
A Verilog Primer
An Overview of Verilog for Digital Design and Simulation

John Wright Vighnesh Iyer

Department of Electrical Engineering and Computer Sciences
College of Engineering, University of California, Berkeley

What is Verilog?

Visual Circuit Design

Digital circuits can be designed
by laying out circuit elements.
This was done in CS 61C.
Schematic entry.

Logisim

I Verilog is a HDL (hardware
definition language) that
can describe digital circuits
with C-like syntax.

I Defines circuits at the RTL
(register-transfer level) of
abstraction

I The circuit on the left could
be written in Verilog as
assign output = x ^ y

I ASIC or FPGA toolchains
translate Verilog to a
gate-level netlist

Verilog Modules

I Modules are the building blocks of Verilog designs. They are a
means of abstraction and encapsulation for your design.

I A module consists of a port declaration and Verilog code to
implement the desired functionality.

I Modules should be created in a Verilog file (.v) where the
filename matches the module name (the module below should
be stored in full adder.v)

module full_adder (input x, input y, input cin, output s, output cout);

endmodule

full_adderx

y

cin

s

cout

Verilog Module I/O Ports

I Ports allow communication between a module and its
environment

I Each port has a name and a type
I input
I output
I inout

I Ports for a module are declared in the port declaration

module full_adder (input x, input y, input cin, output s, output cout);

// Verilog code here has access to inputs

// Verilog code here can drive outputs

endmodule

The Top-Level Module
I Every Verilog design has a top-level module which sits at the

highest level of the design hierarchy
I The top-level module defines the I/O for the entire digital

system
I All the modules in your design reside inside the top-level

module

top_level_module

full_adderx

y

cin

s

cout

switch0

switch1

switch2 LED1

LED0

Verilog Module Instantiation

I Modules can be instantiated inside other modules. The syntax
used is <module name> <instance name> (.port0(wire),

.port1(wire), ...)

module top_level (input switch0,

input switch1,

input switch2,

output LED0,

output LED1);

full_adder add (

.x(switch0),

.y(switch1),

.cin(switch2),

.s(LED0),

.cout(LED1)

);

endmodule

Wire Nets

I Wires are analogous to wires in a circuit you build by hand;
they are used to transmit values between inputs and outputs.
Declare wires before they are used.

wire a;

wire b;

I The wires above are scalar (represent 1 bit). They can also be
vectors:

wire [7:0] d; // 8-bit wire declaration

wire [31:0] e; // 32-bit wire declaration

Multi-bit Nets

I We can declare signals that are more than 1 bit wide in Verilog

I Use the syntax [MSB bit index : LSB bit index]

before a signal name to declare its bit-width

I When connecting multi-bit inputs or outputs to another
module, the bit-widths of the signals need to match!

module two_bit_adder (input [1:0] x, input [1:0] y, output [2:0] sum);

wire [1:0] partial_sum;

wire carry_out;

endmodule

Structural Verilog with Gate Primitives
Gate-Level Circuit Construction

I The following gate primitives exist in Verilog: and, or, xor,
not, nand, nor, xnor. In general, the syntax is:

<operator> (output, input1, input2); // for two input gate

<operator> (output, input); // for not gate

Example of Verilog that implements the Boolean equation
f = a+ b:

wire a, b, f;

or (f, a, b);

Designing the Full Adder
Gate-Level Circuit

Designing the Full Adder
Using Structural Verilog

module full_adder (input a, input b, input cin, output s, output cout);

xor(s, a, b, cin);

wire xor_a_b;

wire cin_and;

wire and_a_b;

xor(xor_a_b, a, b);

and(cin_and, cin, xor_a_b);

and(and_a_b, a, b);

or(cout, and_a_b, cin_and);

endmodule

Behavioral Verilog
Letting the tools translate RTL to gates

I The full adder using structural Verilog was a pain to write,
but you will never have to write it that way!

I Behavioral Verilog constructs allow you to describe what you
want a circuit to do at the RTL level of abstraction

I The FPGA or ASIC toolchain will translate the Verilog code
to the FPGA or ASIC primitives that implement your circuit
description

I Verilog’s gate primitives are typically not used in design

Assign Statements

I Wires can be assigned to logic equations, other wires, or
operations performed on wires

I This is accomplished using the ’assign’ statement

I The left argument of the assign statement must be a wire,
and cannot be an input wire

I The right argument of the assign statement can be any
expression created from Verilog operators and wires

module copy (input a, output b);

assign b = a;

endmodule

Verilog Operators

I Verilog contains operators that can be used to perform
arithmetic, form logic expression, perform reductions/shifts,
and check equality between signals.

Operator Type Symbol Operation Performed

Arithmetic + Add

- Subtract

* Multiply

/ Divide

% Modulus

Logical ! Logical negation

&& Logical and

|| Logical or

Verilog Operators Cont.

Operator Type Symbol Operation Performed

Relational > Greater than

< Less than

>= Greater than or equal

<= Less than or equal

Equality == Equality

!= Inequality

Bitwise ~ Bitwise negation

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

Reduction operators also exist for AND, OR, and XOR that have
the same symbol as the bitwise operators.

Verilog Operators Cont.
Shifts, Concatenation, Replication, Indexing multi-bit wires

Operator Type Symbol Operation Performed

Shift << Shift left logical

>> Shift right logical

<<< Arithmetic left shift

>>> Arithmetic left shift

Concatenation {} Join bits

Replication {{}} Duplicate bits

Indexing/Slicing [MSB:LSB] Select bits

wire [7:0] d;

wire [31:0] e;

wire [31:0] f;

assign f = {d, e[23:0]}; // Concatenation + Slicing

assign f = { 32{d[5]} }; // Replication + Indexing

Designing the Full Adder
Using Behavioral Verilog

module full_adder (input x, input y, input cin, output s, output cout);

assign s = x ^ y ^ cin;

assign cout = (a && b) || (cin && (a ^ b));

endmodule

This is much better than the structural Verilog representation of a
full adder! The Verilog synthesizer can take this opportunity to
optimize logic expressions.

Designing an Adder
Using Behavioral Verilog

But it gets even better!

wire operand1 [31:0];

wire operand2 [31:0];

wire result [32:0];

assign result = operand1 + operand2;

We just described a 32-bit adder, but didn’t specify the
architecture or the logic! The Verilog synthesizer will turn the
generalized adder into a FPGA specific netlist or an ASIC
gate-level netlist.

Conditional (Ternary) Operator ?:

I The conditional operator allows us to define if-else logic in an
assign statement.

I Syntax: (condition) ? (expression if condition is true) :
(expression if condition is false)

I Example: an expression that implements min(a, 10)

assign out = a > 10 ? 10 : a;

I Example: output 0 if the two inputs are equal, output 1 if
input a is less than input b, and output 2 if input a is greater
than input b.

module equality_checker(input a [31:0], input b [31:0], output c [1:0]);

assign c = a == b ? 2'd0 : (a < b ? 2'd1 : 2'd2);

endmodule

Verilog Literals

I Verilog defines a particular way of specifying literals

I Syntax: [bit width]’[radix][literal]

I Radix can be d (decimal), h (hexadecimal), o (octal), b
(binary)

I It is critical to always match bit widths for operators and
module connections, do not ignore these warnings from the
tools

2'd1 2-bit literal (decimal 1)

16'hAD14 16-bit literal (hexadecimal 0xAD14)

8'b01011010 8-bit literal (binary 0b01011010)

Verilog Macros
Constant defines + Helper functions

I Macros in Verilog are similar to macros available in C

I `include is a preprocessor command to inject a Verilog
source file at its location; often used to bring in a Verilog
header file (.vh)

I `define <Constant Name> <Constant Value> is used to
declare a synthesis-time constant; use these instead of putting
’magic’ values in RTL

I `define <Macro function name>(ARGS) <Function

body> is used to define a macro function that can generate
RTL based on ARGS.

I `ifndef <NAME>, `define <NAME>, `endif is an include
guard (used similarly in C).

Verilog Macros
Example

Inside constants.vh:
`ifndef CONSTANTS // guard prevents header file from being included more

than once↪→
`define CONSTANTS

`define ADDR_BITS 16

`define NUM_WORDS 32

`define LOG2(x) \

(x <= 2) ? 1 : \

(x <= 4) ? 2 : \

(x <= 8) ? 3 : \

(x <= 16) ? 4 : \

(x <= 32) ? 5 : \

(x <= 64) ? 6 : \

-1

`endif

Verilog Macros
Example Cont.

Inside design.v:

`include "constants.vh"

module memory (input [`ADDR_BITS - 1:0] address,

output [`LOG2(`NUM_WORDS) - 1:0] data);↪→

// implementation

endmodule

Reg Nets

Verilog has two types of net: wire and reg. Reg nets are required
whenever a net must preserve state (i.e. in an always block).
Wires are used for structural verilog (to connect inputs to outputs)
and for continuous assignment.

reg x;

Combinational Logic Blocks using always@(*)

Verilog allows more complex logic through the use of always
blocks. Combinational logic (i.e. no state elements) can be written
using always@(*). The value inside the parentheses is called the
sensitivity list. Using a * will tell the compiler to compute the
sensitivity list automatically (recommended for combinational
logic).
Only reg nets can be assigned in an always block

reg y;

reg x;

always @(*) begin

x = ~y;

end

If-else statements
Like many programming languages, verilog includes if-else
statements. These implicitly generate multiplexors in hardware.
Multi-line code blocks require begin and end statements.

input w;

input y;

input x;

reg [1:0] z;

always @(*) begin

if(x) begin

z[0] = w;

z[1] = y;

end

else begin

z[0] = y;

z[1] = x;

end

end

Case statements

Like C, verilog supports case statements for generating multiplexor
structures.

input [1:0] x;

reg [1:0] y;

always @(*) begin

case(x)

0: y = 2'd0;

1: y = 2'd3;

2: y = 2'd2;

default: y = 2'd2;

endcase

end

Non-Synthesizable Control Statements

WARNING: for and while loops can’t be mapped to hardware!
These statements are valid verilog (and can be simulated), but
cannot always be mapped to hardware.
Generate statements (more later) are the appropriate use for for
loops.

Avoiding Unintentional Latch Synthesis

Every signal should have a default value. Assigning a value to a
reg only under given conditions will result in latch synthesis.
For example, this code generates a latch:

input [1:0] x;

reg [1:0] y;

always @(*) begin

if(x == 2'b10) begin

y = 2'd3;

end else if(x == 2'b11) begin

y = 2'd2;

end

end

Avoiding Unintentional Latch Synthesis

This code has a default value and will not generate a latch:

input [1:0] x;

reg [1:0] y;

always @(*) begin

y = 2'b00;

if(x == 2'b10) begin

y = 2'd3;

end else if(x == 2'b11) begin

y = 2'd2;

end

end

Synchronous Logic Blocks

Synchronous logic blocks are generated using special identifiers in
the sensitivity list. Here we only want to update on the positive
edge of the clock, so we use posedge. This will generate a
synchronous circuit that increments x every clock cycle.

input clk;

reg [1:0] x;

always @(posedge clk) begin

x <= x + 1;

end

Blocking vs Non-Blocking Assignments

What was up with the <= operator on the last slide? Verilog has
two assignment operators: blocking (=) and non-blocking (<=).
For the purposes of this class, always use blocking (=) for
combinational logic and non-blocking (<=) for sequential logic.

input clk;

reg [1:0] x;

reg [1:0] next_x;

always @(*) begin

next_x = x + 1;

end

always @(posedge clk) begin

x <= next_x;

end

localparam Declarations

Private module parameters are defined using the localparam
directive. These are useful for constants that are needed only by a
single module.

localparam coeff = 5;

reg [31:0] x;

reg [31:0] y;

always@(*) begin

x = coeff*y;

end

Wire vs. Reg
What is a real register and what is just a wire?

Rules for picking a wire or reg net type:

I If a signal needs to be assigned inside an always block, it must
be declared as a reg.

I If a signal is assigned using a continuous assignment
statement, it must be declared as a wire.

I By default module input and output ports are wires; if any
output ports are assigned in an always block, they must be
explicitly declared as reg: output reg <signal name>

How to know if a net represents a register or a wire.

I A wire net always represents a combinational link

I A reg net represents a wire if it is assigned in an always @ (*)
block

I A reg net represents a register if it is assigned in an always @
(posedge/negedge clock) block

Code Generation with for-generate loops

Generate loops are used to iteratively instantiate modules. This is
useful with parameters (next slide) or when instantiating large
numbers of the same module.

wire [3:0] a, b;

genvar i;

core first_one (1'b0, a[i], b[i]);

// programmatically wire later instances

generate

for (i = 1; i < 4 ; i = i + 1) begin:nameofthisloop

core generated_core (a[i], a[i-1], b[i]);

end

endgenerate

Verilog Module Parameterization

Verilog modules may include parameters in the module definition.
This is useful to change bus sizes or with generate statements.
Here we define and instantiate a programmable-width adder with a
default width of 32.

module adder #(parameter width=32)

(input [width-1:0] a,

input [width-1:0] b,

output [width:0] s);

s = a + b;

endmodule

module top();

localparam adder1width = 64;

localparam adder2width = 32;

reg [adder1width-1:0] a,b;

reg [adder2width-1:0] c,d;

wire [adder1width:0] out1;

wire [adder2width:0] out2;

adder #(.width(adder1width)) adder64 (.a(a), .b(b), .s(out1));

adder #(.width(adder2width)) adder32 (.a(c), .b(d), .s(out2));

endmodule

Multidimensional Nets in Verilog

I It is often useful to have a net organized as a two-dimensional
net to make indexing easier; this is particularly useful in any
memory structure.

I Syntax: reg [M:0] <netname> [N:0]

I The line above creates a net called <netname> and describes
it as an array of (N+1) elements, where each element is a
(M+1) bit number.

// A memory structure that has eight 32-bit elements

reg [31:0] fifo_ram [7:0];

fifo_ram[2] // The full 3rd 32-bit element

fifo_ram[5][7:0] // The lowest byte of the 6th 32-bit element

Memory Module Design Example
High-Level Spec

Let’s design a memory module with the following capabilities.

I Parameterized number of bits per word

I Parameterized number of words

I Asynchronous reads (as soon as an address is driven into the
memory, after a combinational delay, the data at the address
will come out of the memory)

I Synchronous writes (at a rising clock edge, if the write signal
is high, write the memory with the contents on the data input
line and at the address provided as input)

Memory Module Design Example
Module + Port Declaration

module memory #(

parameter BITS_PER_WORD = 32,

parameter NUM_WORDS = 128)(

input clk,

input [`LOG2(NUM_WORDS) - 1 : 0] write_address,

input [BITS_PER_WORD - 1 : 0] write_data,

input [`LOG2(NUM_WORDS) - 1 : 0] read_address,

input write_enable,

output [BITS_PER_WORD - 1 : 0] read_data

);

// RTL Code

endmodule

Memory Module Design Example
RTL Code

reg [BITS_PER_WORD - 1 : 0] mem_array [NUM_WORDS - 1

: 0];↪→

assign read_data = mem_array[read_address];

always @ (posedge clk) begin

if (write_enable) begin

mem_array[write_address] <=

write_data;↪→

end

end

Initial Blocks and Test Benches

WARNING: NOT SYNTHESIZABLE!
Initial blocks are primarily used for test benches. They contain
sequences of code to be executed at the beginning of the
simulation. The delay operator (#) and at operator (@) are used in
the inital block to step through time events.

`define clock_period 5

reg [31:0] a, b;

reg clk = 1'b0; // give it an initial value

always #(`clock_period/2) clk = ~clk; // toggle clock every half cycle

module dut mymodule(.clk(clk), .in0(a), .in1(b), .out(c));

initial begin

clk = 1'b0;

a = 32'h01234567;

b = 32'h00000000;

#1 a = 32'h10101010; // wait 1 time unit

#1 b = 32'h01010101;

#1 a = 32'h00000000;

b = 32'h11111111; // a and b change together

@(posedge clk); // jump to next rising edge

@(posedge clk); // jump to next rising edge

a = 32'hFEDCBA98;

#10;

// observe some output here.

end

Initial Blocks and Test Benches

Verilog test benches should include a `timescale directive. The
first value defines the time unit, and the second defines the
simulation resolution. In this example, the default time unit is 1
nanosecond and the simulation resolution is 1 picosecond.

`timescale 1ns/1ps

A delay of #1 would result in a 1 ns step. Delays as low as #0.001
would be supported due to the resolution of 1 ps.

