector receives the vector from Verilog
and passes it to the array. vc_put4stVector passes
the array to Verilog.

UB
*vc_MemoryRef(vc_handle)

Returns a pointer of type UB that points to a memory
in Verilog.

UB
*vc_MemoryElemRef(vc_handl
e, U indx)

Returns a pointer to an element (word, address or
index) of a Verilog memory. You specify the
vc_handle of the memory and the element.

scalar
vc_getMemoryScalar(vc_hand
le, U indx)

Returns the value of a one-bit memory element.

void
vc_putMemoryScalar(vc_hand
le, U indx, scalar)

Passes a value, of type scalar, to a Verilog memory
element. You specify the memory by vc_handle and
the element by the indx parameter.

int
vc_getMemoryInteger(vc_han
dle, U indx)

Returns the integer equivalent of the data bits in a
memory element whose bit-width is 32 bits or less.

void
vc_putMemoryInteger(vc_han
dle, U indx, int)

Passes an integer value to a memory element that
is 32 bits or fewer. You specify the memory by
vc_handle and the element by the indx parameter.

 Access Routine Description

20-122

C Language Interface

void
vc_get4stMemoryVector(vc_h
andle, U indx, vec32 *)

Copies the value in an Verilog memory element to
an element in an array. This routine copies both the
data and control bytes. It copies them into an array
of type vec32.

void
vc_put4stMemoryVector(vc_h
andle, U indx,
vec32 *)

Copies Verilog data from a vec32 array to a Verilog
memory element.

void
vc_get2stMemoryVector(vc_h
andle, U indx, U *)

Copies the data bytes, but not the control bytes, from
a Verilog memory element to an array in your C/C++
function.

void
vc_put2stMemoryVector(vc_h
andle, U indx, U *)

Copies Verilog data from a U array to a Verilog
memory element.

void
vc_putMemoryValue(vc_handl
e, U indx, char *)

This routine works like the vc_putValue routine
except that it is for passing values to a memory
element instead of to a reg or bit. You enter an
parameter to specify the element (index) you want
the routine to pass the value to.

void
vc_putMemoryValueF(vc_hand
le, U indx, char, char *)

This routine works like the vc_putValueF routine
except that it is for passing values to a memory
element instead of to a reg or bit. You enter an
parameter to specify the element (index) you want
the routine to pass the value to.

char
*vc_MemoryString(vc_handle
, U indx)

This routine works like the vc_toString routine
except that it is for passing values to from memory
element instead of to a reg or bit. You enter an
parameter to specify the element (index) you want
the routine to pass the value of.

char
*vc_MemoryStringF(vc_handl
e, U indx, char)

This routine works like the vc_MemoryString
function except that you specify a radix with the third
parameter. The valid radixes are ’b’, ’o’, ’d’, and ’x’.

void
vc_FillWithScalar(vc_handl
e, scalar)

This routine fills all the bits or a reg, bit, or memory
with all 1, 0, x, or z values (you can choose only one
of these four values).

 Access Routine Description

20-123

C Language Interface

Enabling C/C++ Functions

The +vc elaboration option is required for enabling the direct call of
C/C++ functions in your Verilog code. When you use this option you
can enter the C/C++ source files on the vcs command line. These
source files must have a .c extension.

There are suffixes that you can append to the +vc option to enable
additional features. You can append all of them to the +vc option in
any order. For example:

+vc+abstract+allhdrs+list

char
*vc_argInfo(vc_handle)

Returns a string containing the information about the
parameter in the function call in your Verilog source
code.

int vc_Index(vc_handle, U,
...)

Returns the index of a linearized array, or returns -
1 if the U-type parameter is not an index of a multi-
dimensional array, or the vc_handle parameter is
not a handle to a multi-dimensional array of the reg
data type.

int vc_Index2(vc_handle, U,
U)

Specialized version of vc_Index() where the two U
parameters are the indices in a two-dimensional
array.

int vc_Index3(vc_handle, U,
U, U)

Specialized version of vc_Index() where the two U
parameters are the indexes in a three-dimensional
array.

U vc_mdaSize(vc_handle, U) If the U type parameter has a value of 0, it returns
the number of indices in multi-dimensional array. If
the U type parameter has a value greater than 0, it
returns the number of values in the index specified
by the parameter. There is an error condition if this
parameter is out of the range of indices. If the
vc_handle parameter is not a multi-dimensional
array, it returns 0.

 Access Routine Description

20-124

C Language Interface

These suffixes specify the following:

+abstract

Specifies that you are using abstract access through vc_handles
to the data structures for the Verilog arguments.

When you include this suffix, all functions use abstract access
except those with "C" in their declaration; these exceptions use
direct access.

If you omit this suffix, all functions use direct access except those
wit the "A" in their declaration; these exceptions use abstract
access.

+allhdrs

Writes the vc_hdrs.h file that contains external function
declarations that you can use in your Verilog code.

+list

Displays on the screen all the functions that you called in your
Verilog source code. In this display, void functions are called
procedures. The following is an example of this display:

__
The following external functions have been actually
called:
 procedure receive_string
 procedure passbig2
 function return_string
 procedure passbig1
 procedure memory_rewriter
 function return_vector_bit
 procedure receive_pointer
 procedure incr
 function return_pointer

20-125

C Language Interface

 function return_reg
_____________________ [DirectC interface] _________

Mixing Direct And Abstract Access

If you want some C/C++ functions to use direct access and others to
use abstract access, you can do so by using a combination of "A"
or "C" entries for abstract or direct access in the declaration of the
function and the use of the +abstract suffix. The following table
shows the result of these combinations:

Specifying the DirectC.h File

The C/C++ functions need the DirectC.h file in order to use
abstract access. This file is located in $VCS_HOME/include (and
there is a symbolic link to it at $VCS_HOME/platform/lib/
DirectC.h). You need to tell VCS MX where to look for it. You can
accomplish this in the following three ways:

• Copy the $VCS_HOME/include/DirectC.h file to your current
directory. VCS MX will always look for this file in your current
directory.

• Establish a link in the current directory to the $VCS_HOME/
include/DirectC.h file.

• Include the -CC option as follows:

-CC "-I$VCS_HOME/include"

no +abstract suffix include the +abstract suffix

extern
(no mode specified)

direct access abstract access

extern "A" abstract access abstract access

extern "C" direct access direct access

20-126

C Language Interface

Extended BNF for External Function Declarations

A partial EBNF specification for external function declaration is as
follows:

source_text ::= description +
description ::= module | user_defined_primitive |
extern_function_declaration
extern_function_declaration ::= extern access_mode
extern_func_type extern_function_name (
list_of_extern_func_args ?) ;
access_mode ::= ("A" | "C") ?

Note:
If access mode is not specified, then the command-line option
+abstract rules; default mode is "C".]

extern_func_type ::= void | reg | bit |
DirectC_primitive_type | bit_vector_type
bit_vector_type ::= bit [constant_expression :
constant_expression]
list_of_extern_func_args ::= extern_func_arg
(, extern_func_arg) *
extern_func_arg ::= arg_direction ? arg_type
optional_arg_name ?

Note:
Argument direction (i.e., input, output, inout) applies to all
arguments that follow it until the next direction occurs; the default
direction is input.

arg_direction ::= input | output | inout
arg_type ::= bit_or_reg_type | array_type |
DirectC_primitive_type
bit_or_reg_type ::= (bit | reg) optional_vector_range ?
optional_vector_range ::= [(constant_expression :
constant_expression) ?]
array_type ::= bit_or_reg_type array [(constant_expression
: constant_expression) ?]
DirectC_primitive_type ::= int | real | pointer | string

20-127

C Language Interface

In this specification, extern_function_name and
optional_arg_name are user-defined identifiers.

21-1

SAIF Support

21
SAIF Support 2

The Synopsys Power Compiler enables you to perform power
analysis and power optimization for your designs by entering the
power command at the vcs prompt. This command outputs
Switching Activity Interchange Format (SAIF) files for your design.

SAIF files support signals and ports for monitoring as well as
constructs such as generates, enumerated types, records, array of
arrays, and integers.

This chapter covers the following topics:

• Using SAIF Files with VCS MX

• SAIF System Tasks for Verilog or Verilog-Top Designs

• The Flows to Generate a Backward SAIF File

• SAIF Calls That Can Be Used on VHDL or VHDL-Top Designs

21-2

SAIF Support

• “SAIF Support for Two-Dimensional Memories in v2k Designs”

• “UCLI SAIF Dumping”

• Criteria for Choosing Signals for SAIF Dumping

Using SAIF Files with VCS MX

VCS MXhas native SAIF support so you no longer need to specify
any compile-time options to use SAIF files. If you want to switch to
the old flow of dumping SAIF files with the PLI, you can continue to
give the option -P $VPOWER_TAB $VPOWER_LIB to VCS MX, and
the flow will not use the native support.

Note the following when using VCS MX native support for SAIF files:

• VCS MXdoes not need any additional switches.

• VCS MX does not need a Power Compiler specific tab file (and
the corresponding library)

• VCS MX does not need any additional settings.

• Functionality is built into VCS MX.

SAIF System Tasks for Verilog or Verilog-Top Designs

This section describes SAIF system tasks that you can use at the
command line prompt.

21-3

SAIF Support

Note that mixedHdlScope in the following discussion can be one of
the following:

• Verilog scope

• VHDL scope

• Mixed HDL scope

Note also that a design_object in the following discussion can be one
of the following:

• Verilog scope or variable

• VHDL scope or variable

• Any mixed HDL scope or variable

$set_toggle_region

Specifies a module instance (or scope) for which VCS MX records
switching activity in the generated SAIF file. Syntax:

 $set_toggle_region(instance[, instance]);

$toggle_start

Instructs VCS MX to start monitoring switching activity.

Syntax:

$toggle_start();

$toggle_stop

Instructs VCS MX to stop monitoring switching activity.

Syntax

$toggle_stop();

$toggle_reset

21-4

SAIF Support

Sets the toggle counter to 0 for all the nets in the current toggle
region.

Syntax:

$toggle_reset();

$toggle_report

Reports switching activity to an output file.

Syntax:

$toggle_report("outputFile", synthesisTimeUnit,
 mixedHdlScope);

This task has a slight change in native SAIF implementation
compared to PLI-based implementation. VCS MX considers only
the arguments specified here for processing. Other arguments
have no meaning.

VCS does not report signals in modules defined under the
‘celldefine compiler directive.

$read_lib_saif

Allows you to read in a state dependent and path dependent
(SDPD) library forward SAIF file. It registers the state and path
dependent information on the scope. It also monitors the internal
nets of the design.

Syntax:

$read_lib_saif("inputFile");

$set_gate_level_monitoring

Allows you to turn on/off the monitoring of nets in the design if
$read_lib_saif is present in the design.

Syntax:

21-5

SAIF Support

$set_gate_level_monitoring("on" | "off" | "rtl_on");

"rtl_on"
All reg type of objects are monitored for toggles. Net
type of objects are monitored only if it is a cell highconn. This
is the default monitoring policy.

"off"
net type of objects are not monitored.

"on"
reg type of objects are monitored only if it is a cell highconn.

For more details on these task calls, refer to the Power Compiler
User Guide.

Note:
The $read_mpm_saif, $toggle_set, and $toggle_count
tasks in the PLI-based vpower.tab file are obsolete and no longer
supported.

The Flows to Generate a Backward SAIF File

You can generate the following kinds of backward (or output) SAIF
files:

• an SDPD backward SAIF file — using a library forward (or input)
SAIF file

• a non-SDPD backward SAIF file — without using a library forward
(or input) SAIF file.

21-6

SAIF Support

Generating an SDPD Backward SAIF File

To generate an SDPD backward SAIF file, include the SAIF system
tasks in the module definition containing the
$read_lib_saif("inputFile") system task.

For example:

initial begin
 $read_lib_saif("inputFile");
 $set_toggle_region(mixedHdlScope);
 // initialization of Verilog signals
 M
 $toggle_start;
 // testbench
 M
 $toggle_stop;
 $toggle_report("outputFile", timeUnit,mixedHdlScope);
end

The $set_toggle_region(mixedHdlScope) system task's
scope argument must be one level higher in the design hierarchy
than the scope of the module in the library forward SAIF file, for
which you intend VCS MX to generate the backward SAIF file.

For example, if VCS MX monitors instance
top.u_dut.u_saif_module, the argument to the
$set_toggle_region system task is top.u_dut, as follows:

$set_toggle_region(top.u_dut);

Enclose the modules listed in the library forward SAIF file, those from
which you intend VCS MX to monitor and generate the backward
SAIF file, between ‘celldefine and ‘endcelldefine compiler
directives.

21-7

SAIF Support

Generating a Non-SPDP Backward SAIF File

If you are not including a library forward (or input) SAIF file, include
the $set_gate_level_monitoring("on") system task with the
other SAIF system tasks.

For example:

initial begin
 $set_gate_level_monitoring("on");
 $set_toggle_region(mixedHdlScope);
 // initialization of Verilog signals, and then:
 $toggle_start;
 // testbench
 M
 $toggle_stop;
 $toggle_report("outputFile", timeUnit,mixedHdlScope);
end

SAIF Calls That Can Be Used on VHDL or VHDL-Top
Designs

VHDL use model mainly consists of the power command and its
options at the simvcommand-line.

The power command syntax is as follows:

power -enable -disable -reset -report <filename>
<synthesisTimeUnit> <mixedHdlScope> <filename>
[<testbench_path_name>]-gate_level on|off|rtl_on
<region/signal/variable>

Here:

21-8

SAIF Support

-enable
Enables monitoring of switching (toggle_start).

-disable
Disables monitoring of switching (toggle_stop).

-reset
Resets monitoring of switching (toggle_reset).

-report
Reports switching activity to an output file (toggle_report).

-gate_level
Turns on or off the monitoring based on the following:

on: Monitors both ports and signals.

off: Does not print ports or signals.

rtl_on: Monitors both ports and signals (same as on)

<region/signal>
Arguments for specifying the following:

region: MixedHDL/VHDL region and its children to consider for
monitoring.

signal: (hierarchical path to) signal name.

Note:
VHDL variables are not dumped in SAIF SDPD (VHDL gate level).

Examples

power -enable
power -report

21-9

SAIF Support

SAIF Support for Two-Dimensional Memories in v2k
Designs

SAIF supports monitoring of two-dimensional memories in v2k
designs.

You must pass the mda keyword to the
$set_gate_level_monitoring system task to monitor two-
dimensional memories in v2k designs.

Note:
You must pass the +memcbk compile-time option at vcs
command-line, to dump two-dimensional wire or register.

If you want to dump through the UCLI command, you must pass the
mda string to the power -gate_level command, as shown in the
below section.

UCLI SAIF Dumping

The following is the use model for UCLI SAIF dumping:

% simv –ucli
ucli% power –gate_level on mda
ucli% power <scope>
ucli% power –enable
ucli% run 100
ucli% power –disable
ucli% power –report <saif_filename> <timeUnit> <modulename>
ucli% quit

21-10

SAIF Support

Criteria for Choosing Signals for SAIF Dumping

Verilog:

VCS MX supports only scalar wire and reg, as well as vector wire
and reg, for monitoring. It does not consider wire/reg declared within
functions, tasks and named blocks for dumping. Also, it does not
support bit selects and part selects as arguments to
$set_toggle_region or $toggle_report. In addition, it
monitors cell highconns based on the policy.

VHDL:

Signals or ports are supported for monitoring. Variables are not
supported, as it is difficult to infer latches/flops at RTL level.

Constructs like generates, enumerated types, records, array of
arrays integers etc, are also supported over and above the basic
VHDL types.

The following rules are followed regarding the monitoring policy for
VHDL:

 Port Signals Variables
 on Y Y N
 off N N N
 rtl_on Y Y N

Mixed HDL:

The rules for mixed HDL are basically the same as that of VHDL if
VHDL is on top, and Verilog if Verilog is on top.

22-1

Encrypting Source Files

22
Encrypting Source Files 1

There are different ways to encrypt your HDL source files to deliver
your IP. Of these, this chapter describes the following two methods
to encrypt your Verilog and VHDL source files and exchange IPs.
They are:

• “128-bit Advanced Encryption Standard” on page 1

• “gen_vcs_ip” on page 6

128-bit Advanced Encryption Standard

VCS MX uses the 128-bit Advanced Encryption Standard (AES) to
encrypt the Verilog and VHDL files. The 128-bit key is generated
internally by VCS MX. This 128-bit encryption methodology is
exclusive to VCS MX, and can be decrypted only by VCS MX.

22-2

Encrypting Source Files

You can choose to encrypt only certain parts of your source files or
entire files using either of the following methods:

• “Using Compiler Directives or Pragmas”

• “Using Automatic Protection Options”

Using Compiler Directives or Pragmas

You can use VCS MX to encrypt selected parts of your source files.
In order to achieve this, complete the following steps:

1. Enclose the Verilog code that you want to encrypt between the
‘protect128 and the ‘endprotect128 compiler directives.

 Enclose the VHDL code that you want to encrypt between the
 --protect128 and --endprotect128 pragmas.

2. Analyze the files with the -protect128 option. For example:

 % vlogan -protect128 foo.v
 % vhdlan -protect128 foo.vhd
 % vcs -protect128 foo.v

When you analyze the design with the -protect128 option,
VCS MX creates new files with the .vp or .vhdp extension for each
Verilog or VHDL file specified at the command line. For example,
VCS MX creates foo.vp and foo.vhdp when you execute the
commands listed above.

In the .vp files, VCS MX replaces the ‘protect128 and
‘endprotect128 compiler directives with the ‘protected128
and ‘endprotected128 compiler directives, and encrypts the
code in between these directives. In the .vhdp files, VCS MX

22-3

Encrypting Source Files

replaces the --protect128 and --endprotect128 pragmas
with the --protected128 and -endprotected128 pragmas,
and encrypts everything in between.

Note:
By default, the encrypted .vp or .vhdp files are saved in the same
directory as the source files. You can change this location by using
the -putprotect128 analysis option. For example, the
following command saves the foo.vp encrypted file in the
./out directory:

 % vlogan -putprotect128 ./out -protect128 foo.v

Note:
 - If you specify the protect and protect128 analysis options on
 the same vcs command line, VCS MX ignores the protect128
 option and uses the protect option. It also reports a warning
 message.
- The protect128 and genip options are mutually exclusive, you
 cannot specify both of these options on the same vcs command
 line.

Example

The following Verilog file illustrates the use of ‘protect128 and
‘endprotect128 to mark the code that needs to be encrypted:

 module top(inp, outp);
 input [7:0] inp;
 output [7:0] outp;
 reg [7:0] count;
 assign outp = count;
 always
 begin:counter
 `protect128 //begin protected region
 reg [7:0] int;
 count = 0;

22-4

Encrypting Source Files

 int = inp;
 while (int)
 begin
 if (int [0]) count = count + 1;
 int = int >> 1;
 end
 `endprotect128 //end protected region
 end
endmodule

The contents of the.vp file that is generated using the
-protect128 analysis option is shown below:

module top(inp, outp);
 input [7:0] inp;
 output [7:0] outp;
 reg [7:0] count;
 assign outp = count;
 always
 begin:counter
 `protected128
P$<-:U="&
Y0_+\[?7SYR'AYPDX_H5!KR%>.,^%':>9A_+^UF,6X]=F0S&\-5<;IQ
P:F]/8/)U-%R2 MKD.FB#6?UC"0>XE?R>]^
3)4@K<.5;*[DX>,+7P@1!S%QA\MME
P>E#R7!*4#IQNK
LU):.T[LT=4Y6DP5VWKXN^)F[@L34;C>,=1D'8!9ILX<,AE[6H
P^<P2#1%RY0X??,5)!,84>FHD @RVX1K=E9UK5,[7Q$^;
U\,<JLM#>2@OZ! "'"7
P&ZV60$"CTNE)N+A%]UN19](H;D,L#V&?&=X)(U!CGVRF3],F!+IC2/
KRLG:(-(60
P'>K\BRT_2_/(5^%FBS#-
*O$IB[R.;V"1SMJBB:"P4#J="EH".5^?!MYZ#>84>:Q.
`endprotected128
 //end protected region
 end
endmodule

22-5

Encrypting Source Files

Using Automatic Protection Options

You can encrypt an entire Verilog or VHDL file using the
-autoprotect128, -auto2protect128, or
-auto3protect128 analysis options.

Note:
All these options take precedence over the -protect128 option.
The -auto3protect128 option takes precedence over
-auto2protect128 and -autoprotect128 options,
-auto2protect128 takes precedence over
-autoprotect128, and -autoprotect128 takes precedence
over –protect128.

-autoprotect128

 For Verilog files, VCS MX encrypts the module port list (or UDP
 terminal list) along with the body of the module (or UDP).

For VHDL files, VCS MX encrypts the ports, generics, and bodies
of entity declarations, and all of the contents of architecture
bodies, package declarations, package bodies, and configuration
declarations.

-auto2protect128

For Verilog files, VCS MX encrypts only the body of the module
or UDP. It does not encrypt port lists or UDP terminal lists. This
option produces a syntactically correct Verilog module or UDP
header statement.

For VHDL files, VCS MX encrypts everything other than the ports
in the entity declarations. Though the generated file is syntactically
correct file, it may not be semantically correct as the VHDL port
declarations can refer to generics in the encrypted portion.

22-6

Encrypting Source Files

-auto3protect128

This option is similar to the -auto2protect128 option except
for the following differences.

For Verilog files, VCS MX does not encrypt parameters preceding
the ports declaration in a Verilog module.

For VHDL files, VCS MX does not encrypt the generic clause of
entity declarations.

gen_vcs_ip

VCS MX allows you to protect a VHDL or a Verilog source file using
the gen_vcs_ip utility as shown below:

% gen_vcs_ip -ipdir my_dir -e "vhdlan file1.vhd"
% gen_vcs_ip -ipdir my_dir -e "vlogan file1.v"

The protected IPs are platform and release independent. You share
these protected IPs with your vendors.

The protected IP files are saved under the directory specified with
the option -ipdir dir_path, and are named as file1.vhd.e,
file1.v.e and so on. The gen_vcs_ip utility also writes the
analyze.genip script, which can be later used to analyze all the
protected files.

22-7

Encrypting Source Files

IPs protected using gen_vcs_ip are black box, and, therefore, are
not in user readable format. Except for the ports of the protected
design unit, none of the internal signals or variables can be accessed
by any UI, GUI or PLIs. These black box IPs do not allow the
following:

• Access by XMR paths to any object within or through the
generated IP.

• PLI access (acc, tf, vpi, vhpi) to objects that reside in generated IP.

• Dumping (vcd or vpd files) any objects (signals or variables) that
reside in generated IP.

You can use the -debug option to create the protected modules,
whose ports are visible, and the internal signals and variables can be
accessed using Synopsys UI, GUI or PLIs.

For example:

% gen_vcs_ip -ipdir my_dir -debug "vhdlan file1.vhd"
% gen_vcs_ip -ipdir my_dir -debug "% vlogan file1.v"

The IP protected using the -debug option is a grey box and using
VCS MX UI, UCLI, DVE, VHPI, VPI or MHPI, IP consumer can:

• View the ports at the boundary of the IP

• View the complete design hierarchy

• View all the internal signals or variables

• Query the value of signals or variables

• Set callbacks on value changes of the signal

• Use the force command to change the value of the signal

22-8

Encrypting Source Files

• Monitor the loads and drivers of the signal

Along with the specified design files, the gen_vcs_ip utility also
protects the Verilog library files specified using ‘include, -v and -
y options.

For example:

% gen_vcs_ip -ipdir VCSIP_DIR -e "vlogan top.v -v lib1/sub.v"

In the above example, the gen_vcs_ip utility protects both top.v
and sub.v, and the protected files are saved under the VCSIP_DIR
directory.

Syntax

% gen_vcs_ip -ipdir [ipdir_name] -debug
 -e "[analysis_command/script]"

Analysis Options

-ipdir [ipdir_name]

Physical directory where IP files are generated.

-debug

Generates binary IP files, whose ports are visible, and whose
internal signals and the variables can be accessed using
Synopsys UI, GUI or PLIs.

-e

Specify vhdlan/vlogan command line. You can also specify a
make command or a run script.

22-9

Encrypting Source Files

Note:
- VCS MX protects the library files specified with the –y and –v

options and places in the directory where the IP model is
generated.

- If you specify multiple –y [lib_dir] options, and if multiple
files with the same file name exist in different library directories,
the file that exists in the last directory you specify overwrites
the others. In this case, VCS MX issues a warning message
indicating from which library the module is picked up.

Exporting The IP

After protecting the IP, you can tar the generated IP directory and
ship it to the IP consumer. To use the IP, the IP consumer should
extract the IP directory and execute the analyze.genip script to
analyze the protected files.

Use Model

IP Vendor

Synopsys recommends you analyze, elaborate and simulate the
design before you protect them. This ensures that you are protecting
the right set of source files.

Analysis

Always analyze Verilog before VHDL.

% vlogan [vlogan_options] file1.v file2.v
% vhdlan [vhdlan_options] file3.vhd file4.vhd

(The VHDL bottom-most entity first, then move up in order)

22-10

Encrypting Source Files

Elaboration

% vcs [elab_options] top_module/entity/config
Simulation

% simv [run_options]

IP Generation

% gen_vcs_ip -ipdir ip_dir -e "analyze.csh"

Note:
analyze.csh contains vlogan, and vhdlan command lines to
analyze the Verilog and VHDL design files.

IP User

The usage model to use the protected IP is shown below:

Analysis

% ip_dir/analyze.genip

Elaboration

% vcs [elab_options] top_module/entity/config

Simulation

% simv [run_options]

Licensing

You require a license to protect an IP, however, a license is not
required to use the protected IPs.

23-1

Integrating VCS MX with Vera

23
Integrating VCS MX with Vera 1

Vera® is a comprehensive testbench automation solution for
module, block and full system verification. The Vera testbench
automation system is based on the OpenVera™ language. This is an
intuitive, high-level, object-oriented programming language
developed specifically to meet the unique requirements of functional
verification.

You can use Vera with VCS MX to simulate your testbench and
design. This chapter describes the required environment settings
and usage model to integrate Vera with VCS MX.

23-2

Integrating VCS MX with Vera

Setting Up Vera and VCS MX

To use Vera, you must set the Vera environment as shown below:

% setenv VERA_HOME Vera_Installation
% setenv PATH $VERA_HOME/bin:$PATH
% setenv LM_LICENSE_FILE license_path:$LM_LICENSE_FILE
or
% setenv SNPSLMD_LICENSE_FILE license_path:$SNPSLMD_LICENSE_FILE

Note:
If you set the SNPSLMD_LICENSE_FILE environment variable,
then VCS MX ignores the LM_LICENSE_FILE environment
variable.

Set the VCS MX environment as shown below:

% setenv VCS_HOME VCS_MX_Installation
% setenv PATH $VCS_HOME/bin:$PATH
% setenv LM_LICENSE_FILE license_path:$LM_LICENSE_FILE
or
% setenv SNPSLMD_LICENSE_FILE license_path:$SNPSLMD_LICENSE_FILE

Note:
If you set the SNPSLMD_LICENSE_FILE environment variable,
then VCS MX ignores the LM_LICENSE_FILE environment
variable.

For more information on VCS MX installation, see “Setting Up the
Simulator” .

23-3

Integrating VCS MX with Vera

Using Vera with VCS MX

The usage model to use Vera with VCS MX includes the following
steps:

• Compile your OpenVera code using Vera

This will generate a .vro file and a filename_vshell.v file.
The filename_vshell.v is a Verilog file.

The following table lists the Vera options to generate a shell file
based on your design topology:

• Analyze all Verilog files including the vshell file generate in the
above step.

• Analyze all VHDL files.

• Elaborate your design and the filename_vshell.v file using
the -vera option. This option is required to use Vera with VCS
MX.

Table 0-1.

Option Description
-vlog Generates a Verilog shell file, filename_vshell.v. Use

this option if your design is a Verilog-only design.

-sro Generates a VHDL shell file, filename_vshell.vhd.
Use this if your design is a VHDL-only design.

-sro_mx Generates a VHDL shell file, filename_vshell.vhd.
Use this if your design top is in VHDL.

-vcs_mx Generates a Verilog shell file, filename.vshell. Use
this if your design top is in Verilog.

23-4

Integrating VCS MX with Vera

• Simulate the design by specifying the .vro file created in the first
step using the +vera_load runtime option. You can also specify
this .vro file in the vera.ini file in your working directory as
shown in the following example:

vera_load = tb_top.vro

See the Vera User Guide for more information.

Usage Model

Use the following usage model to compile OpenVera code using
Vera:

% vera -cmp [Vera_options] OpenVera_files

See the Vera User Guide for a list of Vera compilation options.

Analysis
% vlogan [vlogan_options] Verilog_files filename.vshell
% vhdlan [vhdlan_options] VHDL_files

Elaboration
% vcs [elab_options] -vera top_entity/module/config
filename_vshell.v

Simulation
% simv [simv_options] +vera_load=file.vro

24-1

Using HSIM-VCS MX DKI Mixed-Signal Simulation

24
Using HSIM-VCS MX DKI Mixed-Signal
Simulation 1

HSIM-VCS MX DKI simulation provides mixed-signal simulation using
the Synopsys HSIM and VCS MX simulators. This implementation uses
Direct Kernel Interface to exchange data between HSIM and VCS MX
the same way HSIM-VCS DKI does.

HISM-VCS MX DKI mixed-signal simulation supports:

• The use of both Verilog and VHDL as digital modeling languages.

• Verilog top-level, VHDL-top and SPICE-top netlist configurations.

• Donut partitioning, which is the arbitrary instantiation of Spice
subcircuits and digital cells (Verilog or VHDL) anywhere throughout
the design hierarchy.

• The use of cell-based partitioning.

24-2

Using HSIM-VCS MX DKI Mixed-Signal Simulation

In HSIM-VCS MX, if a SPICE cell is instantiated under a VHDL block, a
dummy Verilog wrapper for the SPICE cell is needed. For successful
SPICE instantiation, this wrapper file must be analyzed like any other
Verilog file. HSIM-VCS MX DKI mixed-signal simulation is a three step
process:

1. Design Analysis

During the Design Analysis, the syntax of Verilog and VHDL files are
verified and intermediary files are generated which will be used during
the Elaboration step. Any syntax errors in Verilog or VHDL netlists
will be flagged at this step.

2. Design Elaboration

During Elaboration, the design hierarchy is built based on the
information obtained from the Analysis. At this stage, incorrect port
connectivity or missing definitions for instantiated blocks in Verilog,
VHDL or SPICE are identified and flagged if they exist. If no error is
encountered, at the end of the Elaboration phase the binary
executable is generated.

3. Running the Simulation

To start the mixed-signal simulation, run the executable generated
during the Elaboration phase.

Environment Setup

A working installation of VCS MX and a matching version of HSIM are
required to run VCS MX-HSIM DKI mixed-signal mixed-HDL simulation.
The compatibility table for versions of HSIM and VCS MX that work
together can be found at: https://solvnet.synopsys.com/retrieve/
020828.html.

24-3

Using HSIM-VCS MX DKI Mixed-Signal Simulation

You must set the following environment variables:

% setenv LM_LICENSE_FILE Location_of_License_File
or
% setenv SNPSLMD_LICENSE_FILE Location_of_License_File
% setenv VCS_HOME VCS_MX Installation
% setenv HSIM_HOME HSIM_Installation
% setenv HSIM_64 1

Unset the variable HSIM_64, if you are using in 32-bit mode.

Note:
If you set the SNPSLMD_LICENSE_FILE environment variable, then
VCS MX ignores the LM_LICENSE_FILE environment variable.

Usage Model

The usage model is composed of three steps:

1. Netlist analysis

During the Netlist Analysis, the syntax of Verilog and VHDL files are
verified and intermediary files are generated which will be used
during the Elaboration step. Any syntax errors in Verilog or VHDL
netlists will be flagged at this step.

2. Design elaboration and simulation

During Elaboration, the design hierarchy is built based on the
information obtained from the analysis. At this stage, incorrect port
connectivity or missing definitions for instantiated blocks in Verilog,
VHDL, or SPICE are identified and flagged, if they exist. To enable
mixed signal simulation, use the elaboration option -ad=initFile.
If you use -ad without specifying the initFile, VCS MX will assume
the mixed signal setup filename as vcsAD.init.

24-4

Using HSIM-VCS MX DKI Mixed-Signal Simulation

Analysis
% vlogan [vlogan_options] Verilog_files
% vhdlan [vhdlan_options] VHDL_files

Elaboration
% vcs -ad=initFile [elab_options] top_entity/module/config

Simulation
% simv [simv_options]

Example

The following example shows a sample compilation script containing
analysis and elaboration commands for a design with VHDL, Verilog,
and SPICE components.

In this example, the files tb.vhd and blk_1.vhd contain all the VHDL
netlist, files blk_2.v and blk_3.v contain all the Verilog netlist and
the file all_spice.spi contains the SPICE netlist:

% vlogan blk_2.v blk_3.v
% vhdlan tb.vhd blk1.vhd
% vcs -ad=setup.init testbench
% simv

In this example, testbench is the name of the top-level entity. The
mixed signal setup file, setup.init, is shown below:

choose hsim all_spice.spi;
use_spice -cell counter ddr_flop;
set bus_format <%d>;

In this example, counter and ddr_flop are multi-view cells, the
SPICE views of which are used in this simulation.

24-5

Using HSIM-VCS MX DKI Mixed-Signal Simulation

For more information about VCS-HSIM mixed-signal simulation, see
the HSIM documentation.

25-1

Integrating VCS MX with NanoSim

25
Integrating VCS MX with NanoSim 1

VCS MX-NanoSim (VCS MX-NS) is a feature that provides a mixed-
signal, mixed-HDL language verification solution. VCS MX-NS enables
simulating a design described in SPICE (or other transistor-level
description language that NanoSim supports), Verilog-HDL ("Verilog"),
and VHDL.

You must be familiar with the SPICE, Verilog, and VHDL languages, as
well as NanoSim and VCS MX usage.

This chapter briefly describes the environment setup and usage model
of VCS MX-NanoSim mixed-signal mixed-HDL simulations. For more
information, see the co_sim.pdf file in the NanoSim documentation (/
Nanosim_installation/doc/ns/manuals/co_sim.pdf).

VCS MX-NanoSim mixed-signal simulation supports:

• The use of both Verilog and VHDL as digital modeling languages.

• Verilog top-level, VHDL-top, and SPICE-top netlist configurations.

25-2

Integrating VCS MX with NanoSim

• Donut partitioning, which is the arbitrary instantiation of Spice
subcircuits and digital cells (Verilog or VHDL) anywhere throughout
the design hierarchy.

• The use of cell-based partitioning.

In the VCS MX-NanoSim flow, if a SPICE cell is instantiated under a
VHDL block, a dummy Verilog wrapper for the SPICE cell is needed. For
successful SPICE instantiation, this wrapper file must be analyzed like
any other Verilog file.

VCS MX-NS mixed-signal simulation is a three step process:

1. Design Analysis

During the Design Analysis, the syntax of Verilog and VHDL files are
verified and intermediary files are generated which will be used during
the Elaboration step. Any syntax errors in Verilog or VHDL netlists
will be flagged at this step.

2. Design Elaboration

During Elaboration, the design hierarchy is built based on the
information obtained from the Analysis. At this stage, incorrect port
connectivity or missing definitions for instantiated blocks in Verilog,
VHDL, or SPICE are identified and flagged if they exist. If no error is
encountered, at the end of the Elaboration phase, the binary
executable is generated.

3. Running the Simulation

To start the mixed-signal simulation, run the executable generated
during the Elaboration phase.

25-3

Integrating VCS MX with NanoSim

Environment Setup

A working installation of VCS MX and a matching version of NanoSim
are required to run VCS MX-NanoSim mixed-signal mixed-HDL
simulation. The compatibility table for versions of NanoSim and VCS
MX that work together can be found at:https://solvnet.synopsys.com/
retrieve/020828.html.

The following environment variables must be set:

Licenses
setenv LM_LICENSE_FILE license_file_path

or

setenv SNPSLMD_LICENSE_FILE license_file_path

Note:
If you set the SNPSLMD_LICENSE_FILE environment variable, then
VCS MX ignores the LM_LICENSE_FILE environment variable.

For NanoSim
source NanoSim_install_directory/CSHRC_platform

For VCS
setenv VCS_HOME VCSMX_install_directory
set path = ($VCS_HOME/bin $path)

25-4

Integrating VCS MX with NanoSim

Use Model

The use model is comprised of three steps:

1. Netlist analysis

During the Netlist Analysis, the syntax of Verilog and VHDL files are
verified and intermediary files are generated which will be used during
the Elaboration step. Any syntax errors in Verilog or VHDL netlists
will be flagged at this step.

2. Design elaboration and simulation

During Elaboration, the design hierarchy is built based on the
information obtained from the analysis. At this stage, incorrect port
connectivity or missing definitions for instantiated blocks in

Verilog, VHDL, or SPICE are identified and flagged if they exist. To
enable mixed signal simulation, use the elaboration option -
ad=initFile. If you use -ad, without specifying the initFile,
VCS MX will assume the mixed signal setup filename as
vcsAD.init.

Analysis
% vlogan [vlogan_options] Verilog_files
% vhdlan [vhdlan_options] VHDL_files

Elaboration
% vcs -ad=initFile [elab_options] top_entity/module/config

Simulation
% simv [simv_options]

25-5

Integrating VCS MX with NanoSim

Example

The example below shows a sample compilation script containing
analysis and elaboration commands for a design with VHDL, Verilog,
and SPICE components.

In this example, the files tb.vhd and blk_1.vhd contain the VHDL
netlist, files blk_2.v and blk_3.v contain the Verilog netlist and the
file all_spice.spi contains the SPICE netlist:

% vlogan blk_2.v blk_3.v
% vhdlan tb.vhd blk1.vhd
% vcs -ad=setup.init testbench
% simv

where testbench is the name of the top-level entity. The mixed signal
setup file setup.init is as shown below:

choose nanosim -nspi all_spice.spi;
use_spice -cell counter ddr_flop;
set bus_format <%d>;

where counter and ddr_flop are multi-view cells, the SPICE views of
which are used in this simulation.

26-1

Integrating VCS MX with XA

26
Integrating VCS MX with XA 1

This chapter describes how to setup VCS MX-XA mixed-signal
mixed-HDL simulations environment, and provides a use model for
better understanding. For more information, see the
mixed_signal.pdf file in the XA documentation set.

Before reading the subsequent topics in this chapter, you must be
familiar with the:

• SPICE, Verilog, and VHDL languages

• XA and VCS MX usage

This chapter consists of the following sections:

• “Introduction to VCS MX-XA” on page 2

• “Setting up the Environment” on page 3

• “Use Model” on page 4

26-2

Integrating VCS MX with XA

• “Example” on page 5

Introduction to VCS MX-XA

The VCS MX-XA feature provides mixed-signal mixed-HDL
language verification solution. This feature enables you to simulate
a design, which is described in SPICE (or other transistor-level
description language that XA supports), Verilog-HDL (Verilog), and
VHDL.

VCS MX-XA mixed-signal simulation supports:

• Verilog top-level, VHDL-top, and SPICE-top netlist configurations

• The use of both Verilog and VHDL as digital modeling languages

• Donut partitioning, which is the arbitrary instantiation of SPICE
sub-circuits and digital cells (Verilog or VHDL) that are present in
the design hierarchy

• The use of cell-based partitioning

In the VCS MX-XA flow, if a SPICE cell is instantiated under a VHDL
block, a dummy Verilog wrapper is required for the instantiated
SPICE cell. For successful SPICE instantiation, this wrapper file
must be analyzed like any other Verilog file.

The VCS MX-XA mixed-signal simulation process involves the
following three phases:

1. Analyzing a Design

2. Elaborating a Design

3. Running the Simulation

26-3

Integrating VCS MX with XA

Analyzing a Design

During design analysis, the syntax of Verilog and VHDL files is
verified and intermediary files are generated. The generated
intermediary files are later used during the elaboration phase. Any
syntax errors in Verilog or VHDL netlists are flagged at this phase.

Elaborating a Design

During elaboration, the design hierarchy is built based on the
information obtained from the analysis phase. In this phase,
incorrect port connectivity or missing definitions for instantiated
blocks in Verilog, VHDL, or SPICE are identified and flagged, if they
exist. If no error is encountered, at the end of the Elaboration phase,
the binary executable is generated.

Running the Simulation

To start the mixed-signal simulation, run the executable generated
during the elaboration phase.

A working installation of VCS MX and a matching version of XA are
required to run VCS MX-XA mixed-signal mixed-HDL simulation. For
a list of platform compatible versions of XA and VCS MX products
that work together, see the following article:

https://solvnet.synopsys.com/retrieve/020828.html

Setting up the Environment

You must set the following environment variables, before running the
VCS MX-XA simulation:

https://solvnet.synopsys.com/retrieve/020828.html

26-4

Integrating VCS MX with XA

• Set the Path to the License File

setenv LM_LICENSE_FILE license_file_path

or

setenv SNPSLMD_LICENSE_FILE license_file_path

• Source XA

source XA_install_directory/CSHRC_xa

• Set the Path to the VCS_HOME Directory

setenv VCS_HOME VCSMX_install_directory

set path = ($VCS_HOME/bin $path)

Use Model

Using VCS MX-XA involves the following three phases:

1. Analyzing Netlists

2. Elaborating the Design

3. Simulating the Design

Analyzing Netlists

During the netlist analysis phase, the syntax of Verilog and VHDL
files are verified, and intermediary files are generated which will be
used during the Elaboration step. Any syntax errors in Verilog or
VHDL netlists will be flagged at this phase.

26-5

Integrating VCS MX with XA

Analysis
% vlogan [vlogan_options] Verilog_files

% vhdlan [vhdlan_options] VHDL_files

Elaborating the Design

During Elaboration, the design hierarchy is built based on the
information obtained from the analysis phase. In this phase,
incorrect port connectivity or missing definitions for instantiated
blocks in Verilog, VHDL, or SPICE are identified and flagged, if they
exist.

Elaboration
% vcs -ad=initFile [elab_options] top_entity/
module/config

Simulating the Design

To enable mixed-signal simulation, use the -ad=initFile
elaboration option. If you use -ad without specifying the initFile,
VCS MX assumes the mixed-signal setup filename as vcsAD.init.

Simulation
% simv [simv_options]

Example

The following example shows a sample compilation script that
contain commands to analyze and elaborate a design with VHDL,
Verilog, and SPICE components. In this example, the files tb.vhd

26-6

Integrating VCS MX with XA

and blk_1.vhd contain the VHDL netlist, files blk_2.v and
blk_3.v contain the Verilog netlist, and the file all_spice.spi
contains the SPICE netlist.

Example:

% vlogan blk_2.v blk_3.v
% vhdlan tb.vhd blk1.vhd
% vcs -ad=setup.init testbench
% simv

In this example, testbench is the name of the top-level entity. The
mixed-signal setup file setup.init is shown below:

choose xa -n all_spice.spi;
use_spice -cell counter ddr_flop;
set bus_format <%d>;

where, counter and ddr_flop are multi-view cells, the SPICE
views which are used in this simulation.

27-1

Integrating VCS MX with Specman

27
Integrating VCS MX with Specman 1

The VCS MX ESI Adapter integrates VCS MX with the Specman
Elite. This chapter describes how to prepare a stand-alone VHDL/
Verilog design or mixed VHDL/Verilog design for use with the ESI
interface. See the Specman Elite User Guide for further information.

VCS MX has two ESI adapters, one for Verilog and the other for
VHDL. You can use both the adapters together for mixed HDL
simulation. VHDL adapter is implemented as a VHPI foreign
architecture, while the Verilog adapter is implemented as a Verilog
PLI application.

VHDL adapter is called as specman.vhd and is available with the
VCS MX release. You can find this file in
$VCS_HOME/packages/synopsys/src/specman.vhd. Verilog
adapter is called as specman.v. This file is generated using the
specman command, as explained later in the chapter.

27-2

Integrating VCS MX with Specman

This chapter includes the following topics:

• “Type Support”

• “Usage Flow”

• “Using specrun and specview”

• “Adding Specman Objects To DVE”

• “Version Checker for Specman”

Type Support

The VCS MX ESI adapter supports the following VHDL types:

• Predefined types

- bit

- Boolean

- std_logic/std_ulogic

- character

- array

• User-defined enum types

• VHDL memory

• in/out/inout/buffer ports

• Access to elements of the following composite types supported:

- Access to individual elements of any of the supported scalar
types

27-3

Integrating VCS MX with Specman

- Predefined types based on any of the supported scalar types
such as string, bit_vector, integer, etc.

Note:
Calling VHDL procedure or functions through e code is not
supported.

The VCS MX ESI adapter supports the following Verilog Types:

• nets

• wires

• registers

• integers

• array of registers (verilog memory)

Other Verilog support:

• Verilog macros

• Verilog tasks

• Verilog functions

• Verilog events

• in/out/inout ports

27-4

Integrating VCS MX with Specman

Usage Flow

The Specman usage model for VCS MX depends upon whether the
e code can access both VHDL and Verilog, or just one language. If
the e code can access just one language, then you do not have to
specify the unused part.

Setting Up The Environment

To set up the environment to run Specman with VCS MX:

• Set your VCS_HOME and VRST_HOME environment variables:

% setenv VCS_HOME [vcs_mx_installation_path]
% setenv VRST_HOME [specman installation]

• Source your env.csh file for Specman:

% source ${VRST_HOME}/env.csh

For 64-bit simulation, source your env.csh file as shown below:

% source ${VRST_HOME}/env.csh -64bit

• Source the environ.csh file for VCS MX:

% source $VCS_HOME/bin/environ.csh

• Set your environment for the VCS MX Specman ESI adapter:

% setenv SPECMAN_VCSMX_VHDL_ADAPTER ${VCS_HOME}/${ARCH}/
lib/libvhdl_sn_adapter.so

27-5

Integrating VCS MX with Specman

Specman e code accessing VHDL only

Instantiate SPECMAN_REFERENCE in the top-level VHDL code as
follows:

component comspec
end component;
for all: comspec use entity work.SPECMAN_REFERENCE(arch);

I: comspec;

Note:
In a Verilog-top design, instantiate SPECMAN_REFERENCE in one
of the top-level VHDL files underneath the Verilog-top code.

Analyze Verilog design files as shown below:

% vlogan [vlogan_options] -f Verilog_filename_list

Analyze the VHDL stub file and then VHDL design files as shown
below:

% vhdlan $VCS_HOME/packages/synopsys/src/specman.vhd
% vhdlan [vhdlan_options] file1.vhd file2.vhd

Elaborate the design as given in the following table:

27-6

Integrating VCS MX with Specman

Simulate the design as given below:

• In Compiled mode:

% vcs_simv -ucli [simv_options]
ucli% sn “test”
ucli% run
ucli% quit

Elaboration
Mode Commands

Generated
Executable

Compile

Execution with -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule” -o <exe_name>
<top_e_file>.e

"

vcs_<exe_name>

Execution without -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule” <top_e_file>.e
"

vcs_<top_e_file>

Loaded

Execution with -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule” -o <exe_name>
"

<exe_name>

Execution without -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule”
"

vcs_specman

27-7

Integrating VCS MX with Specman

Note:
Notice the use of the -o option with this script in compile mode
to change the name of the executable generated to vcs_simv
from the default name given by the script which is
vcs_<top_e_file>.

• In Loaded mode:

% simv -ucli [simv_options]
ucli% sn “load <top_e_file>; test”
ucli% run
ucli% quit

Note:
Notice the use of the -o option with this script in loaded mode to
change the name of the executable generated to simv from the
default name given by the script which is vcs_specman.

Specman e Code Accessing Verilog Only

Create the Verilog stub file specman.v and analyze all Verilog files
including specman.v as shown below:

% specman -c “load [top_e_file]; write stubs -verilog;”
% vlogan [vlogan_options] -f Verilog_filename_list specman.v

Analyze all VHDL design files as shown below:

% vhdlan [vhdlan_options] file1.vhd file2.vhd

27-8

Integrating VCS MX with Specman

Elaborate the design as given in the following table:

Simulate the design as given below:

• In Compiled mode:

% vcs_simv -ucli [simv_options]
ucli> sn “test”
ucli> run

Elaboration
Mode Commands

Generated
Executable

Compile

Execution with -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule” -o <exe_name>
<top_e_file>.e

"

vcs_<exe_name>

Execution without -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule” <top_e_file>.e
"

vcs_<top_e_file>

Loaded

Execution with -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule” -o <exe_name>
"

<exe_name>

Execution without -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule”
"

vcs_specman

27-9

Integrating VCS MX with Specman

ucli> quit

Note:
Notice the use of the -o option with this script in compile mode
to change the name of the executable generated to vcs_simv
from the default name given by the script which is
vcs_<top_e_file>.

• In Loaded mode:

% simv -ucli [simv_options]
ucli% sn “load <top_e_file>; test”
ucli% run
ucli% quit

Note:
Notice the use of the -o option with this script in loaded mode to
change the name of the executable generated to simv from the
default name given by the script which is vcs_specman.

e code accessing both VHDL and Verilog

Instantiate SPECMAN_REFERENCE in the top-level VHDL code as
follows:

component comspec
end component;
for all: comspec use entity work.SPECMAN_REFERENCE(arch);

I: comspec;

Note:
In a Verilog-top design, instantiate SPECMAN_REFERENCE in one
of the top-level VHDL files underneath the Verilog-top code.

27-10

Integrating VCS MX with Specman

Create the Verilog stub file specman.v and analyze all Verilog files
including specman.v as shown below:

% specman -c “load [top_e_file]; write stubs -verilog;”
% vlogan [vlogan_options] -f Verilog_filename_list specman.v

Analyze the VHDL stub file and then VHDL design files as shown
below:

% vhdlan $VCS_HOME/packages/synopsys/src/specman.vhd
% vhdlan [vhdlan_options] file1.vhd file2.vhd

Elaborate the design as given in the following table:

27-11

Integrating VCS MX with Specman

Simulate the design as given below:

• In Compiled mode:

% vcs_simv -ucli [simv_options]
sn “test”
run
quit

Elaboration
Mode Commands

Generated
Executable

Compile

Execution with -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule” -o <exe_name>
<top_e_file>.e

"

vcs_<exe_name>

Execution without -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule” <top_e_file>.e
"

vcs_<top_e_file>

Loaded

Execution with -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule” -o <exe_name>
"

<exe_name>

Execution without -o "% sn_compile.sh -sim vcs \
-sim_flags “[compile-

time_options] \
-debug top_cfg/entity/mod-

ule”
"

vcs_specman

27-12

Integrating VCS MX with Specman

Note:
Notice the use of the -o option with this script in compile mode
to change the name of the executable generated to vcs_simv
from the default name given by the script which is
vcs_<top_e_file>.

• In Loaded mode:

% simv -ucli [simv_options]
sn “load <top_e_file>; test”
run
quit

Note:
Notice the use of the -o option with this script in loaded mode to
change the name of the executable generated to simv from the
default name given by the script which is vcs_specman.

Guidelines for Specifying HDL Path or Tick Access with
VCS MX-Specman Interface

The guidelines to specify HDL path or tick access with VCS MX-
Specman interface are as follows:

• You cannot mix [] and (“()”) in a single tick access or HDL
path.

• HDL path or tick access notation should use [] on e side through
VHDL generate. If you do not use [], an adaptor error is
generated, to specify that the signal is not found. Apparently, ()
conflicts with the computed names in e code.

27-13

Integrating VCS MX with Specman

• Specman generates an error, if you use ("()") in HDL path.

• In the tick access notation, you must use [] or (“()”), instead
of (). Apparently, ()conflicts with the computed names in e code.

• You cannot use :, as a starting delimiter in the absolute HDL path
in e code.

Example: ~:test_top"m1.b

Using specrun and specview

VCS MX allows you to use the following Specman utilities to simulate
your design:

• specrun

• specview

specrun invokes Specman in batch mode, while specview
invokes the Specman GUI. The usage model is shown below:

Using specrun

• In Compiled mode:

 % specrun -p "test -seed=1;" simv [simv_options]

• In Loaded mode:

 % specrun -p "load [top_e_file]; test -seed=1;" \
simv [simv_options]

Using specview

Set the environment variable SPECMAN_OUTPUT_TO_TTY as shown
below:

27-14

Integrating VCS MX with Specman

% setenv SPECMAN_OUTPUT_TO_TTY 1

• In Compiled mode:

 % specview -p "test -seed=1;" -sio simv -gui

• In Loaded mode:

 % specview -p "load [top_e_file]; test -seed=1;" \
-sio simv -gui

You can also specify VCS MX runtime options with specview or
specrun as shown in the following examples:

Example 27-1 To Invoke DVE Using specview

The following command invokes the Specman GUI, as well as, DVE.

% specview -p "test -seed=1;" -sio simv -gui

Similarly, you can also use -ucli with specview to invoke
simulation in UCLI mode.

Example 27-2 To Invoke UCLI Using specrun

The following command invokes the simulation in UCLI mode:

% specrun -p "test -seed=1;" simv -ucli -i include.cmd

Similarly, you can also use -gui with specrun to invoke DVE.

27-15

Integrating VCS MX with Specman

Adding Specman Objects To DVE

Following are the steps involved to add e-objects to the DVE wave
window:

• Analyze and elaborate the design. See “Usage Flow” .

• Create the wave.ecom file containing the list of e-objects to be
added. For example:

wave exp sys.U_TbDut.My_Trans
wave event *.clk

• Simulate the design as shown below:

- In Compiled mode:

% simv -gui -do run.do

Here, the run.do contains:

sn set wave -mode=manual dve
sn config wave -event_data=all_data
sn test
sn @wave
run 8 us

- In Loaded mode:

% simv -gui -do run.do

Here, the run.do contains:

sn set wave -mode=manual dve
sn config wave -event_data=all_data
sn load top_e_file.e
sn test
sn @wave
run 8 us

27-16

Integrating VCS MX with Specman

The simv -gui -do run.do command starts DVE, executes
the UCLI commands specified in run.do and creates the
sn_wave_sys.tcl session file.

• Now, load sn_wave_sys.tcl using File > Load Session and
the dumped e-objects will be added to the Wave window
automatically.

• Go to the Wave window and click on the groups icon to the side
of the filter pane and select the e-objects to be added. See the
figure shown below:

Select Groups

Select the e-objects to be added

27-17

Integrating VCS MX with Specman

Version Checker for Specman

This section describes how to check the compatibility version of
Specman with VCS MX. If non-compatible version of Specman is
used, then VCS MX generates a warning message at elaboration-
time.

Use Model

• Through command-line options:

% vlogan

% vhdlan

% vcs +warn=V2V_CHECK_SPECMAN

%simv +warn=V2V_CHECK_SPECMAN

To convert warning to error:

% vcs +vcs+error=V2V_CHECK_SPECMAN

You can use the +warn=noV2V_CHECK_SPECMAN option to
turn off the warning message. In this option, no specifies
disabling warning messages.

• Through synopsys_sim.setup file for VCS MX flow:

V2V_CHECK_SPECMAN=TRUE/FALSE

• Through new environment variable for VCS MX flow:

27-18

Integrating VCS MX with Specman

% setenv V2V_CHECK_SPECMAN TRUE/FALSE

 Precedence Order

1. Command-line

2. Setup file

3. Environment variable

In VCS MX flow, command-line will have the highest priority
compared to setup file and environment variable. Also, runtime
enabling is automatically done, when enabled using environment
variable or setup file.

28-1

Integrating VCS MX with Denali

28
Integrating VCS MX with Denali 1

Denali, a third-party Memory Modeler - Advanced Verification
(MMAV) product, can be integrated with VCS MX through a set of
APIs. Denali provides a complete solution for memory modeling and
system verification. It automatically monitors all the timing and
protocol requirements specified by the memory vendor.

Setting Up Denali Environment for VCS MX

To use Denali along with VCS MX, set your Denali environment as
shown below:

% setenv DENALI [installation_path_of_DENALI]
% setenv LM_LICENSE_FILE [Denali_license]:$LM_LICENSE_FILE
% setenv LD_LIBRARY_PATH $DENALI/vhpi:$LD_LIBRARY_PATH

28-2

Integrating VCS MX with Denali

Integrating Denali with VCS MX

The generic functionality of various memory architectures are
captured in a set of highly-optimized 'C' models. The vendor-specific
features and the timing for any particular memory device are defined
within the specification of memory architecture (SOMA) file. Once
the Denali model objects are linked into the simulation environment,
modeling any type of memory is as simple as referencing the
appropriate SOMA file for that particular memory device.

To access a particular SOMA file, include the following declaration in
the source code:

For VHDL portions of designs:

GENERIC (
memory_spec: string := soma_file_path;
init_file: string := ""

);

For Verilog portions of designs:

parameter memory_spec = soma_file_path;
parameter init_file = "";

Note:
 memory_spec and init_file are keywords.

Usage Model

Denali provides you both Verilog and VHDL memory models.
However, for mixed HDL designs, Synopsys recommends you to use
either Verilog or VHDL memory model for the whole design. The
usage model does not allow mixing of PLI and VHPI calls.

28-3

Integrating VCS MX with Denali

This section describes the following:

• Usage Model for VHDL Memory Models

• Usage Model for Verilog Memory Models

• Execute Denali Commands at UCLI Prompt

Usage Model for VHDL Memory Models

The VHDL memory models should be integrated with VCS MX using
VHPI calls in the VHDL design code as shown below:

attribute foreign of [architecture_name]: architecture is
 "vhpi:[library_name]:[elaboration_function_name]:
 [initialisation_function_name]:[model_name]”;

For example:

attribute foreign of behavior: architecture is
"vhpi:denvhpi:flashElabVHPI:flashInitVHPI:mobilesdram";

VHDL memory models can be used with the following types of
design topologies:

• VHDL DUT and VHDL Testbench

• VHDL DUT and Verilog Testbench

• Verilog DUT and VHDL Testbench

The usage model is as shown below:

Analysis
% vlogan [vlogan_options] file2.v file3.v
% vhdlan [vhdlan_options] file3.vhd file2.vhd file1.vhd \
 [memory_model.vhd] [memory_wrapper.vhd]

28-4

Integrating VCS MX with Denali

Elaboration
% vcs [vcs_options] top_entity/module/config

Simulation
% simv [simv_options]

Usage Model for Verilog Memory Models

Verilog memory models can be integrated with VCS MX using PLIs.
To use Verilog memory models, you need to specify the pli.tab file
and denverlib.o during elaboration.

Verilog memory models can be used with the following types of
design topologies:

• Verilog DUT and Verilog Testbench

• VHDL DUT and Verilog Testbench

• Verilog DUT and VHDL Testbench

The usage model is shown below:

Analysis
% vlogan [vlogan_options] file2.v file3.v \
 [memory_model.v] [memory_wrapper.v]

% vhdlan [vhdlan_options] file3.vhd file2.vhd file1.vhd

Elaboration
% vcs -debug [vcs_options] top_entity/module/config \
-P $DENALI/verilog/pli.tab $DENALI/verilog/denverlib.o

28-5

Integrating VCS MX with Denali

Note:
To elaborate the design in 64-bit mode, you must use the
-lpthread option.

Simulation
% simv [simv_options]

Execute Denali Commands at UCLI Prompt

VCS MX allows you to execute Denali commands at the UCLI
prompt. For example:

% simv -ucli
ucli% mmload :top:I_dut:I_denali_model data_file

The above UCLI command loads the Denali memory in the instance
I_denali_model with the data specified in the data_file.

For more information on invoking UCLI, see “Using UCLI” .

29-1

Integrating VCS MX with Debussy

29
Integrating VCS MX with Debussy 1

In this release, VCS MX supports Novas 2010.07 version under the
–fsdb option.

This chapter contains the following section:

• “Using the Current Version of VCS MX with Novas 2010.07
Version” on page 1

Using the Current Version of VCS MX with Novas
2010.07 Version

This section describes the required environmental settings and the
usage model to dump an fsdb file:

• “Setting Up Debussy”

29-2

Integrating VCS MX with Debussy

• “Usage Model to Dump fsdb File”

• “Examples”

Setting Up Debussy

To dump an fsdb file, you need to set the following environment
variables:

% setenv DEBUSSY_HOME Debussy_installation
% setenv DEBUSSY_LIB $DEBUSSY_HOME/share/PLI/VCS/LINUX
% setenv LD_LIBRARY_PATH ${DEBUSSY_HOME}/share/PLI/lib/
LINUX:$DEBUSSY_LIB
% setenv LM_LICENSE_FILE[Debussy_license]:$LM_LICENSE_FILE

Usage Model to Dump fsdb File

This section describes the usage model to dump an fsdb file using
VHDL procedures, Verilog system tasks, or UCLI.

• Using VHDL Procedures

The following are the two ways to dump an fsdb file using VHDL
procedures:

- You can use the VHDL procedures fsdbDumpfile() and
fsdbDumpvars() in your VHDL code to dump an fsdb file.

Note:
To use these procedures, you should include SYNOPSYS
library in your VHDL file as shown below:

 --Your VHDL file
 library SYNOPSYS;

29-3

Integrating VCS MX with Debussy

 use SYNOPSYS.novas.all;

 entity test is
 ...
 end test;

 architecture arch of test is
 ...
 end arch;

- You can use the Novas provided VHDL file: compile the Novas
provided VHDL file <NOVAS_INST_DIR>/share/PLI/VCS/
${PLATFORM}/novas.vhd using the VCS-MX analyzer and
vhdlan, and save it in the same directory where the design is
saved. The novas.vhd VHDL file contains the definitions of
the FSDB foreign functions.

Use the novas package in any VHDL design file that invokes
FSDB foreign functions.

Example:

 use work.novas.all; --using novas package.
 entity testbench is end;

 architecture blk testbench is Begin

 ...

 Process begin:

 dump fsdbDumpvars(0, : , +fsdbfile+signal.fsdb); -- call
VHDL procedure wait;

 end process end;

 Then recompile the VHDL files you have modified.

29-4

Integrating VCS MX with Debussy

• Using Verilog System Tasks

You can use the Verilog system tasks $fsdbDumpfile() and
$fsdbDumpvars() in your Verilog design to dump an fsdb file
(see “Using VHDL Procedures or Verilog System Tasks”).

• UCLI

At UCLI prompt, you can use the UCLI commands
fsdbDumpfile and fsdbDumpvars to dump an fsdb file.

Irrespective of whether you are using procedures, system tasks, or
UCLI commands, you must use the -fsdb elaboration option to
enable fsdb dumping, as shown below:

Using VHDL Procedures or Verilog System Tasks

Analysis

Always analyze Verilog before VHDL.

% vlogan [vlogan_options] file1.v file2.v
% vhdlan [vhdlan_options] file3.vhd file4.vhd

Note:
Specify the VHDL bottommost entity first, then move up in order.

Elaboration

This can be done in following two ways:

• % vcs -fsdb [elab_options] top_module/entity/cfg

29-5

Integrating VCS MX with Debussy

• For –P tab flow, replace vcsd.tab with novas.tab, where
novas.tab is available in:

<NOVAS_INST_DIR>/share/PLI/VCS/${PLATFORM}/
novas.tab

Replace vhpi debussy with novas at runtime. That is, replace
-vhpi debussy:FSDBDumpCmd with
-vhpi novas:FSDBDumpCmd

The following is the use model:

vcs -debug_pp -P $DEBUSSY_LIB/novas.tab
$DEBUSSY_LIB/pli.a

 simv –vhpi novas:FSDBDumpCmd

Simulation

% simv [run_options]

Using UCLI

Analysis

Always analyze Verilog before VHDL.

% vlogan [vlogan_options] file1.v file2.v
% vhdlan [vhdlan_options] file3.vhd file4.vhd

Note:
Specify the VHDL bottommost entity first, then move up in order.

Elaboration

This can be done in following two ways:

29-6

Integrating VCS MX with Debussy

• % vcs -fsdb [elab_options] top_module/entity/cfg

• For –P tab flow, include –load libnovas.so:FSDBDumpCmd
in the compilation step.

The following is the use model change:

% vcs -debug_pp -P $DEBUSSY_LIB/novas.tab
$DEBUSSY_LIB/pli.a -load libnovas.so:FSDBDumpCmd

Simulation

% simv [run_options] -ucli
ucli> fsdbDumpfile your_fsdb_dumpfile
ucli> fsdbDumpvars level module/entity

Note:
The default fsdb file name is novas.fsdb.

Examples

Example 29-1 Using Verilog System Tasks

This example demonstrates the use of Verilog system tasks,
$fsdbDumpfile and $fsdbDumpvars.

`timescale 1ns\1ns
module test;
 initial
 begin
 $fsdbDumpfile("test.fsdb");
 $fsdbDumpvars(0,test);
 end

...
endmodule

29-7

Integrating VCS MX with Debussy

Now the usage model to elaborate and simulate the above design is
as shown below:

Analysis

% vlogan test.v

Elaboration

% vcs -fsdb test

Simulation

% simv

The above set of commands dumps all the instances in test into the
test.fsdb file.

Example 29-2 Using UCLI

This example demonstrates the use of UCLI commands
fsdbDumpfile and fsdbDumpvars at the UCLI prompt to dump
an fsdb file:

Consider the following Verilog file:

‘timescale 1ns/1ns
module test();
....
endmodule

The usage model to elaborate the design to use UCLI commands is
as shown below:

Analysis

% vlogan test.v

Elaboration

% vcs -fsdb -debug_pp test

29-8

Integrating VCS MX with Debussy

Simulation

% simv -ucli
ucli> fsdbDumpfile test.fsdb
ucli> fsdbDumpvars 0 test
ucli> run
ucli> quit

The above command dumps the whole design test into the
test.fsdb file.

30-1

Integrating VCS with MVSIM Native Mode

30
Integrating VCS with MVSIM Native Mode 1

This chapter provides brief description on the MVSIM tool and how VCS
works with MVSIM native mode.

Introduction to MVSIM

MVSIM is a multivoltage simulation tool that enables voltage-level
aware simulation and verification of power-managed designs. The tool
enables you to simulate the impact of voltage variation on digital logic.

You can use MVSIM for both RTL and Netlist simulations. MVSIM uses
IEEE-1801 (also known as UPF) as the format to capture power-intent
of a design.

30-2

Integrating VCS with MVSIM Native Mode

MVSIM Native Mode in VCS

Native mode of MVSIM enables you to specify the UPF based power-
intent of your design directly to VCS and generate a simulation model,
which contains all power-objects directly instrumented in it.

MVSIM-Native mode eliminates MVCMP or MVDBGEN based
compilation (as done in MVSIM-PLI mode), EV or EVHD compilation,
and the intermediate apdb database, giving significant improvement in
performance and ease-of-use over MVSIM-PLI mode. MVSIM-Native
requires the MVSIM license, as does the MVSIM-PLI mode.

The following figure illustrates the architecture of MVSIM PLI and Native
modes:

30-3

Integrating VCS with MVSIM Native Mode

References

For more details about getting the license for MVSIM and installing it,
refer to the Multi-Voltage Low Power Verification Tools Suite Installation
Guide.

For more details about MVSIM Native mode in VCS, refer to the
MVSIM Native Mode User Guide.

31-1

Migrating to VCS MX

31
Migrating to VCS MX 1

To migrate to VCS MX from other simulators, it is very important to
understand the differences and similarities in each phase of the
setup and usage of VCS MX and the simulator your migrating from.

31-2

Migrating to VCS MX

The following table gives you an overview on the phases involved in
the migratation. If you have further questions, contact
vcs_support@synopsys.com, or your Synopsys AC.

To migrate from other simulators to VCS MX, you should look into the
following phases carefully, and migrate them accordingly:

Phase/Simulator VCS MX Other Simulators

Setup Files VCS MX uses synopsys_sim.setup
as the setup file.

In this file, you define your logical
libraries, timescale settings, and so on.

Other simulators may also have
a similar setup file, where you can
define all the simulator related
settings. Most of the simulators
have the concept of logical
libraries and so on.

Mapping Logical
Libraries

To map the logical library to a physical
library, you need to create a physical
library using mkdir, and map it in your
synopsys_sim.setup.

Like VCS MX, some simulators
may use mkdir to create a library.
However, some simulators also
have their own executable to
create and map a library.

Use Model Three step use model - analysis,
elaboration, and simulation

Other simulators use either three
step or two step use model

Analysis/Parsing VCS MX uses vlogan to analyze all
Verilog files, and vhdlan to analyze all
VHDL files.

Other simulators also follow the
same flow, to analyze Verilog and
VHDL files

Elaboration or
Compilation

VCS MX uses vcs to elaborate the
design. This executable generates .o
files and links them to create a binary
executable for simulation.

Other simulators also have an
elaboration stage. However, the
ones that follow two step use
model, elaborates and simulates
the design in the same phase.
Please note this when comparing
the elaboration and runtime
performance with VCS MX.

Simulation The above step generates a binary
executable. By default this executable
is simv. You can use simv to run the
simulation.

Interpreted simulators generate a
similar binary executable, while
the compiled simulators provide
an executable to run the
simulation.

31-3

Migrating to VCS MX

1. “Step 1: Setting Up The Environment”

2. “Step 2: Analysis”

3. “Step 3: Elaboration”

4. “Step 4: Simulation”

Step 1: Setting Up The Environment

VCS MX uses synopsys_sim.setup file to get the library
mapping, timescale settings, default C compiler, C compiler flags
and so on. For example, the syntax for library mapping is shown
below:

ALU8: ./alu_8bit

Here ALU8 is the logical library mapped to a physical library
alu_8bit in the current working directory.

To map a logical library to a physical library, you should first create a
physical library using the UNIX utility mkdir. Other simulators may
also have a separate utility to create and map the physical library to
a logical library.

VCS MX looks for the synopsys_sim.setup file in the following
locations in the following order:

• Working directory

• You home directory

• VCS MX installation.

31-4

Migrating to VCS MX

You can also set SYNOPSYS_SIM_SETUP variable to any
synopsys_sim.setup file, and VCS MX ignores the above, and
considers the file pointed by SYNOPSYS_SIM_SETUP variable.

Other simulators may also have a similar setup file to define the
library mappings, timescale settings and so on. While migrating to
VCS MX, you should migrate those settings to
synopsys_sim.setup, so that you get the same settings you had
with the other simulator.

Please note that, every simulator has its own way of writing this
setup file.

Points To Note:

• Library mapping for standard libraries like IEEE, STD, and
std_developers kit will be picked up automatically.

• Recommended way is to combine all the setup files referred by
others flag into one. Comment(--) out all the flags other than library
mapping. You can use SYNOPSYS_SIM_SETUP environment
variable to make sure that right setup file is considered.

31-5

Migrating to VCS MX

Step 2: Analysis

In this phase, you analyze all Verilog files and VHDL files. With VCS
MX you use vlogan and vhdlan executables to analyze the Verilog
and VHDL files respectively. Other simulators may also have similar
executables to analyze Verilog and VHDL files. To migrate to VCS
MX, you should replace the command analyzing Verilog files, with
vlogan, and the command analyzing VHDL files with vhdlan.

You should also note that Verilog 95 and VHDL 93 syntax is default
in VCS MX. You should use -vhdl87 to analyze VHDL 87 syntax.
Similarly, other simulators may have either Verilog 95, Verilog 2000,
VHDL 93 or VHDL87 as default, and an option to switch to a different
syntax. This has to be carefully observed, and modified accordingly.

During analysis, you specify the analysis options, like:

• -work library, to analyze the files in the specified library

• +define+macro, to define a macro specified in your Verilog file

• -v, and -y to specify Verilog library files, and the Verilog library
directory and so on.

You can map the other simulators parsing or analysis options with
vlogan or vhdlan options.

Points To Note

• VCS MX expects a logical library as an argument to -work and
expects user to create the respective physical directory.

31-6

Migrating to VCS MX

• Usage of Synopsys packages: VCS MX comes with a rich feature
of additional packages providing a capability of cross boundary
tapping and forcing of nodes via hdl_xmr, hdl_xmr_force,
hdl_xmr_release. Any such usage adheres to VHDL library use
clause.

Step 3: Elaboration

In this phase, VCS MX builds the design hierarchy, and generates a
binary executable for simulation. Other simulators also have the
elaboration step. However, some of them, like VCS MX, generates
an executable for simulation, and some continue with the simulation,
immediately after elaborating the design.

During elaboration, you can specify:

• -debug_pp to enable dumping a VPD file.

Note:
VPD is Synopsys proprietary dumping format. Other simulators
may also have their proprietary method of dumping a simulation
history file using system task or a command line option.

• -debug to enable dumping and forcing signals at runtime.

• -debug_all to enable dumping, forcing and line stepping at
runtime. You must use this option to dump VHDL variables.

• -l log_file, to specify the log file.

• Options for coverage.

• Options to override generics and parameter values and so on.

31-7

Migrating to VCS MX

You can find the use model and the commonly used elaboration
options in the section “Elaboration” . You can map the other
simulators options with the vcs options.

Points To Note

• Library resolution: Unless the variable LIBRARY_SCAN = TRUE
is set in synopsys_sim.setup file, VCS MX will not look for the
unresolved instances in the libraries specified in
synopsys_sim.setup. It will adhere to VHDL use library clause
or V2K configurations. You can set this variable in
synopsys_sim.setup file.

• Relative language XMR's: An absolute path starting from the top
module is required for any XMR's which traverses through the
VHDL hierarchy.

For more information, see “Elaboration” .

Step 4: Simulation

In this phase, the following should addressed:

• Simulation executable

• User Interface commands

• Simulation Results

• Performance Tuning - See “Performance Tuning” .

31-8

Migrating to VCS MX

Simulation Executable

All interpreted simulators generate a binary executable to run the
simulation, and the compiled simulators have their own executable
to run the simulation.

During elaboration, VCS MX generates a binary executable for the
simulation. By default, VCS MX generates the binary executable
simv in the working directory. Some simulators combine both
elaboration and simulation in the same step. This should taken care
while migrating to VCS MX.

At runtime, you can use

• -gv, to override VHDL generics.

• -gui, to start the graphical user interface (GUI). VCS MX provides
you the DVE (Discovery Verification Environment) as a GUI to
view the waveforms, debugging and so on.

• -ucli, to enter the UCLI prompt.

• -l log_file, to specify the log file.

For more information, see “Simulation” .

User Interface Commands

VCS MX provides you the UCLI (Unified Command Line Interface)
commands to control the simulation from the user interface prompt.
You can use the runtime option -ucli to enter the UCLI prompt.
Other simulators may also have a similar runtime option to enter the
user interface prompt.

31-9

Migrating to VCS MX

UCLI is a Tcl based interface. Therefore, you can use or write Tcl
procedures to control the simulation.

You can write the required UCLI commands in a file, and pass it to
the binary executable using the runtime option -do run.do, and
VCS MX executes the specified UCLI commands. This file can
contain UCLI commands which controls the simulation, like:

• run, to run the simulation

• quit, to exit the simulation

• save and restore, to save and restore the simulation states

• dump, to dump a VPD file

• force, and release, to force and release a signal, and so on.

User interface commands differs a lot from simulator to simulator.
You can refer to the section “Using UCLI” for the list of UCLI
commands, and accordingly map them with your user interface
command file.

Simulation Results

The above sections described the steps involved to successfully
generate a simulation executable. However, this may not guarantee
you that simulation will go well.

Obtaining the correct simulation results depends on the following:

• Coding Style

• LRM Extensions

31-10

Migrating to VCS MX

Coding Style

As per the LRM, event scheduling is simulator dependent. For
example, assume you have two initial blocks as shown in the
example below:

initial
 rst = 1’b0;

initial
begin
 if (rst ==1) then
 //other initializations
 else
 // all ports are driven to X.

In this example, the first initial block initializes rst, and following one
initializes other signals, based on the rst value. Now, because the
ordering of initial blocks are simulator dependent, simulation of this
code may go well with some simulators. However, this type of code
is never guaranteed to run with all simulators. Synopsys,
recommends you to add a delay, and accordingly control the order of
simulation.

Similarly, in VHDL designs, at the start of the simulation, the order
in which the variables are getting initialized and the subsequent call
to VHDL processes sensitive to such variables will be simulator
dependent. You are expected to guard all the process appropriately.

You may also see races in state machines, as shown in the example
below:

If a design block contains number of state machines which has
blocking assignments (within finite state machines) to signals. These
signals in turn are used in continuous assignment statements to
other signals that are read in the fsm. In case of VCS MX, the signals

31-11

Migrating to VCS MX

are updated immediately; while some simulators may update this
later. This will result in a difference in the behavior of the FSM's. To
get around this issue you can add #0 to the assign statements.

For example:

assign #0 new_state = (enable) & curr_state;

Points to note

• Negative NBA delay getting converted to 0. For delay control
statements where ever the delay expression is getting evaluated
to negative values get truncated to 0

LRM Extensions

Some simulators relaxes some of the LRM limitations. The relaxed
features varies from simulator to simulator. With VCS MX, you can
use -xlrm to relax some of the LRM limitations.

For example, some of the VHDL data types mentioned below, the
default initialized value is different with respect to VCS MX. This may
also result in simulation mismatch. Using -xlrm, you can change the
default initialization as shown below:

Data Type Non assigned value
without XLRM

Non assigned value
with XLRM

Character Binary Binary

String Binary Binary

Time -4611686018427387.903 NS 0 NS

A-1

VCS MX Environment Variables

A
VCS MX Environment Variables A

This appendix covers the following topics:

• “Setup Variables”

• “Optional Environment Variables”

Setup Variables

You can configure the compilation and simulation behavior of VCS
MX by assigning values to setup variables in the
synopsys_sim.setup file. The variable assignment statements
have the following syntax:

variable_name = value

A-2

VCS MX Environment Variables

This section lists the setup variables that affect VCS MX. In addition
to these variables, the setup file can contain other variable
assignments that apply to other Synopsys tools. VCS MX ignores
setup variables related to other products, but generates a warning
for the unrecognized variables.

The setup variables described in this section are organized into the
following four parts:

• “Analysis Setup Variables”

• “Compilation/Elaboration Setup Variables”

• “Simulation Setup Variables”

• “C Compilation and Linking Setup Variables”

Analysis Setup Variables

The setup variables that configure the analysis behavior of VCS MX
are listed here in alphabetical order.

IGNORE_BINDING_HOMOGRAPHS

Controls the generation of warning messages when encountering
homographs while doing component binding. When set to TRUE,
VCS MX suppresses all component binding homograph
messages. The default value of
IGNORE_BINDING_HOMOGRAPHS is FALSE.

LIBRARY_SCAN

When set to TRUE, it checks and searches for a matching entity
in all libraries defined in the synopsys_sim.setup file to resolve
a component instantiation. If one is not found, an error message
is issued. The default value of LIBRARY_SCAN is FALSE.

A-3

VCS MX Environment Variables

LICENSE_WAIT_TIME

Enables license queueing and specifies the timeout time in
minutes before vhdlan gives up waiting for a license.

The timeout time should be an integer greater than zero; any
decimal part of the number will be ignored.

With the LICENSE_WAIT_TIME variable in the setup file set to
an integer, you will not have to specify the -licwait option.
However, if you do specify the -licwait option, this will override
the setting in the setup file.

This variable affects analysis, compilation, and simulation steps.
This variable is not set by default.

OPTIMIZE

When set to TRUE, the VCS MX analyzer optimizes the compiled
event code by eliminating VHDL checks for:

- Arithmetic overflow

- Constraint checks

- Array size compatibility at assignment

- Subscripts out of bounds

- Negative exponents to integer

The -optimize option to the vhdlan command overrides the
OPTIMIZE value. The default value of OPTIMIZE is TRUE.

A-4

VCS MX Environment Variables

Note:
If a VHDL error occurs when OPTIMIZE is TRUE, you may receive
erroneous results or it can cause VCS MX to fail in an
unpredictable way. If you have not completely debugged your
design, it is recommended to temporarily set OPTIMIZE to
FALSE.

RELAX_CONFORMANCE

When set to TRUE, the VCS MX analyzer relaxes any VITAL
conformance violation error into a warning when analyzing VITAL
models. The default value of RELAX_CONFORMANCE is FALSE.

SPC

When set to TRUE, the VCS MX analyzer performs synthesis
policy checking while analyzing VHDL design files. The analyzer
checks the VHDL design files against the VHDL subset supported
by Synopsys synthesis tools. The analyzer does not check for
synthesis elaboration errors.

To make the synthesis policy checking work correctly, you must
install the synthesis software correctly and the $SYNOPSYS
variable must point to your synthesis installation. The -spc option
of the vhdlan command overrides the SPC value. The default
value of SPC is FALSE.

IEEE_1076_1987

When set to TRUE, VHDL analyzer allows you to use VHDL-87
syntax. The default value of IEEE_1076_1987 is FALSE.

XLRM_TIME

A-5

VCS MX Environment Variables

When set to TRUE, VCS (vlogan) relaxes timescale restriction,
and issues a warning message when a module does not have
timescale at analysis phase. For more information, refer to “New
Timescale Implementation” .

Compilation/Elaboration Setup Variables

The following setup variables configure the compilation behavior of
VCS MX.

ERROR_WHEN_UNBOUND

Set this variable to TRUE to change a warning message to an error
message issued due to an unbound design unit. By default, VCS
MX issues a warning message if there are any unbound design
units.

IGNORE_BINDING_HOMOGRAPHS

See “IGNORE_BINDING_HOMOGRAPHS” on page 2 for more
information.

LIBRARY_SCAN

See “LIBRARY_SCAN” on page 2 for more information.

LICENSE_WAIT_TIME

See “LICENSE_WAIT_TIME” on page 3 for more information.

NUM_COMPILERS

A-6

VCS MX Environment Variables

Specifies the number of compilers used in parallel compilation.
When PARALLEL_COMPILE_OFF is FALSE, NUM_COMPILERS is
set to 4. You can override the default value by specifying another
integer value. If PARALLEL_COMPILE_OFF is TRUE,
NUM_COMPILERS is set to 1, that is, serial compilation. The default
value of NUM_COMPILERS is 4.

PARALLEL_COMPILE_OFF

Speeds up the compilation of generated C files by controlling the
parallelism between code generation and compilation and
between compilation of different files.

When set to TRUE, elaboration step uses serial compilation
instead of parallel compilation. The default value of
PARALLEL_COMPILE_OFF is FALSE.

TIMEBASE

Specifies the basic unit of time used in simulating the design. All
units of time used and understood by VCS MX are non-negative,
whole-number multiples of the timebase unit. Valid TIMEBASE
values are fs, ps, ns, us, ms, and sec.

The -time option to the vcs command overrides the TIMEBASE
value. The default value of TIMEBASE is NS.

TIME_RESOLUTION

Specifies the VCS MX time resolution. It basically sets the
precision or the number of simulation ticks per base time unit.

TIME_RESOLUTION = [1 | 10 | 100] [fs | ps | ns |
us | ms | sec]

A-7

VCS MX Environment Variables

If no numeric value (1, 10, or 100) is provided, then the default
value is 1. For example:

TIME_RESOLUTION = ps

If a value beside 1, 10, or 100 is provided, a warning during vcs
will be issued and a default setting of 1 <unit> will be used (where
unit is the specified time unit (fs, ps, etc.)).

Time resolution value cannot be higher than the time base value.
An error will be issued if this happens.

-The -time_resolution option to the vcs command
overrides the TIME_RESOLUTION value. The default value

is TIME_RESOLUTION = 1NS.

ELAB_EXPAND_ENV

When set to TRUE, this environment variable supports the
expansion of UNIX environment variable, which is used with
VHDL string generic.

Example

% cat test.v

 module memory_module (input data);
 parameter memoryfile = "";
 initial
 $display(" memoryfile is = %s " ,memoryfile);
 endmodule

% cat test.vhd

 library IEEE;
 use IEEE.std_logic_1164.all;

 entity top is

A-8

VCS MX Environment Variables

 generic (memoryfile : string := "$MEMORYFILE");
 end entity;

 architecture arch of top is
 component memory_module is
 generic (memoryfile : string);
 port (data : in std_logic);
 end component;

 signal data : std_logic;

 begin
 inst : memory_module generic map (memoryfile)
port map (data);
 end architecture;
The following steps describe the use model:

1. Set the value of environment variable ELAB_EXPAND_ENV to
TRUE in synopsys_sim.setup file, along with other library
mappings or environment variables.

ELAB_EXPAND_ENV = TRUE

2. Set the UNIX environment variable which is used in VHDL file
test.vhd, as shown below:

setenv MEMORYFILE memory.txt

3. Run the design

vlogan test.v
vhdlan test.vhd
vcs top
simv

The following is the output from Verilog file:

memoryfile is = memory.txt

A-9

VCS MX Environment Variables

Note:
As per Verilog LRM, you cannot change the value of parameter
from one value to another, after elaboration or compilation.

For example:

First Run:

1. Set generic to value

2. vcs

3. simv

Second Run:

1. Set generic to some other value

2. simv

Therefore, you must set the value of this environment variable
before the elaboration of the design, that is, before vcs.

Limitations

The following are the limitations of the ELAB_EXPAND_ENV
environment variable:

- This variable supports only string generic. It does not support
variables or constants.

- This variable supports only unconstrained generics. This
variable will not be supported if the generic memoryfile in the
above example is declared as shown below:

A-10

VCS MX Environment Variables

 generic (memoryfile : string(1 to 11) :=
 "$MEMORYFILE");
 .
 .
 component memory_module is
 generic (memoryfile : string(1 to 11));
 port (data : in std_logic);
 end component;

Simulation Setup Variables

The following setup variables configure the simulation behavior of
VCS MX.

ASSERT_IGNORE

Controls the generation of messages in response to VHDL
assertion violations or report statements. The possible values for
this variable are NOTE, WARNING, ERROR, FAILURE, NOIGNORE,
or NOTSET.

ASSERT_IGNORE has higher precedence than the individual
assertion variable settings. If ASSERT_IGNORE equals NOTSET,
simulation proceeds to check the values of the individual assertion
variable settings, ASSERT_IGNORE_NOTE,
ASSERT_IGNORE_WARNING, ASSERT_IGNORE_ERROR, and
ASSERT_IGNORE_FAILURE. If ASSERT_IGNORE is set to any
other value, the individual assertion variable settings are ignored.

If ASSERT_IGNORE equals NOIGNORE, the simulation prints
messages for all assertion violations. The other values prevent
simulation from printing a message unless the assertion violation
is of greater severity than the value specified.

A-11

VCS MX Environment Variables

ASSERT_IGNORE has higher precedence than ASSERT_STOP.
This means that when ASSERT_IGNORE is set, the simulator does
not stop on ASSERT_STOP assertions. The default value of
ASSERT_IGNORE is NOTSET.

ASSERT_IGNORE_NOTE

Controls the generation of messages in response to VHDL
assertion violations of severity NOTE. If set to TRUE, all assertions
of severity NOTE are ignored. VHDL assertions of severity other
than NOTE are not affected by this variable.

ASSERT_IGNORE has higher precedence than
ASSERT_IGNORE_NOTE. If ASSERT_IGNORE is set to any value
other than NOTSET, the value of ASSERT_IGNORE_NOTE is
ignored. The default value of ASSERT_IGNORE_NOTE is FALSE.

ASSERT_IGNORE_WARNING

Controls the generation of messages in response to VHDL
assertion violations of severity WARNING. If set to TRUE, all
assertions of severity WARNING are ignored. VHDL assertions
of severity other than WARNING are not affected by this variable.

ASSERT_IGNORE has higher precedence than
ASSERT_IGNORE_WARNING. If ASSERT_IGNORE is set to any
value other than NOTSET, the value of
ASSERT_IGNORE_WARNING is ignored. The default value of
ASSERT_IGNORE_WARNING is FALSE.

ASSERT_IGNORE_ERROR

Controls the generation of messages in response to VHDL
assertion violations of severity ERROR. If set to TRUE, all
assertions of severity ERROR are ignored. VHDL assertions of
severity other than ERROR are not affected by this variable.

A-12

VCS MX Environment Variables

ASSERT_IGNORE has higher precedence than
ASSERT_IGNORE_ERROR. If ASSERT_IGNORE is set to any value
other than NOTSET, the value of ASSERT_IGNORE_ERROR is
ignored. The default value of ASSERT_IGNORE_ERROR is FALSE.

ASSERT_IGNORE_FAILURE

Controls the generation of messages in response to VHDL
assertion violations of severity FAILURE. If set to TRUE, all
assertions of severity FAILURE are ignored. VHDL assertions of
severity other than FAILURE are not affected by this variable.

ASSERT_IGNORE has higher precedence than
ASSERT_IGNORE_FAILURE. If ASSERT_IGNORE is set to any
value other than NOTSET, the value of
ASSERT_IGNORE_FAILURE is ignored. The default value of
ASSERT_IGNORE_FAILURE is FALSE.

ASSERT_IGNORE_OPTIMIZED_LIBS

Defines the maximum severity level of an assertion to be ignored
in the built-in packages during simulation. For global scope, the
value of ASSERT_IGNORE is used. For built-in simulation
packages, the value of the higher severity level between
ASSERT_IGNORE and ASSERT_IGNORE_OPTIMIZED_LIBS
takes precedence. These built-in packages include all the
Synopsys and IEEE packages included with VCS MX.

Valid values for this variable are ERROR, NOTE, WARNING,
FAILURE, or NOIGNORE. The default value of
ASSERT_IGNORE_OPTIMIZED_LIBS is WARNING.

ASSERT_STOP

A-13

VCS MX Environment Variables

Determines whether simulation stops in response to VHDL
assertion violations. The possible values for this variable are
NOTE, WARNING, ERROR, FAILURE, or NOSTOP.

If ASSERT_STOP equals NOSTOP, simulation never stops for
assertion violations. The other values cause simulation to stop
when it encounters assertion violations of severity equal to, or
greater than, the value specified. The default value of
ASSERT_STOP is ERROR.

CS_ASSERT_STOP_NEXT_WAIT

Controls the response of the compiled-code simulation mode to
VHDL ASSERT statements. If set to TRUE, a failed VHDL assertion
causes VCS MX to continue until the next WAIT statement, then
stop. If not set, or set to FALSE, VCS MX prompts you to choose
whether to stop immediately or to continue until the next WAIT
statement.

For example:

Assertion ERROR at 30 NS in design unit E(A) from process
/E/_P0: "Assertion violation."
An ASSERT STOP is currently pending in compiled code, and
CS_ASSERT_STOP_NEXT_WAIT is not set to TRUE in
synopsys_sim.setup.
Continue until next wait (y), or stop simulation
immediately (n)? [y/n]:

If you choose to stop at the next WAIT statement, you can then
continue the simulation by executing the VCS MX run command.

If you choose to stop immediately, you cannot continue the current
simulation. You must either restart the simulation with the VCS
MX restart command or quit VCS MX and start it again.

A-14

VCS MX Environment Variables

The CS_ASSERT_STOP_NEXT_WAIT has no effect on debug
mode simulations. The default value of
CS_ASSERT_STOP_NEXT_WAIT is TRUE.

CS_ASSERT_STOP_PROMPT

If set to TRUE when running batch mode simulation, this variable
will cause simulation to stop immediately without the possibility of
continuing if an assertion of severity equal or higher than
ASSERT_STOP occurs. The default value of
CS_ASSERT_STOP_PROMPT is FALSE.

EVCD_OUTFILE

Specifies the output filename for the eVCD file. To create the
eVCD file, use the dump command during simulation. The eVCD
file contains traced data that is used for post-simulation analysis
with the DVE. For example, you can set EVCD_OUTFILE =
my_vcd_file.vcd.

LICENSE_WAIT_TIME

See “LICENSE_WAIT_TIME” on page 3 for more information.

MAX_DELTA

Specifies the maximum number of delta cycles in a simulation
timestep. When MAX_DELTA is set to a positive value, simv
monitors the delta cycle number and stops the simulation when it
reaches the MAX_DELTA limit. simv then issues a warning and
prints a list of signals with pending zero-delay transactions.
Additionally, simv may print a list of processes with pending wait
for 0 timeouts. With that information, you can immediately start
debugging possible infinite zero-delay cycles.

A-15

VCS MX Environment Variables

If you decide there is nothing wrong, you can disable delta cycle
monitoring by setting MAX_DELTA to zero, or to a negative value.
The default value of MAX_DELTA is 0.

MONITOR_TIME_DISPLAY

If set to FALSE, the monitor command will not display time
information. The default value of MONITOR_TIME_DISPLAY is
TRUE.

USE

Specifies the list of directories, separated by spaces, that VCS
MX searches for VHDL source files. This information is used for
viewing the VHDL source code of a design during a simulation.

The settings for the USE variable are not cumulative. For example,
if there is a synopsys_sim.setup file in your home directory
with USE = ./ ./asic_lib, and in your design directory, the
USE variable is set to USE = ./my_lib ./temp_lib, the final
value for the USE variable is USE = ./my_lib ./temp_lib.

The default value of USE is:

USE = . $VCS_HOME/packages/synopsys/src \
 $VCS_HOME/packages/IEEE/src \
 $VCS_HOME/packages/IEEE_asic/src \
 $VCS_HOME/packages/gtechnox/src \
 $VCS_HOME/packages/gtech/src \
 $VCS_HOME/packages/gscomp/src \
 $VCS_HOME/packages/dware/src \
 $VCS_HOME/dw/dw01/src \
 $VCS_HOME/dw/dw02/src \
 $VCS_HOME/dw/dw03/src \
 $VCS_HOME/dw/dw04/src \
 $VCS_HOME/dw/dw05/src \
 $VCS_HOME/dw/dw06/src \
 $VCS_HOME/dw/dw07/src\

A-16

VCS MX Environment Variables

 $VCS_HOME/dw/dw08/src

VCD_IMMEDIATE_FLUSH

When set to TRUE, every time you issue a new VCD dump
command, the VCD file is immediately updated with the correct
header and signal information. By default, all VCD file information
is flushed when you exit VCS MX.

Setting this variable to TRUE may slow down the simulation
performance when tracing design objects. The default value of
VCD_IMMEDIATE_FLUSH is FALSE.

VCD_OUTFILE

Specifies the output filename for the VCD file. To create the VCD
file, you use the dump command during simulation. The VCD file
contains traced data that is used for post-simulation analysis with
the DVE. For example, you can set VCD_OUTFILE =
my_vcd_file.vcd.

VPD_DELTA_CAPTURE

Enables delta-cycle capturing in interactive simulation with the
DVE. The default value of VPD_DELTA_CAPTURE is OFF.

VPD_OUTFILE

Specifies the output filename for the VPD file. To create the VPD
file, you use the dump command during simulation. The VPD file
contains traced data that is used for post-simulation analysis with
the DVE. For example, you can set VPD_OUTFILE =
my_vpd_file.vpd.

A-17

VCS MX Environment Variables

WAVEFORM_UPDATE

When set to TRUE, objects in the Wave Window are refreshed
with every simulation timestep. By default, the Wave Window is
refreshed when each simulation command is completed. Setting
this variable to TRUE slows down the simulation performance
when tracing design objects. The default value of
WAVEFORM_UPDATE is FALSE.

C Compilation and Linking Setup Variables

These are the setup variables that configure the C compilation of the
C code that VCS MX generates.

CS_CCFLAGS_$ARCH

Specifies the C compiler flags used to compile the VCS MX
generated C code on the specific platform.

One reason to use this variable is to specify a different compiler
optimization level, such as -O3.

To get a listing of flags for your C compiler, use the UNIX man utility.

The CS_CCFLAGS variable is still supported and it has higher
precedence than the platform specific CS_CCFLAGS_$ARCH
variables.

The -ccflags option to the vhdlan and vcs commands
overrides the CS_CCFLAGS_$ARCH value.

The default value of CS_CCFLAGS_$ARCH is different for each
platform. Default values for SparcOS5, Linux, and RS6000 are as
follows:

A-18

VCS MX Environment Variables

- SparcOS5

CS_CCFLAGS_SPARCOS5 = -c -O

- Linux

CS_CCFLAGS_LINUX = -c -O

- RS6000

CS_CCFLAGS_RS6000 = -c -qchars=signed -O -qmaxmem=2048000

CS_CCPATH_$ARCH

Specifies the C compiler used to compile VCS MX generated C
code on the specific platform.

The GCC compiler is incorporated in the VCS MX image for Sun
SPARC operating systems (Solaris). This is the recommended
compiler for the Solaris platform. VCS MX is optimized for
performance with the GCC C compiler.

Note:
CS_CCPATH variable is still supported and it has higher
precedence than the platform specific CS_CCPATH_$ARCH
variables.

The -ccpath option to the vhdlan and vcs commands
overrides the CS_CCPATH_$ARCH value.

The default value of CS_CCPATH_$ARCH is different for each
platform. Default values for SparcOS5, Linux, and RS6000 are as
follows:

- SparcOS5

CS_CCPATH_SPARCOS5 = $VCS_HOME/sparcOS5/gcc/gcc-2.6.3/

A-19

VCS MX Environment Variables

bin/gcc

- Linux

CS_CCPATH_LINUX = cc

- RS6000

CS_CCPATH_RS6000 = cc

Note:
It is your responsibility to set up the proper path for the C compiler
on HPUX10, LINUX, and RS6000 platforms. This can be done in
many different ways, for example:

- At tool’s initial installation time, by editing the master
synopsys_sim.setup file (from /admin/setup) and setting
the proper C compiler path.

- For each user in their home directory, by having own
synopsys_sim.setup file with proper C compile path.

- By setting the PATH environment variable to pick up the proper
C compiler by default.

New Timescale Implementation

VCS MX supports the timescale implementation as defined in the
IEEE 1800 standard. For information on timescale directives, see the
Verilog Language Reference Manual.

This section describes the following topics:

• “Understanding `timescale” on page 20

• “Verilog only and Verilog Top Mixed Design” on page 24

A-20

VCS MX Environment Variables

• “VHDL only and VHDL Top Mixed Designs” on page 25

• “Setting up Simulator Resolution From Command Line” on page
26

• “Other Useful Timescale Related Switches” on page 28

• “Non compatible switches” on page 30

Understanding `timescale

In Verilog, all delays are governed by `timescale directive in the
source file. The behavior is precisely defined in 1364-1995 Verilog
Language Reference Manual. Now, there can be multiple
`timescale compiler directives across multiple files. According to
LRM:

The ‘timescale compiler directive specifies the unit of
measurement for time and delay values, and the degree accuracy for
delays in all modules that follow this directive until another
‘timescale compiler directive is read.

Consider the following three files:

You can see that the file c.v does not contain any timescale
information, so it will inherit the timescale from last encountered one
during parsing.

A-21

VCS MX Environment Variables

Scenario 1:

% vlogan a.v b.v c.v

In this case, a.v and b.v have their own timescale, so they will
follow it. But for c.v, the last encountered timescale is from b.v
(10ps/1ps) and so the simulator assigns the same to c.v.

Scenario 2:

% vlogan a.v c.v b.v

In this case, a.v and b.v follow their own well-defined timescale.
But c.v inherits timescale from a.v, as it is the latest one as far as
c.v is concerned.

Scenario 3:

% vlogan c.v a.v b.v

In this case, it is not very clear which timescale c.v will get, as no
timescale is parsed before c.v.

Situation becomes more complex when you go for mixed language
simulation, involving both Verilog and VHDL.

Therefore, VCS MX came up with well defined set of rules for all the
above scenarios. This new implementation is under a variable
defined in synopsys_sim.setup file. The syntax for the same is
as follows:

XLRM_TIME = TRUE
TIMEBASE=time_base

A-22

VCS MX Environment Variables

TIME_RESOLUTION=time_resolution

where,

time_number ::= 1 | 10 | 100
time_unit ::= s[ec] | ms | us | ns | ps | fs
time_base ::= time_unit
time_resolution ::= time_number time_unit

If you specify only XLRM_TIME=TRUE without TIME_RESOLUTION,
then it will be set to the value of TIMEBASE. There is a default
TIMEBASE defined in default synopsys_sim.setup (from
$VCS_HOME/bin).

It is recommended that the time_unit for TIMEBASE and
TIME_RESOLUTION should be the same. If the TIMEBASE is finer
than TIME_RESOLUTION, then it is an error condition. You can
resolve this error condition by correcting the TIMEBASE entry in
synopsys_sim.setup.

The following are the new terms which you will be using for rest of
the section:

ana module:

Verilog modules which get the timescale during the analysis phase
(during vlogan time) is termed as "ana module". Out of the three
scenarios mentioned above, in scenario 1 and scenario 2
module c does not have its own timescale, but inherits it from
other modules (module b in scenario 1 and module a in scenario
2) because of the parsing order. Since you know the timescale for
all three modules now, all three modules are classified as
"ana modules" in scenario 1 and scenario 2.

A-23

VCS MX Environment Variables

elab module:

Verilog module which does not have any timescale after analysis
phase is termed as "elab module". In the above mentioned
scenario 3, module c neither has its own timescale nor has
inherited from the previous modules, as there is none. Therefore,
module c will be treated as "elab module", whereas module a
and module b will be treated as "ana module". To make it clear
remove timescale from file b.v, hence it is rewritten as follows:

A-24

VCS MX Environment Variables

Consider the same command line again

% vlogan c.v a.v b.v

In this case, c.v does not have any timescale (by its own or by
inheritance), a.v has its own, and b.v gets the one from a.v by
inheritance.

Hence, module c will be treated as "elab module", whereas
module a and module b will be treated as "ana module".

During elaboration phase VCS MX assigns timescale to all
"elab modules". All it does is to calculate simulator precision and
use it as a timescale for all "elab modules". This means

Timescale for all elab modules =
simulator_precision/simulator_precision

simulator_precision, is determined by the topology of the
design.

Verilog only and Verilog Top Mixed Design

For this topology of the design, simulator precision is determined by
the finest of time resolution from all "ana modules". If none of the
Verilog modules in the design has timescale, then it is determined by
TIME_RESOLUTION mentioned in synopsys_sim.setup file.

A-25

VCS MX Environment Variables

VHDL world is also governed by this simulator_precision.
For example, reconsider scenario 3. Also, consider the following
synopsys_sim.setup file:

Only module a and module b have timescales, and the finest
resolution comes from module b such as "1ps". Hence it will be
treated as simulator_precision, therefore timescale assigned
to module c will be "1ps/1ps". Note that TIME_RESOLUTION from
the setup file is not considered here. Also, delays in VHDL files will
be rounded to resolution of "1ps" and not to "1fs" (from the
synopsys_sim.setup file).

VHDL only and VHDL Top Mixed Designs

In this case, simulator_precision is determined by
TIME_RESOLUTION in synopsys_sim.setup file irrespective
of the finest time precision from all ana modules. If the finest time
precision from all ana modules is finer than TIME_RESOLUTION in
synopsys_sim.setup file, then It will be an error condition, and
therefore VCS MX issues a proper error message. Consider the
above given Verilog files (a.v, b.v, and c.v) and VHDL top given
below:

library work;
use work.all;

entity top is
end top;

A-26

VCS MX Environment Variables

architecture top_arch of top is
component a is
end component;
component b is
end component;
component c is
end component;

begin
 U1:a;
 U2:b;
 U3:c;
end top_arch;

Now, simulator_precision will be taken from
synopsys_sim.setup file, that means "1fs" and timescale
given to module c will be "1fs/1fs" (and not "1ps/1ps" as in case of
Verilog top design).

Setting up Simulator Resolution From Command Line

You can set the simulator resolution from the command line
irrespective of the design topology using a command line switch
-sim_res. The syntax is as given below:

-sim_res=<time_resolution>

where,

time_resolution ::= time_number time_unit
time_number ::= 1 | 10 | 100
time_unit ::= s[ec] | ms | us | ns | ps | fs

This switch supersedes the setting from synopsys_sim.setup file
(in case of VHDL top designs) or finest resolution from Verilog
ana modules (in case of Verilog only or Verilog top designs).

A-27

VCS MX Environment Variables

Also, the same is used to construct the timescale for all
elab modules.

For example, if you pass "-sim_res=1fs", then the timescale for
elab module will be "1fs/1fs". Also, the overall simulator resolution
will be "1fs".

Note:
- With current implementation of XLRM_TIME, if "-sim_res" is

coarser than the TIME_RESOLUTION in
synopsys_sim.setup (for VHDL top designs) or the finest
time resolution from ana modules (for verilog top designs), VCS
MX issues an error message.

- For Verilog top designs, it will be an error if the time resolution
from design is coarser than the time base from setup file.

A-28

VCS MX Environment Variables

Other Useful Timescale Related Switches

-timescale=<time_unit/time_resolution>

This is analysis time switch. If present on the vlogan command
line, it is applied to all files which have no timescale of their own,
or not yet hit any timescale directive from other files during parsing
order.

For example, consider following three files:

And the command line is

% vlogan -timescale=1fs/1fs a.v b.v c.v

In this case a.v and b.v have their own timescale and c.v inherits
it from b.v, so timescale has no effect in this case. Alter c.v to
add `resetall in it, as given below:

A-29

VCS MX Environment Variables

`resetall nullifies all compiler directives hit so far during
parsing. Therefore, c.v instead of inheriting timescale from b.v,
will now take it from command line switch. This is same as if having
following command line:

% vlogan -timescale=1fs/1fs c.v a.v b.v

It is recommended to have -timescale switch accompanied
with every vlogan command line to avoid any ambiguity at later
stage.

-override_timescale=<time_unit/time_resolution>

If applied at the analysis time, this switch replaces the timescale
of all the modules present at the command line.

Example:

% vlogan -override_timescale=10fs/1fs a.v b.v c.v

In this case timescale from a.v and b.v will be replaced with the
one from -override_timescale and c.v also get it from
command line.

If applied at elaboration time, this is applied to all the modules in
the design, irrespective of how they were analyzed.

Also, simulator precision will be determined by
time_resolution part of -override_timescale. This will
supersede -sim_res switch.

A-30

VCS MX Environment Variables

Non compatible switches

Under this implementation, all older timescale related switches are
ignored and appropriate warning is issued.

The following elaboration time switches will be ignored:

• -t[ime]

• -time_res[olution]

• -timescale (At elab time)

Limitations

• SystemC designs are not supported

• Separate compile flow is not supported

Optional Environment Variables

VCS MX also includes the following environment variables that you
can set in certain circumstances.

DISPLAY_VCS_HOME

Enables the display, at compile time, of the path to the directory
specified in the VCS_HOME environment variable. Specify a
value other than 0 to enable the display. For example:

setenv DISPLAY_VCS_HOME 1

PERSISTENT_FLAG

A-31

VCS MX Environment Variables

When set to 1, VCS MX disables the checks enabled by the
persistent specification in the tab file. It also disables similar
checks that are enabled by the -debug, -debug_all, or
-debug_pp options. See the section “PLI Table File” on page 6.

SYSTEMC_OVERRIDE

Specifies the location of the SystemC simulator used with the
VCS/SystemC co-simulation interface. See Using SystemC.

TMPDIR

Specifies the directory used by VCS and the C compiler to store
temporary files during compilation.

VCS_CC

Indicates the C compiler to be used. To use the gcc compiler
specify the following:

setenv VCS_CC gcc

VCS_COM

Specifies the path to the VCS compiler executable named vcs1,
not the compile script. If you receive a patch for VCS, you might
need to set this environment variable to specify the patch. This
variable is used for solving problems that require patches from
VCS and should not be set by default.

VCS_LIC_EXPIRE_WARNING

By default, VCS displays a warning message 30 days before a
license expires. You can specify that this warning message begin
fewer days before the license expires with this environment
variable, for example:

A-32

VCS MX Environment Variables

VCS_LIC_EXPIRE_WARNING 5

To disable the warning, enter the 0 value:

VCS_LIC_EXPIRE_WARNING 0

VCS_LOG

Specifies the runtime log file name and location.

VCS_NO_RT_STACK_TRACE

Tells VCS not to return a stack trace when there is a fatal error
and instead dump a core file for debugging purposes.

VCS_SWIFT_NOTES

Enables the printf PCL command. PCL is the Processor
Control Language that works with SWIFT microprocessor models.
To enable it, set the value of this environment variable to 1.

VCS_DIAGTOOL

Generates valgrind data for vcs1, if you set this environment
variable as shown below:

% setenv VCS_DIAGTOOL "valgrind --tool=memcheck"

Once you set this environment variable, any subsequent
invocation of vcs1 generates valgrind data.

B-1

Analysis Utilities

B
Analysis Utilities A

This chapter describes the following utilities, which you can use
during the VCS MX analysis process.

• “The vhdlan Utility”

• “Using Smart Order”

• “The vlogan Utility”

The vhdlan Utility

The vhdlan utility analyzes VHDL source files and produces
intermediate files for simulation. It checks for syntactic errors and if
it finds any, generates error messages for them. The vhdlan utility
uses the synopsys_sim.setup file to determine the logical-to-
physical mapping of VHDL libraries.

B-2

Analysis Utilities

Syntax

vhdlan [vhdlan_options] VHDL_filename_list

Here, the vhdlan_options are:

-help

Prints usage information for vhdlan.

-nc

Suppresses the Synopsys copyright message.

-q

Suppresses compiler messages.

-version

Prints the version number of vhdlan and exits without running
analysis.

-4state

Turns on Compact Data Representation (CDR) optimization. This
option benefits designs that use std logic/ulogic vectors as 4state
(for example, X, Z, 0, 1). Values other that X, Z, 0, 1 are reduced
to the following:

-'H' is converted to '1'

-'L ' is converted to '0'

-'W 'and '- ' are converted to 'X'

If -verbose mode is specified, a warning will be issued about
the values conversions performed if the information is statically
visible in the design during analysis.

B-3

Analysis Utilities

Performance benefits are seen because internally these values
are represented in a compact form allowing for better data locality.

Note:
-4state optimizes the code and hence debugging is turned off
under this mode.

-work library

Maps a design library name to the logical library name WORK,
which receives the output of vhdlan. Mapping with the command-
line option overrides any assignment of WORK to another library
name in the setup file.

library can also be a physical path that corresponds to a logical
library name defined in the setup file.

-vhdl87

Lets you analyze non-portable VHDL code that contains object
names that are now, by default, VHDL-93 reserved words. VCS
MX is VHDL-93 compliant.

-output outfile

Redirects standard output from VCS MX analysis (that usually
goes to the screen) to the file you specify as outfile.

-list

Creates a list file (.lis) containing the VHDL source code of the
analyzed files, the names of the analyzed design units, and
warning or error messages produced during analysis.

-sva

Enables SVAs inlined in the VHDL source code.

B-4

Analysis Utilities

-sv_opts "vlog_opts_to_SVAs"

Specify Verilog options for SVAs inlined in the VHDL source code.

-optimize

It improves the simulation performance by generating optimized
code, eliminating the following VHDL checks:

- Arithmetic overflow

- Constraint checks

- Array size compatibility at assignment

- Subscripts out of bounds

- Negative exponents to integer

This option overrides the value of the OPTIMIZE variable
specified in the synopsys_sim.setup file. Use this option after
you have successfully debugged the design and want to achieve
better simulation performance. This option is on by default. The
-no_opt option takes precedence over the -optimize option
on the vhdlan command line.

-no_opt

Enables all VHDL language checks by cancelling the effect of the
-optimize option. Use this option while debugging the VHDL
source files in your design.

The -no_opt option takes precedence over the -optimize
option on the vhdlan command line.

B-5

Analysis Utilities

-ccpath path

Specifies the C compiler that the Analyzer must use for compiling
the code from VHDL to C. This option has already been set for
the SPARC OS5 platform to use the C compiler included with this
software. We recommend that you do not change this value. This
option overrides the value of the CS_CCPATH_$ARCH variable
specified in the synopsys_sim.setup file.

-ccflags “flags”

Specifies the flags that vhdlan passes to the C compiler. The
default flags are set in the synopsys_sim.setup file. This
option overrides the value of the CS_CCFLAGS_$ARCH variable
specified in the synopsys_sim.setup file.

-xlrm

Enables VHDL features beyond those described in LRM.

-f optionsfile

Specifies an optionsfile that expands the vhdlan command-line
options.

-functional_vital

Specifies generating code for functional VITAL simulation mode.

-full64

Enables compilation and simulation in 64-bit mode.

-no_functional_vital

Specifies generating code for full-timing VITAL simulation mode.

B-6

Analysis Utilities

-keep_vital_ifs

Turns off some of the aggressive functional VITAL optimizations
related to if statements in Level 0 VITAL cells.

-keep_vital_path_delay

Preserves the calls to VitalPathDelay. Use this option if non-
zero assignments to the outputs is required to preserve correct
functionality.

-keep_vital_wire_delay

Preserves the calls to VitalWireDelay. Use this option if delays
on the inputs are required to preserve correct functionality.

-keep_vital_signal_delay

Preserves the calls to VitalSignalDelay. Use this option if
delays on signals are required to preserve correct functionality.

-keep_vital_timing_checks

Preserves the timing checks within the VITAL cell.

-keep_vital_primitives

Preserves calls to VITAL primitive subprograms.

-sva

Enables SVAs inlined in your VHDL code.

-sv_opts “vlog_opts_to_SVAs”

Specifies Verilog options like timescale, +define+macro to
SVAs inlined in your VHDL code.

B-7

Analysis Utilities

For example:

% vhdlan -sva -sv_opts “+define+SVA1” file1.vhd

VHDL_filename_list

Specifies the VHDL source file names to be analyzed. If you do
not provide an extension, .vhd is assumed.

Note:
The maximum identifier name length is 250 for package, package
body and configuration names. The combined length of an entity
name plus architecture name must not exceed 250 characters as
well. All other VHDL identifier names and string literals do not
have a limitation.

Using Smart Order

The smart_order option, with vhdlan, allows you to
automatically identify the file order dependencies internally and then
do file by file analysis of all VHDL files passed to it, so that they are
ordered as per the dependencies of the design units contained within
them.

Identifying the dependencies between design units, establishing an
order for design files that contain them, and then running vhdlan to
analyze these files is a difficult and time consuming process in most
cases.

B-8

Analysis Utilities

According to VHDL LRM Section 11.4, VHDL design units must be
analyzed in the order of their dependency, that is, before analyzing
a particular unit, its dependent unit must be analyzed. For example,
if unit1 is dependent on unit2, then unit2 must be analyzed
before analyzing unit1.

Note:
By default, the design files that you input to vhdlan are analyzed
in the order in which they are listed in the command line.

Use Model

Order-independent analysis of VHDL files using the smart_order
option:

Specify the –smart_order option in the vhdlan command line or
set SMART_ORDER=TRUE in the synopsys_sim.setup file.

Syntax:
vhdlan -smart_order [vhdlan_options]
VHDL_filelist

Example:
vhdlan –smart_order –work lib bottom.vhd mid.vhd top.vhd
vhdlan –smart_order –work lib *.vhd
vhdlan –smart_order –work lib t*.vhd
vhdlan –smart_order –f flist

• Using the smart_script option along with smart_order:

B-9

Analysis Utilities

When used along with the -smart_order option, the
-smart_script option generates a re-analysis script, which is
a complete vhdlan command line, including an ordered file list
and all options (except for the -file option since it is expanded
an replaced) specified in the original vhdlan command line.

specify –smart_script followed by a user-specified file name
in the vhdlan command line. The -smart_script option must
be used with the –smart_order option to generate re-analysis
script.

Syntax:
vhdlan -smart_order -smart_script script_name
[vhdlan_options] VHDL_filelist

Example:
vhdlan –smart_order –smart_script ana.sh –work
lib bottom.vhd mid.vhd top.vhd

vhdlan –smart_order –smart_script ana.sh –work
lib *.vhd

Note:
The ordered file list dumped by the smart_script can be re-
used directly with the vhdlan as the ordered file list, thereby
avoiding the need to use -smart_order
-smart_script often.

B-10

Analysis Utilities

Limitations

Following are the limitations of the smart_order option:

• You cannot resolve a design unit that was analyzed into one logical
library, but referenced with another logical library prefix (these two
libraries point to a same UNIX path) when using the
smart_order option. For example:

%vhdlan –work lib1 leaf.vhd top.vhd

leaf is referred in top as follows:

Library lib2;
Use lib2.leaf;

• If there is no explicit configuration for a component instance, then
this component instance must have a port map clause when it is
defined.

• Identifying file order dependencies across different logical
libraries is not supported.

Note:

• The primary design units (package, entity, and configuration) in
the listed design files must have unique names, else vhdlan
generates an error message and aborts sorting of the design files.

• For Mixed HDL Designs (Verilog + VHDL), you need to analyze
all Verilog files that are instantiated in VHDL first, else vhdlan
generates warning messages for unresolved references. This is
a general flow for Mixed HDL designs, and is not specific when
smart_order is used. The smart_order option does not
identify Verilog dependencies.

B-11

Analysis Utilities

The vlogan Utility

VCS MX uses the vlogan utility to analyze Verilog portions of a
design instantiated within a VHDL design.

The syntax of the vlogan command line is as follows:

vlogan [vlogan_options] Verilog_source_filename

Here, the vlogan_options are:

-help

Displays a succinct description of the most commonly used
compile-time and runtime options.

-nc

Suppresses the Synopsys copyright message.

-q

Suppresses compiler messages.

-f filename

Specifies a file that contains a list of path names to source files
and required analysis options.

You can use Verilog comment characters such as // and /* */
to comment out entries in the file.

Note that the following restrictions apply to the contents of this file:

B-12

Analysis Utilities

- You can only specify the following analysis options that begin
with a minus(-) character:

- You cannot specify escape characters and meta characters like
$, ‘, and !.

Note:
The maximum line length in the specified file filename should
be less than 1024 characters. VCS MX truncates the line
exceeding this limit, and issues a warning message.

-full64

Enables compilation and simulation in 64-bit mode.

-ID

Displays the hostid or dongle ID for your machine.

-ignore keyword_argument

Suppresses warning messages depending on which keyword
argument is specified. The keyword arguments are as follows:

unique_checks

Suppresses warning messages about unique if and unique
case statements.

priority_checks

Suppresses warning messages about priority if and
priority case statements.

all

-f -l -y

-u -v

B-13

Analysis Utilities

Suppresses warning messages about unique if, unique
case, priority if and priority case statements.

-l filename

Specifies a log file where VCS MX records compilation messages
and runtime messages if you include the -R option.

-location

Displays the location of the vlogan installation.

-libmap filename

Specifies a library mapping file.

-notice

Enables verbose diagnostic messages.

-ntb

Enables the use of the OpenVera testbench language constructs
described in the OpenVera Language Reference Manual: Native
Testbench.

-ntb_define macro

Specifies any OpenVera macro name on the command line. You
can specify multiple macro names using the plus (+) character.

-ntb_filext .ext

Specifies an OpenVera file name extension. You can specify
multiple file name extensions using the plus (+) character.

B-14

Analysis Utilities

-ntb_incdir directory_path

Specifies the include directory path for OpenVera files. You can
specify multiple include directories using the plus (+) character.

-ntb_opts keyword_argument

The keyword arguments are as follows:

ansi

Preprocesses the OpenVera files in the ANSI mode. The default
preprocessing mode is the Kernighan and Ritchie mode of the
C language.

check

Reports errors, during compilation or simulation, when there is
an out-of-bound or illegal array access.

dep_check

Enables dependency analysis and incremental compilation.
Detects files with circular dependencies and issues an error
message when VCS MX cannot determine which file to compile
first.

no_file_by_file_pp

By default, VCS MX does file-by-file preprocessing on each
input file, feeding the concatenated result to the parser. This
argument disables this behavior.

print_deps

Tells VCS MX to display the dependencies for the source files.
Enter this argument with the dep_check argument.

B-15

Analysis Utilities

rvm

Use rvm when RVM or VMM is used in the testbench.

Example: vlogan vmm_test.sv -sverilog -ntb_opts rvm

For more information, refer to the “Using VMM with VCS”
section.

tb_timescale=value

Specifies an overriding timescale for the testbench, whenever
the required testbench timescale is different from that of the
design. It must be used in conjunction with the -timescale
option that specifies the timescale for the design.

If the required testbench timescale is different from the design
or DUT timescale, then both the testbench timescale and the
DUT timescale must be passed during VCS compilation.

Example:

The following command specifies a required testbench
timescale of 10ns/10ps and a design timescale of 1ns/1ps:

%> vcs -ntb_opts tb_timescale=1ns/1ps
 -timescale=10/10ns file.sv

tokens

B-16

Analysis Utilities

Preprocesses the OpenVera files to generate two files,
tokens.vr and tokens.vrp. The tokens.vr file
contains the preprocessed result of the non-
encrypted OpenVera files, while the tokens.vrp
file contains the preprocessed result of the
encrypted OpenVera files. If there is no
encrypted OpenVera file, VCS sends all the
OpenVera preprocessed results to the tokens.vr
file.

use_sigprop

Enables the signal property access functions. For example,
vera_get_ifc_name().

vera_portname

Specifies the following:

- The Vera shell module name is named vera_shell.

- The interface ports are named ifc_signal.

- Bind signals are named, for example, as: \if_signal[3:0].

-platform

Returns the name of the platform directory in your VCS MX
installation directory.

-resolve

By default, vlogan does not resolve instantiated VHDL design
units or module or UDP definitions not specified on the command
line. This enables you to analyze your Verilog code without
concern for dependencies. This option tells vlogan to resolve
these instances.

B-17

Analysis Utilities

-sv_pragma

Analyzes SystemVerilog Assertions that follow the sv_pragma
keyword in a single line or multi-line comment.

-timescale=time_unit/time_precision

This option enables you to specify the timescale for the source
files that do not contain ‘timescale compiler directive and
precede the source files that do.

Do not include spaces when specifying the arguments to this
option as shown in the following example:

% vlogan -timescale=1ns/1ns file1.v file2.v file3.v

-override_timescale=time_unit/time_precision

Overrides the time unit and precision unit for all the ‘timescale
compiler directives in the source code and, like -timescale,
provides a timescale for all module definitions that don’t have a
‘timescale compiler directive.

+delay_mode_path

For modules that contain specify blocks, ignores the delay
specifications on all gates and switches and uses only the module
path delays and the delay specifications on continuous
assignments.

+delay_mode_zero

Changes all the delay specifications on all gates, switches, and
continuous assignments to zero and changes all module path
delays in specify blocks to zero.

+delay_mode_unit

B-18

Analysis Utilities

Ignores the module path delays in specify blocks and changes all
the delay specifications on all gates, switches, and continuous
assignments to the shortest time precision argument of all the
‘timescale compiler directives in the source code. The default
time unit and time precision argument of the ‘timescale compiler
directive is 1s.

+delay_mode_distributed

Ignores the module path delays in specify blocks and uses only
the delay specifications on all gates, switches, and continuous
assignments.

-u

Changes all characters in identifiers to uppercase.

-V[t]

Enables warning messages and displays the time used by each
command.

-v library_file

Specifies a Verilog library file to search for module definitions.

-y library_directory

Specifies a Verilog library directory to search for module
definitions. Use this option with +libext+extension. See
below for the description of +libext+extension.

-work VHDL_logical_library

Specifies creating the VERILOG directory and writing the
intermediate files in the physical directory associated with this
logical library.

B-19

Analysis Utilities

+define+macro

Defines a text macro. Test for this definition in your Verilog source
code using the ‘ifdef compiler directive.

+libext+extension+

Specifies that VCS MX search only for files with the specified file
name extensions in a library directory. You can specify more than
one extension, separating the extensions with the plus (+)
character. For example, +libext+.v+.V+ specifies searching
for files with either the .v or .V extension in a library. The order
in which you add file name extensions to this option does not
specify an order in which VCS MX searches files in the library with
these file name extensions.

+lint=[no]ID|none|all

Enables messages that tell you when your Verilog code contains
something that is bad style but is often used in designs.

Here:

no

Specifies disabling lint messages that have the ID that follows.
There is no space between the keyword no and the ID.

none

Specifies disabling all lint messages. IDs that follow in a comma
separated list are exceptions.

all

Specifies enabling all lint messages. IDs that follow preceded
by the keyword no in a comma separated list are exceptions.

B-20

Analysis Utilities

The following examples show how to use this option:

- Enable all lint messages except the message with the GCWM
ID:

+lint=all,noGCWM

- Enable the lint message with the NCEID ID:

+lint=NCEID

- Enable the lint messages with the GCWM and NCEID IDs:

+lint=GCWM,NCEID

- Disable all lint messages. This is the default.

+lint=none

The syntax of the +lint option is very similar to the syntax of the
+warn option for enabling or disabling warning messages.
Additionally, these options have in common that some of their
messages have the same ID. This is because when there is a
condition in your code that causes VCS MX to display both a
warning and a lint message, the corresponding lint message
contains more information than the warning message and can be
considered more verbose.

The number of possible lint messages is not large. They are as
follows:

Lint-[IRIMW] Illegal range in memory word

Lint-[NCEID} Non-constant expression in delay

B-21

Analysis Utilities

Lint-[GCWM] Gate connection width mismatch

Lint-[CAWM] Continuous Assignment width mismatch

Lint-[IGSFPG] Illegal gate strength for pull gate

Lint-[TFIPC] Too few instance port connections

Lint-[IPDP] Identifier previously declared as port

Lint-[PCWM] Port connect width mismatch

Lint-[VCDE] Verilog compiler directive encountered

+incdir+directory

Specifies the directories that contain the files you specified with
the ‘include compiler directive. You can specify more that one
directory, separating each path name with the “+” character.

+notimingchecks

Suppresses timing checks in specify blocks.

+nospecify

Suppresses module path delays and timing checks in specify
blocks.

+nowarnTFMPC

Suppress the “Too few module port connections” warning
messages during Verilog Compilation.

-sverilog

Enables the analysis of SystemVerilog source code.

+systemverilogext+ext

B-22

Analysis Utilities

Specifies a file name extension for SystemVerilog source files. If
you use a different file name extension for the SystemVerilog part
of your source code and you use this option, the –sverilog
option has to be omitted.

Note:
If you specify this option in a command to run a design, then
this option behaves as the -sverilog option, which does the
semantic check on the entire design with SystemVerilog LRM
syntax.

+verilog2001ext+ext

Specifies a file name extension for Verilog 2001 source files.

+verilog1995ext+ext

Specifies a file name extension for Verilog 1995 files. Using this
option allows you to write Verilog 1995 code that would be invalid
in Verilog 2001 or SystemVerilog code, such as using Verilog 2001
or SystemVerilog keywords, like localparam and logic, as
names.

Note:
Do not specify the +systemverilogext+ext,
+verilog2001ext+ext, and +verilog1995ext+ext
options on the same command line.

B-23

Analysis Utilities

-extinclude

If a source file for one version of Verilog contains the ‘include
compiler directive, Vlogan by default compiles the included file for
the same version of Verilog, even if the included file has a different
filename extension. If you want Vlogan to compile the included
file with the version specified by its extension, enter this option.
The following code examples show using this option.

If source file a.v contains the following:

`include “b.sv”
module a();
reg ar;
endmodule

and if source file b.sv contains the following:

module b();
logic ar;
endmodule

Vlogan compiles b.sv for SystemVerilog with the following
command line:

vlogan a.v +systemverilogext+.sv -extinclude

+warn

Enables or disables warning messages.

+vhdllib+VHDL_logical_library

B-24

Analysis Utilities

This option is also a compile-time option. If the Verilog code you
are instantiating in VHDL also contains an instance of a VHDL
design entity (VHDL in Verilog in VHDL in Verilog), this option
specifies the library that contains the entity and architecture of the
instance. Use this option with the -resolve option.

Verilog_source_filename

Specifies the name of the Verilog source file.

C-1

Elaboration Options

C
Elaboration Options A

The vcs command performs elaborates of your design and creates
a simulation executable. Compiled event code is generated and
used by default. The generated simulation executable, simv, can
then be used to run multiple simulations.

This section describes the vcs command and related options.

Syntax:

vcs [libname.]design_unit [options]

Here:

[libname.]design_unit

Specifies the design_unit you want to simulate, with an
optional logical library name. By default, the WORK library is
assumed.

C-2

Elaboration Options

The design_unit can be one of the following:

cfgname

Name of the top-level event configuration to be simulated.

entname[__archname]

Name of the entity and architecture to be simulated. By default,
archname is the most recently analyzed architecture.

module

Name of the top-level Verilog module to be simulated

options

Elaboration options that control how VCS MX elaborates your
design.

This appendix lists the following:

• “Option for Accessing Verilog Libraries”

• “Options for Incremental Compilation”

• “Options for Help and Documentation”

• “Options for SystemVerilog Assertions”

• “Options to Enable Compilation of OVA Case Pragmas”

• “Options for Native Testbench”

•

• “Options for Initializing Memories and Registers with Random
Values”

C-3

Elaboration Options

• “Options for Using Radiant Technology”

• “Options for 64-bit Compilation”

• “Options for Starting Simulation Right After Compilation”

• “Options for Specifying Delays and SDF Files”

• “Options for Compiling an SDF File”

• “Options for Specify Blocks and Timing Checks”

• “Options for Pulse Filtering”

• “Options for Negative Timing Checks”

• “Option to Specify Elaboration Options in a File”

• “Options for Compiling Runtime Options into the Executable”

• “Options for PLI Applications”

• “Options to Enable the VCS MX DirectC Interface”

• “Options for Flushing Certain Output Text File Buffers”

• “Options for Controlling Messages”

• “Options for Cell Definition”

• “Options for Licensing”

• “Options for Controlling the Linker”

• “Options for Controlling the C Compiler”

• “Options for Source Protection”

• “Options for Mixed Analog/Digital Simulation”

• “Unified Option to Change Generic and Parameter Values”

C-4

Elaboration Options

• “Checking for X and Z Values in Conditional Expressions”

• “Options for Detecting Race Conditions”

• “Options to Specify the Time Scale”

• “Options for Overriding Generics and Parameters”

• “General Options”

Option for Accessing Verilog Libraries

 +liborder

Specifies searching for module definitions for unresolved module
instances through the remainder of the library where VCS finds
the instance, then searching the next and then the next library on
the vcs command line before searching in the first library on the
command line.

+librescan

Specifies always searching libraries for module definitions for
unresolved module instances beginning with the first library on
the vcs command line.

-lib library1[:library2:library3:...]

Specifies the library search order for unresolved module or entity
definitions.

Options for Incremental Compilation

-Mdirectory=directory

C-5

Elaboration Options

Specifies the incremental compile directory. The default name for
this directory is csrc, and its default location is your current
directory. You can substitute the shorter -Mdir for
-Mdirectory.

-Mlib=dir

This option provides VCS MX with a central place to look for the
descriptor information before it compiles a module and a central
place to get the object files when it links together the executable.
This option allows you to use the parts of a design that have been
already tested and debugged by other members of your team
without recompiling the modules for these parts of the design.

You can specify more than one place for VCS MX to look for
descriptor information and object files by providing multiple
arguments with this option.

Example:

vcs design.v -Mlib=/design/dir1 -Mlib=/design/
dir2

Or, you can specify more than one directory with this option, using
a colon (:) as a delimiter between them, as shown below:

vcs design.v -Mlib=/design/dir1:/design/dir2

-noIncrComp

Disables incremental compilation.

-parallel_compile_off

Turns off parallel compilation and uses serial compilation.

C-6

Elaboration Options

Options for Help and Documentation

-h or -help

Lists descriptions of the most commonly used VCS MX compile
and runtime options.

-doc

Displays the VCS MX documentation in your system’s default web
browser.

Options for SystemVerilog

-sverilog

Enables SystemVerilog construcs specified in the IEEE Standard
of SystemVerilog, IEEE Std 1800-2009.

-sv_package_export

Enables the alternative implementation of how iVCS MX exports
SystemVerilog packages. This implementation is less optimistic
and is more rigidly compliant with the SystemVerilog IEEE Std
1800-2009 standard.

In this implementation, declarations imported into a package are
not visible by way of subsequent imports of that package. Package
export declarations allow a package to specify those imported
declarations to be made visible in subsequent imports.

C-7

Elaboration Options

Options for SystemVerilog Assertions

-ignore keyword_argument

Suppresses warning messages depending on which keyword
argument is specified. The keyword arguments are as follows:

unique_checks

Suppresses warning messages about unique if and unique
case statements.

priority_checks

Suppresses warning messages about priority if and
priority case statements.

all

Suppresses warning messages about unique if, unique
case, priority if and priority case statements.

You can tell VCS to report errors for both unique and priority
violations with the +vcs+error compile-time option as shown
below:

+vcs+error=UNIQUE

VCS reports unique violations as error conditions.

+vcs+error=PRIORITY

VCS reports priority violations as error conditions.

C-8

Elaboration Options

+vcs+error=UNIQUE,PRIORITY

VCS reports unique and priority violations as error
conditions.

-assert keyword_argument

The keyword arguments are as follows:

enable_diag

Enables further control of results reporting with runtime options.
The runtime assert options are enabled only if you compile the
design with this option.

funchier

Enables enhanced reporting for assertions in functions.

hier=file_name

You can use the -assert hier=file_name compile-time
option to specify the configuration file for enabling and disabling
SystemVerilog assertions. You can either enable or disable:

- Assertions in a module or in a hierarchy.

- An individual assertion.

Note:This option works at runtime only for mixed HDL designs.

The types of entries that you can specify in the file are as follows:

 -assert <assertion_name> or <assertion_hierarchical_name>

C-9

Elaboration Options

If assertion_name is provided, VCS disables the assertions
based on wildcard matching of the name in the full design. If
assertion_hierarchical_name is provided, VCS disables the
assertions based on wildcard matching of the name in the
particular hierarchy given.

Examples

-assert my_assert

Disables all assertions with name my_assert in the full
design.

-assert A*

Disables all assertions whose name starts with A in the full
design.

-assert *

Disables all assertions in the full design.

-assert top.INST2.A

Disables all assertions whose names start with A in the
hierarchy top.INST2. If assertions whose name starts with
A exists in inner scopes under top.INST2, they are not
disabled. This command has affect on assertions only in
scope top.INST2.

 +tree <module_instance_name> or
 <assertion_hierarchical_name>

C-10

Elaboration Options

If module_instance_name is provided, VCS enables
assertions in the specified module instance and all module
instances hierarchically under that instance. If
assertion_hierarchical_name is provided, VCS enables
the specified SystemVerilog assertion. Wildcard characters
can also be used for specifying the hierarchy.

Examples

+tree top.inst1

Enables the assertions in module instance top.inst1 and
all the assertions in the module instances under this instance.

+tree top.inst1.a1

Enables the SystemVerilog assertion with the hierarchical
name top.inst1.a1.

+tree top.INST*.A1

Enables assertion A1 from all the instances whose names
start with INST under module top.

 -tree <module_instance_name> or
 <assertion_hierarchical_name>

If module_instance_name is provided, VCS disables the
assertions in the specified module instance and all module
instances hierarchically under that instance. If
assertion_hierarchical_name is provided, VCS disables
the specified SystemVerilog assertion. Wildcard characters
can also be used for specifying the hierarchy.

Examples

C-11

Elaboration Options

-tree top.inst1

Disables the assertions in module instance top.inst1 and
all the assertions in the module instances under this instance.

-tree top.inst1.a1

Disables SystemVerilog assertion with the hierarchical name
top.inst1.a1.

-tree top.INST*.A1

Disables assertion A1 from all the instances whose names
start with INST under module top.

+module module_identifier

VCS enables all the assertions in all instances of the specified
module, for example:

+module dev

VCS enables the assertions in all instances of module dev.

-module module_identifier

VCS disables all the assertions in all instances of the
specified module, for example:

-module dev

VCS disables the assertions in all instances of module dev.

C-12

Elaboration Options

The specifications are applied serially as they appear in file
file_name. The result of applying the specifications in this file
is that a group of assertions get excluded. The remaining
assertions are available for further exclusion by other means,
such as the $assertoff system task in the source code.
However, the following should be noted:

- The first specification denotes the default exclusion for
interpreting the file. If the first specification is a minus(-), then
all assertions are included before applying the first and the
following specifications. Conversely, if the first specification
is a plus(+), then all assertions are excluded prior to applying
the first and the following specifications.

- Unlike -/+module and -/+tree specifications, any
assertion excluded by applying –assert specification
cannot be included by the later specifications in the file.

enable_hier

Enables the use of the runtime option -assert
hier=file.txt, which allows turning assertions on or off.

filter_past

For assertions that are defined with the $past system task,
ignore these assertions when the past history buffer is empty.
For instance, at the very beginning of the simulation, the past
history buffer is empty. Therefore, the first sampling point and
subsequent sampling points should be ignored until the past
buffer has been filled with respect to the sampling point.

disable

Disables all SystemVerilog assertions in the design.

C-13

Elaboration Options

disable_cover

When you include the -cm assert compile-time and runtime
option, VCS includes information about cover statements in the
assertion coverage reports. This keyword prevents cover
statements from appearing in these reports.

disable_assert

Disables only the assert and assume directives without
affecting the cover directives. It complements the existing
control options which allows you to disable only cover directives
or all of the assertions such as assert/assume/cover.

Options to Enable Compilation of OVA Case Pragmas

–ova_enable_case

Enables the compilation of OVA case pragmas only, when used
without –Xova or –ova_inline. All inlined OVA assertion
pragmas are ignored.

Options for Native Testbench

-ntbmx_cmp

Compiles and generates the testbench shell (file.vshell) and
shared object files.

-ntb_noshell

C-14

Elaboration Options

Tells VCS MX not to generate the shell file. Use this option when
you recompile a testbench.

-ntb_opts keyword_argument

The keyword arguments are as follows:

ansi

Preprocesses the OpenVera files in the ANSI mode. The default
preprocessing mode is the Kernighan and Ritchie mode of the
C language.

check

Does a bounds check on dynamic type arrays (dynamic,
associative, queues) and issues an error at runtime.

check=dynamic

Same as check. Does a bounds check on dynamic type arrays
(dynamic, associative, queues) and issues an error at runtime.

check=fixed

Does a bounds check only on fixed size arrays and issues an
error at runtime.

check=all

Does a bounds check on both fixed size and dynamic type
arrays and issues an errors at runtime.

dep_check

C-15

Elaboration Options

Enables dependency analysis and incremental compilation.
Detects files with circular dependencies and issues an error
message when VCS MX cannot determine which file to compile
first.

no_file_by_file_pp

By default, VCS MX does file-by-file preprocessing on each
input file, feeding the concatenated result to the parser. This
argument disables this behavior.

print_deps

Tells VCS MX to display the dependencies for the source files
on the screen. Enter this argument with the dep_check
argument.

rvm

Use rvm when RVM or VMM is used in the testbench.

sv_fmt
The default padding used in displayed or printed strings is right
padding. The sv_fmt option specifies left padding. For
example, when -ntb_opts sv_fmt is used, the result of

$display("%10s", "my_string");

is to put 10 spaces to the left of my_string.

To specify right padding when -ntb_opts sv_fmt is used,
put a dash before the number of spaces. For example, the result
of

$display("%-10s", "my_string");

is to put 10 spaces to the right of my_string.

C-16

Elaboration Options

tb_timescale=value

Specifies an overriding timescale for the testbench, whenever
the required testbench timescale is different from that of the
design. It must be used in conjunction with the -timescale
option that specifies the timescale for the design.

If the required testbench timescale is different from the design
or DUT timescale, then both the testbench timescale and the
DUT timescale must be passed during VCS compilation.

Example:

The following command specifies a required testbench
timescale of 10ns/10ps and a design timescale of 1ns/1ps:

%> vcs -ntb_opts tb_timescale=1ns/1ps
 -timescale=10/10ns file.sv

tokens

Preprocesses the OpenVera files to generate two files,
tokens.vr and tokens.vrp. The tokens.vr contains the
preprocessed result of the non-encrypted OpenVera files, while
the tokens.vrp contains the preprocessed result of the
encrypted OpenVera files. If there is no encrypted OpenVera
file, VCS MX sends all the OpenVera preprocessed results to
the tokens.vr file.

use_sigprop

Enables the signal property access functions. For example,
vera_get_ifc_name().

vera_portname

C-17

Elaboration Options

Specifies the following:

-The Vera shell module name is named vera_shell.

-The interface ports are named ifc_signal.

-Bind signals are named, for example, as: \if_signal[3:0].

-ntb_shell_only

Generates only a .vshell file. Use this option when compiling
a testbench separately from the design file.

 -ntb_sfname filename

Specifies the file name of the testbench shell.

-ntb_sname module_name

Specifies the name and directory where VCS MX writes the
testbench shell module.

-ntb_spath

Specifies the directory where VCS MX writes the testbench shell
and shared object files. The default is the compilation directory.

-ntb_vipext .ext

Specifies an OpenVera encrypted-mode file extension to mark
files for processing in OpenVera encrypted IP mode. Unlike the
-ntb_filext option, the default encrypted-mode extensions
.vrp and .vrhp are not overridden and will always be in effect.
You can pass multiple file extensions at the same time using the
plus (+) character.

-ntb_vl

C-18

Elaboration Options

Specifies the compilation of all Verilog files, including the design,
the testbench shell file, and the top-level Verilog module.

Options for Initializing Memories and Registers with
Random Values

+vcs+initreg+random

Initializes all state variables (reg data type), registers defined in
sequential UDPs, and memories including MDAs (reg data type)
in the design, to random logic 0 or 1, at time zero.

Note:
- This option works only for the Verilog portion of your design.

- This option does not initialize registers (variables) and
memories other than the reg data type.

To prevent race conditions, avoid the following when you use this
option:

- Assigning initial values to a reg in their declaration, when the
value you assign is not the same as the value specified with
the +vcs+initreg+random option.

- Initializing state variables to state "X".

C-19

Elaboration Options

- Inconsistent states in the design due to the randomization.

Options for Using Radiant Technology

+rad

Performs Radiant Technology optimizations on your design.

+optconfigfile+filename

Specifies a configuration file that lists the parts of your design you
want to optimize (or not optimize) and the level of optimization for
these parts. You can also use the configuration file to specify ACC
write capabilities. See “Compiling With Radiant Technology” .

Options for 64-bit Compilation

-full64

Enables compilation and simulation in 64-bit mode.

You can also enable VCS in 64-bit mode using the following
environment variable per your platform and OS:

For Linux RH 3.0/4.0 64-bit:

setenv VCS_TARGET_ARCH amd64

For Suse Linux Enterprise Server 9 64-bit:

setenv VCS_TARGET_ARCH suse64

For Solaris 64-bit:

setenv VCS_TARGET_ARCH sparc64

C-20

Elaboration Options

-

 Options for Starting Simulation Right After Compilation

-R

Runs the executable file immediately after VCS MX links it
together.

Options for Specifying Delays and SDF Files

-sdf min|typ|max:instance_name:file.sdf

Enables sdf annotation. Minimum, typical or maximum values
specified in file.sdf will be annotated on the instance,
instance_name.

+allmtm

Specifies compiling separate files for minimum, typical, and
maximum delays when there are min:typ:max delay triplets in SDF
files. If you use this option, you can use the +mindelays,
+typdelays, or +maxdelays options at runtime to specify
which compiled SDF file VCS MX uses. Do not use this option
with the +maxdelays, +mindelays, or +typdelays compile-
time options.

+charge_decay

Enables charge decay in trireg nets. Charge decay will not work
if you connect the trireg to a transistor (bidirectional pass)
switch such as tran, rtran, tranif1, or rtranif0.

+maxdelays

C-21

Elaboration Options

Specifies using the maximum timing delays in min:typ:max delay
triplets when compiling the SDF file. The mtm_spec argument to
the $sdf_annotate system task overrides this option.

+mindelays

Specifies using the minimum timing delays in min:typ:max delay
triplets when compiling the SDF file. The mtm_spec argument to
the $sdf_annotate system task overrides this option.

+typdelays

Specifies using the typical timing delays in min:typ:max delay
triplets when compiling the SDF file. The mtm_spec argument to
the $sdf_annotate system task overrides this option.

+multisource_int_delays

Enables the multisource INTERCONNECT feature, including
transport delays with full pulse control.

+nbaopt

Removes all intra-assignment delays in all the nonblocking
assignment statements in the design. Many users enter a #1 intra-
assignment delay in nonblocking procedural assignment
statements to make debugging in the Wave window easier. For
example:

reg1 <= #1 reg2;

These delays impede the simulation performance of the design,
so after debugging, you can remove these delays with this option.

C-22

Elaboration Options

Note:
The +nbaopt option removes all intra-assignment delays in all
the nonblocking assignment statements in the design, not just the
#1 delays.

+sdf_nocheck_celltype

For a module instance to which an SDF file back-annotates delay
data, disables comparing the module identifier in the source code
with the CELLTYPE entry in the SDF file.

+transport_int_delays

Enables transport delays for delays on nets with a delay back-
annotated from an INTERCONNECT entry in an SDF file. The
default is inertial delays.

+transport_path_delays

Enables transport delays for module path delays.

-sdfretain

Enables timing annotation as specified by a RETAIN entry on
IOPATH delays. By default, VCS MX ignores RETAIN entries
with the following warning message:

Warning-[SDFCOM_RCI] RETAIN clause ignored
SDF_filename, line_number
module: module_name, "instance: hierarchical_name"
 SDF Warning: RETAIN clause ignored, but IOPATH
 annotated,
 Please use -sdfretain switch to consider RETAIN

The syntax for RETAIN entries are as follows:

C-23

Elaboration Options

(IOPATH port_spec port_instance (RETAIN
delval_list)* delval_list)

 For example:

(IOPATH RCLK DOUT[0] (RETAIN (40)) (100.1)
(100.2))

-sdfretain=warning

If the RETAIN entry values are larger than the delay values, VCS
MX displays the following warning message at runtime:

Warning-[SDFRT_IRV] RETAIN value ignored
 RETAIN value is ignored as it is greater than IOPATH
 delay

If you want to see a warning message at compile-time, enter this
option along with the -sdfretain option. The following is an
example of this warning message:

Warning-[SDFCOM_RLTPD] RETAIN value larger than IOPATH
delay
SDF_filename, line_number
module: module_name, "instance: hierarchical_name"
SDF Warning: RETAIN value (value) is larger than IOPATH
delay, RETAIN will be ignored at runtime

+iopath+edge+sub-option

This option is used when edge sensitivity is used in IOPATH SDF
file entries. The different sub-options used with
+iopath+edge+option and their descriptions are as follows:

+iopath+edge+strict

C-24

Elaboration Options

This option is used for LRM compliance. When edge sensitivity
is specified for the input port in the SDF file and corresponding
arc is not found in Verilog model, VCS by default does not give
the warning message, you should use the switch
+iopath+edge+strict to display the warning message.
After the warning message is displayed, the data from SDF will
not be back-annotated to the Verilog model.

+iopath+edge+match

This option can be used to make the annotation work by ignoring
the edge in SDF.

+iopath+edge+max

This option is used for annotating higher delays.

+iopath+edge+min

 This option is used for annotating smaller delays.

Options for Compiling an SDF File

+csdf+precompile

Precompiles your SDF file into a format that VCS can parse when
it compiles your Verilog code. See “Precompiling an SDF File” .

Options for Specify Blocks and Timing Checks

+pathpulse

Enables the search for PATHPULSE$ specparam in specify
blocks.

C-25

Elaboration Options

+notimingcheck

Tells VCS to ignore timing check system tasks when it compiles
your design. This option can moderately improve simulation
performance. The extent of this improvement depends on the
number of timing checks that VCS ignores. You can also use this
option at runtime to disable these timing checks after VCS has
compiled them into the executable. However, the executable
simulates faster if you include this option at compile-time so that
the timing checks are not in the executable. If you need the
delayed versions of the signals in negative timing checks but want
faster performance, include this option at runtime. The delayed
versions are not available if you use this option at compile-time.

Note:
- VCS recognizes +notimingchecks to be the same as
+notimingcheck when you enter it on the vcs or simv
command line.

- The +notimingcheck option has higher precedence than any
tcheck command in UCLI.

+no_tchk_msg

Disables display of timing violations, but does not disable the
toggling of notifier registers in timing checks. This is also a runtime
option.

Options for Pulse Filtering

 +pulse_e/number

C-26

Elaboration Options

Displays an error message and propagates an X value for any
path pulse whose width is less than or equal to the percentage of
the module path delay specified by the number argument, but is
still greater than the percentage of the module path delay specified
by the number argument to the +pulse_r/number option.

+pulse_r/number

Rejects any pulse whose width is less than number percent of
the module path delay. The number argument is in the range of
0 to 100.

+pulse_int_r

Same as the existing +pulse_r option, except it applies only to
INTERCONNECT delays.

+pulse_int_e

Same as the existing +pulse_e option, except it applies only to
INTERCONNECT delays.

+pulse_on_event

Specifies that when VCS MX encounters a pulse shorter than the
module path delay, VCS MX waits until the module path delay
elapses and then drives an X value on the module output port and
displays an error message. It drives that X value for a simulation
time equal to the length of the short pulse or until another
simulation event drives a value on the output port.

+pulse_on_detect

C-27

Elaboration Options

Specifies that when VCS MX encounters a pulse shorter than the
module path delay, VCS MX immediately drives an X value on the
module output port, and displays an error message. It does not
wait until the module path delay elapses. It drives that X value
until the short pulse propagates through the module or until
another simulation event drives a value on the output port.

Options for Negative Timing Checks

-negdelay

Enables the use of negative values in IOPATH and
INTERCONNECT entries in SDF files.

To consider a negative INTERCONNECT delay, one of the
following should be true:

- Sum of INTERCONNECT and PORT delays should be greater
than zero

- Sum of INTERCONNECT and IOPATH delays should be
greater than zero

- Sum of INTERCONNECT and DEVICE delays should be
greater than zero

Otherwise, the negative INTERCONNECT delay will be ignored,
and a warning message is generated for the same.

Similarly, to consider a negative IOPATH delay, the sum of
IOPATH and DEVICE delays should be greater than zero.
Otherwise, the negative IOPATH delay will be ignored, and a
warning message is generated for the same.

Limitations

C-28

Elaboration Options

This option is not supported in the following scenarios:

- Precompiled SDF

- RETAIN on negative IOPATH

- INCREMENT delay

+neg_tchk

Enables negative values in timing checks.

+old_ntc

Prevents the other timing checks from using delayed versions of
the signals in the $setuphold and $recrem timing checks.

+NTC2

In $setuphold and $recrem timing checks, specifies checking
the timestamp and timecheck conditions when the original data
and reference signals change value instead of when their delayed
versions change value.

+overlap

Enables accurate simulation of multiple non-overlapping violation
windows for the same signals specified with negative delay values
back-annotated from an SDF file to timing checks.

Option to Specify Elaboration Options in a File

-file filename

C-29

Elaboration Options

Specify a file that contains a list of source files and VCS MX
elaboration options, including C source files and object files.

Limitations of -file option
• This option does not support the -full64 and -comp64 options

in the file. You must enter these options on the vcs command-line.

• You cannot specify escape characters in the file.

• You cannot use meta characters in the file, except * and $.

Options for Compiling Runtime Options into the
Executable

+pluarg_save

Some runtime options must be preceded by the +plusarg_save
option for VCS MX to compile them into the executable.

+plusarg_ignore

Tells VCS MX not to compile the following runtime options into the
simv executable. This option is used to counter the
+plusarg_save option on a previous line.

Options for PLI Applications

+acc+level_number

Enables PLI ACC capabilities for the entire design. The level
number can be any number between 1 and 4:

+acc or +acc+1

C-30

Elaboration Options

Enables all capabilities except breakpoints and delay
annotation.

+acc+2

Above, plus breakpoints.

+acc+3

Above, plus module path delay annotation.

+acc+4

Above, plus gate delay annotation.

+applylearn+filename

Recompiles your design to enable only the ACC capabilities that
you needed for the debugging operations you did during a
previous simulation of the design.

-e new_name_for_main

Specifies the name of your main() routine. You write your own
main() routine when you are writing a C++ application or when
your application does some processing before starting the simv
executable.

Note:
Do not use the -e option with the VCSMX/SystemC Cosimulation
Interface.

-slave

Specifies VCS MX should build a shared executable library
instead of simv executable. This option enables the slave mode
operation of VCS MX.

C-31

Elaboration Options

Note:
- In this case, your C program hosts the main() routine.

Hence, you must rename vcs main() routine using the -e
option.

- This option works in two-step flow only.

- Some of the VCS MX features like UCLI, DVE, $save, and
$restart are not supported in slave mode. For more
information on features that are supported with VCS MX
slave mode, contact vcs_support@synopsys.com.

-P pli.tab

Compiles a user-defined PLI definition table file.

+vpi

Enables the use of VPI PLI access routines.

+vpi+1

Allows you to reduce the runtime memory by reducing the
information storage for VPI interface at runtime. This option limits
the behavioral information at compile-time, but preserves the
structural information.

This option allows you to:

- Browse the design hierarchy and read the values of variables.
This facilitates debugging.

- Write over or force values on variables using
vpi_put_value(). This allows a foreign language testbench
to drive a stimulus to a Verilog design.

C-32

Elaboration Options

- Register VPI callbacks. This facilitates the waveform dumping
features. However, certain advance debugging features (such
as Line stepping, Driver/Loads information, and so on) will not
be available.

Limitations:

- You cannot use this option to browse, enable, or disable SV
and RT assertions.

Note:
The +vpi+1+assertion option allows you to browse, enable,
and disable SV and RT assertions to the base features of
+vpi+1.

- If you use +vpi+1 with any debug option (-debug_all, -
debug_pp, or -debug), and try to use UCLI commands, then
some of the commands may fail. No diagnostics or error
messages will be generated to suggest that those commands
are failing due to existence of +vpi+1 option.

+vpi+1+assertion

Allows you to browse, enable, and disable SV and RT assertions
to the base features of +vpi+1.

-load shared_library:registration_routine

Specifies the registration routine in a shared library for a VPI
application.

-use_vpiobj

Specifies the vpi_user.c file that enables you to use the
vpi_register_systf VPI access routine.

C-33

Elaboration Options

Options to Enable the VCS MX DirectC Interface

+vc+[abstract+allhdrs+list]

The +vc option enables extern declarations of C/C++ functions
and calling these functions in your source code. See the VCS
DirectC Interface User Guide. The optional suffixes to this option
are as follows:

+abstract

Enables abstract access through vc_handles.

+allhdrs

Writes the vc_hdrs.h file that contains external function
declarations that you can use in your Verilog code.

+list

Displays all the C/C++ functions that you called in your Verilog
source code.

Options for Flushing Certain Output Text File Buffers

When VCS MX creates a log, VCD, or text file specified with the
$fopen system function, VCS MX writes the data for the file in a
buffer and periodically dumps the data from the buffer to the file on
disk. The frequency of these dumps varies depending on many
factors including the amount of data that VCS MX has to write to the
buffer as simulation or compilation progresses. If you need to see or
use the latest information in these files more frequently than the rate
at which VCS MX normally flushes this data, these options tell VCS
MX to flush the data more often during compilation or simulation.

C-34

Elaboration Options

+vcs+flush+log

Increases the frequency of flushing both the compilation and
simulation log file buffers.

+vcs+flush+dump

Increases the frequency of flushing all VCD file buffers.

+vcs+flush+fopen

Increases the frequency of flushing all the buffers for the files
opened by the $fopen system function.

+vcs+flush+all

Shortcut option for entering all three of the +vcs+flush+log,
+vcs+flush+dump and +vcs+flush+fopen options.

These options do not increase the frequency of dumping other text
files, including the VCDE files specified by the $dumpports system
task or the simulation history file for LSI certification specified by the
$lsi_dumpports system task.

These options can also be entered at runtime. Entering them at
compile-time modifies the simv executable so that it runs as if these
options were always entered at runtime.

Options for Controlling Messages

-no_error ID+ID

Changes the error messages with the UPIMI and IOPCWM IDs
to warning messages with the -no_error compile-time option.
You include one or both IDs as arguments, for example:

C-35

Elaboration Options

-noerror UPIMI+IOPCWM

This option does not work with the ID for any other error message.

-notice

Enables verbose diagnostic messages.

-q

Quiet mode; suppresses messages such as those about the C
compiler VCS MX is using, the source files VCS MX is parsing,
the top-level modules, or the specified timescale.

-V

Verbose mode; compiles verbosely. The compiler driver program
prints the commands it executes as it runs the C compiler,
assembler, and linker. If you include the -R option with the -V
option, the -V option is also passed to runtime executable, just as
if you had entered simv -V.

-Vt

Verbose mode; provides CPU time information. Like -V, but also
prints the amount of time used by each command. Use of the -Vt
option can cause the simulation to slow down.

+warn=[no]ID|none|all

Uses warning message IDs to enable or disable display of warning
messages. In the following warning message:

Warning-[TFIPC] Too few instance port connections

The text string TFIPC is the message ID. The syntax of this option
is as follows:

C-36

Elaboration Options

+warn=[no]ID|none|all,...

Where:

The following are examples that show how to use this option:

Options for Cell Definition

+nolibcell

Does not define as a cell modules defined in libraries unless they
are under the `celldefine compiler directive.

+nocelldefinepli+0

Enables recording in VPD files, the transition times and values of
nets and registers in all modules defined under the ‘celldefine
compiler directive or defined in a library that you specify with the
-v or -y options. This option also enables full PLI access to these
modules.

no Specifies disabling warning messages with the ID that follows. There is
no space between the keyword no and the ID.

none Specifies disabling all warning messages. IDs that follow, in a
comma-separated list, specify exceptions.

all Specifies enabling all warning messages, IDs that follow preceded by
the keyword no, in a comma separated list, specify exceptions.

+warn=noIPDW Enables all warning messages except the warning
with the IPDW ID.

+warn=none,TFIPC Disables all warning messages except the warning
with the TFIPC ID.

+warn=noIPDW,noTFIPC Disables the warning messages with the IPDW and
TFIPC IDs.

+warn=all Enables all warning messages. This is the default.

C-37

Elaboration Options

+nocelldefinepli+1

Disables recording in VPD files, the transition times and values
of nets and registers in all modules defined under the
‘celldefine compiler directive. This option also disables full PLI
access to these modules. Modules in a library file or directory are
not affected by this option unless they are defined under the
‘celldefine compiler directive.

+nocelldefinepli+2

In VPD files, disables recording the transition times and values of
nets and registers in all modules defined under the ‘celldefine
compiler directive or defined in a library that you specify with the
-v or -y options, whether the modules in these libraries are
defined under the ‘celldefine compiler directive or not. This
option also disables PLI access to these modules.

Disabling recording of transition times and values of the nets and
registers in library cells can significantly increase simulation
performance.

Note:
Disabling recording transitions in library cells is intended for
batch simulation only and not for interactive debugging with
DVE. Any attempt in DVE to access a part of your design for
which VPD has been disabled may have unexpected results.

+nocelldefinepli+1+ports

Removes the PLI capabilities from `celldefine modules but
allows PLI access to port nodes and parameters.

+nocelldefinepli+2+ports

C-38

Elaboration Options

Removes the PLI capabilities from library and ‘celldefine modules
and allows PLI access to port nodes and parameters.

Options for Licensing

-licwait timeout

Enables license queuing, where timeout is the time in minutes
that VCS MX waits for a license before finally exiting.

-licqueue

Tells VCS MX to wait for a network license if none is available.

-ID

Returns useful information about a number of things: the version
of VCS MX that you have set the VCS_HOME environment
variable to, the name of your work station, your workstation’s
platform, the host ID of your workstation (used in licensing), the
version of the VCS MX compiler (same as VCS MX) and the VCS
MX build date.

Options for Controlling the Linker

-ld linker

Specifies an alternate front-end linker. Only applicable in
incremental compile mode, which is the default.

-LDFLAGS options

Passes flag options to the linker. Only applicable in incremental
compile mode, which is the default.

C-39

Elaboration Options

-c

Tells VCS MX to compile the source files, generate the
intermediate C, assembly, or object files, and compile or assemble
the C or assembly code, but not to link them. Use this option if
you want to link by hand.

-lname

Links the name library to the resulting executable. Usage is the
letter l followed by a name (no space between l and name). For
example: -lm (instructs VCS MX to include the math library).

-Marchive=number_of_module_definitionst

By default, VCS MX compiles module definitions into individual
object files and sends all the object files in a command line to the
linker. Some platforms use a fixed-length buffer for the command
line, and if VCS MX sends too long a list of object files, this buffer
overflows and the link fails. A solution to this problem is to have
the linker create temporary object files containing more than one
module definition so there are fewer object files on the linker
command line. With this option, you enable creating these
temporary object files and specify how many module definitions
are in these files.

Using this option briefly doubles the amount of disk space used
by the linker because the object files containing more than one
module definition are copies of the object files for each module
definition. After the linker creates the simv executable, it deletes
the temporary object files.

-picarchive

VCS MX can fail during linking due to the following two reasons:

C-40

Elaboration Options

- Huge size of object files: VCS MX compiles the units of your
design into object files, then calls the linker to combine them
together. Sometimes the size of a design is large enough that
the size of text section of these object files exceeds the limit
allowed by the linker. If so, the linker fails and generates the
following error:

relocation truncated to fit:....

- Large number of object files: By default, VCS MX compiles
module or entity definitions into individual object files and sends
this list of object files in a single command line to the linker.
Some platforms use a fixed-length buffer for the command line.
If VCS MX sends a long list of object files, this buffer overflows
and the link fails, generating errors such as:

make: execvp: gcc: Argument list too long

make: execvp: g++: Argument list too long

You can use the -picarchive option to deal with the above
linker errors. The –picarchive option does the following:

1. Enables Position Independent Code (PIC) object file
generation along with linking the shared object version of VCS
MX libraries.

2. Archives generated PIC code into multiple shared objects
inside simv.daidir or simv.db.dir directory.

3. Links the Shared objects at runtime to the final executable,
instead of linking all the objects statically into final executable
in a single step at compile-time.

C-41

Elaboration Options

Options for Controlling the C Compiler

-cc compiler

Specifies an alternate C compiler.

-CC options

Passes options to the C compiler or assembler.

-CFLAGS options

Passes options to C compiler. Multiple -CFLAGS are allowed.
Allows passing of C compiler optimization levels. For example, if
your C code, test.c, calls a library file in your VCS MX
installation under $VCS_HOME/include, use any of the following
CFLAGS option arguments:

%vcs top.v test.c -CFLAGS "-I$VCS_HOME/include"

or

%setenv CWD ‘pwd‘
%vcs top.v test.c -CFLAGS "-I$CWD/include"

or

%vcs top.v test.c -CFLAGS "-I../include"

C-42

Elaboration Options

Note:
The reason to enter "../include" is because VCS MX
creates a default csrc directory where it runs gcc commands.
The csrc directory is under your current working directory.
Therefore, you need to specify the relative path of the include
directory to the csrc directory for gcc C compiler. Further, you
cannot edit files in the csrc because VCS MX automatically
creates this directory.

-cpp

Specifies the C++ compiler.

Note:
If you are entering a C++ file or an object file compiled from a
C++ file on the vcs command line, you must tell VCS MX to
use the standard C++ library for linking. To do this, enter the
-lstdc++ linker flag with the -LDFLAGS elaboration option.

For example:

 vcs top source.cpp -P my.tab \
-cpp /net/local/bin/c++ -LDFLAGS -lstdc++

-jnumber_of_processes

Specifies the number of processes that VCS MX forks for parallel
compilation. There is no space between the "j" character and the
number. You can use this option in any compilation mode: directly
generating object files from the parallel compilation of your Verilog
source files (-gen_obj, default on the Solaris and RHEL32
platforms), generating intermediate assembly files (-gen_asm)
and then their parallel assembly, or generating intermediate C files
(-gen_c) and their parallel compilation.

C-43

Elaboration Options

-C

Stops after generating the C code intermediate files.

-O0

Suppresses optimization for faster compilation (but slower
simulation). Suppresses optimization for how VCS MX both writes
intermediate C code files and MX compiles these files. This option
is the uppercase letter "O" followed by a zero with no space
between them.

-Onumber

Specifies an optimization level for how VCS MX both writes and
compiles intermediate C code files. The number can be in the 0-4
range; 2 is the default, 0 and 1 decrease optimization, 3 and 4
increase optimization. This option is the uppercase letter "O"
followed by 0, 1, 2, 3 or 4 with no space between them. See above,
for additional information regarding the -O0 variant.

-override-cflags

Tells VCS MX not to pass its default options to the C compiler. By
default, VCS MX has a number of C compiler options that it passes
to the C compiler. The options it passes depends on the platform,
whether it is a 64-bit compilation, whether it’s a VCS MX mixed
HDL design, and other factors. VCS MX passes these options
and then passes the options you specify with the -CFLAGS
compile-time option.

Options for Source Protection

+autoprotect[file_suffix]

Creates a protected source file; all modules are encrypted.

C-44

Elaboration Options

+auto2protect[file_suffix]

Creates a protected source file that does not encrypt the port
connection list in the module header; all modules are encrypted.

+auto3protect[file_suffix]

Creates a protected source file that does not encrypt the port
connection list in the module header or any parameter
declarations that precede the first port declaration; all modules
are encrypted.

+deleteprotected

Allows overwriting of existing files when doing source protection.

+pli_unprotected

Enables PLI and UCLI access to the modules in the protected
source file being created (PLI and UCLI access is normally
disabled for protected modules).

+protect[file_suffix]

Creates a protected source file, only encrypting `protect/
`endprotect regions.

+object_protect <sourcefile>

Debugs the partially encrypted source code.

vcs +protect +object_protect <sourcefile.v>

+putprotect+target_dir

Specifies the target directory for protected files.

+sdfprotect[file_suffix]

C-45

Elaboration Options

Creates a protected SDF file.

Options for Mixed Analog/Digital Simulation

+ad=partition_filename

Specifies the partition file that you use in mixed Analog/Digital
simulation to specify the part of the design simulated by the analog
simulator, the analog simulator you want to use, and the
resistance mapping information that maps analog drive resistance
ranges to Verilog strengths.

-ams_discipline discipline_name

Specifies the default discrete discipline in VerilogAMS.

-ams_iereport

If information on auto-inserted connect modules (AICMs) is
available, displays this information on the screen and in the log file.

 +bidir+1

Tells VCS MX to finish compilation when it finds a bidirectional
registered mixed-signal net.

 +print+bidir+warn

Tells VCS MX to display a list of bidirectional, registered, mixed
signal nets.

Unified Option to Change Generic and Parameter Values

-gfile cmdfile

C-46

Elaboration Options

Overrides the default values for design generics and parameters
by using values from the file cmdfile. The cmdfile file contains
assign commands targeting design generics and parameters.

The syntax for a line in the file is as follows:

assign value path_to_parameter/generic

The path to the parameter or generic is similar to a hierarchical
name except that you use the forward slash character (/) instead
of a period as the delimiter.

Checking for X and Z Values in Conditional Expressions

-xzcheck [nofalseneg]

Checks all the conditional expressions in the design and displays
a warning message every time VCS MX evaluates a conditional
expression to have an X or Z value.

nofalseneg

Suppress the warning message when the value of a conditional
expression transitions to an X or Z value and then to 0 or 1 in
the same simulation time step.

Options for Detecting Race Conditions

-race

C-47

Elaboration Options

Specifies that VCS MX generate a report of all the race conditions
in the design and write this report in the race.out file during
simulation. . For more information, refer to “The Dynamic Race
Detection Tool” section in VCS MX Simulation Coding and
Modeling Style Guide.

Note:
The -race elaboration option supports dynamic race detection
for both pure Verilog and SystemVerilog data types.

-racecd

Specifies that during simulation, VCS MX generate a report of the
race conditions in the design between the ‘race and ‘endrace
compiler directives and write this report in the race.out file. .
For more information, refer to “The Dynamic Race Detection Tool”
section in VCS MX Simulation Coding and Modeling Style Guide.

Note:
The -racecd elaboration option supports dynamic race
detection for both pure Verilog and SystemVerilog data types.

+race=all

Analyzes the source code during compilation to look for coding
styles that cause race conditions. . For more information, refer to
“The Static Race Detection Tool” section in VCS MX Simulation
Coding and Modeling Style Guide.

Note:
The +race=all option supports only pure Verilog constructs.

C-48

Elaboration Options

Options to Specify the Time Scale

-unit_timescale[=<default_timescale>]

The -unit_timescale option enables you to specify the default
time unit for the compilation-unit scope. You must not include
spaces when specifying arguments to this option.

The IEEE Standard 1800-2005 LRM, topic 19.10, page 340
explains the time unit declaration, as follows:

"The time unit of the compilation-unit scope can only be set by a
time unit declaration, not a ‘timescale directive. If it is not
specified, then the default time unit shall be used."

Since the -timescale option does not affect the compilation-
unit scope, you must use the -unit_timescale option to
specify the default time unit for the compilation-unit scope.

The default_timecale value should be in the same format as
the ̀ timescale directive. If the default timescale is not specified,
then 1s/1s is taken as the default timescale of the compilation-unit.

-override_timescale=time_unit/time_precision

Overrides the time unit and precision unit for all the ‘timescale
compiler directives in the source code, and, similar to the
-timescale option, provides a timescale for all module
definitions that precede the first ‘timescale compiler directive.
Do not include spaces when specifying the arguments to this
option.

-time base_time

C-49

Elaboration Options

Sets the time base for the simulation. This option overrides the
default TIMEBASE variable value in the synopsys_sim.setup
file. The default value for base_time is ns.

-time_res value

Sets the time resolution for the simulation. This option overrides
the default TIME_RESOLUTION variable value in the
synopsys_sim.setup file.

Options for Overriding Generics and Parameters

-gfile

You can use the -gfile compile-time option, to override
parameter and generic values through a file, for both Verilog and
VHDL respectively.

You need to specify the file name, which contains the list of all
generics and parameters that should be overridden, with the
-gfile option.

The syntax for -gfile option is as follows:

vcs top_level_entity_or_module -gfile
parameters_or_generics_file other_options

The syntax for the parameters_or_generics_file is as
follows:

assign val path

Each option In the above syntax is described below:

C-50

Elaboration Options

val: The value that overrides the Specified parameter/generic.

path: Specifies the absolute hierarchical path to the parameter/
generic value which is to be overridden.

Note:
The –gfile supports only VHDL syntax for hierarchical path
representation.

All escaped identifiers in the Verilog path must be converted into
VHDL extended identifiers. If the escaped identifier contains ‘\’
characters, they must be escaped with another ‘\’ character.

For example, consider the following Verilog hierarchical path for
the parameter ‘P1’.

top.dut.\inst1_\cpu .inst2.P1

The corresponding generics_file entry is as follows:

assign ‘hffffffff /top/dut/\inst1_\\cpu\/
inst2/P1

All ‘for-generate’ and ‘instance-array’ parentheses must be round
parentheses, and the path delimiter must be ‘/’. All instance paths
for VHDL-Top and Verilog-Top designs must start with ‘/’.

Example:

You can override the parameter and generic values using the
-gfile option as follows:

vcs vh_top –gfile overrides.txt

C-51

Elaboration Options

where, overrides.txt contains the following entries:

assign ‘hffffffff /top/dut/\inst1_\\cpu\/
inst2/P1

assign “DUMMY” /top/dut/\inst1_\\cpu\/inst2/
P2

assign 10.34 /top/dut/\inst1_\\cpu\/inst2/P3

Supported Data Types:

The following data types are supported in -gfile option:

- Integer

- Real

- String

The -gfile option ignores other data types with a suitable
warning message.

-pvalue

You can use the -pvalue compile-time option for changing the
parameter values from the vcs command line.

You specify a parameter with the -pvalue option. It has the
following syntax:

vcs -pvalue+hierarchical_name_of_parameter=
value

 Example:

C-52

Elaboration Options

vcs source.v -pvalue+test.d1.param1=33

Note:
The -pvalue option does not work with a localparam or a
specparam.

-gv|-gvalue generic=value

Overrides the generic value defined in the source code with the
value specified in the command line.

Example:

vcs work.top -gvalue /TOP/LEN=1

Note:
The -gv|-gvalue option overrides the generic value defined in
the source code only if the generic is of type integer or real.

-g|-generics cmdfile

Overrides the default values for the design generics by using
values from the file cmdfile. The file cmdfile is an include file
that contains assign commands targeting design generics.

General Options

Enable the VCS MX/SystemC Cosimulation Interface

-sysc

Enables SystemC cosimulation engine.

-sysc=adjust_timeres

C-53

Elaboration Options

Determines the finer time resolution of SystemC and HDL in case
of a mismatch, and sets it as the simulator’s timescale. VCS MX
may be unable to adjust the time resolution if you elaborate your
HDL with the -timescale option or use the
sc_set_time_resolution() function call in your SystemC
code. In such cases, VCS MX reports an error and does not create
simv.

Note:
You must use this option along with the -sysc option.

TetraMAX

+tetramax

Enables simulation of TetraMAX’s testbench in zero delay mode.

Suppressing Port Coersion to inout

+noportcoerce

Prevents VCS MX from coercing ports to inout ports, which is the
default condition. This option is the equivalent of the
‘noportcoerce compiler directive.

Allow Inout Port Connection Width Mismatches

+noerrorIOPCWM

Changes the error condition, when a signal is wider or narrower
than the inout port to which it is connected, to a warning condition,
thus allowing VCS MX to create the simv executable after
displaying the warning message.

C-54

Elaboration Options

Allow Zero or Negative Multiconcat Multiplier

-noerror ZONMCM

Changes the following errors to a warning condition, thus allowing
VCS MX to create the simv executable after displaying the
warning message:

Error-[ZMMCM] Zero multiconcat multiplier cannot be used in this context
 A replication with a zero replication constant is considered to have
 a size of zero and is ignored. Such a replication shall appear
 only within a concatenation in which at least one of the
 operands of the concatenation has a positive size.
 target : {0 {1'bx}}

 Error-[NMCM] Negative multiconcat multiplier
 target : {(-1) {1'bx}}
 "my_test.v", 6

VCS MX errors out if you use "0" or a negative number as a
multiconcat multiplier. You can change that error to a warning
message using this option.

Specifying a VCD File

+vcs+dumpvars

A substitute for entering the $dumpvars system task, without
arguments, in your Verilog code.

Enabling Dumping

+vcs+vcdpluson

A compile-time substitute for $vcdpluson option. The
+vcs+vcdpluson switch enables dumping for the entire design.
You would however need to use a debug switch (example
-debug_pp) to dump the data.

C-55

Elaboration Options

Memories and Multi-Dimensional Arrays (MDAs)

+memcbk

Enables callbacks for memories and multi-dimensional arrays
(MDAs). Use this option if your design has memories or MDAs
and you are doing any of the following:

- Writing a VCD or VPD file during simulation. For VCD files, at
runtime, you must also enter the +vcs+dumparrays runtime
option. For VPD files, you must also enter the $vcdplusmemon
system task. VCD and VPD files are used for post-processing
with DVE.

- Using the VCS MX/SystemC Interface.

- Writing an FSDB file for Debussy.

- Using any debugging interface application - VCSD/PLI (acc/vpi)
that needs to use value change callbacks on memories or
MDAs. APIs like acc_add_callback,
vcsd_add_callback and vpi_register_cb need this
option if these APIs are used on memories or MDAs.

Note:
The +memcbk option is enabled by default when any one of the
following debug options is used at compile-time:

-debug -debug_pp -debug_all

Specifying a Log File

-l filename

C-56

Elaboration Options

Specifies a file where VCS MX records compilation messages. If
you also enter the -R option, VCS MX records messages from
both compilation and simulation in the same file.

-a logFilename

Captures simulation output and appends the log information in
the existing log file. If the log file doesn’t exist, then this option
would create a log file.

Changing Source File Identifiers to Upper Case

-u

Changes all the characters in identifiers to uppercase. It does not
change identifiers in quoted strings such as the first argument to
the $monitor system task. You do not see this change in the DVE
Source window, but you do see it in all the other DVE windows.

Specifying the Name of the Executable File

-o name

Specifies the name of the executable file. In UNIX, the default is
simv.

Returning The Platform Directory Name

-platform

C-57

Elaboration Options

Returns the name of the platform directory in your VCS MX
installation directory. For example, when you install VCS MX on
a Solaris version 5.4 workstation, VCS MX creates a directory
named, sun_sparc_solaris_5.4, in the directory where you
install VCS MX. In this directory are subdirectories for licensing,
executable libraries, utilities, and other important files and
executables. You need to set your path to these subdirectories.
You can do so by using this option:

set path=($VCS_HOME/bin\
$VCS_HOME/‘$VCS_HOME/bin/vcs -platform‘/bin\$path)

Maximum Donut Layers for a Mixed HDL Design

-maxLayers value

Sets the maximum number of donut layers for a mixed HDL
design. The default value is 8.

Enabling feature beyond VHDL LRM

-xlrm

Enables VHDL features beyond those described in VHDL LRM.

Enable Loop Detect

+vcs+loopreport+number

Displays a runtime warning message, terminates the simulation,
and generates a report when a zero delay loop is detected. By
default, VCS MX checks if a simulation event loops for more than
2,000,000 times during the same simulation time. You can change
this default value by specifying any number along with this option.

C-58

Elaboration Options

+vcs+loopdetect+number

Displays a runtime error message and terminates the simulation
when a zero delay loop is detected. By default, VCS MX checks
if a simulation event loops for more than 2,000,000 times during
the same simulation time. You can change this default value by
specifying any number along with this option.

Changing the Time Slot of Sequential UDP Output
Evaluation

+udpsched

By default, VCS MX evaluates the output terminals of sequential
UDP (user-defined primitive) in the Active time slot of a simulation
time. This can cause a race condition. This switch prevents these
race conditions by changing the evaluation to the NBA time slot.

The default behavior is required by the SystemVerilog LRM, IEEE
Std 1800-2009, section 4.9.6 “Port connections” which specifies
“Changes from primitive evaluations are scheduled as active
update events in the connected nets.”

Gate-Level Performance

-hsopt=gates

Improves runtime performance on gate-level designs (both
functional and timing simulations with SDF).You may see some
compile-time degradation when you use this switch.

Note:
You cannot use this option on a design, if there are PLI writes
to sequential UDPs.

C-59

Elaboration Options

Option to Omit Compilation of Code Between Pragmas

-skip_translate_body

Tells VCS to omit compilation of Verilog or SystemVerilog code
between the following:

the //synopsys translate_off or
/* synopsys translate_off */ pragma

and

the //synopsys translate_on or
/* synopsys translate_on */ pragma

The following code example shows what this option can do:

module test;
initial begin
$display("\n before translate_off");
//synopsys translate_off
$display("\n after translate_off before translate_on");
//synopsys translate_on
$display("\n after translate_on before translate_off");
//synopsys translate_off
$display("\n 2nd after translate_off before translate_on");
//synopsys translate_on
$display("\n after translate_on\n");
end
endmodule

Without the -skip_translate_body option, VCS displays the
following:

before translate_off

 after translate_off before translate_on

C-60

Elaboration Options

 after translate_on before translate_off

 2nd after translate_off before translate_on

 after translate_on

VCS compiles and executes all the $display system tasks.

With the -skip_translate_body option, VCS displays the
following:

 before translate_off

 after translate_on before translate_off

 after translate_on

VCS does not compile and execute the $display system tasks
between the //synopsys translate_off and
//synopsys translate_on pragmas.

D-1

Simulation Options

D
Simulation Options A

This appendix describes the options and syntax associated with the
simv executable. These runtime options are typically entered on the
simv command line but some of them can be compiled into the
simv executable at compile-time.

This appendix describes the following runtime options:

• “Options for Simulating Native Testbenches”

• “Options for SystemVerilog Assertions”

• “Options to Control Termination of Simulation”

• “Options for Enabling and Disabling Specify Blocks”

• “Options for Specifying When Simulation Stops”

• “Options for Recording Output”

• “Options for Controlling Messages”

D-2

Simulation Options

• “Options for VPD Files”

• “Options for VCD Files”

• “Options for Specifying Delays”

• “Options for Flushing Certain Output Text File Buffers”

• “Options for Licensing”

• “Option to Specify User-Defined Runtime Options in a File”

• “Option for Initializing Integer Data Type Variables at Runtime”

• “General Options”

Options for Simulating Native Testbenches

-cg_coverage_control

Enables/disables the coverage data collection for all the coverage
groups in your NTB-OV or SystemVerilog testbench.

Note:
The system task $cg_coverage_control has precedence
over this option.

Syntax: -cg_coverage_control=value

The valid values for -cg_coverage_control are 0 and 1. A
value of 0 disables coverage collection and a value of 1 enables
coverage collection.

D-3

Simulation Options

Note:
You can also use this runtime option with the
coverage_control() system task. The
coverage_control() system task enables/disables data
collection for one or more coverage groups at the program level.
The runtime option takes precedence over the system task. For
more information on this system task, refer to the OpenVera
Language Reference Manual: Native Testbench.

+ntb_cache_dir

Specifies the directory location of the cache that VCS MX
maintains as an internal disk cache for randomization.

+ntb_delete_disk_cache=value

Specifies whether VCS MX deletes the disk cache for
randomization before simulation. The valid values are:

0 - do not delete (the default condition)

1 - delete the disk cache

+ntb_disable_cnst_null_object_warning[=value]

VCS produces the following warning when a null object handle is
encountered in an object being randomized. Allowed values are
0 and 1.

0 - Do not disable null object warning (this is the default)

1 - Disable null object warning

Here is an example of the null object warning:

D-4

Simulation Options

Warning-[CNST-PPRW] Constraint randomize NULL
object warning test.sv, <line number>. Null
object found during randomization. Please make
sure all random variables/arrays/function calls
being randomized are allocated fully and
properly.

The null handle may be intentional or the result of an oversight.
If you want to randomize objects which contain null handles, you
can use this switch to disable the runtime warning.

+ntb_enable_checker_trace=0|1

In-line constraint checker using randomize(null) returns 1 if
all constraints are satisfied and 0 otherwise. This option controls
whether the constraint checker trace is enabled or not. The valid
arguments are as follows:

0 - do not display the constraint checker trace (default)

1 - displays the constraint checker trace

If +ntb_enable_solver_trace is specified without an
argument, the default value is 1. If it is not specified, the default
value is 0.

+ntb_enable_checker_trace_on_failure[=value]

Enables a mode that prints trace information only when the
randomize returns 0. Allowed values are 0, 1, and 2.

0 Disables tracing

1 Enables tracing

2 Enables more verbose message in trace

D-5

Simulation Options

If ntb_enable_checker_trace_on_failure is specified
without an argument, the default value is 1. If the
ntb_enable_checker_trace_on_failure is not specified,
the default value is 2.

+ntb_enable_solver_trace_on_failure[=0|1|2|3]

Displays trace information when the VCS MX constraint solver
fails to compute a solution. The valid argument values are as
follows:

+ntb_exit_on_error[=value]

Causes VCS MX to exit when the value is less than 0. The value
can be:

0 - continue

1 - exit on first error (default value)

N - exit on nth error

3 In addition to the message in trace with option 2, the
checker reports all the earlier solved constraints,
which could have lead to the current failing constraint.

0 Disables displaying trace information

1 Enables displaying trace information

2 Enables more verbose trace information

3 In addition to the more verbose trace information
specified with 2, the solver reports all the earlier
solved constraints, which could have lead to the
current failing constraint.

D-6

Simulation Options

When the value is 0, the simulation finishes regardless of the
number of errors.

+ntb_load=path_name_to_libtb.so

Specifies loading the testbench shared object file, libtb.so.

+ntb_random_seed=value

Sets the seed value to be used by the top-level random number
generator at the start of simulation. The srandom(seed) system
function call overrides this setting. The value can be any integer.

+ntb_random_seed_automatic

Picks a unique value to supply as the first seed used by a
testbench. The value is determined by combining the time of day,
host name and process id. This ensures that no two simulations
have the same starting seed.

The +ntb_random_seed_automatic seed appears in both the
simulation log and the coverage report. When you enter both
+ntb_random_seed_automatic and +ntb_random_seed
VCS MX displays a warning message and uses the
+ntb_random_seed value.

+ntb_random_reseed

Enables the re-seeding of the value the top-level random number
generator uses after a save and restore of the simulation.

You enter this option with the +ntb_random_seed_automatic
or +ntb_random_seed=value options. The seed value after
the restore is the same as the one specified or generated by these
other options.

D-7

Simulation Options

if you omit these other options VCS MX ignores the
+ntb_random_reseed option and displays the following
informational message:

Info-[RNG-SEED-MISSING] New seed was not specified for
reseeding.
 Please use runtime option +ntb_random_seed= or
+ntb_random_automatic to specify new seed.

The srandom(seed) system function overrides this re-seeding.

+ntb_solver_array_size_warn=value

Specifies the array size warning limit (default is 10000) for
constrained array sizes.

+ntb_solver_debug=keyword_argument

Tells VCS MX to give you more information so you can debug the
constraints for the randomize() calls in batch mode. The
keyword arguments are as follows:

extract

Tells VCS MX to extract a standalone test case in
SystemVerilog for the specified randomize() call(s). To use
this keyword argument also enter the
+ntb_solver_debug_filter runtime option.

profile

Enables constraint profiling in VCS MX. You can view the
constraint profile report in simv.cst/html/profile.xml
using a web browser (simv is the default name of the VCS
simv executable).

D-8

Simulation Options

This keyword argument also writes a file with a listing of the top
randomize calls in simv.cst/serial2trace.txt (simv is
the default name of the VCS simv executable).

serial

Displays the randomize serial number at the end of each
randomize() completion.

trace

Displays the solver trace to show how VCS MX solved the
constraints for the random variables in specified randomize()
call(s). To use this argument also enter the
+ntb_solver_debug_filter runtime option.

trace_all

Displays the solver trace for all randomize() calls.
+ntb_solver_debug=trace_all is the equivalent of
entering the following options and arguments together:
+ntb_solver_debug=trace
+ntb_solver_debug_filter=all

You can enter multiple the keyword arguments using a plus (+)
as a delimiter, for example:

vcs source.sv +ntb_solver_debug=serial+extract+profile \
+ntb_solver_debug_filter=12

You cannot enter multiple +ntb_solver_debug options.

+ntb_solver_debug_dir=pathname

Directs VCS MX to place profiles and extracted testcases in the
specified directory. The default directory name is simv.cst, after
the simv executable with the .cst extension.

D-9

Simulation Options

+ntb_solver_debug_filter=
serial_num [.partition_num] | file[:filename] |
all

Specifies a list of randomize() calls that VCS MX displays
debug information about. You can specify this list in the
following ways:

- a comma separated list, for example:

 +ntb_solver_debug_filter=1.5,4,20

This example specifies: the 5th partition of 1st call, and all
partitions of the 4th and 20th call.

- in a file. The default filename is:
simv.cst/serial2trace.txt.
You just need to enter the keyword argument file if the file is
the default file name and location.

- the keyword all as in:
+ntb_solver_debug_filter=all

Specifying all means you want debug information about all
randomize() calls.

Note:
The all argument can result in a large amount of solver trace
information or extracted test cases.

+ntb_solver_mode=value

D-10

Simulation Options

Allows you to choose between one of two constraint solver modes.
When set to 1, the solver spends more preprocessing time in
analyzing the constraints during the first call to randomize() on
each class. Therefore, subsequent calls to randomize() on that
class are very fast. When set to 2, the solver does minimal
preprocessing, and analyzes the constraint in each call to
randomize(). The default is 2.

+ntb_stop_on_constraint_solver_error=0|1

Specifies whether VCS MX continues or exits after a
constraint solver failure due to constraint inconsistency.

Options for SystemVerilog Assertions

-assert keyword_argument

Note:
The -assert keyword_argument runtime options are
enabled only when the -assert enable_diag switch is
given at compile-time.

The keyword arguments are as follows:

dumpoff

Disables the dumping of SVA information in the VPD file during
simulation.

finish_maxfail=N

0 VCS MX to continues to run after a constraint
solver failure (default).

1 VCS MX exits on the first constraint solver error

D-11

Simulation Options

Terminates the simulation if the number of failures for any
assertion reaches N. You must supply N, otherwise no limit is
set.

global_finish_maxfail=N

Stops the simulation when the total number of failures, from all
SystemVerilog assertions, reaches N.

maxcover=N

Disables the collection of coverage information for cover
statements after the cover statements are covered N number
of times. N must be a positive integer; it cannot be 0.

maxfail=N

Limits the number of failures for each assertion to N. When the
limit is reached, VCS MX disables the assertion. You must
supply N, otherwise no limit is set.

maxsuccess=N

Limits the total number of reported successes to N. You must
supply N, otherwise no limit is set. VCS MX continues to monitor
assertions even after the limit is reached.

nocovdb

Tells VCS MX not to write the program_name.db database
file for assertion coverage.

nopostproc

Disables the display of the SystemVerilog assert and cover
statement summary at the end of simulation.

D-12

Simulation Options

This begins with the assert and cover statements that started
but did not finish, in the following format:

"source_filename.v", line_number:
assert_or_cover_statement_hierarchical_name:
started at simulation_time not finished

If the assert or cover statement doesn’t start, this summary
also reports this in the following format::

**** Following assertions did not fire at all
during simulation. *****
"source_filename.v", line_number:
assert_or_cover_statement_hierarchical_name:
No attempt started

This is followed by a cover statement summary in the following
format:

"source_filename.v", line_number:
cover_statement_hierarchical_name, number
attempts, number match

no_fatal_action

Excludes failures on SVA assertions with fail action blocks for
computation of failure count in the –assert
[global_]finish_maxfail=N runtime option.

no_default_msg[=SVA|OVA|PSL]

Disables the display of default failure messages for SVA
assertions that contain a fail action block, and OVA and PSL
assertions that contain user messages.

D-13

Simulation Options

quiet

Disables the display of messages when assertions fail.

quiet1

Disables the display of messages when assertions fail, but
enables the display of summary information at the end of
simulation. For example:

Summary: 2 assertions, 2 with attempts, 2 with
failures

report[=path/filename]

- Generates a report file in addition to printing results on your
screen. By default, the report file name and location is
./assert.report, but you can change it by entering the
path/filename argument. The report file name can start with
a number or letter.

- Generates a report of all assertions that are disabled using any
one of the following mechanisms:

- System tasks $asserton/off/kill

- assert hier at compile/runtime

 The report is categorized based on:

- Disabled assertions on a module level (compile-time)

- Assertions disabled through the -assert hier option

- Disabled assertions at End-of-Simulation

D-14

Simulation Options

Note:
- If the file name is specified by the user, it is dumped as
 <user_file>.disablelog.

- If the file name is not specified by the user, it is dumped as
 assert.report.disablelog

The following special characters are acceptable in the file name:
%, ̂ , and @. Using the following unacceptable special characters:
#, &, *, [], $, (), or ! has the following consequences:

- A file name containing # or & results in a file name truncation
to the character before the # or &.

- A file name containing * or [] results in a No match message.

- A file name containing $ results in an Undefined variable
message.

- A file name containing () results in a Badly placed ()’s
message.

- A file name containing ! results in an Event not found
message.

success

Enables reporting of successful matches, and successes on
cover and assert statements respectively, in addition to
failures. The default is to report only failures.

vacuous

Enables reporting of vacuous successes on assert
statements in addition to the failures. By default, VCS MX
reports only failures.

D-15

Simulation Options

verbose

Adds more information to the end of the report specified by the
report keyword argument, and a summary with the number
of assertions present, attempted, and failed.

hier=file_name

Specifies a file to enable and disable SystemVerilog assertions
when you simulate your design. This feature enables you to
control which assertions are active and VCS records in the
coverage database, without having to recompile your design.

The types of entries you can make in the file are as follows:

 -assert <assertion_name> or <assertion_hierarchical_name>

If assertion_name is provided, VCS MX disables the assertions
based on wildcard matching of the name in the full design. If
assertion_hierarchical_name is provided, VCS MX disables the
assertions based on wildcard matching of the name in the
particular hierarchy given.

Examples

-assert my_assert

Disables all assertions with name my_assert in the full
design.

-assert A*

Disables all assertions whose name starts with A in the full
design.

-assert *

D-16

Simulation Options

Disables all assertions in the full design.

-assert top.INST2.A

Disables all assertions whose names start with A in the
hierarchy top.INST2. If assertions whose name starts with
A exists in inner scopes under top.INST2, they are not
disabled. This command has affect on assertions only in
scope top.INST2.

 +tree <module_instance_name> or
 <assertion_hierarchical_name>

If module_instance_name is provided, VCS MX enables
assertions in the specified module instance and all module
instances hierarchically under that instance. If
assertion_hierarchical_name is provided, VCS MX
enables the specified SystemVerilog assertion. Wildcard
characters can also be used for specifying the hierarchy.

Examples

+tree top.inst1

Enables the assertions in module instance top.inst1 and
all the assertions in the module instances under this instance.

+tree top.inst1.a1

Enables SystemVerilog assertion with the hierarchical name
top.inst1.a1.

+tree top.INST*.A1

D-17

Simulation Options

Enables assertion A1 from all the instances whose names
start with INST under module top.

 -tree <module_instance_name> or
 <assertion_hierarchical_name>

If module_instance_name is provided, VCS MX disables the
assertions in the specified module instance and all module
instances hierarchically under that instance. If
assertion_hierarchical_name is provided, VCS MX
disables the specified SystemVerilog assertion. Wildcard
characters can also be used for specifying the hierarchy.

Examples

-tree top.inst1

Disables the assertions in module instance top.inst1 and
all the assertions in the module instances under this instance.

-tree top.inst1.a1

Disables the SystemVerilog assertion with the hierarchical
name top.inst1.a1.

-tree top.INST*.A1

Disables assertion A1 from all the instances whose names
start with INST under module top.

+module module_identifier

VCS enables all the assertions in all instances of the specified
module.

D-18

Simulation Options

For example, +module dev. VCS enables the assertions in
all instances of module dev.

-module module_identifier

VCS disables all the assertions in all instances of the
specified module.

For example, -module dev. VCS disables the assertions
in all instances of module dev.

-assert assertion_block_identifier

VCS disables the assertion with the specified block identifier.
You can use wildcard characters in specifying the block
identifier to specify more than one assertion.

You can enter more than one keyword using the plus (+)
separator. For example:
-assert maxfail=10+maxsucess=20+success+filter.

-cm assert

Specifies monitoring for SystemVerilog assertions coverage.
When enabled, the option -cm assert does the following:

- Generates the number of attempts, pass, fail, and incomplete
data.

- Generates vacuous and non-vacuous coverage.

- Irrespective of type of assert statement, reports coverage.

- Covers immediate and deferred assertions.

- Does not cover Expect statement.

- Affects SVA and OVA as well.

D-19

Simulation Options

Options to Control Termination of Simulation

–ova_enable_case_maxfail

Includes OVA case violations in computation of global failure
count for the –assert global_finish_maxfail=N option.

Options for Enabling and Disabling Specify Blocks

+no_notifier

Suppresses the toggling of notifier registers that are optional
arguments of system timing checks. The reporting of timing check
violations is not affected. This is also a compile-time option.

+no_pulse_msg

Suppresses pulse error messages, but not the generation of StX
values at module path outputs when a pulse error condition
occurs.

+no_tchk_msg

Disables the display of timing violations, but does not disable the
toggling of notifier registers in timing checks. This is also a
compile-time option.

+notimingcheck

Disables timing check system tasks in your design. Using this
option at runtime can improve the simulation performance of your
design, depending on the number of timing checks that this option
disables.

D-20

Simulation Options

You can also use this option at compile time. Using this option at
compile time tells VCS MX to ignore timing checks when it
compiles your design so that the timing checks are not compiled
into the executable. This results in a faster simulating executable
than one that includes timing checks, which are disabled by this
option at runtime.

If you need the delayed versions of the signals in negative timing
checks, but want faster performance, include this option at
runtime.

Note:
The +notimingcheck option has higher precedence than any
tcheck command in UCLI.

Options for Specifying When Simulation Stops

+vcs+stop+time

Stop simulation at the time value specified. The time value must

be less than 232 or 4,294,967,296.

+vcs+finish+time

Ends simulation at the time value specified. The time value

must be also less than 232.

For both of these options, there is a special procedure (See
“Specifying a Long Time Before Stopping The Simulation”) for

specifying time values larger than 232.

D-21

Simulation Options

Options for Recording Output

-l filename

Specifies writing all messages from simulation to the specified file
as well as displaying these messages on the standard output.

Options for Controlling Messages

-q

Quiet mode; suppresses display of VCS MX header and summary
information. Suppresses the proprietary message at the
beginning of simulation and suppresses the VCS MX Simulation
Report at the end (time, CPU time, data structure size, and date).

-V

Verbose mode; displays VCS MX version and extended summary
information. Displays VCS MX compile and runtime version
numbers, and copyright information, at the start of simulation.

+no_pulse_msg

Suppresses pulse error messages, but not the generation of StE
values at module path outputs when a pulse error condition
occurs.

You can enter this runtime option on the vcs command line. You
cannot enter this option in the file you use with the -f compile-time
option.

+sdfverbose

D-22

Simulation Options

By default, VCS MX displays no more than ten warning and ten
error messages about back-annotating delay information from
SDF files. This option enables the display of all back-annotation
warning and error messages.

This default limitation on back-annotation messages applies only
to messages displayed on the screen and written in the simulation
log file. If you specify an SDF log file in the $sdf_annotate
system task, this log file receives all messages.

+vcs+nostdout

Disables all text output from VCS MX including messages and
text from $monitor and $display and other system tasks. VCS
MX still writes this output to the log file if you include the -l option.

Options for VPD Files

-vpd_bufsize+number_of_megabytes

To gain efficiency, VPD uses an internal buffer to store value
changes before saving them on disk. This option modifies the size
of that internal buffer. The minimum size allowed is what is
required to share two value changes per signal. The default size
is the size required to store 15 value changes for each signal, but
not less than 2 megabytes.

Note:
VCS MX automatically increases the buffer size as needed to
comply with this limit.

+vpdfile+file_name

D-23

Simulation Options

Specifies the name of the output VPD file (default is
vcdplus.vpd). You must include the full file name with the .vpd
extension.

+vpdfilesize+number_of_megabytes

Creates a VPD file that has a moving window in time while never
exceeding the file size specified by number_of_megabytes.
When the VPD file size limit is reached, VPD continues saving
simulation history by overwriting older history.

File size is a direct result of circuit size, circuit activity, and the
data being saved. Test cases show that VPD file sizes will likely
run from a few megabytes to a few hundred megabytes. Many
users can share the same VPD history file, which may be a reason
for saving all time value changes when you do simulation. You
can save one history file for a design and overwrite it on each
subsequent run.

+vpdfileswitchsize+number_in_MB

Specifies a size for the vpd file. When the vpd file reaches this
size, VCS closes this file and opens a new one with the same
hierarchy as the previous vpd file. There is a number suffix added
to all new vpd file names to differentiate them. For example:
simv +vpdfile+test.vpd +vpdfileswitchsize+10.
The first vpd file is named test.vpd. When its size reaches
10MB, VCS starts a new file test_01.vpd, the third vpd file is
test_02.vpd, and so on.

+vpdignore

D-24

Simulation Options

Tells VCS MX to ignore any $vcdplusxx system tasks and
license checking. By default, VCS MX checks out a VPD PLI
license if there is a $vcdplusxx system task in the Verilog
source. In some cases, this statement is never executed and VPD
PLI license checkout should be suppressed. The +vpdignore
option performs the license suppression.

+vpdports

Causes VPD to store port information, which is then used by the
Hierarchy Browser to show whether a signal is a port, and if so,
its direction. This option to some extent affects simulation
initialization time and memory usage for larger designs.

+vpdportsonly

Dumps only the port type information.

+vpdnoports

Dumps only the signal not the ports (input/output).

+vpddrivers

Stores data for changes on drivers of resolved nets.

+vpdupdate

Enables VPD file locking.

+vpdnocompress

Disables the default compression of data as it is written to the
VPD file.

D-25

Simulation Options

+vpdnostrengths

Disables the default storage of strength information on value
changes to the VPD file. Use of this option may lead to slight
improvements in VCS MX performance.

-vpddeltacapture

Enables recording VPD delta cycle information when tracing
objects in your design. When you view a VPD in DVE, this option
shows you glitches on a signal. Enabling delta cycle information
has a simulation performance overhead.

Options for VCD Files

-vcd file_name

Sets the name of the $dumpvars output file to filename. The
default file name is verilog.dump. A $dumpfile system task
in the Verilog source code overrides this option.

+vcs+dumpoff+t+ht

Turns off value change dumping ($dumpvars) at time t. ht is
the high 32 bits of a time value greater than 32 bits.

+vcs+dumpon+t+ht

Suppresses the $dumpvars system task until time t. ht is the
high 32 bits of a time value greater than 32 bits.

+vcs+dumparrays

Enables recording memory and multi-dimensional array values in
the VCD file. You must also have used the +memcbk compile-time
option.

D-26

Simulation Options

+vcs+flush+dump

Increases the frequency of dumping all VCD files.

Options for Specifying Delays

-novitaltiming

Enables functional-only simulation of VITAL components. All
timing information is discarded for VITAL models during
simulation. Timing information includes wire delays, path delays
and timing checks. Any SDF information supplied on the
command line is ignored when this switch is present.

+maxdelays

Specifies using the maximum delays in min:typ:max delay triplets
in module path delays and timing checks, if you compiled your
design with the +allmtm compile-time option. Also specifies
using the maximum timing delays in min:typ:max delay triplets in
an uncompiled SDF file.

If you compiled the SDF file with the +allmtm compile-time
option, the +maxdelays option specifies using the compiled SDF
file with the maximum delays.

Another use for this runtime option is to specify timing for SWIFT
VMC and SmartModels when you also include the
+override_model_delays runtime option.

+mindelays

D-27

Simulation Options

Specifies using the minimum delays in min:typ:max delay triplets
in module path delays and timing checks, if you compiled your
design with the +allmtm compile-time option. Also specifies
using the minimum timing delays in min:typ:max delay triplets in
an uncompiled SDF file.

If you compiled the SDF file with the +allmtm compile-time
option, the +mindelays option specifies using the compiled SDF
file with the minimum delays.

Another use for this runtime option is to specify timing for SWIFT
VMC and SmartModels when you also include the
+override_model_delays runtime option.

+typdelays

Specifies using the typical delays in min:typ:max delay triplets in
module path delays and timing checks, if you compiled your
design with the +allmtm compile-time option. Also specifies
using the typical timing delays in min:typ:max delay triplets in an
uncompiled SDF file.

If you compiled the SDF file with the +allmtm compile-time
option, the +typdelays option specifies using the compiled SDF
file with the typical delays.

This is a default option. By default, VCS MX uses the typical delay
in min:typ:max delay triplets in your source code and in
uncompiled SDF files unless you specify otherwise with the
mtm_spec argument to the $sdf_annotate system task. Also,
by default, VCS uses the compiled SDF file with typical values.

Another use for this runtime option is to specify timing for SWIFT
VMC and SmartModels when you also include the
+override_model_delays runtime option.

D-28

Simulation Options

Options for Flushing Certain Output Text File Buffers

When VCS MX creates a log file, VCD file, or a text file specified with
the $fopen system function. VCS MX writes the data for the file in
a buffer and periodically dumps the data from the buffer to the file on
disk. The frequency of these dumps varies depending on many
factors including the amount of data that VCS MX has to write to the
buffer as simulation or compilation progresses. If you need to see or
use the latest information in these files more frequently than the rate
at which VCS MX normally dumps this data, these options tell VCS
MX to dump the data more frequently. The amount of frequency also
depends on many factors, but the increased frequency will always be
significant.

+vcs+flush+log

Increases the frequency of dumping both the compilation and
simulation log files.

+vcs+flush+dump

Increases the frequency of dumping all VCD files.

+vcs+flush+fopen

Increases the frequency of dumping all files opened by the
$fopen system function.

+vcs+flush+all

Increases the frequency of dumping all log files, VCD files, and
all files opened by the $fopen system function.

D-29

Simulation Options

These options do not increase the frequency of dumping other text
files including the VCDE files specified by the $dumpports system
task or the simulation history file for LSI certification specified by the
$lsi_dumpports system task.

You can also enter these options at compile time. There is no
performance gain to entering them at compile time.

Options for Licensing

-licwait timeout

Enables license queuing, where timeout is the time in minutes
that VCS MX waits for a license before finally exiting.

-licqueue

Tells VCS MX to wait for a network license if none is available.

Option to Specify User-Defined Runtime Options in a
File

-f filename

You can use the -f runtime option to specify user-defined
plusargs in a file. The user-defined plusargs are the plus
arguments on the simv command line defined using
$test$plusargs or $value$plusargs system tasks in RTL
code as per IEEE Standard 1364-2001 17.10 Command line input.
All other VCS MX runtime options should be specified on the simv
command line.

D-30

Simulation Options

Option for Initializing Integer Data Type Variables at
Runtime

+vcs+initreg+0|1|random|seed

Initializes all state variables (reg data type) and memories (reg
data type) in the design, to random logic 0 or 1, at time zero. It
gives you the flexibility to override the initialization of random
values requested at compile-time.

The following table describes all combinations of this option:

Note:
- This option works only if the +vcs+initreg+random option

is used at compile-time.

- This option works only for the Verilog portion of the design.

Syntax Description

+vcs+initreg+0 Initializes all state variables (reg data type) and
memories (reg data type) in the design, to random logic
0.

+vcs+initreg+1 Initializes all state variables (reg data type) and
memories (reg data type) in the design, to random logic
1.

+vcs+initreg+random Initializes all state variables (reg data type) and
memories (reg data type) in the design, to random logic
0 or 1 (with default seed).

+vcs+initreg+100 Initializes all state variables (reg data type) and
memories (reg data type) in the design, to random logic
0 or 1, with user-defined seed 100.

Note: seed cannot be 1 or 0 and 1 or 0 has special
meaning.

D-31

Simulation Options

-This option does not initialize registers (variables) and
memories other than the reg data type.

-This option may expose an infinite simulation loop at time zero
in combinational logic with a feedback loop, as shown in
Figure D-1.

Figure D-1 Combinational Logic With a Feedback Loop

In the above example, in1, in2, A and B (reg data type) have
initial values of X by default. Assigning logic 0 or 1 to in1 or in2
does not alter the value of A, B and out. The feedback loop is
stabilized and the simulation advances. Some combinations of
initial values assigned to these reg data types trigger a
continuous re-evaluation of the combinational logic which
results in an infinite simulation loop.

To prevent race conditions, avoid the following when you use this
option:

- Assigning initial values to a reg in their declaration, when the
value you assign is not the same as the value specified with
the +vcs+initreg+0|1|random|<seed> option.

- Initializing state variables to state "X".

in1

in2

A

B out

D-32

Simulation Options

- Inconsistent states in the design due to the randomization.

Use Model

For information on use model of this option, see “Use Model”
section documented under “Initializing Verilog Memories and
Registers” .

General Options

Viewing the Compile-Time Options

-sig program

Starts the program that displays the compile-time options that
were on the vcs command line when you created the simv (or
simv.exe) executable file. For example: simv -sig echo

You cannot use any other runtime options with the -sig option.

Recording Where ACC Capabilities are Used

+vcs+learn+pli

ACC capabilities enable debugging operations, but they have a
performance cost so you only want to enable them where you
need them. This option keeps track of where in your design you
use them for debugging operations so that you can recompile your
design, and in the next simulation, enable them only where you
need them. When you use this option VCS MX writes the
pli_learn.tab secondary PLI table file. You input this file with
the +applylearn compile-time option when you recompile your
design.

D-33

Simulation Options

Suppressing the $stop System Task

+vcs+ignorestop

Tells VCS MX to ignore the $stop system tasks in your source
code.

Enabling User-defined Plusarg Options

+plus-options

User-defined runtime options to perform some operation when
the option is on the simv command line. The $test$plusargs
system task can check for such options.

Enabling feature beyond VHDL LRM

-xlrm

Enables VHDL features beyond those described in VHDL LRM.

Specifying acc_handle_simulated_net PLI Routine

+vcs+mipd+noalias

For the acc_handle_simulated_net PLI routine, aliasing of
a loconn net and a hiconn net across the port connection is
disabled if MIPD delay annotation happens for the port. If you
specify ACC capability: mip or mipb in the pli.tab file, such
aliasing is disabled only when actual MIPD annotation happens.

D-34

Simulation Options

If during a simulation run, acc_handle_simulated_net is
called before MIPD annotation happens, VCS MX issues a
warning message. When this happens you can use this option to
disable such aliasing for all ports whenever mip, mipb capabilities
have been specified. This option works for reading an ASCII SDF
file during simulation and not for compiled SDF files.

E-1

Verilog Compiler Directives and System Tasks

E
Verilog Compiler Directives and System
Tasks A

This appendix describes:

• “Compiler Directives”

• “System Tasks and Functions”

Compiler Directives

Compiler directives are commands in the source code that specify
how VCS MX compiles the source code that follows them, both in the
source files that contain these compiler directives and in the
remaining source files that VCS MX subsequently compiles.

E-2

Verilog Compiler Directives and System Tasks

Compiler directives are not effective down the design hierarchy. A
compiler directive written above a module definition affects how VCS
MX compiles that module definition, but does not necessarily affect
how VCS MX compiles module definitions instantiated in that module
definition. If VCS MX has already compiled these lower-level module
definitions, it does not recompile them. If VCS MX has not yet
compiled these module definitions, the compiler directive does affect
how VCS MX compiles them.

Note:
Compile-time options override compiler directives.

Compiler Directives for Cell Definition

`celldefine

Specifies that the modules under this compiler directive be tagged
as “cell” for delay annotation. See IEEE Std 1364-2001 page 350.
Syntax: `celldefine

`endcelldefine

Disables `celldefine. See IEEE Std 1364-2001 page 350.
Syntax: `endcelldefine

Compiler Directives for Setting Defaults

`default_nettype

Sets default net type for implicit nets. See IEEE Std 1364-2001
page 350.

Syntax:‘default_nettype wire | tri | tri0 | wand
| triand | tri1 | wor | trior | trireg |none

E-3

Verilog Compiler Directives and System Tasks

`resetall

Resets all compiler directives. See IEEE 1364-2001 page 357.
Syntax: `resetall

Compiler Directives for Macros

`define

Defines a text macro. See IEEE Std 1364-2001 page 351. Syntax:
`define text_macro_name macro_text

`else

Used with ̀ ifdef. Specifies an alternative group of source code
lines that VCS MX compiles if the text macro specified with an
`ifdef compiler directive is not defined. See IEEE Std 1364-
2001 page 353. Syntax: `else second_group_of_lines

`elseif

Used with ̀ ifdef. Specifies an alternative group of source code
lines that VCS MX compiles if the text macro specified with an
‘ifdef compiler directive is not defined, but the text macro specified
with this compiler directive is defined. See IEEE Std 1364-2001
page 353.Syntax: `elseif text_macro_name
second_group_of_lines

`endif

Used with ̀ ifdef. Specifies the end of a group of lines specified
by the ̀ ifdef or ̀ else compiler directives. See IEEE Std 1364-
2001 page 353. Syntax: `endif

E-4

Verilog Compiler Directives and System Tasks

`ifdef

Specifies compiling the source lines that follow if the specified text
macro is defined by either the ̀ define compiler directive or the
+define compile-time option. See IEEE Std 1364-2001 page
353. Syntax: `ifdef text_macro_name group_of_lines

The exception is the character string “VCS”, which is a predefined
text macro in VCS MX. Therefore, in the following source code,
VCS MX compiles and executes the first block of code and ignores
the second block even when you do not include `define VCS
or +define+VCS:

`ifdef VCS
 begin
 // Block of code for VCS
 .
 .
 .
 end
`else
 begin
 // Alternative block of code
 .
 .
 .
 end
`endif

When you encrypt source code, VCS MX inserts ‘ifdef VCS
before all encrypted parts of the code.

`ifndef

Specifies compiling the source code that follows if the specified
text macro is not defined. See IEEE Std 1364-2001 page 353.
Syntax: `ifndef text_macro_name group_of_lines

E-5

Verilog Compiler Directives and System Tasks

`undef

Undefines a macro definition. See IEEE Std 1364-2001 page 351.
Syntax: `undef text_macro_name

Compiler Directives for Delays

`delay_mode_path

Ignores the delay specifications on all gates and switches in all
those modules under this compiler directive that contain specify
blocks. Uses only the module path delays and the delay
specifications on continuous assignments. Syntax:
`delay_mode_path

`delay_mode_distributed

Ignores the module path delays specified in specify blocks in
modules under this compiler directive and uses only the delay
specifications on all gates, switches, and continuous
assignments. Syntax: `delay_mode_distributed

`delay_mode_unit

Ignores the module path delays. Changes all the delay
specifications on all gates, switches, and continuous assignments
to the shortest time precision argument of all the ‘timescale
compiler directives in the source code. The default time unit and
time precision argument of the ‘timescale compiler directive is
1 ns. Syntax: `delay_mode_unit

`delay_mode_zero

Changes all the delay specifications on all gates, switches, and
continuous assignments to zero and changes all module path
delays to zero. Syntax: `delay_mode_zero

E-6

Verilog Compiler Directives and System Tasks

Compiler Directives for Backannotating SDF Delay
Values

`vcs_mipdexpand

This compiler directive enables the runtime back-annotation of
individual bits of a port declared in an ASCII text SDF file. This is
done by entering the compiler directive over the port declarations
for these ports. Similarly, entering this compiler directive over port
declarations enables a PLI application to pass delay values to
individual bits of a port.

As an alternative to using this compiler directive, you can use the
+vcs+mipdexpand compile-time option, or you can enter the
mipb ACC capability. For example:

$sdf_annotate call=sdf_annotate_call
acc+=rw,mipb:top_level_mod+

When you compile the SDF file, which Synopsys recommends,
you do not need to use this compiler directive to back-annotate
the delay values for individual bits of a port.

`vcs_mipdnoexpand

Turns off the enabling of back-annotating delay values on
individual bits of a port as specified by a previous
`vcs_mipdexpand compiler directive.

Compiler Directives for Source Protection

`endprotect

Defines the end of code to be protected. Syntax: `endprotect

E-7

Verilog Compiler Directives and System Tasks

`endprotected

Defines the end of protected code. Syntax: `endprotected

`protect

Defines the start of code to be protected. Syntax: `protect

`protected

Defines the start of protected code. Syntax: `protected

Debugging Partially Encrypted Source Code

The partial encrypted code is a code that has some of its part
enclosed with the ‘protect and ‘endprotect macros. VCS
allows you to debug the objects that are not enclosed within
‘protect and ‘endprotect while restricting access to the
variables that are within ‘protected and ‘endprotected
macros.

Note:
When you enclose a part of code using ‘protect and
‘endprotect, VCS converts it into ‘protected and
‘endprotected when you pass +protect.

To debug the partially encrypted source code, use the
+object_protect option as follows:

vcs +protect +object_protect <sourcefile.v>

You can enable partial debug capability by adding the
+object_protect option to the VCS encryption command line, so
that partial encryption is applied and the encrypted file is also
enabled with debug capability (-debug_all) for the unencrypted
objects.

E-8

Verilog Compiler Directives and System Tasks

Compiler Directives for Controlling Port Coercion

`noportcoerce

Does not coerce ports to inout. Syntax: `noportcoerce

`portcoerce

Coerces ports as appropriate (default). Syntax: `portcoerce

General Compiler Directives

Compiler Directive for Including a Source File

`include

Includes (also compiles as part of the design) the specified source
file. See IEEE Std 1364-1995 pages 224-225. Syntax:
`include "filename"

Compiler Directive for Setting the Time Scale

`timescale

Sets the timescale. See IEEE Std 1364-2001 page 357. Syntax:
`timescale time_unit / time_precision

In VCS, MX the default time unit is 1 s (a full second) and the
default time precision is also 1 s.

Compiler Directive for Specifying a Library

`uselib file | directory

E-9

Verilog Compiler Directives and System Tasks

Searches the specified library for unresolved modules. You can
specify either a library file or a library directory. Syntax: ‘uselib
file = filename

or

`uselib dir = directory_name libext+.ext |
libext=.ext

Enter path names if the library file or directory is not in the current
directory. For example:

`uselib file = /sys/project/speclib.lib

If specifying a library directory, include the libext+.ext
keyword and append to it the extensions of the source files in the
library directory, similar to the +libext+.ext compile-time
option, for example:

`uselib dir = /net/designlibs/project.lib
libext+.v

To specify more than one search library, enter additional dir or
file keywords, for example:

`uselib dir = /net/designlibs/library1.lib dir=/
net/designlibs/library2.lib libext+.v

Here, the libext+.ext keyword applies to both libraries.

Compiler Directive for File Names and Line Numbers

`line line_number "filename" level

E-10

Verilog Compiler Directives and System Tasks

Maintains the file name and line number. See IEEE Std 1364-2001
page 358.

Unimplemented Compiler Directives

The following compiler directives are IEEE Std 1364-1995 compiler
directives that are not yet implemented in VCS MX.

`unconnected_drive

`nounconnected_drive

E-11

Verilog Compiler Directives and System Tasks

System Tasks and Functions

This section describes the system tasks and functions that are
supported by VCS MX and then lists the system tasks that it does not
support.

System tasks are described in the IEEE Std 1364-2001 or see the
VCS SystemVerilog LRM for more information.

System Tasks for SystemVerilog Assertions Severity

$fatal

Generates a runtime fatal assertion error.

$error

Generates a runtime assertion error.

$warning

Generates a runtime warning message.

$info

Generates an information message.

System Tasks for SystemVerilog Assertions Control

$assertoff

Tells VCS MX to stop monitoring any of the specified assertions
that start at a subsequent simulation time.

E-12

Verilog Compiler Directives and System Tasks

$assertkill

Tells VCS MX to stop monitoring any of the specified assertions
that start at a subsequent simulation time, and stop the execution
of any of these assertions that are now occurring.

$asserton

Tells VCS MX to resume the monitoring of assertions that it
stopped monitoring due to a previous $assertoff or
$assertkill system task.

These system tasks provide file name and line number from where
these system tasks are called which would otherwise be difficult to
track in the absence of this information.

Note:
The runtime option -assert old_ctrl_msg reverts the
messaging to the old style for backward compatibility.

System Tasks for SystemVerilog Assertions

$onehot

Returns true if only one bit in the expression is true.

$onehot0

Returns true if, at the most, one bit of the expression is true (also
returns true if none of the bits are true).

$isunknown

Returns true if one of the bits in the expression has an X value.

E-13

Verilog Compiler Directives and System Tasks

System Tasks for VCD Files

VCD files are ASCII files that contain a record of a net or register’s
transition times and values. There are a number of third-party
products that read VCD files to show you simulation results. VCS MX
has the following system tasks for specifying the names and
contents of these files. They require the $dumpvars system task.

$dumpall

Creates a checkpoint in the VCD file. When VCS MX executes
this system task, VCS MX records the current values of all
specified nets and registers into the VCD file, whether there is a
value change at this time or not.

$dumpoff

Stops recording value change information in the VCD file.

$dumpon

Starts recording value change information in the VCD file.

$dumpfile

Specifies the name of the VCD file you want VCS MX to record.
Syntax: $dumpfile("filename");

$dumpflush

Empties the VCD file buffer and writes all this data to the VCD file.

$dumplimit

Limits the size of a VCD file.

$dumpvars

E-14

Verilog Compiler Directives and System Tasks

Specifies the nets and variables whose transition times and values
you want VCS MX to record in the VCD file.

Syntax: $dumpvars(level_number,module_instance |
net_or_var);

You can specify individual nets or variables, or specify all the nets
and variables, in an instance.

The $dumpvars system task enables the other VCD system tasks
like $dumpon and $dumpfile.

$dumpchange

Tells VCS to stop recording transition times and values in the
current dump file and to start recording in the specified new file.
Syntax: $dumpchange("filename");

Code example: $dumpchange("vcd16a.dmp");

$fflush

VCS MX stores VCD data in the operating system’s dump file
buffer and as simulation progresses, reads from this buffer to write
to the VCD file on disk. If you need the latest information written
to the VCD file at a specific time, use the $fflush system task.
Syntax: $fflush("filename");

Code example: $fflush("vcdfile1.vcd");

$fflushall

If you are writing more than one VCD file and need VCS to write
the latest information to all these files at a particular time, use the
$fflushall system task. Syntax: $fflushall;

E-15

Verilog Compiler Directives and System Tasks

$gr_waves

Produces a VCD file with the name grw.dump. In this system
task, you can specify a display label for a net or register whose
transition times and values VCS MX records in the VCD file.
Syntax: $gr_waves(["label",]net_or_reg,...);

Code example: $gr_waves("wire w1",w1, "reg r1",r1);

System Tasks for LSI Certification VCD and EVCD Files

$lsi_dumpports

For LSI certification of your design, this system task specifies
recording a simulation history file that contains the transition times
and values of the ports in a module instance. This simulation
history file for LSI certification contains more information than the
VCD file specified by the $dumpvars system task. The
information in this file includes strength levels and whether the
test fixture module (test bench) or the Device Under Test (the
specified module instance or DUT) is driving a signal’s value.
Syntax:
$lsi_dumpports(module_instance,"filename");

Code example:
$lsi_dumpports(top.middle1,"dumpports.dmp");

If you would rather have the $lsi_dumpports system task
generate an extended VCD (EVCD) file instead, include the
+dumpports+ieee runtime option.

$dumpports

E-16

Verilog Compiler Directives and System Tasks

Creates an EVCD file as specified in IEEE Std. 1364-2001 pages
339-340. You can, for example, input a EVCD file into TetraMAX
for fault simulation. EVCD files are similar to the simulation history
files generated by the $lsi_dumpports system task for LSI
certification, but there are differences in the internal statements
in the file. Further, the EVCD format is a proposed IEEE standard
format, whereas the format of the LSI certification file is specified
by LSI.

In the past, the $dumpports and $lsi_dumpports system
tasks both generated simulation history files for LSI certification
and had identical syntax except for the name of the system task.

Syntax of the $dumpports system task is now:
$dumpports(module_instance,[module_instance,]
"filename");

You can specify more than one module instance.

Code example: $dumpports(top.middle1,top.middle2,
"dumpports.evcd");

If your source code contains a $dumpports system task, and
you want it to generate simulation history files for LSI certification,
include the +dumpports+lsi runtime option.

$dumpportsoff

Suspends writing to files specified in $lsi_dumpports or
$dumpports system tasks. You can specify a file to which VCS
MX suspends writing or specify no particular file, in which case
VCS MX suspends writing to all files specified by
$lsi_dumpports or $dumpports system tasks. See IEEE Std
1364-2001 page 340-341. Syntax:
$dumpportsoff("filename");

E-17

Verilog Compiler Directives and System Tasks

$dumpportson

Resumes writing to the file after writing was suspended by a
$dumpportsoff system task. You can specify the file to which
you want VCS MX to resume writing or specify no particular file,
in which case VCS MX resumes writing to all files to which writing
was halted by any $dumpportsoff or $dumpports system
tasks. See IEEE Std 1364-2001 page 340-341. Syntax:
$dumpportson("filename");

$dumpportsall

By default, VCS MX writes to files only when a signal changes
value. The $dumpportsall system task records the values of
the ports in the module instances, which are specified by the
$lsi_dumpports or $dumpports system task, whether there
is a value change on these ports or not. You can specify the file
to which you want VCS MX to record the port values for the
corresponding module instance or specify no particular file, in
which case VCS MX writes port values in all files opened by the
$lsi_dumpports or $dumpports system task. See IEEE Std
1364-2001 page 341. Syntax:
$dumpportsall("filename");

$dumpportsflush

VCS MX stores simulation data in a buffer during simulation from
which it writes data to the file. If you want VCS MX to write all
simulation data from the buffer to the file or files at a particular
time, execute this $dumpportsflush system task. You can
specify the file to which you want VCS MX to write from the buffer
or specify no particular file, in which case VCS MX writes all data
from the buffer to all files opened by the $lsi_dumpports or
$dumpports system task. See IEEE Std 1364-2001 page 342.
Syntax: $dumpportsfush("filename");

E-18

Verilog Compiler Directives and System Tasks

$dumpportslimit

Specifies the maximum file size of the file specified by the
$lsi_dumpports or $dumpports system task. You specify the
file size in bytes. When the file reaches this limit, VCS MX no
longer writes to the file. You can specify the file whose size you
want to limit or specify no particular file, in which case your
specified size limit applies to all files opened by the
$lsi_dumpports or $dumpports system task. See IEEE Std
1364-2001 page 341-342.

Syntax: $dumpportslimit(filesize,"filename");

System Tasks for VPD Files

VPD files are files that store the transition times and values for nets
and registers but they differ from VCD files in the following ways:

• You can use the DVE to view the simulation results that VCS MX
recorded in a VPD file. You cannot actually load a VCD file directly
into DVE; when you load a VCD file, DVE translates the file to
VPD and loads the VPD file.

• They are binary format and therefore take less disk space and
load much faster.

• They can also record the order of statement execution so that you
can use the Source Window in DVE to step through the execution
of your code if you specify recording this information.

VPD files are commonly used in post-processing, where VCS MX
writes the VPD file during batch simulation, and then you review the
simulation results using DVE.

E-19

Verilog Compiler Directives and System Tasks

There are system tasks that specify the information that VCS MX
writes in the VPD file.

Note:
To use the system tasks for VPD files, you must compile your
source code with the -debug_pp option.

$vcdplusautoflushoff

Turns off the automatic “flushing” of simulation results to the VPD
file whenever there is an interrupt, such as when VCS MX
executes the $stop system task. Syntax:
$vcdplusautoflushoff;

$vcdplusautoflushon

Tells VCS MX to “flush” or write all the simulation results in memory
to the VPD file whenever there is an interrupt, such as when VCS
MX executes a $stop system task or when you halt VCS MX
using the UCLI stop command, or the Stop button on the DVE
Interactive window. Syntax: $vcdplusautoflushon;

$vcdplusclose

Tells VCS MX to mark the current VPD file as completed, and
close the file. Syntax: $vcdplusclose;

$vcdplusdeltacycleon

The $vcdplusdeltacycleon task enables reporting of delta
cycle information from the Verilog source code. It must be followed
by the appropriate $vcdpluson/$vcdplusoff tasks.

E-20

Verilog Compiler Directives and System Tasks

Glitch detection is automatically turned on when VCS executes
$vcdplusdeltacycleon unless you have previously used
$vcdplusglitchon/off. Once you use
$vcdplusglitchon/off, DVE allows you explicit control of
glitch detection.

Syntax

$vcdplusdeltacycleon;

Note:
Delta cycle collection can start only at the beginning of a time
sample. The $vcdplusdeltacycleon task must precede the
$vcdpluson command to ensure that delta cycle collection
will start at the beginning of the time sample.

$vcdplusevent

The $vcdplusevent task allows you to record a unique event
for a signal at the current simulation time unit.

Syntax

$vcdplusevent(net_or_reg,"event_name",
"<E|W|I><S|T|D>");

A symbol is displayed in DVE on the signal’s waveform and in the
Logic Browser. The event_name argument appears in the status
bar when you click on the symbol.

E|W|I — Specifies severity.

- E for error, displays a red symbol.

- W for warning, displays a yellow symbol.

- I for information, displays a green symbol.

E-21

Verilog Compiler Directives and System Tasks

S|T|D — Specifies the symbol shape.

- S for square.

- T for triangle.

- D for diamond.

Do not enter space between the arguments E|W|I and S|T|D.
Do not include angle brackets < >. There is a limit of 244 unique
events.

$vcdplusdumpportsoff

Tells VCS MX to suspend writing to VPD file the transition times
and values of the module instance specified by
$vcdplusdumpportson system task. You can use
$vcdplusdumpportsoff system task with arguments, but it is
not required. Syntax:
$vcdplusdumpportsoff(level_number,
module_instance);

$vcdplusdumpportson

Records transition times and values of ports in a module instance.
A level value of 0 tells VCS MX to dump all levels below the
specified instance. If you do not specify a level, the default level
is 1. If you use the system task without arguments, VCS dumps
all the ports from the entire design to the VPD file. Syntax:
$vcdplusdumpportson(level_number,
module_instance);

Use $vcdplusdumpportson and $vcdplusdumpportsoff
system tasks to create a VPD file with port drive information for
bidirectional ports if you want to use dumpports and
dumpvcdports options in vpd2vcd filtering.

E-22

Verilog Compiler Directives and System Tasks

Note:
This system task records additional drive information for inout
ports of type wire. It does not dump ports with unpacked
dimensions. Furthermore, it is unable to determine if a wire is
being forced.

$vcdplusfile

Specifies the next VPD file that DVE opens during simulation, after
it executes the $vcdplusclose system task and when it
executes the next $vcdpluson system task. Syntax:
$vcdplusfile("filename");

$vcdplusglitchon

Turns on checking for zero delay glitches and other cases of
multiple transitions for a signal at the same simulation time.
Syntax: $vcdplusglitchon;

$vcdplusflush

Tells VCS MX to “flush” or write all the simulation results in memory
to the VPD file at the time VCS MX executes this system task.
Use $vcdplusautoflushon to enable automatic flushing of
simulation results to the file when simulation stops. Syntax:
$vcdplusflush;

$vcdplusmemon

Records value changes and times for memories and multi-
dimensional arrays. Syntax: system_task(Mda [, dim1Lsb
[, dim1Rsb [, dim2Lsb [, dim2Rsb [, ... dimNLsb
[, dimNRsb]]]]]]);

Mda

E-23

Verilog Compiler Directives and System Tasks

This argument specifies the name of the multi-dimensional
array (MDA) to be recorded. It must not be a part select. If no
other arguments are given, then all elements of the MDA are
recorded to the VPD file.

dim1Lsb

This is an optional argument that specifies the name of the
variable that contains the left bound of the first dimension. If no
other arguments are given, then all elements under this single
index of this dimension are recorded.

dim1Rsb

This is an optional argument that specifies the name of variable
that contains the right bound of the first dimension.

Note:
The dim1Lsb and dim1Rsb arguments specify the range of
the first dimension to be recorded. If no other arguments are
given, then all elements under this range of addresses within
the first dimension are recorded.

dim2Lsb

This is an optional argument with the same functionality as
dim1Lsb, but refers to the second dimension.

dim2Rsb

This is an optional argument with the same functionality as
dim1Rsb, but refers to the second dimension.

dimNLsb

This is an optional argument that specifies the left bound of the
Nth dimension.

E-24

Verilog Compiler Directives and System Tasks

dimNRsb

This is an optional argument that specifies the right bound of
the Nth dimension.

Note that MDA system tasks can take 0 or more arguments, with
the following caveats:

- No arguments: The whole design will be traversed and all
memories and MDAs will be recorded. Note that this process
may cause significant memory usage and simulator drag.

- One argument: If the object is a scope instance, all memories/
MDAs contained in that scope instance and its children will be
recorded. If the object is a memory/MDA, that object will be
recorded.

$vcdplusmemoff

Stops recording value changes and times for memories and multi-
dimensional arrays. Syntax is the same as the $vcdplusmenon
system task.

$vcdplusmemorydump

Records (dumps) a snapshot of the values in a memory or
multi-dimensional array into the VPD file. Syntax is the same as
the $vcdplusmenon system task.

$vcdplusoff

Stops recording, in the VPD file, the transition times and values
for the nets and registers in the specified module instance or
individual nets or registers. Syntax:
$vcdplusoff[(level_number,module_instance |
net_or_reg)];

E-25

Verilog Compiler Directives and System Tasks

Where:

level_number

Specifies the number of hierarchy scope levels for which to stop
recording signal value changes (a zero value records all scope
instances to the end of the hierarchy; default is all).

module_instance

Specifies the name of the scope for which to stop recording
signal value changes (default is all).

net_or_reg

Specifies the name of the signal for which to stop recording
signal value changes (default is all).

$vcdpluson

Starts recording, in the VPD file, the transition times and values
for the nets and registers in the specified module instance or
individual nets or registers. Syntax:
$vcdpluson[(level_number,module_instance |
net_or_variable)];

where:

level_number

Specifies the number of hierarchy scope levels for which to
record signal value changes (a zero value records all scope
instances to the end of the hierarchy; default is all).

module_instance

Specifies the name of the scope for which to record signal value
changes (default is all).

E-26

Verilog Compiler Directives and System Tasks

net_or_variable

Specifies the name of the signal for which to record signal value
changes (default is all).

$vcdplustraceoff

Stops recording, in the VPD file, the order of statement execution
in the specified module instance. Syntax:
$vcdplustraceoff(module_instance);

$vcdplustraceon

Starts recording, in the VPD file, the order of statement execution
in the specified module instance and the module instances
hierarchically under it. Syntax:
$vcdplustraceon[(module_instance)];

System Tasks for SystemVerilog Assertions

Important:
Enter these system tasks in an initial block. Do not enter them in
an always block.

$assert_monitor

Analogous to the standard $monitor system task; it continually
monitors specified assertions and displays what is happening with
them (you can only have it display on the next clock of the
assertion). The syntax is as follows:

$assert_monitor([0|1,]assertion_identifier...);

Where:

0

E-27

Verilog Compiler Directives and System Tasks

Specifies reporting on the assertion if it is active (VCS MX
checks for its properties) and if not, reporting on the assertion
or assertions, whenever they start.

1

Specifies reporting on the assertion or assertions only once,
the next time they start.

If you specify neither 0 or 1, the default is 0.

assertion_identifier...

A comma separated list of assertions. If one of these assertions
is not declared in the module definition containing this system
task, specify it by its hierarchical name.

$assert_monitor_off

Disables the display from the $assert_monitor system task.

$assert_monitor_on

Re-enables the display from the $assert_monitor system
task.

System Tasks for Executing Operating System
Commands

$system

Executes operating system commands. Syntax:
$system("command");

Code example: $system("mv -f savefile savefile.1");

E-28

Verilog Compiler Directives and System Tasks

$systemf

Executes operating system commands and accepts multiple
formatted string arguments. Syntax: $systemf("command %s
...","string",...);

Code example: int = $systemf("cp %s %s", "file1",
"file2");

The operating system copies the file named file1 to a file named
file2.

System Tasks for Log Files

$log

If a filename argument is included, this system task stops writing
to the vcs.log file or the log file specified with the -l runtime
option and starts writing to the specified file. If the file name
argument is omitted, this system task tells VCS MX to resume
writing to the log file after writing to the file was suspended by the
$nolog system task. Syntax: $log[("filename")];

Code example: $log("reset.log");

$nolog

Disables writing to the vcs.log file or the log file specified by
either the -l runtime option or the $log system task. Syntax:
$nolog;

System Tasks for Data Type Conversions

$bitstoreal[b]

E-29

Verilog Compiler Directives and System Tasks

Converts a bit pattern to a real number. See IEEE std 1364-2001
page 310.

$itor[i]

Converts integers to real numbers. See IEEE std 1364-2001 page
310.

$realtobits

Passes bit patterns across module ports, converting a real number
to a 64-bit representation. See IEEE std 1364-2001 page 310.

$rtoi

Converts real numbers to integers. See IEEE std 1364-2001 page
310.

System Tasks for Displaying Information

$display[b|h|0];

Display arguments. See IEEE std 1364-2001 pages 278-285.

$monitor[b|h|0]

Display data when arguments change value. See IEEE Std 1364-
2001 page 286.

$monitoroff

Disables the $monitor system task. See IEEE std 1364-2001
page 286.

$monitoron

E-30

Verilog Compiler Directives and System Tasks

Re-enables the $monitor system task after it was disabled with
the $monitoroff system task. See IEEE std 1364-2001 page
286.

$strobe[b|h|0];

Displays simulation data at a selected time. See IEEE 1364-2001
page 285.

$write[b|h|0]

Displays text. See IEEE std 1364-2001 pages 278-285.

System Tasks for File I/O

$fclose

Closes a file. See IEEE std 1364-2001 pages 286-288.

$fdisplay[b|h|0]

Writes to a file. See IEEE std 1364-2001 pages 288-289.

$ferror

Returns additional information about an error condition in file I/O
operations. See IEEE Std 1364-2001 pages 294-295.

$fflush

Writes buffered data to files. See IEEE Std 1364-2001 page 294.

$fgetc

Reads a character from a file. See IEEE Std 1364-2001 page 290.

$fgets

E-31

Verilog Compiler Directives and System Tasks

Reads a string from a file. See IEEE Std 1364-2001 page 290.

$fmonitor[b|h|0]

Writes to a file when an argument changes value. See IEEE std
1364-2001 pages 287-288.

$fopen

Opens files. See IEEE std 1364-2001 pages 286-288.

$fread

Reads binary data from a file. See IEEE Std 1364-2001 page 293.

$fscanf

Reads characters in a file. See IEEE Std 1364-2001 pages 290-
293.

$fseek

Sets the position of the next read or write operation in a file. See
IEEE Std 1364-2001 page 294.

$fstrobe[b|h|0]

Writes arguments to a file. See IEEE std 1364-2001 pages 288-
289.

$ftell

Returns the offset of a file. See IEEE Std 1364-2001 page 294.

$fwrite[b|h|0]

Writes to a file. See IEEE Std 1364-2001 pages 88-289.

E-32

Verilog Compiler Directives and System Tasks

$rewind

Sets the next read or write operation to the beginning of a file.
See IEEE Std 1364-2001 page 294.

$sformat

Assigns a string value to a specified signal. See IEEE Std
1364-2001 pages 289-290.

$sscanf

Reads characters from an input stream. See IEEE Std 1364-2001
pages 290-293.

$swrite

Assigns a string value to a specified signal, similar to the
$sformat system function. See IEEE Std 1364-2001 pages
289-290.

$ungetc

Returns a character to the input stream. See IEEE Std 1364-2001
page 290.

System Tasks for Loading Memories

$readmemb

Loads binary values in a file into memories. See IEEE std 1364-
2001 pages 295-296.

$readmemh

Loads hexadecimal values in a file into memories. See IEEE std
1364-2001 pages 295-296.

E-33

Verilog Compiler Directives and System Tasks

$sreadmemb

Loads specified binary string values into memories. See IEEE std
11364-2001 page 744.

$sreadmemh

Loads specified string hexadecimal values into memories. See
IEEE std 1364-2001 page 744.

$writememb

Writes binary data in a memory to a file. Syntax: $writememb
("filename",memory [,start_address]
[,end_address]);

Code example: $writememb ("testfile.txt",mem,0,255);

$writememh

Writes hexadecimal data in a memory to a file. Syntax:
$writememh ("filename",memory [,start_address]
[,end_address]);

System Tasks for Time Scale

$printtimescale

Displays the time unit and time precision from the last
‘timescale compiler directive that VCS MX has read before it
reads the module definition containing this system task. See IEEE
std 1364-2001 pages 297-298.

$timeformat

Specifies how the %t format specification reports time
information. See IEEE std 1364-2001 pages 298-301.

E-34

Verilog Compiler Directives and System Tasks

System Tasks for Simulation Control

$stop

Halts simulation. See IEEE std 1364-2001 pages 301-302.

$finish

Ends simulation. See IEEE std 1364-2001 page 301.

System Tasks for Timing Checks

$disable_warnings

Disables the display of timing violations but does not disable the
toggling of notifier registers. Syntax:
$disable_warnings[(module_instance,...)];

An alternative syntax is:

$disable_warnings("timing"[,module_instance,...]);

If you specify a module instance, this system task disables timing
violations for the specified instance and all instances
hierarchically under this instance. If you omit module instances,
this system task disables timing violations throughout the design.
Code example: $disable_warnings(seqdev1);

$enable_warnings

Re-enables the display of timing violations after the execution of
the $disable_warnings system task. This system task does
not enable timing violations during simulation when you used the
+no_tchk_msg compile-time option to disable them. Syntax:
$enable_warnings[(module_instance,...)];

E-35

Verilog Compiler Directives and System Tasks

An alternative syntax is:

$enable_warnings("timing"[,module_instance,...]);

If you specify a module instance, this system task enables timing
violations for the specified instance and all instances
hierarchically under this instance. If you omit module instances,
this system task enables timing violations throughout the design.

Timing Checks for Clock and Control Signals

$hold

Reports a timing violation when a data event happens too soon
after a reference event. See IEEE Std 1364-2001 pages 241-242.

$nochange

Reports a timing violation if the data event occurs during the
specified level of the control signal (the reference event). See
IEEE Std 1364-2001 pages 256-257.

$period

Reports a timing violation when an edge triggered event happens
too soon after the previous matching edge triggered an event on
a signal. See IEEE Std 1364-2001 pages 255-256.

$recovery

Reports a timing violation when a data event happens too soon
after a reference event. Unlike the $setup timing check, the
reference event must include the posedge or negedge keyword.
Typically the $recovery timing check has a control signal, such
as clear, as the reference event, and the clock signal as the data
event. See IEEE 1364-2001 pages 245-246.

E-36

Verilog Compiler Directives and System Tasks

$recrem

Reports a timing violation if a data event occurs less than a
specified time limit before or after a reference event. This timing
check is identical to the $setuphold timing check except that
typically the reference event is on a control signal and the data
event is on a clock signal. You can specify negative values for the
recovery and removal limits. The syntax is as follows:
$recrem(reference_event, data_event,
recovery_limit, removal_limit, notifier,
timestamp_cond, timecheck_cond, delay_reference,
delay_data);

See IEEE Std 1364-2001 pages 246-248.

$removal

Reports a timing violation if the reference event, typically an
asynchronous control signal, happens too soon after the data
event, the clock signal. See IEEE Std 1364-2001 pages 244-245.

$setup

Reports a timing violation when the data event happens before
and too close to the reference event. See IEEE Std 1364-2001
page 241. This timing check also has an extended syntax like the
$recrem timing check. This extended syntax is not described in
IEEE Std 1364-2001.

$setuphold

E-37

Verilog Compiler Directives and System Tasks

Combines the $setup and $hold system tasks. See IEEE Std
1364-1995 page 189 for the official description. There is also an
extended syntax that is in IEEE Std 1364-2001 pages 242-244.
This extended syntax is as follows:
$setuphold(reference_event, data_event,
setup_limit, hold_limit, notifier,
timestamp_cond, timecheck_cond, delay_reference,
delay_data);

$skew

Reports a timing violation when a reference event happens too
long after a data event. See IEEE std 1364-2001 pages 249-250.

$width

Reports a timing violation when a pulse is narrower than the
specified limit. See IEEE std 1364-2001 pages 254-255. VCS MX
ignores the threshold argument.

System Tasks for PLA Modeling

$async$and$array to $sync$nor$plane

See IEEE Std 1364-2001 page 302.

System Tasks for Stochastic Analysis

$q_add

Places an entry on a queue in stochastic analysis. See IEEE Std
1364-2001 page 307.

E-38

Verilog Compiler Directives and System Tasks

$q_exam

Provides statistical information about activity at the queue. See
IEEE Std 1364-2001 page 307.

$q_full

Returns 0 if the queue is not full, returns a 1 if the queue is full.
See IEEE Std 1364-2001 page 307.

$q_initialize

Creates a new queue. See IEEE Std 1364-2001 page 306-307.

$q_remove

Receives an entry from a queue. See IEEE Std 1364-2001 page
307.

System Tasks for Simulation Time

$realtime

Returns a real number time. See IEEE Std 1364-2001 pages 309-
310.

$stime

Returns an unsigned integer that is a 32-bit time. See IEEE Std
1364-2001 page 309.

$time

Returns an integer that is a 64-bit time. See IEEE Std 1364-2001
pages 308-309.

E-39

Verilog Compiler Directives and System Tasks

System Tasks for Probabilistic Distribution

$dist_exponential

Returns random numbers where the distribution function is
exponential. See IEEE std 1364-2001 page 312.

$dist_normal

Returns random numbers with a specified mean and standard
deviation. See IEEE Std 1364-2001 page 312.

$dist_poisson

Returns random numbers with a specified mean. See IEEE Std
1364-2001 page 312.

$dist_uniform

Returns random numbers uniformly distributed between
parameters. See IEEE Std 1364-2001 page 312.

$random

Provides a random number. See IEEE Std 1364-2001 page 312.
Using this system function in certain kinds of statements might
cause simulation failure.

$get_initial_random_seed

Returns the integer number used as the seed for a simulation run,
if the seed was set by +ntb_random_seed=value or by
+ntb_random_seed_automatic, or returns the default
random seed value if the seed was not set using one of those two
options.

E-40

Verilog Compiler Directives and System Tasks

System Tasks for Resetting VCS MX

$reset

Resets the simulation time to 0. See IEEE Std 1364-2001 pages
741-742.

$reset_count

Keeps track of the number of times VCS MX executes the $reset
system task in a simulation session. See IEEE std 1364-2001
pages 741-742.

$reset_value

System function that you can use to pass a value from, before or
after VCS MX executes the $reset system task, that is, you can
enter a reset_value integer argument to the $reset system
task, and after VCS MX resets the simulation, the $reset_value
system function returns this integer argument. See IEEE std 1364-
2001 pages 741-742.

General System Tasks and Functions

Checks for a Plusarg

$test$plusargs

Checks for the existence of a given plusarg on the runtime
executable command line. Syntax:
$test$plusargs("plusarg_without_the_+");.

E-41

Verilog Compiler Directives and System Tasks

SDF Files

$sdf_annotate

Tells VCS MX to back-annotate delay values from an SDF file to
your Verilog design.

Counting the Drivers on a Net

$countdrivers

Counts the number of drivers on a net. See IEEE std 1364-2001
page 738-739.

Depositing Values

$deposit

Deposits a value on a net or variable. This deposited value
overrides the value from any other driver of the net or variable.
The value propagates to all loads of the net or variable. A
subsequent simulation event can override the deposited value.
You cannot use this system task to deposit values to bit-selects
or part-selects.

Syntax: $deposit(net_or_variable, value);

The deposited value can be the value of another net or variable.
You can deposit the value of a bit-select or part-select.

Fast Processing Stimulus Patterns

$getpattern

Provides for fast processing of stimulus patterns. See IEEE std
1364-2001 page 739.

E-42

Verilog Compiler Directives and System Tasks

Saving and Restarting The Simulation State

$save

Saves the current simulation state in a file. See IEEE std 1364-
2001 pages 742-743.

$restart

Restores the simulation to the state that you saved in the check
file with the $save system task. See IEEE std 1364-2001 pages
742-743.

Checking for X and Z Values in Conditional Expressions

$xzcheckon

Displays a warning message every time VCS MX evaluates a
conditional expression to have an X or Z value.

Syntax: $xzcheckon(level_number,hierarchical_name)

level_number (Optional)

Specifies the number of hierarchy scope levels from the
specified module instance to check for X and Z values. If the
number is 0 or not specified, implies to check all scope
instances to the end of the hierarchy.

hierarchical_name (Optional)

Hierarchical name of the module instance, that is, the top-level
instance of the subhierarchy for which you want to enable
checking.

$xzcheckoff

E-43

Verilog Compiler Directives and System Tasks

Suppress the warning message every time VCS MX evaluates a
conditional expression to have an X or Z value.

Syntax:
$xzcheckoff(level_number,hierarchical_name)

level_number (Optional)

Specifies the number of hierarchy scope levels from the
specified module instance, for which X and Z value check is
disabled. If the number is 0 or not specified, implies to disable
the check on all scope instances to the end of the hierarchy.

hierarchical_name (Optional)

Hierarchical name of the module instance, that is, the top-level
instance of the subhierarchy for which you want to disable
checking.

Calculating Bus Widths

$clog2

Use this system function to calculate bus widths from, for example,
parameters. The following illustrates its use:

integer result;
result = $clog2(n);

Note:
If the argument has x or z values then that bit will be considered
as 1or 0 respectively by VCS MX. The argument could be a vector
with a few bits having x or z values.

For more information on this system function, see section named
“Integer math functions” in the IEEE Std-1800-2009 SystemVerilog
LRM.

E-44

Verilog Compiler Directives and System Tasks

Displaying the Method Stack

$stack();

Displays method stack information, the various lines in your code
that trigger the execution of an entry of this system task. These
executable lines are called the method stack. This system task is
for easier debugging and back tracing. If you have multiple entries
of this system task you see multiple stacks.

You can enter this system task in modules and SystemVerilog
programs, classes, packages, and interfaces; in user defined
tasks and functions, and in initial, always, and final blocks
(Synopsys recommends naming begin-end blocks in these initial,
always, and final blocks).

The following code example illustrates an entry of this system task
in a file named test.sv:

program test;

 class C;
 static function f3();
 $stack(); // line 5
 endfunction
 endclass

 function f1();
 f2(); // line 10
 endfunction

 function f2();
 C::f3(); // line 14
 endfunction

 task t();
 f1(); // line 18
 endtask

E-45

Verilog Compiler Directives and System Tasks

 task t1();
 t(); // line 22
 endtask

 initial begin :B0
 t1(); // line 26
 end

endprogram

module top;
 test p();
endmodule

At runtime VCS MX displays the following method stack
information:

#0 in \C::f3 at test.sv:5
#1 in f2 at test.sv:14
#2 in f1 at test.sv:10
#3 in t at test.sv:18
#4 in t1 at test.sv:22
#5 in B0 at test.sv:26
#6 in top.p

In this method stack:

#0 is always the line containing the $stack system task. In this
example it is in class C, user defined function named f3, at line
number 5 is test.sv.

#1 is a call of function f3 in user defined function f2 at line
number 14. VCS MX executing f2 causes VCS MX to execute
f3.

E-46

Verilog Compiler Directives and System Tasks

#2 is a call of function f2 in user defined function f1 at line
number 10. VCS MX executing f1 causes VCS MX to execute
f2.

#3 is a call of function f1 in user defined task t at line number
18. VCS MX executing t causes VCS MX to execute f1.

#4 is a task enabling statement for task t in user defined task
t1 at line number 22. VCS MX executing t1 causes VCS MX to
execute t.

#5 is a task enabling statement for t1 in the begin-end block
named B0. VCS MX executing B0 causes VCS MX to execute
t1.

#6 is the instance of program test. VCS MX does not include
the line number because this instantiation is in the top level
module.

IEEE Standard System Tasks Not Yet Implemented

The following Verilog system tasks are included in the IEEE Std
1364-2001 standards, but are not yet implemented in VCS MX:

• $dist_chi_square

• $dist_erlang

• $dist_t

IN-1

Index

runtime information message generating
E-11

Symbols
 C-58, D-8
-a filename C-55
-ams_discipline C-45
-ams_iereport C-45
-assert C-8
-C C-43
-c C-39
-CC C-41
-cc C-41
-CFLAGS C-41
-cm assert C-13
-cpp C-42
-debug C-55
-debug_all C-55
-debug_pp C-55
-doc 2-15, C-6
-e name_for_main C-30
-E program runtime option D-32
-extinclude B-23
-full64 C-19
-gui 2-16, 4-7
-h 2-15, C-6

-help 2-15, C-6
-ID 2-15, C-38
-jnumber_of_CPUs C-42
-l D-22
-l filename 2-17, C-55, D-21
-ld linker C-38
-LDFLAGS C-38
-lname C-39
-load 20-34, C-32
-location

vlogan option B-13
-Mdir C-5
-Mdirectory C-4
-Mlib=dir C-5
-negdelay C-27
-noIncComp C-5
-ntb 2-8, B-13
-ntb_cmp C-13
-ntb_opts B-14, C-14
-ntb_sfname C-17
-ntb_vipext C-17
-ntb_vl C-17
-o name C-56
-O number C-43
-O0 C-43
-ova_enable_case C-13
-ova_file 2-8
-override_timescale B-17, C-48

IN-2

-P pli.tab C-31
-platform C-56
-PP E-19
-q 2-17, C-35, D-21
-R 2-17, C-20, C-55
-resolve

vlogan option B-16
-sv_pragma 2-9, B-17
-sysc C-52
-timescale B-17
-u C-56
-ucli 4-6
-V 2-17, C-35, D-21
-vcd filename D-25
-Vt C-35
-work

vlogan option B-18
-Xova C-13
assert hier=file.txt C-12
‘celldefine C-36, C-37, E-2, E-3
‘default_nettype E-2
‘define E-3
‘delay_mode_distributed E-5
‘delay_mode_path E-5
‘delay_mode_unit E-5
‘delay_mode_zero E-5
‘else E-3
‘elseif E-3
‘endcelldefine E-2
‘endif E-3
‘endprotect E-6
‘endprotected E-7
‘endrace C-47
‘ifdef E-4
‘ifndef E-4
‘include B-23, E-8

with a different verion of Verilog B-23
‘line E-9
‘noportcoerce E-8
‘nounconnected_drive E-10
‘portcoerce E-8

‘protect C-44, E-7
‘protected E-7
‘race C-47
‘resetall E-3
‘timescale C-48, E-8

overriding with -override_timescale B-17
‘unconnected_drive E-10
‘undef E-5
‘uselib E-8
‘vcs_mipdexpand E-6
"A" specifier of abstract access 20-48
"C" specifier of direct access 20-48
/*synopsys translate_off*/ pragma C-58
/*synopsys translate_on*/ pragma C-59
//synopsys translate_off pragma C-58
//synopsys translate_on pragma C-59
%CELL 20-14, 20-17
%for 18-8, 18-13
%if 18-8, 18-13
%TASK 20-14
+abstract 20-124
+acc+2 C-30
+acc+3 C-30
+acc+4 C-30
+acc+level_number 20-20, C-29
+ad C-45
+allhdrs 20-124
+allmtm C-20, D-26, D-27
+applylearn 20-24–20-31, D-32
+applylearn+filename C-30
+auto2protect C-44
+auto3protect C-44
+autoprotect C-43
+charge_decay C-20
+delay_mode_distributed 9-37, B-18
+delay_mode_path 9-37, B-17
+delay_mode_unit 9-37, B-17
+delay_mode_zero 9-37, B-17
+deleteprotected C-44
+evalorder 3-38
+iopath+edge C-23

IN-3

+libext 2-10, 2-12, B-19
+liborder 2-16, C-4
+librescan C-4
+lint 2-10, 2-12, B-19
+list 20-124
+maxdelays C-20, D-26
+memcbk C-54
+mindelays C-20, C-21, D-26
+module module_identifier D-17
+multisource_int_delays 9-22, C-21
+nbaopt C-21
+neg_tchk 9-58, 9-65, C-28
+no_notifier 9-58, D-19
+no_pulse_msg D-19, D-21
+no_tchk_msg 9-59, C-25, D-19
+nocelldefinepli+0 C-36
+nocelldefinepli+1 C-37
+nocelldefinepli+2 C-37
+noerrorIOPCWM C-53
+nolibcell C-36
+nospecify 9-59
+notimingcheck 9-59, C-25, D-19
+ntb_cache_dir D-3
+ntb_delete_disk_cache D-3
+ntb_disable_cnst_null_object_warning D-3
+ntb_enable_checker_trace D-4
+ntb_enable_checker_trace_on_failure D-4
+ntb_enable_solver_trace_on_failure D-5
+ntb_enable_solver_trace_on_failure=value
D-5
+ntb_exit_on_error D-5
+ntb_load D-6
+ntb_random_seed D-6
+ntb_random_seed_automatic D-6
+ntb_solver_array_size_warn D-7
+ntb_solver_debug 14-7, D-7

extract 14-13, 14-16
profile 14-12, 14-16
serial 14-15
trace 14-9, 14-11, 14-16

+ntb_solver_debug_dir D-8

+ntb_solver_debug_filter 14-9, 14-11, 14-13,
D-9
+ntb_solver_mode D-9
+ntb_solver_mode=value D-9
+NTC2 9-64, C-28
+object_protect E-7
+old_ntc C-28
+optconfigfile 8-6, C-19
+overlap 9-68, C-28
+override_model_delays D-26, D-27
+pathpulse C-24
+pli_unprotected C-44
+plusarg_ignore C-29
+plusarg_save C-29
+plus-options D-33
+protect file_suffix C-44
+pulse_e/number 9-24, 9-25, 9-27, 9-32, 9-33,
C-25
+pulse_int_e 9-23, 9-24, 9-25, 9-27, C-26
+pulse_int_r 9-23, 9-24, 9-25, 9-27, C-26
+pulse_on_detect 9-33, C-26
+pulse_on_event 9-33, C-26
+pulse_r/number 9-24, 9-25, 9-27, 9-32, 9-33,
C-26
+putprotect+target_dir C-44
+race=all C-47
+rad 8-6, C-19
+sdf_nocheck_celltype C-22
+sdfprotect file_suffix C-44
+sdfverbose D-21
+systemverilogext 2-11, B-21
+tetramax C-53
+timopt 9-39
+transport_int_delays 9-23, 9-25, 9-27, C-22
+transport_path_delays 9-22, 9-25, 9-27, C-22
+typdelays C-20, C-21, D-27
+udpsched C-57
+UVM_VERBOSITY= 19-254
+vc 20-123, C-33
+vcs+dumpoff+t+ht D-25
+vcs+dumpon+t+ht D-25

IN-4

+vcs+finish 4-15, D-20
+vcs+flush+all C-34, D-28
+vcs+flush+dump C-34, D-26, D-28
+vcs+flush+fopen C-34, D-28
+vcs+flush+log C-34, D-28
+vcs+ignorestop D-33
+vcs+initreg+0|1|random| D-30
+vcs+initreg+random C-18, D-30
+vcs+learn+pli 20-24–20-28, D-32
+vcs+loopdetect+number C-57
+vcs+loopreport+number C-57
+vcs+mipd+noalias D-33
+vcs+mipdexpand E-6
+vcs+nostdout D-22
+vcs+stop 4-15, D-20
+vcs+vcdpluson C-54
+verilog1995ext 2-11, B-22
+verilog2001ext 2-11, B-22
+vhdllib

vlogan option B-23
+vpddrivers D-24
+vpdfile 4-7
+vpdfileswitchsize 4-7
+vpdfileswitchsize+number_in_MB D-23
+vpdnoports D-24
+vpdportsonly D-24
+vpdupdate D-24
+vpi C-31
+vpi+1 C-31
+vpi+1+assertion C-32
+warn C-35
$assert_category_start 17-27, 17-30
$assert_category_stop 17-26
$assert_monitor 17-13, E-26
$assert_monitor_off 17-13, E-27
$assert_monitor_on 17-13, E-27
$assert_set_category 17-18, 17-26
$assert_set_severity 17-18
$assert_severity_stop 17-26
$assertkill E-12
$assertoff E-11

$asserton E-12
$async$and$array E-37
$bitstoreal E-28
$countdrivers E-41
$deposit E-41
$disable_warnings E-34
$display E-29
$dist_exponential E-39
$dist_normal E-39
$dist_poisson E-39
$dist_uniform E-39
$dumpall E-13
$dumpfile E-13
$dumpflush E-13
$dumplimit E-13
$dumpoff E-13
$dumpon E-13
$dumpports 7-20, E-15
$dumpports system task D-29
$dumpportsall E-17
$dumpportsflush E-17
$dumpportslimit E-18
$dumpportsoff E-16
$dumpportson E-17
$dumpvars E-13
$enable_warnings E-34
$error E-11
$fatal 17-38, E-11
$fclose E-30
$fdisplay E-30
$ferror E-30
$fflush E-14, E-30
$fflushall E-14
$fgetc E-30
$fgets E-30
$finish E-34
$fmonitor E-31
$fopen C-33, E-31

increasing the frequency of flushing C-34
$fopen system function D-28

IN-5

increasing the frequency of $fopen file, log
file, and VCD file dumping D-28

increasing the frequency of dumping to files
opened by $fopen D-28

$fread E-31
$fscanf E-31
$fseek E-31
$fstobe E-31
$ftell E-31
$fwrite E-31
$get_initial_random_seed E-39
$getpattern E-41
$gr_waves E-14
$hold E-35
$info E-11
$isunknown E-12
$itor E-29
$log E-28
$lsi_dumpports 7-19, E-15
$lsi_dumpports system task D-29
$monitor E-29
$monitoroff E-29
$monitoron E-29
$nolog E-28
$onehot0 E-12
$past

ignoring C-12
$period E-35
$printtimescale E-33
$q_add E-37
$q_exam E-38
$q_full E-38
$q_initialize E-38
$q_remove E-38
$random E-39
$read_lib_saif 21-6
$readmemb E-32
$readmemh E-32
$realtime E-38
$realtobits E-29
$recovery E-35

$recrem E-36
checking timestamp and timecheck

conditions C-28
diabling delayed versions of signals in other

timing checks C-28
$removal E-36
$reset E-40
$reset_count E-40
$reset_value E-40
$restart E-42
$rtoi E-29
$save E-42
$sdf_annotate E-41
$set_toggle_region 21-6
$setup E-36
$setuphold E-36

checking timestamp and timecheck
conditions C-28

diabling delayed versions of signals in other
timing checks C-28

$skew E-37
$sreadmemb E-33
$sreadmemh E-33
$stime E-38
$stop E-34

ignoring D-33
$strobe E-30
$sync$nor$plane E-37
$system E-27
$systemf E-28
$test$plusargs D-33, E-40
$time E-38
$timeformat E-33
$ungetc E-32
$uniq_prior_checkoff system task 11-73
$uniq_prior_checkon system task 11-73
$value$plusargs 4-12
$vcdplusautoflushoff E-19
$vcdplusautoflushon E-19
$vcdplusclose E-19
$vcdplusdeltacycleoff 7-18
$vcdplusdeltacycleon 7-18, E-19

IN-6

$vcdplusdumpportsoff E-21
$vcdplusdumpportson E-21
$vcdplusevent E-20
$vcdplusfile E-22
$vcdplusflush E-22
$vcdplusglitchon E-22
$vcdplusmemoff 7-8, E-24
$vcdplusmemon 7-8, E-22
$vcdplusmemorydump 7-8, E-24
$vcdplusoff E-24
$vcdpluson E-25
$vcdplustraceoff E-26
$vcdplusxx system tasks

ignoring D-23
$warning E-11
$width E-37
$write E-30
$writememb E-33
$writememh E-33

Numerics
64-bit

compilation and 32-bit simulation C-20
compilation and simulation C-19

A
-a filename C-55
"A" specifier of abstract access 20-48
+abstract 20-124
abstract access for C/C++ functions

access routines for 20-74–20-118
enabling with a compile-time option 20-124
using 20-72–20-118

+acc+level_number 20-20, C-29
ACC capabilities 20-27, C-29

applying in the design only where they are
needed D-32

cbk 20-12, 20-18
cbka 20-12
enabling debugging C-30

frc 20-12, 20-18
gate 20-13
mip 20-13, D-33
mipb 20-13
mipd D-33
mp 20-13
prx 20-13
r 20-12, 20-17
recording where in the design they are

needed D-32
rw 20-12, 20-18
s 20-13
specifying 20-10–20-19
tchk 20-13

acc_handle_simulated_net D-33
access routines for abstract access of C/C++
functions 20-74–20-118
accessing signed variablesa 19-147
Active time slot

changing UDP output evaluation to the NBA
time slot C-58

+ad C-45
adaptor code

generating 19-134
AICMs

information messages C-45
+allhdrs 20-124
+allmtm C-20, D-26, D-27
alt_retain 9-6
-ams_discipline C-45
-ams_iereport C-45
analysis

setup variables A-2
ansi argument to -ntb_opts C-14
ANSI mode

in OpenVera files C-14
aop

advice
before/after/around 13-16

dominates 13-7
extends directive 13-3
placement element

after 13-11
around 13-11

IN-7

 D-32
+applylearn 20-24–20-31
arb.v 12-9, 12-10
args PLI Specificaction 20-8
array

output and inout argument type 20-65
array index 14-26
array members 14-31
assembler

passing options to C-41
-assert C-8, D-10
-assert assertion_block_identifier D-18
-assert funchier 17-33, 17-34
-assert hier=file.txt C-12
-assert no_default_msg 17-36
–assert no_default_msg 17-36
–assert no_fatal_action 17-37
-assert psl_in_block 18-6
-assert quiet 17-36
-assert report 17-36
assert_ignore setup variable A-10
assert_ignore_optimized_libs setup variable
A-12
$assert_monitor 17-13, E-26
$assert_monitor_off 17-13, E-27
$assert_monitor_on 17-13, E-27
assert_stop setup variable A-12
assertion failure messages

controlling 17-35
assertion waring messages

suppressing C-7
Assertions

SystemVerilog
enabling or disabling a module or a

hierarchy C-8
assertions

fatal error generating E-11
OpenVera C-13

blind signals C-17
bounds check in dynamic and fixed-size

arrays C-14
bounds check in dynamic arrays C-14

bounds check in fixed-size arrays C-14
circular dependency check C-14

display on screen C-15
disabling default failure messages D-12
encrypted IP mode

filename extension C-17
encryption

tokens file C-16
file-by-file preprocessing

disabling C-15
including case violations in the global

failure count D-19
interface ports named ifc_signal C-17
left padding in strings C-15
RVM enabling C-15
shell module name vera_shell

specifying C-17
signal property access funtions

enabling C-16
teshbench shell

compiling C-17
filename specifying C-17
generating only C-17
not generating C-13

teshbench shell and shared object files
generating C-13
specifying the directory C-17

timescale C-16
VMM enabling C-15

Openvera
ANSI mode C-14

PSL
disabling default failure messages D-12

resume monitoring E-12
returning true if one bit is true E-12
returning true if one bit is X E-12
returning true if only one bit is true or no bits

are true E-12
runtime error generating E-11
runtime information message generating

E-11
runtime warning generating E-11
SystemVerilog

cover statements

IN-8

disabling C-13
disabling C-12
disabling assertion failure messages D-13

but enabling summary information
D-13

disabling default failure messages D-12
disabling from a file

specifying assertion block D-18
specifying module definitions D-18

dumping SVA in VPD file
disabling D-10

enabling and disabling from a file D-15
enabling assertion match (success)

messages D-14
enabling from a file

specifying module definitions D-17
enabling runtime options C-8
enabling the -assert hier=file.txt runtime

option for turning assertions off C-12
enabling vacuous success messages D-14
enhsnce reporting for assertions in

functions C-8
excluding assertion failures with fail action

blocks D-12
generationg a report file D-13

adding more information D-15
ignoring $past C-12
maximum number of cover statement

specifying the total number of cover
statements in the assertion coverage
information D-11

monitoring for assertion coverage D-18
not displaying the assert or cover

statement summary D-11
not writing the program_name.db database

file D-11
specifying configuration file C-8
specifying the maximum number of failures

for each assertion D-11
specifying the maximum number of

successes for each assertion D-11
specifying the number of failures for an

assertion D-10
specifying the rotal number of assertion

failures D-11

turning off monitoring E-11, E-12
$assertkill E-12
$assertoff E-11
$asserton E-12
assert.report file D-13

adding more information D-15
$async$and$array E-37
attach_by_id() 19-136
+auto2protect C-44
+auto3protect C-44
auto-inserted connect modules (AICMs)

displaying information about C-45
+autoprotect C-43

B
Backward SAIF File 21-5
base time for simulation C-49
bidirectional registered mixed-signal net

dispalying a list of C-45
finishing compilation at C-45

bit
C/C++ function argument type 20-51
C/C++ function return type 20-50
input argument type 20-64
output and inout argument type 20-64
reg data type in two-state simulation 20-47

$bitstoreal E-28
bounds check

in OpenVera dynamic and fixed-size arrays
C-14

in OpenVera dynamic arrays C-14
in OpenVera fixed-sise arrays C-14

buffer
emptying into VCD files E-13

C
-C C-43
C 14-37
-c 12-9, C-39
C code generating

IN-9

halt before compiling the generated C code
C-43

passing options to the compiler C-41
specifying another compiler C-41
specifying the optimization level C-43
suppressing optimization for faster

compilation C-43
C compilation setup variables A-17
C compiler

not passing default options C-43
optimization levels C-41
passing options to C-41
specifying C-41

C compiler, environment variable specifying
the A-31
C pre-processing 18-13
"C" specifier of direct access 20-48
C/C++ functions

argument direction 20-49, 20-50
argument type 20-49, 20-51
calling 20-54–20-55
declaring 20-47–20-53
extern declaration 20-48
in a Verilog environment 20-46–20-47
return range 20-49
return type 20-49, 20-50
using abstract access 20-72–20-118

access routines for 20-74–20-118
using direct access 20-62–20-71

examples 20-65–20-69
C++

generating struct 19-168
precompiled headers 19-205

C++ compiler
specifying C-42

call PLI specification 20-7
callbacks for memories and multi-dimensional
arrays

enabling C-54
calling C/C++ functions in your Verilog code
20-54–20-55
case pragmas

enabling C-13
cbk ACC capability 20-12, 20-18

cbka ACC capability 20-12
CBug 19-236
-CC C-41
-cc C-41
cell

for delay annotation
disabling E-2
specifying E-2

cell modules
excluding from compilation C-36

‘celldefine C-36, C-37, E-2, E-3
CELLTYPE entries in SDF files

disabling C-22
-CFLAGS C-41
-cg_coverage_control D-2
char*

direct access for C/C++ functions
formal parameter type 20-62

char**
direct access for C/C++ functions

formal parameter type 20-62
charge decay

enabling C-20
+charge_decay C-20
check argument to -ntb_opts B-14, C-14
check PLI specification 20-7
check=all C-14
check=fixed C-14
checkpoint

in VCD files
recording current values E-13
start recording current values E-13
stop recording current values E-13

circular dependency check check
in OpenVera C-14

display on screen C-15
class 14-29
classes

inheritance between 14-31
clock signals 9-38–9-43
-cm 10-3, D-18
-cm assert C-13

IN-10

command line options 12-9
compilation order 14-32
compiler directives E-1–E-10

resetting E-3
compile-time options C-1–??

displaying at runtime D-32
compiling

incremental compilation
triggering ??–8-4

omitting compilation between pragmas C-58
OpenVera testbench shell C-17
verbose messages 2-17, C-35
with ‘include and -extinclude B-23

compression
disasbling for VPD files D-24

conditional expressions
warning when evaluate to X or Z C-46

filtering out false negatives C-46
configuration file

for Radiant technology C-19
constraint solver

array size warning D-7
OpenVera

trace information D-5
constraints

conflicts 14-26
constraint profiling 14-12, 14-16
debugging D-7, D-9
partitions 14-4
test case extraction 14-13, 14-16

copyright information
displaying D-21

$countdrivers E-41
coverage groups

OpenVera
enabling D-2

-cpp C-42
cs_assert_stop_next_wait setup variable A-13
cs_ccflags setup variable A-17
cs_ccpath setup variable A-18
cs_nocheck setup variable A-3

D
data PLI specification 20-8
Data Type Mapping File

VCS/SystemC cosimulation interface 19-59
-debug C-55
-debug_all C-55
debug_all, option 4-7
-debug_pp 4-6, C-55
debug_pp, option 4-6
debug, option 4-7
Debussy C-55
declaring C/C++ functions in your Verilog code
20-47–20-53
default discrete discipline

in VerilogAMS C-45
default net data type

specifying E-2
‘default_nettype E-2
‘define E-3
delay values

back annotating to your design E-41
‘delay_mode_distributed E-5
+delay_mode_distributed 9-37, B-18
‘delay_mode_path E-5
+delay_mode_path 9-37, B-17
‘delay_mode_unit E-5
+delay_mode_unit 9-37, B-17
‘delay_mode_zero E-5
+delay_mode_zero 9-37, B-17
delays D-26, D-27

changing all delays to zero E-5
ignoring all delays except gate, switch, and

continuous assignment delays E-5
ignoring all delays except module path

delays E-5
ignoring all module path delays and using for

all other delay specifications the shortest
time precision argument E-5

module path delays
X value C-26

with error message C-26

IN-11

specifies using max of min|typ|max delays
C-20

specifies using min of min|typ|max delays
C-21

specifies using typ of min|typ|max delays
C-21

transport delays C-22
+deleteprotected C-44
delta cycle information E-19

disabling in VPD files D-25
Denali 28-1
dep_check argument to -ntb_opts B-14, C-14
$deposit E-41
Design Description 12-10
diagnostic messages C-35
direct access for C/C++ functions

examples 20-65–20-69
formal parameters

types 20-62
rules for parameter types 20-63–20-65
using 20-62–20-123

DirectC
abstract access

specifying C-33
enabling C-33
listing the C/C++ functions C-33
using pass by reference 20-61
vc_hdrs.h file C-33

direction of a C/C++ function argument 20-50
directory for constraint solver profiles and
testcases D-8
disable C-12
disable soft 14-34
disable_cover C-13
$disable_warnings E-34
$display E-29
DISPLAY_VCS_HOME A-30
displaying your environment setup 1-13, 1-14
$dist_exponential E-39
$dist_normal E-39
$dist_poisson E-39
$dist_uniform E-39
DKI Communication 19-25

DKI communication 19-7
-doc 2-15, C-6
documentation C-6
dominates 14-33
donut layers

specifying the maximum number of C-56
double*

direct access for C/C++ functions
formal parameter type 20-62

DPI 14-36, 19-204, 19-308
$dumpall E-13
$dumpfile E-13
$dumpflush E-13
$dumplimit E-13
$dumpoff E-13
dumpoff D-10
$dumpon E-13
$dumpports 7-20, E-15
$dumpportsall E-17
$dumpportsflush E-17
$dumpportslimit E-18
$dumpportsoff E-16
$dumpportson E-17
$dumpvars E-13
dynamic race detection C-47

E
-e name_for_main C-30
-E program D-32
echo D-32
edge sensitivity

in SDF file IOPATH entries C-23
‘else E-3
‘elseif E-3
enable_diag C-8
enable_hier C-12
$enable_warnings E-34
enabling D-2

only where used in the last simulation 20-27
encryption

IN-12

all modules C-43
but not the module header C-44
but not the module header and parameter

declarations C-44
enabling overwriting of existing files C-44
enabling PLI and UCLI access C-44
OpenVera

tokens file C-16
SDF files C-44
specifying the directory for encrypted files

C-44
specifying with ‘protect ‘endprotect C-44

‘endcelldefine E-2
‘endif E-3
ending simulation at a specified time D-20
‘endprotect E-6
‘endprotected E-7
Environment variables 1-7–1-8, ??–A-32
$error E-11
ERROR message A-10, A-13
error messages

changing to warning C-34
+evalorder 3-38
EVCD files E-15

flushing the buffer E-17
recording all port values E-17
resume recording E-17
specifying the file size E-18
suspending E-16

executable
specifying the name of C-56

exporting SystemVerilog packages 11-82, C-6
exporting Vera tasks 12-8
extended summary information

displaying D-21
extends 14-32
extends directive

advice 13-4
introduction 13-4

extern declaration 20-48
extern declarations 20-69
-extinclude B-23

F
fail action blocks D-12
FAILURE message A-10, A-13
$fatal E-11
fatal assertion error generating E-11
$fclose E-30
$fdisplay E-30
$ferror E-30
$fflush E-14, E-30
$fflushall E-14
$fgetc E-30
$fgets E-30
-file 2-16, C-28
file

for runtime options D-29
files

grw.dump file E-14
VCD files

specifying the filename E-13
filter_past C-12
$finish E-34
finish_maxfail=N D-10
$fmonitor E-31
$fopen C-33, E-31

increasing the frequency of flushing C-34
foreach loops 14-41
four state Verilog data

stored in vec32 20-56–20-57
–fPIC 19-206
frc ACC capability 20-12, 20-18
$fread E-31
$fscanf E-31
FSDB files C-55
$fseek E-31
$fstobe E-31
$ftell E-31
-full64 C-19
function calls

context 14-38
DPI 14-36
non-pure 14-37

IN-13

pure 14-37
$fwrite E-31

G
g++ 19-206
-g|-generics cmdfile C-52
gate ACC capability 20-13
gate-level

improving runtime performance C-58
gd_pulsewarn 9-8
generating adaptor code 19-134
generics

overriding C-52
from a file C-52

overriding with the -gfile elaboration option
C-45, C-49

$get_initial_random_seed E-39
$getpattern E-41
-gfile C-49
-gfile cmdfile C-45
global_finish_maxfail=N D-11
globalDirective 17-30
GNU 19-210
$gr_waves E-14
grw.dump file E-14
-gui 2-16, 4-7
-gv|-gvalue generic=value C-52

H
-h 2-15, C-6
hard constraint 14-27
header and summary

suppressing D-21
header files

pre-compiled 19-206
-help 2-15, C-6
help with compile-time options, runtime
options, and environment variables C-6
hier=file_name D-15
$hold E-35

-hsopt=gates C-58

I
-ID 2-15, C-38
IEEE default name mapping 1-11
IEEE-1850-2010 18-8
ifc_signal

OpenVera interface ports named C-17
‘ifdef E-4
‘ifndef E-4
-ignore 2-7, B-12, C-7
Importing VHDL procedures 12-6
importing VHDL procedures 12-6
‘include E-8
including one source file in another E-8
increasing the stack guard size 19-214
increasing the stack size 19-214
incremental compilation C-4–C-5

central place for descriptor information and
object files C-5

disabling C-5
incremental compile directory

specifying C-4
$info E-11
-ignore 2-7, B-12, C-7
initializing integer data type variables D-30
initializing state variables C-18
inout

C/C++ function argument direction 20-51
input

C/C++ function argument direction 20-50
int

C/C++ function argument type 20-51
C/C++ function return type 20-50
direct access for C/C++ functions

formal parameter type 20-62
input argument type 20-64
output and inout argument type 20-64

int*
direct access for C/C++ functions

formal parameter type 20-62

IN-14

integer data type variables
initializing D-30

INTERCONNECT delays
rejecting C-26
SDF files C-21

changing to transport delays C-22
negative values enabling C-27

interface 12-12

self() 11-78
Interface Description 12-18
internal disk cache for randomization

delete before simulation D-3
location D-3

intra-assingment delays
removing C-21

IOPATH delays
SDF files

negative values enabling C-27
+iopath+edge C-23
$isunknown E-12
$itor E-29

J
-jnumber_of_CPUs C-42

K
keywords

after 13-11
around 13-11
before 13-11
extends 13-3
virtuals 13-31

L
-l D-22
-l filename 2-17, C-55, D-21
-ld linker C-38
-LDFLAGS options C-38

+libext 2-10, 2-12, B-19
-libmap 3-26, B-13
+liborder 2-16, C-4
library

name mapping 1-11
+librescan C-4
licenses

enabling license queuing D-29
waiting for a license D-29
waiting for a network license D-29

licensing
wait for a license

specifying the wait time C-38
wait for a network license C-38

-licqueue C-38
-licwait timeout C-38
‘line E-9
linker

linking a library to the executable C-39
linking by hand C-39
passing flags to C-38
specifying C-38
temporary object files C-39

linking
linking a specified library to the executable

C-39
linking by hand C-39
passing options to the linker C-38
specifying another linker C-38

+lint 2-10, 2-12, B-19
+list 20-124
list file B-3
-lname C-39
-load 20-34, C-32
-location

vlogan option B-13
$log E-28
log file

appending to C-55
simulation

specifying D-21
log file buffers

increasing the frequency of flushing C-34

IN-15

log file, environment variable specifying the
A-32
log files

increasing the frequency of log file dumping
D-28

increasing the frequency of log file, VCD file,
and $fopen file dumping D-28

specifying compilation log file 2-17, C-55
specifying with a system task E-28

loops
specifying the maximum number of loops for

a simulation event C-57
specifying the maximum number of loops for

a simulation event warning C-57
LSI certification E-15

EVCD files E-15
flushing the buffer E-17
icluding strength levels in the VCD file E-15
recording all port values E-17
resume recording E-17
specifying the file size E-18
suspends recording E-16

$lsi_dumpports 7-19, E-15

M
-m32 19-206
macros

text macros
defining E-3
else defining E-3
else if end E-3
elseif defining E-3
if defining E-4
if not defined E-4
undefining E-5

main() routine
specifying for PLI C-30

maintaining filename and line number E-9
mapping, library name 1-11
-Marchive C-4, C-39
maxargs PLI specification 20-8
maxcover=N D-11
+maxdelays C-20, D-26

maxfail=N D-11
-maxLayers value C-56
maxsuccess=N D-11
MDAs 14-43
-Mdir 19-208, C-5
-Mdirectory C-4
member variables 19-162
+memcbk C-54
Memory Modeler - Advanced Verification
(MMAV) 28-1
messages

changing error to warning C-34
quiet mode C-35
verbose diagnostic C-35
verbose mode C-35

including CPU time information C-35
warning

disabling C-35
MHPI 19-238
minargs PLI specification 20-8
+mindelays C-20, C-21, D-26
mip ACC capability 20-13
mipb ACC capability 20-13, E-6
MIPDs D-33

disabling connection upon MIPD delay
annotation D-33

misc PLI specification 20-8
mixed analog/digital simulation

specifying C-45
mixed signal simulation

specifying C-45
-Mlib=dir C-5
module description , Verilog 12-19
-module module_identifier D-18
module path delays

changing to tranport delays C-22
disabling for an instance 9-38
suppressing

in specific module instances 9-38
X value C-26
X value with error message C-26

$monitor E-29
$monitoroff E-29

IN-16

$monitoron E-29
-monsigs option C-48, C-49
mp ACC capability 20-13
multiple packed dimensions 14-42
+multisource_int_delays 9-22, C-21

N
NBA time slot

changing UDP outputs to the NBA time slot
C-58

+nbaopt C-21
+neg_tchk 9-58, 9-65, C-28
negative multiconcat multiplier

allowing C-53
negative timing checks C-27
-negdelay C-27
nets

specifung defult data type E-2
no_default_msg D-12
-no_error ID+ID C-34
no_fatal_action D-12
no_file_by_file_pp argument to -ntb_opts
B-14, C-15
+no_identifier D-19
+no_notifier 9-58
+no_pulse_msg D-21
+no_tchk_msg 9-59, C-25, D-19
+nocelldefinepli+1 C-37
nocelldefinepli PLI specification 20-9
+nocelldefinepli+0 C-36
+nocelldefinepli+2 C-37
nocovdb D-11
-noerror UPIMI+IOPCWM C-35
-xzcheck C-46
NOIGNORE message A-10
-noIncrComp C-5
+nolibcell C-36
$nolog E-28
nonblocking assignments

removing intra-assignment delays C-21

‘noportcoerce E-8
nopostproc D-11
+nospecify 9-59
NOSTOP message A-13
NOTE message A-10, A-13
-notice 2-17, C-35
notifier registers, suppressing the toggling of
D-19
+notimingcheck 9-59, C-25, D-19
‘nounconnected_drive E-10
-novitaltiming D-26
-ntb 2-8, B-13
+ntb_cache_dir D-3
-ntb_cmp C-13
-ntb_define 2-8, 2-12, B-13
+ntb_delete_disk_cache D-3
+ntb_enable_solver_trace_on_failure D-5
+ntb_exit_on_error D-5
-ntb_filext 2-8, B-13
-ntb_incdir 2-8, B-14
+ntb_load D-6
-ntb_noshell C-13
-ntb_opts B-14, C-14

print_deps B-14, C-15
rvm C-15
sv_fmt C-15

-ntb_opts no_file_by_file_pp 12-33
+ntb_random_seed D-6
+ntb_random_seed_automatic D-6
-ntb_sfname C-17
-ntb_shell_only C-17
-ntb_sname C-17
+ntb_solver_array_size_warn D-7
+ntb_solver_debug 14-7, D-7

extract 14-13, 14-16
profile 14-16
serial 14-15
trace 14-9, 14-16

+ntb_solver_debug_dir D-8
+ntb_solver_debug_filter 14-9, 14-11, 14-13,
D-9
+ntb_solver_mode D-9

IN-17

-ntb_spath C-17
-ntb_vipext 12-33, C-17
-ntb_vl C-17
+NTC2 9-64, C-28

O
-o name C-56
-O number C-43
-O0 C-43
object files

enabling position independent code C-39
specifying temporary C-39

+object_protect E-7
+old_ntc C-28
$onehot

$onehot E-12
$onehot0 E-12
OpenVera

constraint solver mode D-9
coverage groups D-2
diagnostics

when randomize() method called D-4
enabling debugging

when randomize() method called D-4
exit on error D-5
internal disk cache D-3

delete before simulation D-3
loading the shared object file D-6
on null object handle of object randomized

D-3
trace information

when randomize() returns 0 D-4
trace information when constraint solver fails

D-5
operating system commands, executing E-27
+optconfigfile 8-6, C-19
optimization

suppresssing for faster compilation C-43
options, command line 12-9
output

C/C++ function argument direction 20-51
OVA 17-35

–ova_enable_case 17-40, C-13
-ova_enable_case_maxfail D-19
–ova_enable_case_maxfail 17-39, D-19
-ova_file 2-8
-ova_inline C-13
–ova_inline 17-40, C-13
+overlap 9-68, C-28
+override_model_delays D-26, D-27
-override_timescale B-17, C-48
-override-cflags C-43

P
-P pli.tab 20-19, C-31
packed constraints 14-41
packed dimensions 14-42
padding 19-146
parallel compilation C-5, C-42

disabling C-5
specifying the number of forks C-42

parallel_compile setup variable 9-77, A-4, A-6
-parallel_compile_off C-5
parameters

overriding C-46, C-51
overriding with the -gfile elaboration option

C-45, C-49
partitions

in constraints 14-4
pass by reference in DirectC 20-61
–pathmap 19-236
+pathpulse C-24
PATHPULSE$ specparam, enabling C-24
performance

improving for gate-level designs C-58
$period E-35
-picarchive C-39
placement element

after 13-11
around 13-11

-platform C-56
platform directory in the VCS installation

returning C-56

IN-18

PLI
ACC capabilities C-29

enabling debugging C-30
allowing access to ports and parameters

C-37
disabling capabilities for ‘celldefine and

library modules C-37
disabling capabilities for ‘celldefine modules

C-37
enabling in encrypted files C-44
slave mode C-30
specifying the name of your main() routine

C-30
PLI specifications

args 20-8
call 20-7
check 20-7
data 20-8
maxargs 20-8
minargs 20-8
misc 20-8
nocelldefinepli 20-9
size 20-8

PLI table file 20-6–20-20, D-32
specifying C-31

pli_learn.tab D-32
+pli_unprotected C-44
pli.tab file 20-6–20-20, D-33

specifying C-31
+plusarg_ignore C-29
+plusarg_save C-29
plusargs, checking for on the simv command
line E-40
+plus-options D-33
pointer

C/C++ function argument type 20-51
C/C++ function return type 20-50
input argument type 20-64
output and inout argument type 20-64

port coercion
disabling E-8
enabling E-8

Port Mapping File
VCS/SystemC cosimulation interface 19-56

‘portcoerce E-8
position independent code

enabling C-39
POSIX 19-236
-PP E-19
-prec 19-212
pre-compiled header files 19-206
print_deps argument to -ntb_opts B-14, C-15
$printtimescale E-33
priority keyword 11-66
procedure_prototype

example 13-28, 13-29
procedures, importing 12-6
program_name.db database file

not writing D-11
proprietary message

suppressing D-21
‘protect C-44, E-7
+protect file_suffix C-44
‘protected E-7
prx ACC capability 20-13
PSL 17-35, 18-5
PSL macros 18-8
pulse error messages

suppressing D-21
pulse errror messages

suppressing D-19
+pulse_e/number 9-24, 9-25, 9-27, 9-32, 9-33,
C-25
+pulse_int_e 9-23, 9-24, 9-25, 9-27, C-26
+pulse_int_r 9-23, 9-24, 9-25, 9-27, C-26
+pulse_on_detect 9-33, C-26
+pulse_on_event 9-33, C-26
+pulse_r/number 9-24, 9-25, 9-27, 9-32, 9-33,
C-26
pulses

filtering out narrow pulses C-26
and flag as error C-25

on INTERCONNECT delays
INTERCONNECT delays

filtering out
SDF files

IN-19

INTERCONNECT
delays

filtering out
C-26

rejecting narrow pulses C-26
on SDF INTERCONNECT delays C-26

X value C-26
+putprotect+target_dir C-44
-pvalue C-51

Q
-q 2-17, C-35, D-21
$q_add E-37
$q_exam E-38
$q_full E-38
$q_initialize E-38
$q_remove E-38
quiet mode - suppressing

header and summary information D-21
proprietary message D-21
simulation report at the end of simulation

D-21

R
-R 2-17, C-20, C-55
r ACC capability 20-12, 20-17
-race C-46
race conditions

generating a report of C-46, C-47
limiting the exposure of 3-38

+race=all C-47
-racecd C-47
race.out file C-47
+rad 8-6, C-19
Radiant techology

configuration file C-19
enabling C-19

rand members 14-29
rand_mode() method 11-37
$random E-39

random
initializing 0 or 1 D-30

random number generator
re-seeding D-6

random values
setting the seed D-6

after restore D-6
randomize() method 11-37
randomize() serial number 14-15
randomize()solver trace 14-7
randomized objects in a structure 14-46
$readmemb E-32
$readmemh E-32
real

C/C++ function argument type 20-51
input argument type 20-64
output and inout argument type 20-64

$realtime E-38
$realtobits E-29
$recovery E-35
$recrem E-36

checking timestamp and timecheck
conditions C-28

diabling delayed versions of signals in other
timing checks C-28

reg
C/C++ function argument type 20-51
C/C++ function return type 20-50
input argument type 20-64
output and inout argument type 20-64

$reset E-40
$reset_count E-40
$reset_value E-40
‘resetall E-3
resetting

keeping track of the number of resets E-40
passing a value from before to after a reset

E-40
resetting VCS to simulation time 0 E-40

-resolve
vlogan option B-16

Resolving message upon instance resolution
C-4

IN-20

resolving module instances E-8
$restart E-42
RETAIN entries

SDF files
enabling C-22, C-23

return range of a C/C++ function 20-49
return type of a C/C++ function 20-49, 20-50
RTL Verilog example 12-11
$rtoi E-29
runtime assertion error generating E-11
runtime assertion warning generating E-11
runtime options

compiling into the executable C-29
prevent compiling into the executable C-29
specifying in as file D-29

RVM C-15
rvm C-15
rw ACC capability 20-12, 20-18

S
s ACC capability 20-13
$save E-42
SC_CTHREAD 19-213, 19-214
sc_main 19-229
sc_objects 19-229
sc_report_handler 19-254
sc_stack_size 19-213, 19-214, 19-216
sc_start 19-229
SC_THREAD 19-213, 19-214
SC_THREADS 19-236
scalar

direct access for C/C++ functions
formal parameter type 20-62

scalar*
direct access for C/C++ functions

formal parameter type 20-62
scope randomize method 11-36
SDF 9-6

optimistic mode 9-6
SDF backannotating

enabling more than 10 warning and error
messages D-21

SDF delay back-annotation
disabling back-annotation to individual bits of

an input port E-6
to individual bits of an input port E-6

SDF files
compiling separate files for min|typ|max

delays C-20
disabling CELLTYPE entries C-22
enabling accurate simulatiuon of multiple

non-overlapping violation windows C-28
encryption C-44
INTERCONNECT delays C-21

changing to transport delays C-22
negative values enabling C-27
rejecting C-26

INTERCONNECT entries
negative values enabling C-27

IOPATH delays
negative values enabling C-27

IOPATH entries
edge sensitivirty C-23
negavive values enabling C-27

min|typ|max delays
specified in a file C-20

RETAIN entries
enabling C-22, C-23

-sdf min|typ|max
instance_name

file.sdf C-20
$sdf_annotate E-41
+sdf_nocheck_celltype C-22
+sdfprotect file_suffix C-44
-sdfretain 9-6, C-22
-sdfretain=warning C-23
SDFRT_IRV

wanring C-23
+sdfverbose D-21
search order of Verilog library directories C-4

rescan C-4
segmentation violation 19-213
SEGV 19-213
sequential devices

IN-21

inferring 9-38–9-43
sequential UDPs

changing output evaluation to the NBA tile
slot C-58

serial2trace.txt file 14-12
$setup E-36
setup files

synopsys_sim.setup 1-8
setup variables A-1

assert_ignore A-10
assert_ignore_optimized_libs A-12
assert_stop A-12
assigning values to A-1
cs_assert_stop_next_wait A-13
cs_ccflags A-17
cs_ccpath A-18
cs_nocheck A-3
parallel_compile 9-77, A-4, A-6
spc A-4
timebase A-6
use A-15

$setuphold E-36
checking timestamp and timecheck

conditions C-28
diabling delayed versions of signals in other

timing checks C-28
shared object file

OpenVera D-6
show_setup command 1-13
signal port mismatch

changing from an error to a warning condition
C-53

signal property access funtions
OpenVera

enabling C-16
signed variables

accessing 19-147
simulation

immediately after compilation C-20
setup variables A-10

simulation report at the end of simulation
suppressing D-21

simulation state
saving E-42

simv executable
specifying a deifferent name C-56

single class 14-28
single packed dimension 14-42
size PLI specification 20-8
$skew E-37
-skip_translate_body C-58
-slave C-30
slave mode in PLI C-30
Smart Order 25-1
soft constraint 14-27
soft constraints 14-26, 14-34

disabling 14-26
prioritization 14-28

soft keyword 14-27
solver trace reporting

for the specified randomize() calls 14-16
SOMA 28-2
souce protection

enabling overwriting of existing files C-44
enabling PLI and UCLI access C-44
encrypting all modules C-43

but not the module headers C-44
but not the module headers and parameter

declarations C-44
specifying the directory for protected files

C-44
specifying with ‘protect ‘endprotect C-44

source protection
SDF files C-44
specifying the end of the code to be

protected E-6
specifying the end of the protected code E-7
specifying the start of the code to be

protected E-7
specifying the start of the protected code E-7

spc setup variable A-4
specify blocks

disabling for an instance 9-38
suppressing

in specific module instances 9-38
specifying C-32
srandom(seed) system function D-6, D-7

IN-22

$sreadmemb E-33
$sreadmemh E-33
stack guard

increasing size 19-214
stack overrun

diagnosing 19-215
stack size

increasing 19-214
state variables 14-25

initializing C-18
Static Race Detection Tool C-47
std

randomize() method 11-36
$stimen E-38
 D-33
$stop E-34
stopping simulation at a specified time D-20
strength information

disabling in VPD files D-25
string

C/C++ function argument type 20-51
C/C++ function return type 20-50
input argument type 20-64
output and inout argument type 20-64

$strobe E-30
sub-members 19-161
SV and RT assertions

browse, enable, and disable C-32
sv_fmt argument to -ntb_opts C-15
-sv_opts B-6
-sv_package_export 11-82, C-6
-sv_pragma 2-9, B-17
SVA 17-35
-sva B-6
-sverilog C-6
$sync$nor$plane E-37
/*synopsys translate_off*/ pragma C-58
//synopsys translate_off pragma C-58
/*synopsys translate_on*/ pragma C-59
//synopsys translate_on pragma C-59
SYNOPSYS_SIM

default name mapping 1-11
synthesis policy checking A-4
-sysc C-52
SYSC_USE_PTHREADS 19-236
-sysc=dpi_if 19-204
-sysc=nodpi_if 19-204
-sysc=nomulti_start 19-229
-sysc=show_sc_main 19-241
-sysc=stacksize 19-214

1024k 19-230
-sysc=unihier 19-237
syscan 19-204

-prec 19-206
syscan -prec

limitations 19-210
syscan utility 19-10–19-13, 19-40–19-42, ??–
19-42
$system E-27
system tasks E-11–E-46, ??–E-46

disabling text output from D-22
IEEE standard system tasks not

implemented E-46
SystemC 19-204

accessing Verilog variables 19-141
cosimulating with Verilog 1-2, 19-1

SystemC cosimulation C-55
enabling C-52
time resolution C-52

systemc_user.h 19-252
systemc.h 19-206
$systemf E-28
SystemVerilog 14-26

enabling C-6
exporting packages 11-82, C-6
randomized objects in a structure 14-46

SystemVerilog assertions 17-1–??
SystemVerilog LRM 14-36
+systemverilogext 2-11, B-21

T
-t 12-9

IN-23

target_directory 19-206
tasks, exporting 12-8
tb_timescale argument to -ntb_opts B-15, C-16
tchk ACC capability 20-13
temporary object files C-39
$test$plusargs E-40
testbench

OpenVera
timescale C-16

testbench template 12-12
+tetramax C-53
TetraMAX testbench simulation in zero delay
mode C-53
text macros

defining E-3
else defining E-3
else if end E-3
elseif defining E-3
if defining E-4
if not defined E-4
undefining E-5

text output display from system tasks
disabling D-22

The %if Construct 18-11
$time E-38
time base C-48
time precision

as delay specification E-5
time resolution C-49
time scale

for the compilation-unit scope C-48
overrideing the ‘timescale compiler directive

f4rom the vcs command line C-48
time scale for time units and time precision E-8
timebase setup variable A-6
timebase variable C-49
$timeformat E-33
-timescale B-17
‘timescale E-8
timescale

OpenVera testbench C-16
overriding B-17
specifying with -timescale B-17

timing check system tasks
checking timestamp and timecheck

conditions C-28
disabling

in specific module instances 9-38
disabling delayed versions of signals C-28
disabling display of timing violations C-25
negative values enabling C-28

timing check system tasks, disabling C-25
timing checks

disabling D-19
disabling for an instance 9-38
suppressing the toggling of notifier registers

D-19
timing violations

disabling C-25
disabling the display of D-19

timming checks
disabling the display of timing violations D-19

Timopt
the timing optimizer 9-38–9-43

+timopt 9-39
TLI

function call 19-149
TLI adapters 19-308
–tli_D 19-168
tli_D 19-166
tli_gen_struct 19-169
tli_get_ 19-141, 19-158
tli_get_bv 19-146
tli_get_int64 19-162
tli_get_logic 19-162
tli_get_lv 19-146
TLI_REGISTER_ID(char *,) 19-136
tli_set_ 19-141, 19-158
tli_simple 19-138
TLI_UNREGISTER_ID(char *) 19-136
TLI-2

adaptor code 19-132
–tliF 19-155
TMPDIR A-31
tokens argument to -ntb_opts C-16

IN-24

tokens.v file 17-21
top-level Verilog Module 12-12
transport delays C-22
+transport_int_delays 9-23, 9-25, 9-27, C-22
+transport_path_delays 9-22, 9-25, 9-27, C-22
+typdelays C-20, C-21, D-27
type conversion mechanism 19-164

U
U

direct access for C/C++ functions
formal parameter type 20-62

-u C-56
U*

direct access for C/C++ functions
formal parameter type 20-62

UB*
direct access for C/C++ functions

formal parameter type 20-62
UCLI 19-236

dump 19-238
enabling in encrypted files C-44
save and restore 19-232
scope 19-238

-ucli 4-6
UDPs

sequential UDPs
changing output evaluation to the NBA time

slot C-58
+udpsched C-57
‘unconnected_drive E-10
‘undef E-5
$ungetc E-32
uniq_prior_final compiler switch 11-66
unique keyword 11-66
-unit_timescale C-48
uppercase

changing Verilog identifiers to C-56
use setup variable A-15
use_sigprop B-16, C-16
use_sigprop argument to -ntb_opts B-16, C-16

-use_vpiobj 20-34, C-32
‘uselib E-8
user guides, reference manuals, quick
references, tutorials in HTML format C-6
user-defined plusarg enabling D-33
user-defined seed D-30
utility, vcsplit 7-46
UVM 19-250

V
-V 2-17, C-35, D-21
-v C-36
vacuous success message enabling D-14
$value$plusargs 4-12
+vc 20-123, C-33
vc_2stVectorRef() 20-94
vc_4stVectorRef() 20-92
vc_argInfo() 20-116
vc_arraySize() 20-82
vc_FillWithScalar() 20-113
vc_get2stMemoryVector() 20-109
vc_get2stVector() 20-98
vc_get4stMemoryVector() 20-107
vc_get4stVector() 20-96
vc_getInteger() 20-92
vc_getMemoryInteger() 20-104
vc_getMemoryScalar() 20-103
vc_getPointer() 20-90
vc_getReal() 20-87
vc_getScalar() 20-82
vc_handle

definition 20-72
using 20-72–20-74

vc_hdrs.h file 20-69–20-70
in DirectC C-33

vc_Index() 20-117
vc_Index2() 20-118
vc_Index3() 20-118
vc_is2state() 20-79
vc_is2stVector() 20-81

IN-25

vc_is4state() 20-78
vc_is4stVector() 20-80
vc_isMemory() 20-77
vc_isScalar() 20-75
vc_isVector() 20-76, 20-119
vc_mdaSize() 20-118
vc_MemoryElemRef) 20-101
vc_MemoryRef() 20-98
vc_MemoryString() 20-111
vc_MemoryStringF() 20-112
vc_put2stMemoryVector() 20-109
vc_put2stVector() 20-98
vc_put4stMemoryVector() 20-109
vc_put4stVector() 20-96
vc_putInteger() 20-92
vc_putMemoryInteger() 20-106
vc_putMemoryScalar() 20-104
vc_putMemoryValue() 20-110
vc_putMemoryValueF() 20-110
vc_putPointer() 20-90
vc_putReal() 20-87
vc_putScalar() 20-83
vc_putValue() 20-87
vc_putValueF() 20-88
vc_StringToVector() 20-91
vc_toChar() 20-83
vc_toInteger() 20-83
vc_toString() 20-85
vc_toStringF() 20-86
vc_VectorToString() 20-92
vc_width() 20-82
vcat utility 7-32
VCD file

specifying on the vcs command line C-54
-vcd filename D-25
VCD files

checkpoint
recording current values E-13
start recording current values E-13
stop recording current values E-13

emptying or flushing the buffer E-13

enabling VCD dumping for memories and
multi-dimensional arrays D-25

flushing the latest data to all open VCD files
E-14

flushing the latest data to the VCD file E-14
for LSI certification E-15
grw.dump file E-14
including strength levels E-15
increasing the frequency of flushing C-34
increasing the frequency of VCD file dumping

D-26, D-28
LSI certification

flushing the buffer E-17
recording all port values E-17
resume recording E-17
specifying the file size E-18
suspending E-16

recording in another VCD file E-14
specifing the time to turn on VCD dumping

D-25
specifying a limit to the VCD file size E-13
specifying the filename E-13
specifying the name of the VCD file D-25
specifying the nets and variables recorded in

the file E-13
specifying the time to turn off VCD dumping

D-25
VCD+ 7-2

Advantages 7-2
System Tasks

$vcdplusdeltacycleoff 7-18
$vcdplusdeltacycleon 7-18
$vcdplusmemoff 7-8
$vcdplusmemon 7-8
$vcdplusmemorydump 7-8

vcdiff utility 7-24
syntax 5-25, 7-25

$vcdplusautoflushoff E-19
$vcdplusautoflushon E-19
$vcdplusclose E-19
$vcdplusdeltacycleon E-19
$vcdplusdumpportsoff E-21
$vcdplusdumpportson E-21
$vcdplusevent E-20

IN-26

$vcdplusfile E-22
$vcdplusflush E-22
$vcdplusglitchon E-22
$vcdplusmemoff E-24
$vcdplusmemon E-22
$vcdplusmemorydump E-24
$vcdplusoff E-24
$vcdpluson E-25
$vcdplustraceoff E-26
VCS 3-24

predefined text macro E-4
VCS MX 18-5
VCS MX V2K Configurations and Libmaps
3-24
VCS_CC A-31
VCS_COM A-31
VCS_HOME C-38
VCS_LIC_EXPIRE_WARNING A-31
VCS_LOG A-32
‘vcs_mipdexpand E-6
VCS_NO_RT_STACK_TRACE A-32
VCS_SWIFT_NOTES A-32
VCS_SYSC_STACKSIZE 19-230
+vcs+dumpoff+t+ht D-25
+vcs+dumpon+t+ht D-25
+vcs+finish 4-15, D-20
+vcs+flush+all D-28
+vcs+flush+dump D-26, D-28
+vcs+flush+fopen D-28
+vcs+flush+log D-28
+vcs+ignorestop D-33
+vcs+initreg+random

 D-30
+vcs+learn+pli 20-24–20-28, D-32
+vcs+mipd+noalias D-33
+vcs+mipdexpand E-6
+vcs+nostdout D-22
+vcs+stop 4-15, D-20
vcsplit utility 7-46
vec32

storing four state Verilog data 20-56–20-57

vec32*
direct access for C/C++ functions

formal parameter type 20-62
vera_portname argument to -ntb_opts B-16,
C-16
vera_shell

Vera shell module name C-17
Vera, exporting tasks 12-8
verbose mode - displaying

compile-time and runtime numbers D-21
copyright information D-21
version and extended summary information

D-21
Verilog identifiers

changing to uppwecase C-56
Verilog library

resolving module instances E-8
Verilog library directories

displaying a message upon instance
resolution C-4

specifying the search order C-4
rescan C-4

Verilog model, example 12-11
Verilog module 12-12
Verilog module description 12-19
Verilog parameters

overriding C-46, C-51
overriding with the -gfile elaboration option

C-45, C-49
+verilog1995ext 2-11, B-22
+verilog2001ext 2-11, B-22
VerilogAMS

defaule discrete discipline C-45
version number

returning C-38
VHDL

block statements 18-5
VHDL generics

overriding C-52
from a file C-52

overriding with the -gfile elaboration option
C-45, C-49

VHDL procedures, importing 12-6

IN-27

VHDL-93 2-4, B-3
vhdlan analyzer B-1
+vhdllib

vlogan option B-23
violation windows

using multiple non-overlapping 9-68–9-73
virtual interface

self instance 11-78
VITAL models

error messages 9-76
ignoring timing D-26

VITAL netlist 9-78
negative constraints calculation 9-82

vlogan 19-204, B-24
vlogan utility 19-27–19-28, ??–19-30
VMM C-15
void

C/C++ function return type 20-50
void*

direct access for C/C++ functions
formal parameter type 20-62

void**
direct access for C/C++ functions

formal parameter type 20-62
VPD file

specifying on the vcs command line C-54
VPD files E-18

buffer for
specifying the size of D-22

disable recording values for memories and
MDAs E-24

disabling delta cycle information D-25
disabling file compression D-24
disabling recording in transition times an

values defined under ‘celldefine C-37
disabling recording in transition times an

values defined under ‘celldefine or in a
library C-37

disabling recording strength information
D-25

enable or resume recording E-21
enabling recording in transition times an

values defined under ‘celldefine C-36
enabling VPD file locking D-24

ignoring $vcdplusxx system tasks D-23
marking as completed and closing E-19
record a unique event for a signal E-20
recording changes on the drivers of resolved

nets D-24
recording delta cycle information E-19
recording only ports and their direction D-24
recording ports and their direction D-24
recording signals but not ports D-24
recording values for memories and MDAs

E-22
records a snapshot of memories and MDAs

E-24
specifying the name D-22
specifying the next VPD file E-22
specifying the size of D-23
start recording E-25
stop recording E-24
suspend recording E-21
switching to record another VPD file D-23
turn off recording of the order of statement

execution E-26
turn on recording of the order of statement

execution E-26
turning off automatic flushing E-19
turning on automatic flushing E-19
turning on zero delay glitches E-22
write simulation results to the VPD file E-22

-vpddeltacapture D-25
+vpdfile 4-7
+vpdfileswitchsize 4-7
VPI 14-39

specifying the registration routine in a shared
library C-32

SV and RT assertions
browse, enable, and disable C-32

vpi_user.c file
specifying C-32

+vpi C-31
VPI PLI access routines

enabling C-31
vpi_user.c file C-32
-Vt C-35
vunit 18-5

IN-28

W
WAIT statement A-13
+warn C-35
$warning E-11
WARNING message A-10, A-13
warning messages

disabling C-35
sover array size warning D-7

$width E-37
wn ACC capability 20-12
-work

vlogan option B-18
WORK library 2-4, 2-10, B-3
$write E-30
$writememb E-33
$writememh E-33

X
-xlrm 9-5, C-57, D-33
-xlrm alt_retain 9-6
-xlrm gd_pulseprop 9-7
-xlrm gd_pulsewarn 9-8
-xlrm uniq_prior_final compile switch 11-66
XMR 14-24
-Xova 17-40
–Xova C-13

Y
-y C-36

Z
zero multiconcat multiplier

allowing C-53

	VCS Document Navigator
	Contents
	Getting Started
	Simulator Support with Technologies
	Setting Up the Simulator
	Verifying Your System Configuration
	Obtaining a License
	Setting Up Your Environment
	Setting Up Your C Compiler
	Creating a synopsys_sim.setup File
	The Concept of a Library In VCS MX
	Library Name Mapping
	Including Other Setup Files
	Using SYNOPSYS_SIM_SETUP Environment Variable

	Displaying Setup Information
	Displaying Design Information Analyzed Into a Library

	Using the Simulator
	Basic Usage Model

	Default Time Unit and Time Precision

	VCS MX Flow
	Analysis
	Using vhdlan
	Commonly Used Analysis Options

	Using vlogan
	Commonly Used Analysis Options

	Analyzing the Design to Different Libraries

	Elaboration
	Using vcs
	Commonly Used Options

	Simulation
	Interactive Mode
	Batch Mode
	Commonly Used Runtime Options

	Elaborating the Design
	Compiling or Elaborating the Design in Debug Mode
	Compiling or Elaborating the Design in Optimized Mode
	Key Elaboration Features
	Initializing Verilog Memories and Registers
	Use Model

	Overriding Generics and Parameters
	Usage Model

	Checking for X and Z Values In Conditional Expressions
	Enabling the Checking
	Filtering Out False Negatives

	Cross Module References (XMRs)
	hdl_xmr Procedure and $hdl_xmr System Task
	Data Types Supported
	VHDL Referencing Verilog using hdl_xmr procedure
	Verilog Referencing VHDL objects using $hdl_xmr
	Usage Model
	$hdl_xmr Support for VHDL Variables
	Datatype Support and Usage Examples

	VCS MX V2K Configurations and Libmaps
	Library Mapping Files
	Configurations
	Usage Model
	Example
	Using -liblist Option

	Evaluating the Active Events When Limiting the Exposure of Race Conditions
	Lint Warning Message for Missing ‘endcelldefine
	Error/Warning Message Control
	Controlling Error Messages
	Controlling Warning Messages
	Controlling Lint Messages
	Suppressing Lint, Warning, and Error Messages
	Error Conditions and Messages That Cannot Be Disabled
	Using Message Control Options Together
	Message Control Examples
	Obsolete Compile-Time Options for Controlling Messages

	Simulating the Design
	Using DVE
	Using UCLI
	ucli2Proc Command

	Options for Debugging Using DVE and UCLI
	Key Runtime Features
	Overriding Generics at Runtime
	Usage Model

	Passing Values from the Runtime Command Line
	VCS MX Supports simv -f
	Limitations

	Specifying a Long Time Before Stopping The Simulation

	Diagnostics
	Using Diagnostics
	Using –diag Option
	Using Smartlog

	Compile-time Diagnostics
	Libconfig Diagnostics
	Example

	Timescale Diagnostics
	Example

	Runtime Diagnostics
	Diagnostics for VPI/VHPI PLI Applications
	Keeping the UCLI/DVE Prompt Active After a Runtime Error
	UCLI Use Model
	DVE Use Model
	UCLI Usage Example
	Limitations

	Diagnosing Quickthread Issues in SystemC
	Quickthread Overruns Its Allocated Stack
	Simulation Runs Out of Memory Due to Quickthread Stacks
	Reducing or Turning Off Redzones

	Post-processing Diagnostics
	Using the vpdutil Utility to Generate Statistics
	The vpdutil Utility Syntax
	Options

	VCS Multicore Technology Application Level Parallelism
	VCS Multicore Technology Options
	Use Model for Assertion Simulation
	Use Model for Toggle and Functional Coverage
	Use Model for VPD Dumping

	Running VCS Multicore Simulation
	Assertion Simulation
	Toggle Coverage
	Functional Coverage
	VPD File

	Parallel SAIF
	Customary SAIF System Function Entries
	Enabling Parallel SAIF
	Limitations

	VPD, VCD, and EVCD Utilities
	Advantages of VPD
	Dumping a VPD File
	Using System Tasks
	Enable and Disable Dumping
	Override the VPD Filename
	Dump Multi-dimensional Arrays and Memories
	Using $vcdplusmemorydump
	Capture Delta Cycle Information

	Dumping an EVCD File
	Limitations

	Post-processing Utilities
	The vcdiff Utility
	The vcdiff Utility Syntax

	The vcat Utility
	The vcat Utility Syntax
	Generating Source Files From VCD Files
	Writing the Configuration File

	The vcsplit Utility
	The vcsplit Utility Syntax

	The vcd2vpd Utility
	Options for specifying EVCD options

	The vpd2vcd Utility
	The Command File Syntax

	The vpdmerge Utility
	The vpdutil Utility

	Performance Tuning
	Compile-time Performance
	Incremental Compilation
	Compile Once and Run Many Times
	Parallel Compilation

	Runtime Performance
	Using Radiant Technology
	Compiling With Radiant Technology
	Applying Radiant Technology to Parts of the Design

	Improving Performance When Using PLIs
	Usage Model

	Impact on Performance
	Obtaining VCS Consumption of CPU Resources
	Use Model
	Compile time
	Simulation Time

	Gate-level Simulation
	SDF Annotation
	Using Unified SDF Feature
	Using $sdf_annotate System Task
	Using -xlrm Option for SDF Retain, Gate Pulse Propagation, and Gate Pulse Detection Warning
	Using Optimistic Mode in SDF
	Using Gate Pulse Propagation
	Generating Warnings During Gate Pulses

	Precompiling an SDF File
	Creating the Precompiled Version of the SDF file

	SDF Configuration File
	Delay Objects and Constructs
	SDF Configuration File Commands
	approx_command
	mtm_command
	scale_command
	SDF Example with Configuration File

	Delays and Timing
	Transport and Inertial Delays
	Different Inertial Delay Implementations
	Enabling Transport Delays

	Pulse Control
	Pulse Control with Transport Delays
	Pulse Control with Inertial Delays
	Specifying Pulse on Event or Detect Behavior

	Specifying the Delay Mode

	Using the Configuration File to Disable Timing
	Using the timopt Timing Optimizer
	Editing the timopt.cfg File
	Editing Potential Sequential Device Entries
	Editing Clock Signal Entries

	Using Scan Simulation Optimizer
	ScanOpt Config File Format
	ScanOpt Assumptions

	Negative Timing Checks
	The Need for Negative Value Timing Checks
	The $setuphold Timing Check Extended Syntax
	Negative Timing Checks for Asynchronous Controls
	The $recrem Timing Check Syntax

	Enabling Negative Timing Checks
	Other Timing Checks Using the Delayed Signals
	Checking Conditions
	Toggling the Notifier Register
	SDF Back-annotation to Negative Timing Checks
	How VCS MX Calculates Delays
	Using Multiple Non-overlapping Violation Windows

	Using VITAL Models and Netlists
	Validating and Optimizing a VITAL Model
	Validating the Model for VITAL Conformance
	Verifying the Model for Functionality
	Optimizing the Model for Performance and Capacity
	Re-Verifying the Model for Functionality
	Understanding Error and Warning Messages
	Distributing a VITAL Model

	Simulating a VITAL Netlist
	Applying Stimulus
	Overriding Generic Parameter Values
	Understanding VCS MX Error Messages
	Viewing VITAL Subprograms
	Timing Back-annotation
	VCS MX Naming Styles
	Negative Constraints Calculation (NCC)
	Simulating in Functional Mode

	Understanding VITAL Timing Delays and Error Messages
	Negative Constraint Calculation (NCC)
	Conformance Checks
	Error Messages

	Coverage
	Code Coverage
	Functional Coverage
	Options For Coverage Metrics

	Using SystemVerilog
	Usage Model
	Using UVM With VCS
	Update on UVM-1.0
	Update on UVM-EA
	Natively Compiling and Elaborating UVM-1.0
	Natively Compiling and Elaborating UVM-1.1a
	Compiling the External UVM Library
	Using the -ntb_opts uvm Option
	Explicitly Specifying UVM Files and Arguments

	Accessing HDL Registers Through UVM Backdoor
	Generating UVM Register Abstraction Layer Code
	Recording UVM Transactions
	UVM Template Generator (uvmgen)
	Using Mixed VMM/UVM Libraries
	Migrating from OVM to UVM
	Where to Find UVM Examples
	Where to Find UVM Documentation
	UVM-1.1a Documentation
	UVM-1.0 Documentation
	UVM-VMM Interop Documentation

	Using VMM with VCS
	Using OVM with VCS
	Native Compilation and Elaboration of OVM 2.1.2
	Compiling the External OVM Library
	Using the -ntb_opts ovm Option
	Explicitly Specifying OVM Files and Arguments

	Recording OVM Transactions
	Running Native OVM Code in Partition Compile Flow

	Debugging SystemVerilog Designs
	Functional Coverage
	Newly implemented SystemVerilog Constructs
	Support for Aggregate Methods in Constraints Using the “with” Construct
	Debugging During Initialization SystemVerilog Static Functions and Tasks in Module Definitions
	Explicit External Constraint Blocks
	Generate Constructs in Program Blocks
	Error Condition for Using a Genvar Outside of its Generate Block

	Randomizing Unpacked Structs
	Using the Scope Randomize Method std::randomize()
	Using the Class Randomize Method randomize()
	Disabling and Re-enabling Randomization
	Using In-line Random Variable Control
	Limitation

	Making wait fork Statements Compliant with the SV LRM
	Making disable fork Statements Compliant with the SV LRM

	Recently Implemented SystemVerilog Constructs
	The std::randomize() Function
	SystemVerilog Bounded Queues
	wait() Statement with a Static Class Member Variable
	Parameters and Localparams in Classes
	SystemVerilog Math Functions
	Streaming Operators
	Packing (Used on RHS)
	Unpacking (Used on LHS)
	Packing and Unpacking
	Propagation and force Statement
	Error Conditions
	Structures with Streaming Operators

	Extensions to SystemVerilog
	Unique/Priority Case/IF Final Semantic Enhancements
	Using Unique/Priority Case/If with Always Block or Continuous Assign
	Using Unique/Priority Inside a Function
	System Tasks to Control Warning Messages

	Single-Sized Packed Dimension Extension
	Covariant Virtual Function Return Types
	Self Instance of a Virtual Interface
	UVM Example

	Error Condition for Using a Genvar Outside of its Generate Block
	Exporting a SystemVerilog Package
	Use Model
	Backward Compatibility

	Using a Package in a SystemVerilog Module, Program, and Interface Header

	Using OpenVera Native Testbench
	Usage Model
	Example
	Usage Model
	Importing VHDL Procedures
	Exporting OpenVera Tasks
	Using Template Generator
	Example

	Key Features
	Multiple Program Support
	Configuration File Model
	Configuration File
	Usage Model for Multiple Programs
	NTB Options and the Configuration File

	Separate Compilation of Testbench Files
	Usage Model
	Example

	Class Dependency Source File Reordering
	Circular Dependencies
	Dependency-based Ordering in Encrypted Files

	Using Encrypted Files
	Functional Coverage
	Using Reference Verification Methodology
	Limitations

	Aspect Oriented Extensions
	Aspect-Oriented Extensions in SV
	Processing of AOE as a Precompilation Expansion
	Weaving advice into the target method

	Pre-compilation Expansion details
	Precedence

	Using Constraints
	Inconsistent Constraints
	Constraint Debug
	Partition
	Randomize Serial Number
	Solver Trace
	Constraint Profiler
	Test Case Extraction
	Using multiple +ntb_solver_debug arguments
	Summary for +ntb_solver_debug
	+ntb_solver_debug=serial
	+ntb_solver_debug=trace
	+ntb_solver_debug=profile
	+ntb_solver_debug=extract

	Constraint Debug Using DVE
	Constraint Guard Error Suppression
	Error Message Suppression Limitations
	Flattening Nested Guard Expressions
	Pushing Guard Expressions into Foreach Loops

	Array and XMR Support in std::randomize()
	Error Conditions

	XMR Support in Constraints
	XMR Function Calls in Constraints

	State Variable Index in Constraints
	Runtime Check for State Versus Random Variables
	Array Index

	Using Soft Constraints in SystemVerilog
	Using Soft Constraints
	Soft Constraint Prioritization
	Within a Single Class

	Soft Constraints Defined in Classes Instantiated as rand Members in Another Class
	Soft Constraints Inheritance Between Classes
	Soft Constraints in AOP Extensions to a Class
	Soft Constraints in View Constraints Blocks
	Discarding Lower-Priority Soft Constraints

	Using DPI Function Calls in Constraints
	Invoking Non-pure DPI Functions from Constraints

	Using Foreach Loops Over Packed Dimensions in Constraints
	Memories with Packed Dimensions
	Single Packed Dimension
	Multiple Packed Dimensions

	MDAs with Packed Dimensions
	Single Packed Dimension
	Multiple Packed Dimensions
	Just Packed Dimensions

	The foreach Iterative Constraint for Packed Arrays

	Randomized Objects in a Structure

	Extensions for SystemVerilog Coverage
	Support for Reference Arguments in get_coverage()
	get_inst_coverage() method
	get_coverage() method

	Functional Coverage Methodology Using the SystemVerilog C/C++ Interface
	SystemVerilog Functional Coverage Flow
	Covergroup Definition
	SystemVerilog (Covergroup for C/C++): covg.sv
	C Testbench: test.c
	Approach #1: Passing Arguments by Reference
	Approach #2: Passing Arguments by Value
	Compile Flow
	Runtime

	C/C++ Functional Coverage API Specification

	OpenVera-SystemVerilog Testbench Interoperability
	Scope of Interoperability
	Importing OpenVera types into SystemVerilog
	Data Type Mapping
	Mailboxes and Semaphores
	Events
	Strings
	Enumerated Types
	Integers and Bit-Vectors
	Arrays
	Structs and Unions

	Connecting to the Design
	Mapping Modports to Virtual Ports
	Virtual Modports
	Importing Clocking Block Members into a Modport

	Semantic Issues with Samples, Drives, and Expects

	Notes to Remember
	Blocking Functions in OpenVera
	Constraints and Randomization
	Functional Coverage

	Usage Model
	Limitations

	Using SystemVerilog Assertions
	Using SVAs in the HDL Design
	Using Standard Checker Library
	Instantiating SVA Checkers in Verilog
	Instantiating SVA Checkers in VHDL

	Inlining SVAs in the Verilog Design
	Usage Model

	Inlining SVA in the VHDL design
	Usage Model

	Controlling SystemVerilog Assertions
	Elaboration and Runtime Options
	Assertion Monitoring System Tasks
	Using Assertion Categories
	Using System Tasks
	Using Attributes
	Stopping and Restarting Assertions By Category

	Viewing Results
	Using a Report File

	Enhanced Reporting for SystemVerilog Assertions in Functions
	Introduction
	Usage Model
	Name Conflict Resolution
	Checker and Generate Blocks

	Controlling Assertion Failure Messages
	Introduction
	Options for Controlling Default Assertion Failure Messages
	Options to Control Termination of Simulation
	Option to Enable Compilation of OVA Case Pragmas

	Enabling IEEE Std. 1800-2009 Compliant Features
	Limitations

	Using Property Specification Language
	Including PSL in the Design
	Examples

	Usage Model
	Examples

	PSL Assertions Inside VHDL Block Statements in Vunit
	Introduction
	Use Model
	Limitations

	PSL Macro Support in VHDL
	Using the %for Construct
	Using the %if Construct
	Using Expressions with %if and %for Constructs
	PSL Macro Support Limitations

	Using SVA Options, SVA System Tasks, and OV Classes
	Limitations

	Using SystemC
	Overview
	Verilog Design Containing Verilog/VHDL Modules and SystemC Leaf Modules
	Usage Model
	Input Files Required
	Generating Verilog/VHDL Wrappers for SystemC Modules

	Supported Port Data Types
	Example
	Compiling Interface Models with acc_user.h and vhpi_user.h
	Controlling Time Scale and Resolution in a SystemC
	Automatic adjustment of the time resolution
	Setting time scale/resolution of Verilog or VHDL kernel
	Setting time scale/resolution of SystemC kernel

	Adding a Main Routine for Verilog-On-Top Designs
	SNPS_REGISTER_SC_MAIN

	SystemC Designs Containing Verilog and VHDL Modules
	Usage Model
	Input Files Required
	Generating a SystemC Wrapper for Verilog Modules
	Generating A SystemC Wrapper for VHDL Design

	Example
	Elaboration Scheme
	SNPS_REGISTER_SC_MODULE

	VHDL Design Containing Verilog/VHDL Modules and SystemC Leaf Modules
	Usage Model
	Input Files Required
	Generating a Verilog/VHDL Wrapper for SystemC Modules

	Example
	Use Model

	SystemC Only Designs
	Usage Model
	Restrictions
	Supported and Unsupported UCLI/DVE and CBug Features

	Controlling TimeScale Resolution
	Setting Timescale of SystemC Kernel
	Automatic Adjustment of Time Resolution

	Considerations for Export DPI Tasks
	Use syscan -export_DPI [function-name]
	Use syscan -export_DPI [Verilog-file]
	Use a Stubs File
	Using options -Mlib and -Mdir

	Specifying Runtime Options to the SystemC Simulation
	Using a Port Mapping File
	Automatic Creation of Portmap File

	Using a Data Type Mapping File
	Combining SystemC with Verilog Configurations
	Verilog-on-top, SystemC and/or VHDL down
	Compiling a Verilog/SystemC design
	Compiling a Verilog/SystemC+VHDL design

	SystemC-on-top, Verilog and/or VHDL down
	Compiling a SystemC/Verilog design
	Compiling a SystemC/Verilog+VHDL design

	Limitations

	Parameters
	Parameters in Verilog
	Parameters in VHDL
	Parameters in SystemC
	Verilog-on-Top, SystemC-down
	VHDL-on-Top, SystemC-down
	SystemC-on-Top, Verilog or VHDL down
	Namespace
	Parameter specification as vcs elaboration arguments
	Debug
	Limitations

	Debugging Mixed Simulations Using DVE or UCLI
	Improved CBug Debugging Capabilities
	Viewing sc_signal of User-defined struct in Waveform Window
	Driver/Load Support for SystemC Designs in Post Processing

	Transaction Level Interface
	Interface Definition File
	Generation of the TLI Adapters
	Transaction Debug Output
	Instantiation and Binding
	Supported Data Types of Formal Arguments
	Miscellaneous

	Delta-cycles
	Using a Customized SystemC Installation
	Compatibility with OSCI SystemC
	Compiling Source Files

	Using Posix threads or quickthreads
	VCS Extensions to SystemC Library
	Installing VG GNU Package
	Static and Dynamic Linking
	Static Linking in VCS MX
	Dynamic Linking in VCS MX (For C/C++ Files)
	Dynamic Linking in VCS MX (For SystemC Files)
	LD_LIBRARY_PATH Environment Variable

	Limitations
	Verilog wrapper needed for pure VHDL-top-SystemC down

	Incremental Compile of SystemC Source Files
	Full Build from Scratch
	Full Incremental Build
	Partial Build with Object Files
	Partial Build with Shared Libraries
	Updating the Shared Library
	Using Different Libraries
	Partial Build Invoked with vcs
	Partial Build if Just One Shared Library is Updated
	Adding or Deleting SC Source Files in Shared Library
	Changing From a Shared Library Back to Object Files

	Suppressing Automatic Dependency Checking
	Restrictions

	TLI Direct Access
	Accessing SystemC Members from SystemVerilog
	TLI Adaptor
	Instantiating the TLI adaptor in SV
	Direct Variable Access
	Calling SystemC Member Function
	Arguments of Type char* used in Blocking Member Functions
	Supported Data Types
	SC_FIFO
	Non-SystemC Classes
	Sub-classes
	Name Clashes
	Error Handling
	Compile Flow
	Syntax of TLI File
	Debug Flow

	Accessing Struct or Class Members of a SystemC Module from SystemVerilog
	Enhancements to TLI for Providing Access to SystemC/ C++ Class Members from SystemVerilog
	Accessing Struct or Class Members of a SystemC Module Object from SystemVerilog
	Accessing Generic C++ Struct or Class
	Extensions of TLI Input File
	Invoking Pack or Unpack Adaptor Code Generation
	Limitations

	Accessing Verilog Variables from SystemC
	Usage Model
	Access Functions
	Supported Data Types
	Usage Example
	Type Conversion Mechanism

	Accessing SystemVerilog Functions and Tasks from SystemC
	Introduction
	Usage Model
	Function Declaration Hierarchy
	Passing Arguments
	Supported Types
	Usage Example
	Compile Flow
	Usage Guidelines
	Limitations

	Accessing SystemC Members from SystemVerilog Using the tli_get_<type> or tli_set_<type> Functions
	Using the tli_get_<type> and tli_set_<type> Functions
	Prototypes of tli_get_<type> and tli_set_<type> Functions
	Supported Data Types
	Member Variables
	Type Conversion Mechanism
	Compile Flow

	Generating C++ Struct Definition from SystemVerilog Class Definition
	Use Model for Generating C++ Struct from SystemVerilog Class
	Data Type Conversion from SystemVerilog to C++
	Example for Generating C++ Struct from SystemVerilog Class
	Limitations

	Supporting Designs with Donut Topologies
	Exchanging Data Between SystemVerilog and SystemC Using Byte Pack/Unpack
	Use Model
	Supported Data Types
	Unsupported Data Types

	Mapping of SystemC/C++ and SystemVerilog/VMM Data Types
	Usage Examples
	Using the Pack Operator
	Using Unpack Operator

	Using Pack and Unpack Functions
	Using Code Generator
	Naming Convention
	Input Files
	Output Files
	Supported Data types for Automatic Code Generation
	Correcting the Generated Files
	Compile Flow
	Usage Example for Code Generator

	Using Direct Program Interface Based Communication
	Limitations of Using DPI-based Communication Between Verilog and SystemC

	Improving VCS-SystemC Compilation Speed Using Precompiled C++ Headers
	Introduction to Precompiled Header Files
	Using Precompiled Header Files
	Example to Use the Precompiled Header Files
	Invoking the Creation of Precompiled Header Files
	Limitations
	Limitations of syscan -prec
	Limitations of using -prec with path
	Limitations of Sharing Precompiled Header Files

	Increasing Stack and Stack Guard Size
	Increasing the Stack Size
	Increasing the Stack Guard Size
	Guidelines to Diagnose Stack Overrun

	Debugging SystemC Runtime Errors
	Debugging SystemC Kernel Errors
	Troubleshooting Your Elaboration Errors
	Troubleshooting Your Runtime Errors
	Function cbug_stop_here()
	Limitations

	Diagnosing Quickthread Issues

	Using HDL and SystemC Sync Loops
	The Coarse-Grained Sync Loop (blocksync)
	The Fine-Grained Sync Loop (deltasync)
	Run Time
	Alignment of Delta Cycles
	Example Syntax

	Restrictions
	Restrictions That No Longer Apply

	Newsync is Now Default

	Controlling Simulation Run From sc_main
	Effect on end_of_simulation Callbacks

	UCLI Save Restore Support for SystemC-on-top and Pure-SystemC
	SystemC with UCLI Save and Restore Use Model
	SystemC with UCLI Save and Restore Coding Guidelines
	Saving and Restoring Files During Save and Restore
	Restoring the Saved Files from the Previous Saved Session
	Limitations of UCLI Save Restore Support

	Enabling Unified Hierarchy for VCS and SystemC
	Using Unified Hierarchy Elaboration
	Value Added by Option –sysc=unihier

	Using the –sysc=show_sc_main Switch
	SystemC Unified Hierarchy Flow Limitations

	Aligning VMM and SystemC Messages
	Introduction
	Use Model
	Changing Message Alignment Settings
	Mapping SystemC to VMM Severities
	Filtering Messages
	Limitations

	UVM Message Alignment
	Enabling UVM Message Alignment
	Accessing UVM Report Object of SystemC Instance

	Introducing TLI Adapters
	TLI Adapter Overview
	SystemC Adapters
	Global Package
	User Package
	Use Model
	VMM Channel Interface (vmm_tlm_generic_payload)
	VMM TLM Interface (vmm_tlm_generic_payload)
	VMM Channel/TLM Interface (Other data type)
	SV Interface Other Than vmm_channel/vmm_tlm
	VMM Channel Interface Details
	VMM TLM Interface Details

	E xamples
	Example-1
	Example-2
	Example-3
	Example-4
	Example-5
	Example-6
	Example-7
	Example-8
	Example-9
	Example-10

	Using VCS UVM TLI Adapters
	Using the UVM TLI Adapters
	UVM TLM Interface
	UVM Analysis Interface
	Handling Multiple Subscribers

	UVM TLM Communication Examples
	uvm_tlm_blocking Example
	uvm_tlm_nonblocking Example
	uvm_tlm_analysis Example

	Modeling SystemC Designs with SCV
	SCV Library in VCS
	Use model

	msglog Extensions for Transaction Recording with SCV in VCS
	Use Model

	Viewing SystemC sc_report_handler Messages from Log File

	C Language Interface
	Using PLI
	Writing a PLI Application
	Functions in a PLI Application
	Header Files for PLI Applications
	PLI Table File
	Syntax
	Using the PLI Table File

	Enabling ACC Capabilities
	Globally
	Using the Configuration File
	Selected ACC Capabilities

	PLI Access to Ports of Celldefine and Library Modules
	Example
	Visualization in DVE

	Using VPI Routines
	Support for VPI Callbacks for Reasons cbForce and cbRelease
	Support for the vpi_register_systf Routine
	Integrating a VPI Application With VCS MX
	PLI Table File for VPI Routines
	Virtual Interface Debug Support
	Example
	Limitations

	Unimplemented VPI Routines

	Using VHPI Routines
	Diagnostics for VPI/VHPI PLI Applications
	Using DirectC
	Using Direct C/C++ Function Calls
	How C/C++ Functions Work in a Verilog Environment
	Declaring the C/C++ Function
	Calling the C/C++ Function
	Storing Vector Values in Machine Memory
	Converting Strings
	Avoiding a Naming Problem
	Using Pass by Reference

	Using Direct Access
	Using the vc_hdrs.h File
	Access Routines for Multi-Dimensional Arrays

	Using Abstract Access
	Using vc_handle
	Using Access Routines
	Summary of Access Routines

	Enabling C/C++ Functions
	Mixing Direct And Abstract Access
	Specifying the DirectC.h File

	Extended BNF for External Function Declarations

	SAIF Support
	Using SAIF Files with VCS MX
	SAIF System Tasks for Verilog or Verilog-Top Designs
	The Flows to Generate a Backward SAIF File
	Generating an SDPD Backward SAIF File
	Generating a Non-SPDP Backward SAIF File

	SAIF Calls That Can Be Used on VHDL or VHDL-Top Designs
	SAIF Support for Two-Dimensional Memories in v2k Designs
	UCLI SAIF Dumping
	Criteria for Choosing Signals for SAIF Dumping

	Encrypting Source Files
	128-bit Advanced Encryption Standard
	Using Compiler Directives or Pragmas
	Example

	Using Automatic Protection Options

	gen_vcs_ip
	Syntax
	Analysis Options

	Exporting The IP
	Use Model
	IP Vendor
	IP Generation
	IP User

	Licensing

	Integrating VCS MX with Vera
	Setting Up Vera and VCS MX
	Using Vera with VCS MX
	Usage Model

	Using HSIM-VCS MX DKI Mixed-Signal Simulation
	Environment Setup
	Usage Model
	Example

	Integrating VCS MX with NanoSim
	Environment Setup
	Use Model
	Example

	Integrating VCS MX with XA
	Introduction to VCS MX-XA
	Analyzing a Design
	Elaborating a Design
	Running the Simulation

	Setting up the Environment
	Use Model
	Analyzing Netlists
	Elaborating the Design
	Simulating the Design

	Example

	Integrating VCS MX with Specman
	Type Support
	Usage Flow
	Setting Up The Environment
	Specman e code accessing VHDL only
	Specman e Code Accessing Verilog Only
	e code accessing both VHDL and Verilog
	Guidelines for Specifying HDL Path or Tick Access with VCS MX-Specman Interface

	Using specrun and specview
	Adding Specman Objects To DVE
	Version Checker for Specman
	Use Model

	Integrating VCS MX with Denali
	Setting Up Denali Environment for VCS MX
	Integrating Denali with VCS MX
	Usage Model
	Usage Model for VHDL Memory Models
	Usage Model for Verilog Memory Models
	Execute Denali Commands at UCLI Prompt

	Integrating VCS MX with Debussy
	Using the Current Version of VCS MX with Novas 2010.07 Version
	Setting Up Debussy
	Usage Model to Dump fsdb File
	Using VHDL Procedures or Verilog System Tasks
	Using UCLI

	Examples

	Integrating VCS with MVSIM Native Mode
	Introduction to MVSIM
	MVSIM Native Mode in VCS
	References

	Migrating to VCS MX
	Step 1: Setting Up The Environment
	Step 2: Analysis
	Step 3: Elaboration
	Step 4: Simulation
	Simulation Executable
	User Interface Commands
	Simulation Results
	Coding Style
	LRM Extensions

	VCS MX Environment Variables
	Setup Variables
	Analysis Setup Variables
	Compilation/Elaboration Setup Variables
	Simulation Setup Variables
	C Compilation and Linking Setup Variables
	New Timescale Implementation
	Understanding `timescale
	Verilog only and Verilog Top Mixed Design
	VHDL only and VHDL Top Mixed Designs
	Setting up Simulator Resolution From Command Line
	Other Useful Timescale Related Switches
	Non compatible switches
	Limitations

	Optional Environment Variables

	Analysis Utilities
	The vhdlan Utility
	Using Smart Order
	Use Model
	Limitations

	The vlogan Utility

	Elaboration Options
	Option for Accessing Verilog Libraries
	Options for Incremental Compilation
	Options for Help and Documentation
	Options for SystemVerilog
	Options for SystemVerilog Assertions
	Options to Enable Compilation of OVA Case Pragmas
	Options for Native Testbench
	Options for Initializing Memories and Registers with Random Values
	Options for Using Radiant Technology
	Options for 64-bit Compilation
	Options for Starting Simulation Right After Compilation
	Options for Specifying Delays and SDF Files
	Options for Compiling an SDF File
	Options for Specify Blocks and Timing Checks
	Options for Pulse Filtering
	Options for Negative Timing Checks
	Option to Specify Elaboration Options in a File
	Options for Compiling Runtime Options into the Executable
	Options for PLI Applications
	Options to Enable the VCS MX DirectC Interface
	Options for Flushing Certain Output Text File Buffers
	Options for Controlling Messages
	Options for Cell Definition
	Options for Licensing
	Options for Controlling the Linker
	Options for Controlling the C Compiler
	Options for Source Protection
	Options for Mixed Analog/Digital Simulation
	Unified Option to Change Generic and Parameter Values
	Checking for X and Z Values in Conditional Expressions
	Options for Detecting Race Conditions
	Options to Specify the Time Scale
	Options for Overriding Generics and Parameters
	General Options
	Enable the VCS MX/SystemC Cosimulation Interface
	TetraMAX
	Suppressing Port Coersion to inout
	Allow Inout Port Connection Width Mismatches
	Allow Zero or Negative Multiconcat Multiplier
	Specifying a VCD File
	Enabling Dumping
	Memories and Multi-Dimensional Arrays (MDAs)
	Specifying a Log File
	Changing Source File Identifiers to Upper Case
	Specifying the Name of the Executable File
	Returning The Platform Directory Name
	Maximum Donut Layers for a Mixed HDL Design
	Enabling feature beyond VHDL LRM
	Enable Loop Detect
	Changing the Time Slot of Sequential UDP Output Evaluation
	Gate-Level Performance
	Option to Omit Compilation of Code Between Pragmas

	Simulation Options
	Options for Simulating Native Testbenches
	Options for SystemVerilog Assertions
	Options to Control Termination of Simulation
	Options for Enabling and Disabling Specify Blocks
	Options for Specifying When Simulation Stops
	Options for Recording Output
	Options for Controlling Messages
	Options for VPD Files
	Options for VCD Files
	Options for Specifying Delays
	Options for Flushing Certain Output Text File Buffers
	Options for Licensing
	Option to Specify User-Defined Runtime Options in a File
	Option for Initializing Integer Data Type Variables at Runtime
	General Options
	Viewing the Compile-Time Options
	Recording Where ACC Capabilities are Used
	Suppressing the $stop System Task
	Enabling User-defined Plusarg Options
	Enabling feature beyond VHDL LRM
	Specifying acc_handle_simulated_net PLI Routine

	Verilog Compiler Directives and System Tasks
	Compiler Directives
	Compiler Directives for Cell Definition
	Compiler Directives for Setting Defaults
	Compiler Directives for Macros
	Compiler Directives for Delays
	Compiler Directives for Backannotating SDF Delay Values
	Compiler Directives for Source Protection
	Debugging Partially Encrypted Source Code

	Compiler Directives for Controlling Port Coercion
	General Compiler Directives
	Compiler Directive for Including a Source File
	Compiler Directive for Setting the Time Scale
	Compiler Directive for Specifying a Library
	Compiler Directive for File Names and Line Numbers

	Unimplemented Compiler Directives

	System Tasks and Functions
	System Tasks for SystemVerilog Assertions Severity
	System Tasks for SystemVerilog Assertions Control
	System Tasks for SystemVerilog Assertions
	System Tasks for VCD Files
	System Tasks for LSI Certification VCD and EVCD Files
	System Tasks for VPD Files
	System Tasks for SystemVerilog Assertions
	System Tasks for Executing Operating System Commands
	System Tasks for Log Files
	System Tasks for Data Type Conversions
	System Tasks for Displaying Information
	System Tasks for File I/O
	System Tasks for Loading Memories
	System Tasks for Time Scale
	System Tasks for Simulation Control
	System Tasks for Timing Checks
	Timing Checks for Clock and Control Signals
	System Tasks for PLA Modeling
	System Tasks for Stochastic Analysis
	System Tasks for Simulation Time
	System Tasks for Probabilistic Distribution
	System Tasks for Resetting VCS MX
	General System Tasks and Functions
	Checks for a Plusarg
	SDF Files
	Counting the Drivers on a Net
	Depositing Values
	Fast Processing Stimulus Patterns
	Saving and Restarting The Simulation State
	Checking for X and Z Values in Conditional Expressions
	Calculating Bus Widths
	Displaying the Method Stack

	IEEE Standard System Tasks Not Yet Implemented

	Index

